MagiClaw: A Dual-Use, Vision-Based Soft Gripper
for Bridging the Human Demonstration to Robotic
Deployment Gap

Tianyu Wu, Xudong Han, Haoran Sun, Zishang Zhang, Bangchao Huang
Design + Learning Research Group
Southern University of Science and Technology

Chaoyang Song Fang Wan*
asRobotics SUSTech
songcyQieee.org wanfang@ieee.org

Abstract:

The transfer of manipulation skills from human demonstration to robotic execu-
tion is often hindered by a “domain gap” in sensing and morphology. This pa-
per introduces MagiClaw, a versatile two-finger end-effector designed to bridge
this gap. MagiClaw functions interchangeably as both a handheld tool for intu-
itive data collection and a robotic end-effector for policy deployment, ensuring
hardware consistency and reliability. Each finger incorporates a Soft Polyhedral
Network (SPN) with an embedded camera, enabling vision-based estimation of
6-DoF forces and contact deformation. This proprioceptive data is fused with
exteroceptive environmental sensing from an integrated iPhone, which provides
6D pose, RGB video, and LiDAR-based depth maps. Through a custom iOS ap-
plication, MagiClaw streams synchronized, multi-modal data for real-time tele-
operation, offline policy learning, and immersive control via mixed-reality in-
terfaces. We demonstrate how this unified system architecture lowers the bar-
rier to collecting high-fidelity, contact-rich datasets and accelerates the devel-
opment of generalizable manipulation policies. Please refer to the iOS app at
https://apps.apple.com/cn/app/magiclaw/id6661033548 for further de-
tails.
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1 Introduction

The success of modern robot learning paradigms, from Learning from Demonstration (L{D) [1, 2]
to offline reinforcement learning, is fundamentally dependent on the quality and richness of the
underlying data [3]. For contact-rich manipulation tasks, robust policies require more than just
kinematic trajectories; they demand a holistic understanding of interaction forces, tactile feedback,
and environmental context [4, 5]. Consider a human deftly handling a delicate object: the action is a
symphony of precise motion, modulated forces, and continuous tactile adjustments [6]. Replicating
such skills requires capturing this multi-modal information stream in its entirety.

However, existing data collection methodologies present significant challenges. First, they often rely
on a patchwork of disparate, expensive sensors—such as external motion capture systems, wrist-
mounted force/torque sensors, and complex tactile skins [7, 8] —resulting in cumbersome and costly
setups. This high barrier to entry limits the scale and diversity of data collection efforts [9]. Second,
and more critically, a persistent domain gap exists between the human demonstrator and the robotic
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Figure 1: Overview of the MagiClaw System. (A) MagiClaw’s dual-purpose design: a hand-
held device for intuitive demonstration, data collection, and an identical end-effector mounted on
a robotic arm for policy deployment. (B) An integrated iPhone provides exteroceptive sensing (6D
pose, RGB, Depth) and a user interface for data management. (C) The Soft Polyhedral Network
(SPN) fingertip contains an internal camera for vision-based proprioceptive sensing of 6D forces,
torque, and local deformation.

learner [10]. Data is often collected using one set of hardware (e.g., an instrumented glove) and de-
ployed on a robot with entirely different sensor suites and end-effector morphology. This mismatch
necessitates complex domain adaptation techniques and is a primary reason why policies trained on
demonstration data often fail to generalize to physical hardware [11].

To address these challenges, we present MagiClaw, a unified hardware platform designed to seam-
lessly bridge the gap from human demonstration to robotic deployment. MagiClaw is a dual-
purpose, two-fingered gripper that merges three key innovations:

1. Unified Hardware Form Factor: The exact same MagiClaw device can be used as a
hand-held tool for human demonstration or mounted on a robot arm for autonomous exe-
cution. This hardware consistency minimizes the sensor and morphological domain gap,
facilitating direct policy transfer.

2. Vision-Based Proprioceptive Fingertips: Each finger integrates a Soft Polyhedral Net-
work (SPN) [12] with an embedded miniature camera. This novel design enables visuo-
tactile perception, inferring 6-DoF forces, torque, and high-resolution contact deformation
from the distortion of the internal lattice structure, thereby obviating the need for costly
external force sensors.

3. Integrated Multi-Modal Exteroception: An attached iPhone leverages its powerful sen-
sor suite (LiIDAR, RGB cameras, IMU) and ARKit framework [13] to provide synchro-
nized, rich environmental context, including gripper pose, depth maps, and high-resolution
video.

Our primary contribution is an integrated system that fundamentally streamlines the collection of
holistic, contact-centric data for robot learning. By fusing proprioceptive force/tactile data from
the fingertips with exteroceptive visual and spatial data from a commodity smartphone, MagiClaw
offers a low-cost, powerful, and user-friendly solution for both teleoperation and autonomous pol-
icy development. We posit that by democratizing access to such high-fidelity, multi-modal data,
MagiClaw can serve as a catalyst for developing more robust and generalizable manipulation skills,
advancing the pursuit of universal action embodiment in robotics.

