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ABSTRACT

Distribution shifts between training and testing datasets, contrary to classical ma-
chine learning assumptions, frequently occur in practice and impede model gen-
eralization performance. Studies on domain generalization (DG) thereby arise,
aiming to predict the label on unseen target domain data by only using data from
source domains. In the meanwhile, the contrastive learning (CL) technique, which
prevails in self-supervised pre-training, can align different augmentation of sam-
ples to obtain invariant representation. It is intuitive to consider the class-separated
representations learned in CL are able to improve domain generalization, while the
reality is quite the opposite: people observe directly applying CL deteriorates the
performance. We analyze the phenomenon with the CL theory and discover the
lack of intra-class connectivity in the DG setting causes the deficiency. Thus we
propose domain-connecting contrastive learning (DCCL) to enhance the concep-
tual connectivity across domains and obtain generalizable representations for DG.
Specifically, more aggressive data augmentation and cross-domain positive sam-
ples are introduced into self-contrastive learning to improve intra-class connec-
tivity. Furthermore, to better embed the unseen test domains, we propose model
anchoring to exploit the intra-class connectivity in pre-trained representations and
complement it with generative transformation loss. Extensive experiments on five
standard DG benchmarks are provided. The results verify that DCCL outperforms
state-of-the-art baselines even without domain supervision.

1 INTRODUCTION

Neural networks have achieved great progress in various vision applications, such as visual recogni-
tion (He et al., 2016), object detection (Tan et al., 2020), semantic segmentation (Cheng et al., 2021),
pose estimation (Sun et al., 2019), etc. Despite the immense success, existing approaches for rep-
resentation learning typically assume that training and testing data are independently sampled from
the identical distribution. However, in real-world scenarios, this assumption does not necessarily
hold. In image recognition, for example, distribution shifts w.r.t. geographic location (Beery et al.,
2018) and image background (Fang et al., 2013) frequently occur and impede the generalization
performance of models.

Accordingly, domain generalization (DG) (Gulrajani & Lopez-Paz, 2020) is widely studied to
strengthen the transferability of deep learning models. Different from domain adaptation (DA)
(You et al., 2019; Tzeng et al., 2017) where unlabeled or partially labeled data in target domains
are available during training, in a DG task we can only resort to source domains. A natural idea
for DG is to learn invariant representation across a variety of seen domains so as to benefit the clas-
sification of unobserved testing domain samples. As a powerful representation learning technique,
contrastive learning (CL) (Chen et al., 2020) aims to obtain class-separated representations and has
the potential for DG (Yao et al., 2022). In this paper, however, we observe that the widely de-
ployed self-contrastive learning (SCL) (Chen et al., 2020; He et al., 2020; Grill et al., 2020), which
aligns the augmentation of the same input, does not naturally fit the domain generalization setting:
it implicitly assumes the capability to sample instances from the whole data distribution.

To bridge this gap, we propose domain-connecting contrastive learning (DCCL) to pursue transfer-
able representations in DG, whose core insight comes from a novel understanding of CL attribut-
ing the success of CL to the intra-class representation connectivity (Wang et al., 2022b). Specif-
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ically, we first suggest two direct approaches to improve intra-class connectivity (to be fully ex-
plained at the beginning of Section 2) within CL: (i) applying more aggressive data augmentation
and (ii) expanding the scope of positive samples from self-augmented outputs to the augmentation
of same-class samples across domains. In addition to the direct approaches, we have an interest-
ing observation that the pre-trained models, unlike the learned maps, indeed possess the desired
intra-class connectivity: the intra-class samples of the training domains and the testing domains are
scattered but well-connected. The encouraging observation motivates us to anchor learned maps to
the pre-trained model and further complement it with a generative transformation loss for stronger
intra-class connectivity. As a visual illustration, Figure 1 demonstrates the embeddings learned by
regular Empirical Risk Minimization (ERM) and by the proposed DCCL. ERM embeds the data in
a more scattered distribution, and many samples in the central region cannot be distinguished; on
the other hand, DCCL can well cluster and separate inter-class samples regardless of the domains. It
verifies the effectiveness of our proposed DCCL on connecting domains.

ERM DCCL

Figure 1: Visualization for ERM and DCCL on PACS. Intra-class
points have the same colors, and two marker types differentiate the
training and testing domains. Our proposed method better bridges the
intra-class samples across domains than ERM.

Our contributions are
summarized as follows:
(i) We analyze the failure
of self-contrastive learn-
ing on DG and propose
two effective strategies
to improve intra-class
connectivity within CL.
(ii) We propose to anchor
learned maps to pre-trained
models which possess
the desired connectivity
of training and testing
domains. Generative trans-
formation loss is further
introduced to complement
the alignment in between.
(iii) We conduct extensive experiments on five real-world DG benchmarks with various settings,
demonstrating the effectiveness and rationality of DCCL.

2 PRELIMINARIES

We first illustrate the core concept of the paper, intra-class connectivity. It refers to the intra-class
data connectivity across different domains and resembles the connectivity in CL theory (Wang et al.,
2022b), which depicts the preference that samples should not be isolated from other intra-class data
of the same class 1. In the remainder of this section, we introduce problem formulation and necessary
preliminaries for contrastive learning in this section. A thorough review of related work on domain
generalization and contrastive learning are deferred to Appendix B due to space limit.

2.1 DATA IN THE DOMAIN GENERALIZATION SETTING

Given N observations (from M domains), X = {x1, . . . , xN} ⊆ X is the collection of input
features, Y = {y1, ..., yN} ⊆ Y represents the prediction targets, and the whole dataset Ds is
represented as {(xmi , ymi )Nm

i=1}Mm=1, where Nm is the number of samples (
∑M
m=1Nm = N ) in the

domain dm and xi is re-indexed as xmi accordingly.

The goal of this paper is to train a generalizable classification model from partial domains in Ds,
which has satisfactory performance even on the unseen domains in evaluation. We also follow the
specific settings in Cha et al. (2021; 2022); Chen et al. (2022) where only the feature vector xi ∈ X
and the label yi ∈ Y are observable, while the domain identifier dm ∈ D cannot be explicitly
utilized due to the expensive cost.

1An intuitive graph-based measure to assess the intra-class connectivity of a given model is discussed in
Appendix A.4.
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Figure 2: The overall framework of DCCL. The green dotted arrows indicate the two representa-
tions form a positive pair and the red ones connect the negative pairs. a(·) is an augmentation
operation. Three key parts in DCCL are (i) cross-domain contrast to bridge the intra-class sam-
ples across domains; (ii) pre-trained model anchoring to further possess the intra-class connectivity;
(iii) generative transformation to complement the pre-trained representation alignment.

2.2 CONTRASTIVE LEARNING

Contrastive Learning (CL) enforces the closeness of augmentation from the same input, compared to
other inputs in the representation space. The main components of CL, as summarized in Chen et al.
(2020); He et al. (2020), include: (i) data augmentation for contrastive views, (ii) a representation
map f as the data encoder: X → Rd, (iii) projection head h(·) for expressive representation, and
(iv) contrastive loss for optimization. Given an instance from X, we draw a positive pair x, x+ by
applying a random data augmentation a ∼ A, where A is the pre-specified distribution of random
data augmentation maps. As a contrastive concept to positive samples, a negative pool Nx is the set
of augmented samples randomly drawn from the whole dataset X. To ease the construction of the
CL loss, we denote p(x) as the distribution of x, p (x, x+) as the corresponding joint distribution
of the positive pairs, and pn(x−i ) (“n” is shorthand for “negative”) as the distribution for x−i ∈ Nx,
which are all independent and identically distributed (i.i.d.). Let z denote the normalized outputs of
input feature x through fh := (h ◦ f) (·). Consequently, z+ = fh(x

+) is the positive embedding of
z = fh(x) , and zi− = fh(x

−
i ) represents the embedding of the samples in the negative pool Nx.

The most common form of the CL loss (LCL) adapts the earlier InfoNCE loss (Oord et al., 2018)
and is formulated as:

LCL = E
p(x,x+)

{pn(x−
i )}|Nx|

i=1

− log
exp (z · z+/τ)∑

i∈[|Nx|]
exp

(
z · z−i /τ

)
 (1)

where τ > 0 is the temperature parameter. The minimization of the CL loss contributes to learning
an embedding space where samples from the positive pair are pulled closer and samples of the
negative pair are pushed apart. However, the CL loss is typically used in the unsupervised pre-
training (Chen et al., 2020; He et al., 2020; Grill et al., 2020) setting. To adapt it to domain
generalization (Yao et al., 2022; Chen et al., 2022; Kim et al., 2021), the full model is also required
to learn from supervised signals. Thus, it is intuitive to combine the CL loss with the empirical risk
minimization (ERM) loss LERM as the following objective:

L = LERM + λLCL (2)

where λ is the regularization parameter. In practice, LERM is usually chosen as the softmax cross
entropy loss to classify the output embedding z; we follow the classical setting (as well as the
previous studies) in this paper. We note that contrastive learning is only performed during training
to regularize the learned representations.
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3 PROPOSED METHODOLOGY

We will shortly revisit the recent theoretical understanding of CL (Wang et al., 2022b), and show
how the implications from CL theory motivate the design of DCCL for domain generalization.

3.1 IMPLICATIONS FROM CONTRASTIVE LEARNING THEORY

We take a recent study on contrastive learning (Wang et al., 2022b) as the main tool to analyze
the failure of self-contrastive learning in the previous subsection. Their analysis shows the ERM
loss (the pure classification loss) is mainly impacted by the intra-class conditional variance of the
learned representation, and the usage of CL can help reduce the intra-class conditional variance, thus
controlling the ERM loss.

The magic comes from the intra-class data connectivity enforced by CL. In applying CL, proper
data augmentation can help “connect” two different samples xi, xj within the same class, which
technically means there exists a pair of augmentation maps ai, aj so that ai(xi), aj(xj) are close
to each other. As pushed in optimizing the CL loss (1), the ultimate representations fh(xi), fh(xj)
will finally be close since

fh(xi) ≈ fh (ai(xi)) ≈ fh (aj(xj)) ≈ fh(xj).

In other words, as a ladder, ai(xi), aj(xj) connect the two samples xi, xj , and analogously all the
samples within the same class will be connected by proper data augmentation. CL later on pushes
their new representations to cluster thanks to the CL loss.

To illustrate the statement above, we construct a toy classification task in Appendix C, where data
augmentation is removed. SCL in this example fails to obtain intra-class connectivity due to insuffi-
cient data augmentation and domain-separated (rather than class-separated) representations, which
ultimately causes poor classification performance. We further remark a similar idea of leveraging
the sample similarities in the same class has been studied by Arjovsky et al. (2019, invariant risk
minimization), while the CL theory removes the limitation that the marginal distribution on source
domains should be the same on target domains, and thus is theoretically more applicable to DG.

3.2 MORE AGGRESSIVE DATA AUGMENTATION AND CROSS-DOMAIN POSITIVE SAMPLES

Inspired by the theoretical analysis above, in this subsection we propose two direct approaches to
improve intra-class connectivity: (i) applying more aggressive data augmentation and (ii) expanding
the scope of positive samples, from solely self-augmented outputs a(x) to the augmentation of intra-
class samples across domains.

For the first approach, in spite of the fact that data augmentation in DG (such as horizontal flipping
and color jittering) has already been a standard regularization technique (Gulrajani & Lopez-Paz,
2020; Cha et al., 2021; Wang et al., 2022a), the choice of data augmentation, we emphasize, matters
for contrastive learning in the domain generalization setting. We naturally need a larger augmenta-
tion distribution A to connect ai(xi) and aj(xj) since xi, xj can be drawn from different domains.
As ablation studies, the effect of data augmentation intensity is evaluated in Section 4.3.

Motivated by supervised CL (Khosla et al., 2020; Gunel et al., 2020; Cui et al., 2021), we further
introduce cross-domain positive pairs into contrastive learning to bridge the intra-class samples
scattered in different domains. Specifically, we not only consider the correlated views of the same
data sample as positive pairs but also the augmented instances from other intra-class samples across
domains. The positive sample x+ will now be conditionally independent of x, and the positive
pairs have the same conditional distribution p(1)(x+|y) = p(x|y) 2 (the specific distribution of the
positive sample x+ in this subsection will be denoted with a superscript (1)); in other words, x+
can now be the augmentation view of a random sample within the same class y of x. With the joint
distribution of x, x+ denoted as p(1) (x, x+) =

∫
y
p(1)(x+|y)p(x|y)p(y)dy, the primal domain-

2Unlike the classical setting in self-supervised CL, in DG we can access the label y in training.
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connecting contrastive learning (DCCL) objective L(0)
DCCL can be formulated as:

L(0)
DCCL = E

p(1)(x,x+)

{pn(x−
i )}|Nx|

i=1

− log
exp (z · z+/τ)∑

i∈[|Nx|]
exp

(
z · z−i /τ

)
 . (3)

Without the explicit use of domain information, − log exp (z · z+/τ), the term corresponding to
alignment in loss (3), can now push the intra-class samples from different domains together.

3.3 ANCHORING LEARNED MAPS TO PRE-TRAINED MODELS

Up to now, we have not addressed the core difficulty in domain generalization—lack of access to
the testing domains in training: CL is originally designed for the self-supervised scenario where
a huge amount and wide range of data are fed to the models. However, in the context of domain
generalization, the model is just fine-tuned on limited data within partial domains. Consequently,
the mechanism of CL can only contribute to the clustering of representations in the seen domains,
while the embeddings of the unseen testing domains and the ones of the training domains in the
same class may still be separated.

Interestingly, the intra-class connectivity for representations, the desired property in CL, seems to
exist at the beginning of the fine-tuning. We observe the phenomenon when visualizing the rep-
resentations obtained from the pre-trained model using t-SNE (Van der Maaten & Hinton, 2008)
in Figure 4a, which thereby motivates our design in this subsection. We can find that mapped by
the initial pre-trained model ResNet-50, intra-class samples of the training domains and the testing
domains are scattered while well-connected.

We attribute the phenomenon to the effective representations returned by pre-trained model, which
reasonably model the pairwise interactions among images and thus draw target domains closer to
source domains. To verify the effectiveness of the representations, we design a quantitative metric
to evaluate whether the pre-trained space is “well-connected”, by turning to the concept of “con-
nectivity” in graphs. Details can be found in Appendix A.4.

As for the model design, the phenomenon motivates us to better utilize the pre-trained model fpre for
stronger intra-class connectivity in the mapped representations obtained from f . We propose to take
the usage of pre-trained models as data augmentation in a disguised form: regular data augmentation
works on the raw data and return x while we can further “augment” the representation x via fpre.