2 The MagiClaw Gripper System

MagiClaw is designed to bridge the gap between human demonstration and autonomous robotic
manipulation through a unified, dual-purpose gripper system. As shown in Fig. 1, it can function



either as a hand-held tool for collecting multi-modal data in human-guided demonstrations or as a
robotic end-effector mounted onto an industrial or collaborative robot arm. By sharing identical
hardware and sensor layouts in these two modes, MagiClaw minimizes sensor disparities that often
hinder the transfer of learned skills from humans to robots.

2.1 Engineering Highlights

Mechanical Design as a Dual-Purpose EOAgenT Fig. 1A shows the overall design, which is
inspired by widely adopted industrial solutions such as OnRobot’s RG2 gripper. However, we com-
pletely redesigned the entire mechanical system for use in robot learning scenarios, ensuring it is
suitable for dual-purpose usage by both human operators and robotic arms.

The base design features a parallel four-bar gripper mechanism, actuated by a back-driable mo-
tor, with a detachable iPhone mount, and two omni-adaptive fingertips with an in-finger miniature
camera capable of Vision-based Deformable Perception.

Two variations are currently available, including a Hand-Held Mode for data collection and an End-
Effector mode for robotic manipulation, formulating an End-of-Arm-Agent (EOAgenT) system.

e Hand-Held Mode

— Ergonomic Handle and Trigger: When used in hand-held mode (Fig. 1A), a molded
handle accommodates the user’s grip, and a trigger mechanism directly manipulates
the finger openings. This setup enables an operator to perform everyday tasks, such
as lifting, placing, sliding, or rotating objects, just as they would with a normal tool.
Meanwhile, MagiClaw’s onboard sensors continuously log force, pose, and environ-
mental context without impeding the user’s natural motions.

— Live Data Capture for Demonstrations: Because the same system can later be
mounted on a robot, the hand-held demonstration data (trajectories, forces, tactile
events) directly translate into robotic replay or training sets for imitation learning.
Operators can also leverage real-time visual or force feedback to refine their demon-
strations in real-time. This approach significantly lowers the entry barrier to collect-
ing rich multi-modal data, even outside specialized lab environments.

* End-Effector Mode

— Mounting and Interface: In robotic deployments (Fig. 1B), the handle and trigger
assembly can be detached, and the same mechanical finger unit is secured onto a
standard robotic flange (e.g., an ISO 9409-1 mount). The iPhone remains attached to
the gripper, maintaining the same sensing configurations. A single cable or wireless
link connects the microcontroller to the robot’s main controller, issuing commands
that open/close or apply force.

— Closing the Demonstration-to-Deployment Loop: This dual-use design is key to
minimizing discrepancies between human-collected data and final robotic execution.
By ensuring sensor placement, geometry, and compliance remain the same, MagiClaw
helps learned policies replicate the human-demonstrated strategies more accurately.
Tasks initially taught to the robot in hand-held mode—like gently grasping a delicate
object or manipulating flexible packaging—can be re-executed on the robot with high
fidelity since the gripper’s mechanical and sensing characteristics are unchanged.

The entire design is 3D printable, offering a low-cost solution that can also be fabricated using
metallic parts for enhanced reliability. We have open-sourced this design for the research commu-
nity’s use, with an iOS app available for free download at https://apps.apple.com/cn/app/
magiclaw/id6661033548, along with accompanying documentation.

Parallel Four-Bar as the Driving Mechanism Although there is no universally “better” choice
of design for the drive mechanism, the parallel four-bar design offers several key advantages that
may be suitable for this dual-purpose application:
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¢ Field Use at a Low Cost: Since its mechanism is driven, no rails are needed, which is
great for small robots or end-effectors with tight mass budgets. The use of rolling joints
means that it’s less sensitive to dust, chips, or sprays than sliding guides, which is also
3D-printing-friendly.

* A Big Stroke in a Thin Package: The mechanism itself deploys and folds during usage,
making it a more compact solution for field use while being capable of dealing with large-
width objects during manipulation, covering most object sizes in daily life or even industrial
scenarios.

* Tunable Force Curve & Compliance: The jaw speed and force changes with the angular
input, meaning that the motion is an arc (the fingers’ orientation stays parallel but their paths
aren’t perfectly straight), which provides a high mechanical advantage near full closure for
strong holding with a small motor.

Backdrivable Actuation for Tunable Interaction Each finger is driven by a small motor with
an encoder for accurate position feedback. The gearing ratio is tuned to deliver sufficient gripping
force for everyday objects while preserving back-drivability, allowing the system to sense external
contact forces and accommodate unmodeled variations. This design choice is especially helpful
when switching between human-held demonstrations (where the user demands a responsive device)
and robotic operation (where compliance prevents accidental damage to objects or the environment).