In mathematical language, we descibe our design as follows. Upon the augmented sample x defined
in the last subsection, we further incorporate the pre-trained embedding zpre = h ◦ fpre(x) into the
definition of feasible positive embeddings z(2),+, which expands the scope of the previous positive
embeddings z+ (the superscript (2) implies the different distribution compared to z+ in the last
subsection). In particular, for a given x, we decide the form of the newly coined positive embedding
z(2),+ as:

z(2),+ =

{
z+ = h ◦ f(x+), w.p. 1

2 ,

zpre = h ◦ fpre(x), w.p. 1
2 .

With the distribution of the extended positive embedding denoted as p(2)
(
z(2),+

)
(the positive pairs

x, x+ still follow p(1)(x, x+)), the proposed DCCL loss LDCCL can be written as:

LDCCL = E
p(2)(z,z(2),+)
{pn(x−

i )}|Nx|
i=1

− log
exp

(
z · z(2),+/τ

)∑
i∈[|Nx|]

exp
(
z · z−i /τ

)
 , (4)

where p(2)
(
z, z(2),+

)
is the joint distribution of z, z(2),+ constructed in this subsection.

3.4 GENERATIVE TRANSFORMATION LOSS FOR PRE-TRAINED REPRESENTATION

In the previous section, our proposed contrastive learning method manages to mine the supervised
signal at the inter-sample level, where we align the positive pairs (composed of different samples)
while pushing apart the samples in a negative pool.
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Figure 3: An overview of the generative
transformation module in DCCL. Two rep-
resentations zpre and z of the same image
are generated via the pre-trained and the fine-
tuned model respectively. The variational re-
construction is conducted to encode essential
within-sample information.

Echoing the findings in (Yao et al., 2022), which
point out that directly aligning positive pairs across
vastly different domains often results in poor perfor-
mance, our research similarly identifies a substantial
gap in the representations of pre-trained and fine-
tuned models. Direct alignment using contrastive
learning as evidenced by our empirical evaluation,
tends to be sub-optimal. In response, we introduce
the concept of variational generative loss to com-
prehend the transformation process and bridge these
representational gaps. Additionally, the generative
transformation module is designed to reconstruct the
features of the pre-trained model at an intra-sample
level. This complements the inter-sample level su-
pervision provided by contrastive loss. The module,
along with its associated loss function, is intended to

provide a more enriched supervised signal, encapsulating crucial within-sample information. This
module, in turn, supports as a pivotal proxy objective that facilitates model anchoring 3.3.

To simplify the notation of the transformation, we abuse the previous notations {z, zpre} for the
output embedding from a certain learned/pre-trained model layer, omitting the corresponding layer
denotation. zpre is the fixed supervised signal provided by the pre-trained model.

With the notation {z, zpre}, we introduce the following variational generative model to parameterize
the map g : z 7→ zpre relating the representation manifolds formed by (the first several layers of)
the learned map f and the fixed pre-trained model fpre. In particular, g is composed of an encoder
ϕ modeling a tunable conditional distribution qϕ (zlat | z) of zlat and a tunable decoder ψ mapping
zlat back to zpre, in which zlat ∈ Rd′ is the latent representation of the generator. Similar to the
training of a regular variational autoencoder (VAE) (Kingma et al., 2019), the latent variable zlat
will be sampled from qϕ (zlat | z); we can then project zlat to the pre-trained embedding space via
decoder ψ. Our variational reconstruction loss LGen

DCCL is designed as:

LGen
DCCL = −Eqϕ(zlat|z) [log pψ (zpre | zlat)] + KL [qϕ (zlat | z) ∥ p (zlat)] , (5)

where p (zlat) is the pre-specified prior distribution of zlat, pψ (zpre | zlat) is decided by the “re-
construction loss” ∥zpre − ψ (zlat) ∥2, and the KL divergence term corresponds to the variational
regularization term to avoid mode collapse. The workflow of our proposed generative transforma-
tion is shown in Figure 3.

Finally, to benefit the representation learning through both generative transformation and our im-
proved contrastive leaning, we set our ultimate objective as:

L = LERM + λLDCCL + βLGen
DCCL (6)

where λ and β are coefficients to balance the multi-task loss. The ablation studies in Section 4.3
verify the effectiveness of each component.

4 EXPERIMENTS

In this section, we empirically evaluate the performance of our proposed DCCL, intending to answer
the following research questions:

• RQ1: Does DCCL enable networks to learn transferable representation under distribution shifts?
• RQ2: How do different components in our framework contribute to the performance?
• RQ3: How good is the generalizability of our proposed DCCL under different circumstances (e.g.,

varying label ratios and backbones)?
• RQ4: Does DCCL really connect the cross-domain representations?

4.1 EXPERIMENTAL SETTINGS

We exhaustively evaluate out-of-domain (OOD) accuracy of DCCL on various representative DG
benchmarks as in Cha et al. (2021); Yao et al. (2022); Cha et al. (2022); Chen et al. (2022): Office-
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Algorithm A C P S Avg.
IRM (Arjovsky et al., 2019) 84.8 76.4 96.7 76.1 83.5
MetaReg (Balaji et al., 2018) 87.2 79.2 97.6 70.3 83.6
DANN (Ganin et al., 2016) 86.4 77.4 97.3 73.5 83.7

ERM (Vapnik, 1999) 85.7 77.1 97.4 76.6 84.2
GroupDRO (Ganin et al., 2016) 83.5 79.1 96.7 78.3 84.4
MTL (Blanchard et al., 2021) 87.5 77.1 96.4 77.3 84.6

I-Mixup (Xu et al., 2020) 86.1 78.9 97.6 75.8 84.6
MMD (Li et al., 2018b) 86.1 79.4 96.6 76.5 84.7

VREx (Krueger et al., 2021) 86.0 79.1 96.9 77.7 84.9
MLDG (Li et al., 2018a) 85.5 80.1 97.4 76.6 84.9

ARM (Zhang et al., 2020) 86.8 76.8 97.4 79.3 85.1
RSC (Huang et al., 2020) 85.4 79.7 97.6 78.2 85.2

Mixstyle (Zhou et al., 2021) 86.8 79.0 96.6 78.5 85.2
ER (Zhao et al., 2020) 87.5 79.3 98.3 76.3 85.3

pAdaIN (Nuriel et al., 2021) 85.8 81.1 97.2 77.4 85.4
SelfReg (Kim et al., 2021) 85.0 81.0 95.9 80.5 85.6
EISNet (Wang et al., 2020) 86.6 81.5 97.1 78.1 85.8

CORAL (Sun & Saenko, 2016) 88.3 80.0 97.5 78.8 86.2
SagNet (Nam et al., 2021) 87.4 80.7 97.1 80.0 86.3
DSON (Seo et al., 2020) 87.0 80.6 96.0 82.9 86.6

COMEN (Chen et al., 2022) 88.1 82.6 97.2 81.9 87.5
SWAD (Cha et al., 2021) 89.3 83.4 97.3 82.5 88.1
MIRO (Cha et al., 2022) 89.8 83.6 98.2 82.1 88.4
PCL (Yao et al., 2022) 90.2 83.9 98.1 82.6 88.7

Ours 90.5 84.2 98.0 83.3 89.1± 0.1

(a) PACS

Algorithm A C P R Avg
Mixstyle (Zhou et al., 2021) 51.1 53.2 68.2 69.2 60.4

IRM (Arjovsky et al., 2019) 58.9 52.2 72.1 74.0 64.3

ARM (Zhang et al., 2020) 58.9 51.0 74.1 75.2 64.8

RSC (Huang et al., 2020) 60.7 51.4 74.8 75.1 65.5

CDANN (Li et al., 2018b) 61.5 50.4 74.4 76.6 65.7

DANN (Ganin et al., 2016) 59.9 53.0 73.6 76.9 65.9

GroupDRO (Ganin et al., 2016) 60.4 52.7 75.0 76.0 66.0

MMD (Li et al., 2018b) 60.4 53.3 74.3 77.4 66.4

MTL (Blanchard et al., 2021) 61.5 52.4 74.9 76.8 66.4

VREx (Krueger et al., 2021) 60.7 53.0 75.3 76.6 66.4

MLDG (Li et al., 2018a) 61.5 53.2 75.0 77.5 66.8

ERM (Vapnik, 1999) 63.1 51.9 77.2 78.1 67.6

SelfReg (Kim et al., 2021) 63.6 53.1 76.9 78.1 67.9
I-Mixup (Xu et al., 2020) 62.4 54.8 76.9 78.3 68.1

SagNet (Nam et al., 2021) 63.4 54.8 75.8 78.3 68.1

CORAL (Sun & Saenko, 2016) 65.3 54.4 76.5 78.4 68.7

COMEN (Chen et al., 2022) 65.4 55.6 75.8 78.9 68.9
SWAD (Cha et al., 2021) 66.1 57.7 78.4 80.2 70.6

PCL (Yao et al., 2022) 67.3 59.9 78.7 80.7 71.6
MIRO (Cha et al., 2022) 68.8 58.1 79.9 82.6 72.4

Ours 70.1 59.1 81.4 83.4 73.5± 0.2

(b) Office-Home

Table 1: Experimental comparisons with state-of-the-art methods on benchmarks with ResNet-50.
(The tables are re-scaled due to space limit.)

Home (Venkateswara et al., 2017), PACS (Li et al., 2017), VLCS (Fang et al., 2013), TerraIncognita
(Beery et al., 2018), and DomainNet (Peng et al., 2019). The details of the data sets are shown
in Appendix A.1. For fair comparison, we strictly follow the experimental settings in Gulrajani &
Lopez-Paz (2020); Cha et al. (2021); Yao et al. (2022); Chen et al. (2022) and adopt the widely used
leave-one-domain-out evaluation protocol, i.e., one domain is chosen as the held-out testing domain
and the rest are regarded as source training domains. The experiment results are all averaged over
three repeated runs. Following DomainBed (Gulrajani & Lopez-Paz, 2020), we leave 20% of source
domain data for validation and model selection. As in previous works (Cha et al., 2022; Yao et al.,
2022), we use the ResNet-50 model pre-trained on ImageNet by default, and our code is mainly
built upon DomainBed (Gulrajani & Lopez-Paz, 2020) and SWAD (Cha et al., 2021). Due to space
constraints, detailed implementation and experimental setups are shown in Appendix A.1. The lim-
itations, attribution of existing assets, and the use of personal data are discussed in Appendix D.

4.2 RESULTS (RQ1)

We provide comprehensive comparisons with a set of strong baselines on the domain general-
ization benchmarks, PACS and OfficeHome, in Tables 1a and 1b. Detailed experimental results
on TerraIncognita, VLCS, and DomainNet datasets are deferred to Appendix A.2. We observe
our proposed method achieves the best performance: the metrics are 44.0 (ERM)→47.0 (Best
Baseline)→47.5 (Ours) on DomainNet, 77.3→79.6→80.0 on VLCS, and 47.8→52.9→53.7 on Ter-
raIncognita. The results of the intermediate columns in the tables represent performance on the
testing domain. For example, “A” in Table 1 denotes testing on domain Art and training on Photo,
Cartoon, and Sketch. The final result is averaged over all domains. The symbol + in the tables is
used to denote that the reproduced experimental performance is clearly distinct from the reported one
(such as “PCL+” in Table 4). All the baselines are sorted in ascending order of their performance.

We have the following findings from the tables. (i) We find that DCCL substantially outperforms all
the baseline methods concerning OOD accuracy. This indicates the capability of DCCL to extract
transferable representation for generalization under distribution shift. (ii) We notice most baselines
make explicit use of domain supervision, while only a few methods such as RSC (Huang et al.,
2020), SagNet (Nam et al., 2021), COMEN (Chen et al., 2022), SWAD (Cha et al., 2021), MIRO
(Cha et al., 2022) and our DCCL do not. The excellent performance of our DCCLmay reveal previous
works do not well utilize the domain information and there is still much room for improvement.
(iii) We note that PCL (Yao et al., 2022) (Proxy Contrastive Learning) has utilized the potential of
CL, aligns embeddings of different samples into domain centers, and consistently achieves good
performance. Meanwhile, MIRO (Cha et al., 2022) also preserves the pre-trained features by adding
the mutual information regularization term and attains satisfactory performance. However, because
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CDC PMA GT A C P R Avg.
- - - 66.1 57.7 78.4 80.2 70.6

with Self-Contrast 65.4 51.4 79.1 79.5 68.9
✓ - - 68.0 57.9 80.1 81.3 71.8
- ✓ - 68.8 57.8 80.4 82.3 72.3
- - ✓ 69.0 56.9 80.6 81.6 72.0
- ✓ ✓ 70.0 58.7 80.5 83.4 73.1
✓ ✓ - 69.2 58.5 81.0 83.0 72.9
✓ - ✓ 69.0 58.5 80.7 82.1 72.6

w/o Aggressive Aug 69.8 58.6 81.0 82.6 73.0
✓ ✓ ✓ 70.1 59.1 81.4 83.4 73.5

Table 2: Ablation Studies of DCCL on OfficeHome.

Ratio Algorithm A C P R Avg.

5%

ERM (Vapnik, 1999) 40.4 32.6 42.6 49.2 41.2
SWAD (Cha et al., 2021) 46.9 36.2 48.5 54.2 46.4

COMEN (Chen et al., 2022) 47.7 39.2 50.6 56.1 48.4
PCL (Yao et al., 2022) 48.4 42.3 55.2 57.2 50.8

MIRO (Cha et al., 2022) 51.0 41.6 58.6 61.5 53.2
Ours 55.7 44.1 63.1 67.1 57.5 (+16.3)

10%

ERM (Vapnik, 1999) 45.1 41.9 55.9 58.0 50.2
COMEN (Chen et al., 2022) 50.4 44.3 56.8 60.9 53.1

SWAD (Cha et al., 2021) 53.3 43.9 61.8 65.2 56.1
PCL (Yao et al., 2022) 54.6 45.1 60.9 67.2 57.0

MIRO (Cha et al., 2022) 58.9 46.6 68.6 71.7 61.4
Ours 62.5 49.2 72.3 75.1 64.8 (+14.6)

Table 3: Experimental comparisons of DCCL with representative baselines on OfficeHome under
various label ratios.

of their deficiency to connect cross-domain representations, our method manages to improve upon
the success the previous baselines had.