Adaptive Fingertips with Omni-directional Perception At the distal end of each four-bar link-
age lies a Soft Polyhedral Network (SPN) [12], seen in Fig. 1C. These fingertips have a flexible lattice
pattern (e.g., a TPU-based 3D-printed mesh) that can conform in omni-directions around diverse ob-
ject profiles. Unlike silicone or purely elastic membranes, this lattice architecture provides both
structural integrity and localized deformation nodes, thereby enhancing grip stability on irregular or
deformable items.

Inside each fingertip, we embed a miniature camera (e.g., a wide-angle micro camera) that observes
the lattice from within. As external forces act on the SPN, the lattice geometry distorts. By tracking
the shifting pattern of these lattice elements in real-time, a lightweight neural network infers 6D
force/torque at the fingertip. Compared to conventional force sensors:

* Low Cost: The hardware cost is dominated by commodity micro cameras rather than spe-
cialized force-torque transducers.

* High Spatial Resolution: Deformation is recorded across the entire fingertip, reflecting
where and how contact forces are applied.

* Minimal Additional Bulk: The sensing mechanism is entirely contained within the exist-
ing soft structure, maintaining a low overall profile.

Smartphone Sensing for Robotics A hallmark of MagiClaw is the integration of a consumer
smartphone, specifically an iPhone Pro (although other smartphone brands or series may of-
fer similar functionalities, depending on their hardware capabilities), into the gripper assembly
(Figs. 1A&B). Currently, this smartphone offers the following capabilities. By leveraging off-the-
shelf smartphone hardware, MagiClaw benefits from on-device processing capabilities, integrated
communication (Wi-Fi, Bluetooth, cellular), and a user-friendly interface for real-time monitoring.

* LiDAR Depth Sensing: High-frame-rate 3D mapping of the environment, enabling real-
time object detection, scene reconstruction, or augmented-reality overlays.

* RGB Video: High-resolution images or videos from the rear camera for visual context,
teleoperation views, or training data.

* Gripper Pose Tracking: Using Apple’s ARKit framework and provided APIs to track the
gripper’s orientation and movement relative to the global frame [13].

e Audio Capture: Potentially useful for event detection (e.g., collision sounds or object
rattles).



Motor Drivers and Microcontroller Beyond the smartphone, a microcontroller (such as the
Raspberry Pi 5) handles low-level tasks. This architecture isolates time-critical control from higher-
level processes on the smartphone, maintaining robust performance despite the smartphone’s vari-
able compute load. It 1) receives setpoints (e.g., desired grip width) and commands the servo or
DC motor drivers accordingly, 2) reads encoder values to relay finger positions and detect contact
or stalling conditions, 3) measures interaction forces and transmits them to the handheld gripper,
enabling haptic feedback for the user, and 4) coordinates timestamping of finger data with the smart-
phone’s sensor streams.

System Communication Architecture The communication architecture of the MagiClaw system
is illustrated in Fig. 2. An iPhone, mounted on the hand-held or motorized gripper, connects to a
Wi-Fi router over a wireless network. Both the handheld and motorized grippers contain a motor,
each wired to a Raspberry Pi. These two Raspberry Pi boards communicate with their respective
motors via the CAN protocol.
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Figure 2: Data visualization interface (via Rerun) and communication topology. Multi-modal
data streams (pose, depth, fingertip images, etc.) are synchronized across devices for real-time or
offline analysis.

Each gripper also integrates two SPNs, each equipped with an internal camera. The cameras connect
to the Raspberry Pi using Wi-Fi hotspots that they create themselves. The Raspberry Pis, in turn,
communicate wirelessly with the central Wi-Fi router.

A computer running Rerun for real-time data visualization is also connected to the same router. It
receives data streams from all devices in the local network. The MagiClaw app, running on the
iPhone, serves a dual purpose. First, it displays 6D force/torque data from the SPN. Second, it
broadcasts its own 6D pose, RGB images, and depth images, which are accessible to all devices
within the local network. Additionally, the app offers direct control of the gripper motors, allowing
for start and stop commands.

3 Experimental Validation: The Imitation Game

We validate the MagiClaw system through a series of use cases framed as The Imitation Game—a
spectrum of tasks that demonstrate the system’s capacity to capture holistic human actions and
transfer them to a robot. These experiments serve to confirm the utility of our unified hardware and
multi-modal sensing approach.