4.3 ABLATION STUDIES (RQ2)

In this part, we investigate the effectiveness of the proposed DCCL by evaluating the impact of dif-
ferent components. We denote the Cross-Domain Contrastive learning in Section 3.2 as CDC (with
more aggressive data augmentation and cross-domain positive samples), Pre-trained Model Anchor-
ing in Section 3.3 as PMA, and Generative Transformation in Section 3.4 as GT. The ablation results
are summarized in Table 2. The check mark in the table indicates the module is incorporated. We
note that our improved contrastive learning loss in Eqn. (4) has two components: CDC and PMA.
The overall improvement of the loss is substantial: 70.6 → 72.9. From the table, we can observe
that all the components are useful: when any one of these components is removed, the performance
drops accordingly. For example, removing PMA module leads to significant performance degen-
eration, which verifies the importance of anchoring learned maps to pre-trained models. We can
then find the combination of PMA and GT leads to the highest improvement in the ablation, which
indicates GT and PMA modules complement each other in an effective way. The finding is also con-
sistent with our motivation in Section 3.4. Moreover, we also evaluate self-contrastive learning. The
experimental results indicate that self-contrastive learning will distort the learned embeddings and
hamper performance. Besides, the experiment without aggressive data augmentation also validates
the effectiveness of stronger data augmentations we suggest in Section 3.2. Additional experimental
details and explanations regarding our choices for VAE structures, contrastive learning techniques
within DCCL, cross-domain examples in CDC, alternative pre-trained backbones, and the Wilds
Benchmark can be found in Appendix A.5.

4.4 CASE STUDIES

Generalization ability (RQ3). To verify the generalizability of our proposed DCCL, we conduct
experiments3 with different label ratios (the percentage of labeled training data) and backbones.
(i) In Table 3, we find DCCL can obtain consistent improvement over baselines, in both cases of
5% and 10% label ratios. Our method yields a 16.3 and 14.6 absolute improvement compared with

3We select a few of the most representative methods as baselines.
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(a) Pre-trained. (b) ERM. (c) SCL.

Figure 4: t-SNE visualization of the representations across both training and testing domains, output
by Pre-trained, ERM, and SCL respectively. Same-class points are in the same colors, and two
marker types differentiate the training or the testing domains. We visualize the embedding on PACS
dataset where the source domains are Photo, Sketch, and Cartoon; the target domain is Art.

Algorithm A C P R Avg.
ERM (Vapnik, 1999) 50.6 49.0 69.9 71.4 60.2

SWAD (Cha et al., 2021) 54.6 50.0 71.1 72.8 62.1
PCL+ (Yao et al., 2022) 58.8 51.9 74.2 75.2 65.0
MIRO (Cha et al., 2022) 59.7 52.6 75.0 77.7 66.2

COMEN (Chen et al., 2022) 57.6 55.8 75.5 76.9 66.5
“Mismatch” 53.4 50.7 72.3 74.0 62.6

Ours 61.7 53.6 75.9 78.7 67.5

Table 4: Experimental comparisons of DCCL on OfficeHome with the ResNet-18 backbone in use.

ERM. We can observe that as the number of available labels reduces, the model benefits more from
our DCCL (compared with previous 67.6→73.5 increase under 100% label ratio in Table 1b). (ii) In
Table 4, we test the performance with a new backbone, ResNet-18 (previously ResNet-50)4. We
find that even though the baselines’ relative ordering changes significantly, our model still performs
the best, showcasing the robustness thereof. We further observe replacing the ResNet-18 pre-trained
representations to the larger ResNet-50 ones (“mismatch” between the backbone used for fine-tuning
and the pre-trained representations) will cause substantial performance drop 67.5 → 62.6.

Analysis of the representations in DCCL (RQ4). We analyze the representations returned by
DCCL to provide more insights. In Figure 4, we utilize t-SNE (Van der Maaten & Hinton, 2008)
to visualize the embeddings of the pre-trained model, ERM, and SCL model. We can observe that
mapped by the original pre-trained model ResNet-50, the intra-class samples of the training do-
mains and the testing domains are scattered while well-connected. However, in the ERM model,
many samples in the testing domain are distributed in the central part of the plot, which is separated
from the training samples. There is a clear gap between the training and the testing domains. As
for SCL, it seems to harm the learned embedding space and distort the class decision boundary. The
observations verify our conjectures in Section C.

We then visualize the embeddings of ERM, PCL, and our DCCL methods on the testing domains in
Appendix A.3. Our DCCL learns discriminative representations even in the unseen target domain by
enhancing intra-class connectivity in CL, which is not addressed in ERM and PCL.

5 CONCLUSIONS

In this paper, we revisit the role of contrastive learning in domain generalization and identify a key
factor: intra-class connectivity. We analyze the failure of directly applying contrastive learning to
DG and propose two strategies to improve intra-class connectivity: (i) applying more aggressive
data augmentation and (ii) expanding the scope of positive samples. Moreover, to alleviate lack of
access to the testing domains in training, we propose to anchor learned maps to pre-trained models
which possess the desired connectivity of training and testing domains. Generative transformation is
further introduced to complement the pre-trained alignment. Consequently, we combine the pieces
together and propose DCCL to enable robust representations in the out-of-domain scenario. Exten-
sive experiments on 5 real-world datasets demonstrate the effectiveness of DCCL, which outperforms
a bundle of baselines.

4For semantic information matching, pre-trained representations in DCCL are generated from the same
backbone model used for fine-tuning.

9



Under review as a conference paper at ICLR 2024

REFERENCES
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A DETAILS OF EXPERIMENTS

A.1 EXPERIMENTAL SETUP

Datasets # images # domains # classes
PACS 9991 4 7
VLCS 10729 4 5

OfficeHome 15588 4 65
TerraIncognita 24788 4 10

DomainNet 586575 6 345

Table 5: Statistics of datasets.

Here we elaborate the detailed experimental setup of our paper. Following DomainBed (Gulrajani &
Lopez-Paz, 2020), we split 80%/20% data from source domains as the training/validation set. The
best-performing model on the validation set will be evaluated on the testing target domain to obtain
the test performance. The statistics of the experimental datasets are shown in Table 5. We list the
number of images, domains, classes in each dataset. The proposed model is optimized using Adam
(Kingma & Ba, 2015) with the learning rate of 5e-5. The hyper-parameter λ is searched over {0.1,
1, 2, 5}, and β is tuned in the range of {0.01, 0.05, 0.1}. The temperature τ is set to 0.1 by de-
fault. For the projection head used for contrastive learning, we use a two-layer MLP with ReLU and
BatchNorm. Regarding variational reconstruction, following Cha et al. (2022), we employ a simple
yet effective architecture, in which the identity function is used as mean encoder and a bias-only net-
work with softplus activation for the variance encoder. More intricate architecture can be explored
in the future. Following Gulrajani & Lopez-Paz (2020), for all the datasets except DomainNet, we
train the model for 5000 steps. For the DomainNet dataset, we train the model for 15000 steps.
Other algorithm-agnostic hyper-parameters such as the batch size are all set to be the same as in the
standard benchmark DomainBed (Gulrajani & Lopez-Paz, 2020). For batch construction, we sample
the same number of samples from each training domain as in DomainBed (Gulrajani & Lopez-Paz,
2020). Generative Transformation is done for all 4 layers in ResNet-18/50. The experiments are
all conducted on one Tesla V100 32 GB GPU. For the data augmentation strategy, previous works
usually adopted random cropping, grayscale, horizontal flipping and random color jittering. In this
paper, we simply increase the intensity of random color jittering to achieve more aggressive data
augmentation. The experimental results have verified the effectiveness of the strategy. Develop-
ing stronger and more adaptive augmentation methods for contrastive learning on DG may further
enhance the performance.

A.2 EXPERIMENTAL RESULTS ON TERRAINCOGNITA, VLCS, AND DOMAINNET DATA SETS

We put the experimental comparisons with state-of-the-art baselines on TerraIncognita, VLCS, and
DomainNet data sets respectively in Tables 6, 7, and 8. The symbol + in the tables is used to denote
that the reproduced experimental performance is distinct from the originally reported one such as
“PCL+” in Table 8. We can observe our proposed DCCL still surpasses previous methods, which
is consistent with the conclusion in the main text and successfully verify the effectiveness of our
proposed method.

A.3 VISUALIZATION

We demonstrate the embeddings of ERM, PCL, and our DCCL methods on the testing domain in
Figure 5. ERM, among the three methods, has the most samples distributed in the central area which
cannot be distinguished. For the embedding of contrastive-learning-based baseline PCL, there are
fewer samples distributed ambiguously. However, the class clusters are not compact and the class
boundaries are not clear. By contrast, our DCCL learns discriminative representations even in the
unseen target domain by enhancing intra-class connectivity in CL.
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Algorithm L100 L38 L43 L46 Avg.
MMD (Li et al., 2018b) 41.9 34.8 57.0 35.2 42.2

GroupDRO (Ganin et al., 2016) 41.2 38.6 56.7 36.4 43.2
Mixstyle (Zhou et al., 2021) 54.3 34.1 55.9 31.7 44.0
ARM (Zhang et al., 2020) 49.3 38.3 55.8 38.7 45.5

MTL (Blanchard et al., 2021) 49.3 39.6 55.6 37.8 45.6
CDANN (Li et al., 2018b) 47.0 41.3 54.9 39.8 45.8

VREx (Krueger et al., 2021) 48.2 41.7 56.8 38.7 46.4
RSC (Huang et al., 2020) 50.2 39.2 56.3 40.8 46.6

DANN (Ganin et al., 2016) 51.1 40.6 57.4 37.7 46.7
SelfReg (Kim et al., 2021) 48.8 41.3 57.3 40.6 47.0

IRM (Arjovsky et al., 2019) 54.6 39.8 56.2 39.6 47.6
CORAL (Sun & Saenko, 2016) 51.6 42.2 57.0 39.8 47.7

MLDG (Li et al., 2018a) 54.2 44.3 55.6 36.9 47.8
ERM (Vapnik, 1999) 54.3 42.5 55.6 38.8 47.8

I-Mixup (Xu et al., 2020) 59.6 42.2 55.9 33.9 47.9
SagNet (Nam et al., 2021) 53.0 43.0 57.9 40.4 48.6

COMEN (Chen et al., 2022) 56.0 44.3 58.4 39.4 49.5
SWAD (Cha et al., 2021) 55.4 44.9 59.7 39.9 50.0

PCL (Yao et al., 2022) 58.7 46.3 60.0 43.6 52.1
MIRO (Cha et al., 2022) 60.9 47.6 59.5 43.4 52.9

Ours 62.2 48.3 60.6 43.6 53.7± 0.2

Table 6: Experimental comparisons with state-of-the-art methods on TerraIncognita benchmark with
ResNet-50.

Algorithm C L S V Avg
GroupDRO (Ganin et al., 2016) 97.3 63.4 69.5 76.7 76.7

RSC (Huang et al., 2020) 97.9 62.5 72.3 75.6 77.1
MLDG (Li et al., 2018a) 97.4 65.2 71.0 75.3 77.2

MTL (Blanchard et al., 2021) 97.8 64.3 71.5 75.3 77.2
ERM (Vapnik, 1999) 98.0 64.7 71.4 75.2 77.3

I-Mixup (Xu et al., 2020) 98.3 64.8 72.1 74.3 77.4
MMD (Li et al., 2018b) 97.7 64.0 72.8 75.3 77.5

CDANN (Li et al., 2018b) 97.1 65.1 70.7 77.1 77.5
ARM (Zhang et al., 2020) 98.7 63.6 71.3 76.7 77.6
SagNet (Nam et al., 2021) 97.9 64.5 71.4 77.5 77.8
SelfReg (Kim et al., 2021) 96.7 65.2 73.1 76.2 77.8

Mixstyle (Zhou et al., 2021) 98.6 64.5 72.6 75.7 77.9
PCL (Yao et al., 2022) 99.0 63.6 73.8 75.6 78.0

VREx (Krueger et al., 2021) 98.4 64.4 74.1 76.2 78.3
COMEN (Chen et al., 2022) 98.5 64.1 74.1 77.0 78.4
IRM (Arjovsky et al., 2019) 98.6 64.9 73.4 77.3 78.6
DANN (Ganin et al., 2016) 99.0 65.1 73.1 77.2 78.6

CORAL (Sun & Saenko, 2016) 98.3 66.1 73.4 77.5 78.8
SWAD (Cha et al., 2021) 98.8 63.3 75.3 79.2 79.1
MIRO (Cha et al., 2022) 98.8 64.2 75.5 79.9 79.6

Ours 99.1 64.0 76.1 80.7 80.0± 0.1

Table 7: Experimental comparisons with state-of-the-art methods on VLCS benchmark with
ResNet-50.

A.4 REPRESENTATION CONNECTIVITY OF PRE-TRAINED MODELS

Our motivation to utilize pre-trained models for better connectivity is intuitive: we consider pre-
trained model can return effective representations modeling the pairwise interactions among images,
which thus draws target domains closer to source domains. To verify the motivation, we conduct
experiments to evaluate whether the pre-trained model is “well-connected”.

1. We design a quantitative metric to help evaluate whether the pre-trained space is “well-
connected”. For images within the same class, we take those images as nodes and construct
a graph, only connecting two nodes when their distance on the pre-trained space is smaller than
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Algorithm clip info paint quick real sketch Avg
MMD (Li et al., 2018b) 32.1 11.0 26.8 8.7 32.7 28.9 23.4

GroupDRO (Ganin et al., 2016) 47.2 17.5 33.8 9.3 51.6 40.1 33.3
VREx (Krueger et al., 2021) 47.3 16.0 35.8 10.9 49.6 42.0 33.6
IRM (Arjovsky et al., 2019) 48.5 15.0 38.3 10.9 48.2 42.3 33.9
Mixstyle (Zhou et al., 2021) 51.9 13.3 37.0 12.3 46.1 43.4 34.0
ARM (Zhang et al., 2020) 49.7 16.3 40.9 9.4 53.4 43.5 35.5
CDANN (Li et al., 2018b) 54.6 17.3 43.7 12.1 56.2 45.9 38.3
DANN (Ganin et al., 2016) 53.1 18.3 44.2 11.8 55.5 46.8 38.3
RSC (Huang et al., 2020) 55.0 18.3 44.4 12.2 55.7 47.8 38.9
I-Mixup (Xu et al., 2020) 55.7 18.5 44.3 12.5 55.8 48.2 39.2
SagNet (Nam et al., 2021) 57.7 19.0 45.3 12.7 58.1 48.8 40.3