3.1 High-Fidelity Teleoperation and Immersive Demonstration

A primary use case for MagiClaw is real-time teleoperation, where a human operator’s actions are
mirrored by a robot-mounted gripper (Fig. 3). The operator uses a hand-held MagiClaw, and its



state (6D pose and grip width) is streamed to the robot. This setup validates several key system
capabilities:

* Intuitive Control and Data Capture: The direct physical interface allows for natural and
dexterous manipulation. Simultaneously, the system logs a complete, synchronized dataset
of the operator’s actions and the resulting environmental interactions.

* Closed-Loop Force Feedback: The vision-based force estimation from the robot’s SPN
fingertips is streamed back to the operator’s hand-held device, providing haptic feedback.
This allows the operator to ’feel” the interaction forces, enabling delicate tasks that would
be impossible with visual feedback alone.

To further enhance the operator’s situational awareness, we integrate this system with an Apple Vi-
sion Pro mixed-reality headset (Fig. 3A). The headset provides a first-person view from the robot’s
perspective, overlaying real-time sensor data (e.g., force vectors, depth maps) to enhance situational
awareness. This immersive interface significantly reduces the cognitive load on the operator, en-
abling the demonstration of highly precise and complex maneuvers. This capability validates our
claim of creating a user-friendly and powerful interface for demonstration.

First-person view in Apple Vision Pro = B Manipulation of different tasks

Figure 3: MagiClaw in Action. (A) An operator performs teleoperation with an immersive, first-
person view provided by an Apple Vision Pro headset, which overlays real-time sensor data. (B)
The system’s versatility is demonstrated across various manipulation tasks, both in the real world
and in simulation, showcasing its adaptability.

3.2 Learning from Multi-Modal Replays

The rich datasets collected during teleoperation or offline hand-held demonstrations (Fig. 4) form
the foundation for policy learning. This workflow validates the core hypothesis that unified hardware
reduces the domain gap. Please refer to the Supplementary Video for further demonstration.

* Direct Policy Transfer: Because the demonstration and deployment hardware are iden-
tical, simple behavioral cloning policies can be trained on the collected data and directly
deployed on the robot with minimal performance degradation from sensor or kinematic
mismatch.

* Seeding for Advanced Learning Algorithms: The multi-modal data is ideally suited for
training more sophisticated models. For example, synchronized force and visual data can
be utilized in offline reinforcement learning to learn reward functions that encourage gentle
contact, or to train predictive models that anticipate contact events based on visual input.

The ability to replay demonstrations on the physical robot allows for iterative debugging and policy
refinement. Discrepancies between the original demonstration and the robotic execution can be
logged and used to further improve the learned model.

3.3 Validation in Contact-Rich Scenarios

We further validate MagiClaw’s utility in advanced tasks where force and tactile feedback are criti-
cal. Please refer to the Supplementary Video for further demonstration.
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Figure 4: Collected Multi-Modal Data. Task of transferring a slice of pizza to a plate and heating
it in the microwave, showing RGB and depth images alongside temporal variations of left and right
fingertip 6D force/torque and MagiClaw gripper’s 6D pose.

These scenarios confirm that the high-fidelity contact data captured by MagiClaw enables the learn-
ing of skills that are beyond the reach of systems relying solely on kinematic and visual information.

4 Conclusion

This paper introduced MagiClaw, a multi-modal gripper system designed to accelerate research in
robot learning by directly addressing the demonstration-to-deployment gap. Its novel dual-purpose
design, which unifies the hardware for data collection and policy execution, fundamentally mini-
mizes domain shift. By integrating vision-based proprioceptive force sensing in soft fingertips with
comprehensive exteroceptive sensing capabilities from a commodity smartphone, MagiClaw pro-
vides a low-cost yet powerful turnkey solution for generating rich, contact-centric datasets.

We have demonstrated how this integrated system enables high-fidelity teleoperation with immer-
sive feedback, streamlines data collection for policy learning, and proves effective in challenging,
contact-rich tasks. By simplifying and democratizing access to holistic action data, we believe Mag-

iClaw will catalyze progress in data-driven robotics, paving the way for more dexterous, adaptable,
and human-like manipulation.

Limitations and Future Work. The current system depends on low-latency wireless communica-
tion, which may bottleneck in congested networks. Vision-based force estimation is cost-effective
but requires fingertip-specific calibration and training, suggesting room for streamlining. Reflec-
tive surfaces challenge LiDAR depth accuracy. As the iPhone is not a hard real-time system, iOS
scheduling and thermal throttling limit the safety-critical control, making the integration of off-the-
shelf cooling solutions a preferable option.



Our future work will focus on improving the system’s robustness and expanding its capabilities.
We plan to explore onboard policy learning directly on the integrated smartphone, investigate more
sample-efficient calibration methods for the SPN fingertips, and develop a library of pre-trained
models for common manipulation tasks. Crucially, we intend to open-source the hardware designs
and core software modules to foster collaboration and empower the wider robotics research commu-
nity to build upon our work.
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