MTL (Blanchard et al., 2021) 57.9 18.5 46.0 12.5 59.5 49.2 40.6
MLDG (Li et al., 2018a) 59.1 19.1 45.8 13.4 59.6 50.2 41.2

CORAL (Sun & Saenko, 2016) 59.2 19.7 46.6 13.4 59.8 50.1 41.5
SelfReg (Kim et al., 2021) 60.7 21.6 49.4 12.7 60.7 51.7 42.8

MetaReg (Balaji et al., 2018) 59.8 25.6 50.2 11.5 64.6 50.1 43.6
DMG (Chattopadhyay et al., 2020) 65.2 22.2 50.0 15.7 59.6 49.0 43.6

ERM (Vapnik, 1999) 63.0 21.2 50.1 13.9 63.7 52.0 44.0
COMEN (Chen et al., 2022) 64.0 21.1 50.2 14.1 63.2 51.8 44.1

PCL+ (Yao et al., 2022) 64.3 20.9 52.7 16.7 62.2 55.5 45.4
SWAD (Cha et al., 2021) 66.0 22.4 53.5 16.1 65.8 55.5 46.5
MIRO (Cha et al., 2022) 66.4 23.5 54.1 16.2 66.8 54.8 47.0

Ours 66.9 23.0 55.1 16.0 67.7 56.1 47.5± 0.0

Table 8: Experimental comparisons with state-of-the-art methods on DomainNet benchmark with
ResNet-50.

(a) ERM (b) PCL (c) DCCL

Figure 5: t-SNE visualization of the ERM, PCL and DCCL representations on the testing domain.
Same-class points are in the same colors. We visualize the embedding on PACS dataset where the
source domains are photo, sketch, and cartoon; the target domain is art.

a threshold. We denote the smallest possible threshold which makes the graph connected as τ ,
and denote the mean and the std of the pairwise distances respectively as µ and σ. We can thus
use (τ − µ)/σ as a metric to describe the connectivity of the representations.

2. We report the mean (max) metrics (the smaller, the better) of each class for ERM and pre-trained
model on PACS, VLCS, and Terra.; the values for ERM are 1.37 (2.68), 1.78 (2.15), and 3.31
(3.56), for pre-trained model 0.54 (0.81), 0.46 (0.62), and 0.63 (0.76). The results confirm the
pre-trained space is well-connected.

Furthermore, the variation in performance improvement across different datasets can be attributed
to differences in connectivity. We define a measure to evaluate connectivity in Appendix A.4 where
lower values indicate better connectivity. For the pre-trained (ERM) model, the connectivity mea-
sure we have is 0.54 (1.37) for PACS and 0.49 (2.85) for OfficeHome. A larger discrepancy in
connectivity between ERM and the pretraine model ( 1.370.54 v.s. 2.85

0.49 ) allows for greater potential for
improvement.
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A.5 FURTHER ABLATION STUDY

Choices of VAE structures. In our experiments, using more advanced VAE structures like HFVAE
(Esmaeili et al., 2019) (72.7) and IntroVAE (Huang et al., 2018) (73.1) will yield worse results than
vanilla VAE (73.5), which may be attributed to the increased training difficulty.

Choices of contrastive learning methods. SimCLR is denoted as “SelfContrast” in Table 4. Our
proposed DCCL (73.5) turns out to outperform other representative SSL approaches: SimCLR
(Chen et al., 2020) (68.9 in Tab. 4), MoCo (He et al., 2020) (69.7), BYOL (Grill et al., 2020)
(70.7), SwAV (Caron et al., 2020) (71.5).

Further justification of cross-domain contrast (CDC). To further justify cross-domain contrast
(CDC), we also implement a baseline using within-domain positive samples only, and the accuracy
drops remarkably compared to CDC (71.8 → 70.4). In addition, we include an oracle experiment
with solely cross-domain positive pairs and observe comparable performance (71.8 → 71.9). It may
require careful design to make good use of domain information to obtain improvements.

Choices of pre-trained backbone and resources. In Table 9, we present additional experiments on
Instagram (3.6B) pre-trained RegNet. Compared to PCL, which ignores the pre-trained information,
DCCL achieves consistent and substantial improvement on imagenet pre-trained models. And when
applied to Instagram, the improvement becomes remarkably larger. These indicate the importance
of the pre-trained information, and more abundant the pre-training resources, the stronger the pre-
trained information is needed.

Backbone ResNet-18 ResNet-50 RegNet
Resource ImageNet (1.3M) Instagram (3.6B)

PCL 65.0 71.6 73.2
DCCL 67.5 (+2.5) 73.5 (+1.9) 82.5 (+9.3)

Table 9: Perf with different pre-trained resources.

Further Experiments on the Wilds Benchmark.

We also test the OOD performance of our proposed DCCL using the Camelyon and iWildCam
datasets from the Wilds benchmark with the pre-trained ResNet-50 network. In Table 10, DCCL
demonstrate a consistent and substantial improvement in performance on the more challenging
datasets.

Datasets Camelyon iWildCam
Metrics Avg. Acc Worst Acc F1

ERM 88.7 68.3 31.3
PCL 91.2 75.5 30.2

DCCL 96.7 90.9 32.7

Table 10: Perf on Wilds datasets with pre-trained ResNet-50.

Further Ablation Study on the VLCS dataset.

Here we additionally performed an ablation study on the VLCS dataset, as shown in Table 11, where
the performance gain above SWAD is relatively smaller. These results further confirm that the three
components we identified contribute consistently to the effectiveness, as detailed in our paper.

B RELATED WORK

In this section, we review the related works in domain generalization and contrastive learning.

B.1 DOMAIN GENERALIZATION

The goal of DG is to enable models to generalize to unknown target domains under distribution
shifts. The related literature can be split into several categories as follows.
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Algorithm C L S V Avg

SWAD 98.8 63.3 75.3 79.2 79.1
DCCL w/o CDC 98.9 63.8 75.6 79.5 79.4
DCCL w/o PMA 98.6 63.7 75.7 79.3 79.3
DCCL w/o GT 98.7 64.3 75.2 80.2 79.6

DCCL 99.1 64.0 76.1 80.7 80.0

Table 11: Ablation Study on VLCS dataset with pre-trained ResNet-50.

(i) The first line of work focuses on learning policies. One strategy is meta learning (Finn et al.,
2017), which adapts to new environments rapidly with limited observations; the meta-optimization
idea was thus introduced in DG (Li et al., 2018a; Balaji et al., 2018; Qiao et al., 2020) to generalize
to future testing environments/domains; another widely-studied strategy is ensemble learning (Cha
et al., 2021; Chu et al., 2022), claiming DG can benefit from several diverse neural networks to ob-
tain more robust representations. (ii) The second line of work is data augmentation. Many fabricated
or learnable augmentation strategies (Volpi et al., 2018; Zhou et al., 2020b; Li et al., 2021; Xu et al.,
2020) were developed to regularize and enhance deep learning models. In our paper, we verify more
aggressive augmentation can lead to better representations in CL as well. (iii) The last series of
work is domain invariant learning. Researchers seek to learn invariances across multiple observed
domains for improved generalization on target domains. The commonly used approaches include
domain discrepancy regularization (Li et al., 2018b; Zhou et al., 2020a) and domain adversarial
learning (Li et al., 2018c; Ganin et al., 2016; Matsuura & Harada, 2020). Recently, MIRO (Cha
et al., 2022) began to explore the retention of pre-trained features by designing the mutual informa-
tion regularization term. The paper (Liu et al., 2023) also utilized the concept connectivity to build
up the method. However, their concept of ”connectivity” based on joint distribution clearly differ
from our paper. Therefore the theoretical motivation behind two papers are indeed different. More-
over, the methods proposed are different. Except for the common strategy of strong augmentation
recommended by the contrastive learning theory paper Wang et al. (2022b), our proposed methods
are different from the ones in Liu et al. (2023). They propose two nearest-neighbor-based meth-
ods for constructing positive pairs, while our main contribution lies in the exploitation of both the
pre-trained models and the intra-class data connectivity.

B.2 CONTRASTIVE LEARNING

Contrastive learning (CL) (Chen et al., 2020) aims to learn discriminative sample representation
by aligning positive instances and pushing negative ones apart. As a promising self-supervised
learning paradigm, CL is widely used in unsupervised pre-training to improve the performance of
downstream tasks (Hjelm et al., 2019; Gao et al., 2021; Li et al., 2022; He et al., 2020; Chen et al.,
2020; Caron et al., 2020; Chen & He, 2021; Grill et al., 2020). SimCLR (Chen et al., 2020) is the
CL framework that first reveals the projection head and data augmentation as the core components
to learn invariant representation across views. MoCo (He et al., 2020) proposes to build a dynamic
queue dictionary to enlarge batch size for effective learning. There are also works (Khosla et al.,
2020; Gunel et al., 2020; Cui et al., 2021) adapting CL to the supervised setting to leverage label
information.

The capability of CL to obtain class-separated representations has also motivated the application
in domain generalization. SelfReg (Kim et al., 2021) introduced a new regularization method to
build self-supervised signals with only positive samples; PCL (Yao et al., 2022) proposed a proxy-
based approach to alleviate the positive alignment issue in CL; COMEN (Chen et al., 2022) used a
prototype-based CL component to learn the relationships between various hidden clusters. However,
the role of CL in domain generalization is not yet well explored, and our work is dedicated to
shedding some light on the understanding of its effect from a intra-class connectivity perspective.
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Figure 6: Illustration for the toy example of self-contrastive learning (SCL). Spots and slashes are
filled in to represent different domains; orange and blue rectangles respectively denote classes 1 and
2. The mapping function φ ◦ θ learned on domain d1 can perfectly classify the samples, and the
mapping attains perfect alignment and uniformity (the objective of SCL). However, when applied to
a new domain d2, the classifier completely fails (0% acc).

C FAILURE OF SELF-CONTRASTIVE LEARNING IN DOMAIN GENERALIZATION

Self-contrastive learning, which aligns the augmentation views of the same input, has achieved suc-
cessful performance in unsupervised pre-training tasks (Chen et al., 2020; He et al., 2020; Grill et al.,
2020). However, it does not naturally fit the domain generalization setting since it assumes the abil-
ity to sample x from the whole data distribution; in the training stage of domain generalization, we
instead are only able to access partial domains. This mismatch can lead to suboptimal performance
in domain generalization if the users mechanically adopt the classical contrastive learning loss.

We provide a linearly separable toy example in Figure 6 to show the deficiency of SCL that even
attaining optimal CL loss (1) cannot guarantee good performance in the domain generalization set-
ting, where only partial domains are involved in the training. In the figure, slashes and spots are
used to represent domains d1 and d2; orange and blue rectangles respectively denote classes 1
and 2. We specifically consider the extreme case that no augmentation is applied and only do-
main d1 is involved in the training. We then construct a map φ (θ(x)) := (cos (θ) , sin (θ)) with
θ(x) = (x− sgn(y))π 5. The map fh = φ ◦ θ attains perfect alignment (due to no augmentation)
and maximal uniformity (new representations are uniformly distributed on the corresponding circle
arcs) on the 1-sphere S1 :=

{
x ∈ R2 : ∥x∥2 = 1

}
, and based on the derivation in Wang & Isola

(2020) fh will minimize the CL loss (1). However, the new representations for domain d2 do not
reflect the class information and even have the opposite signs as domain d1.

We can conclude that the usage of classical SCL does not necessarily lead to good performance
under the domain generalization setting; and empirical verification is provided in Section 4.4 as
well. Similar limitation is observed in invariance-based DG methods (Shui et al., 2022). We provide
the detailed settings of the coined data distribution as follows.

Example C.1 (Self-contrastive learning does not help domain generalization.). Let the label collec-
tion Y be {−1, 1} and the portions of two classes are both 0.5. Assume there are two domains d1
and d2: if a sampleX = (X1, X2) ∈ R2 with label Y is from domain d1, its conditional distribution
will be specified as 

X1 ∼ Unif (0, 1)Y,

X2 ∼ Unif (1, 2)Y,

X1 ⊥⊥ X2 | Y ;

in domain d2 the distribution of X1, X2 is interchanged. Considering the extreme case that no
augmentation is applied and only domain d1 is involved in the training, we construct a map

5sgn(y) := 1{y≥0} − 1{y<0} is the sign function.
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φ (θ(x)) := (cos (θ) , sin (θ)) with θ(x) = (x1 − sgn(y))π 6. The map fh = φ ◦ θ attains perfect
alignment (due to no augmentation) and maximal uniformity (new representations are uniformly dis-
tributed on the corresponding circle arcs) on the 1-sphere S1 :=

{
x ∈ R2 : ∥x∥2 = 1

}
, and based

on the derivation in Wang & Isola (2020) fh will minimize the CL loss (1). However, the new rep-
resentations for domain d2 do not reflect the class information and even have the opposite signs as
domain d1.

SCL in the previous example fails to obtain intra-class connectivity due to insufficient data augmen-
tation and domain-separated (rather than class-separated) representations, which ultimately causes
poor generalization performance. Inspired by the above analysis, we thus propose two approaches to
improve intra-class connectivity: (i) applying more aggressive data augmentation and (ii) expanding
the scope of positive samples, from solely self-augmented outputs a(x) to the augmentation of intra-
class samples across domains.

D DISCUSSIONS & LIMITATIONS

In the paper, We analyze the failure of directly applying SCL to DG with the CL theory and suggest
lack of intra-class connectivity in the DG setting causes the deficiency. We accordingly propose
domain-connecting contrastive learning (DCCL) to enhance the connectivity across domains and
obtain generalizable and transferable representation for DG. Extensive experiments also verify the
effectiveness of our method.

However, we’re also aware of the limitations of our work. We don’t make explicit use of the do-
main information. It implies if one can well leverage the domain information, better generalization
performance might be obtained. Moreover, similar to Cha et al. (2022), our proposed DCCL requires
the pre-trained embeddings of the samples. This existing drawback can be mitigated by generat-
ing the pre-trained embeddings in advance and storing them locally. In addition, how to develop
stronger and more adaptive augmentation methods for contrastive learning on DG is not explored in
this paper and remains an open problem.

Regarding attribution of existing assets, we only utilize existing open-sourced datasets, which all
can be found in DomainBed7 benchmark. In addition, we don’t make any use of personal data. For
all the datasets used, there is no private personally identifiable information or offensive content.

6sgn(y) := 1{y≥0} − 1{y<0} is the sign function.
7https://github.com/facebookresearch/DomainBed
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