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Abstract—Adapting model-based control to novel environ-
ments is challenging as dynamics models learned offline may not
generalize to the obstacle configuration of the novel environment.
We propose a method to identify and avoid obstacles online
whose geometry is not known a priori without updating the
offline, nominal, dynamics. Our method relies on a Gaussian pro-
cess implicit surface (GPIS) to construct data-efficient obstacle
representations using visual and inferrred contact data derived
from observed states and dynamics predictions. This allows us to
design a model predictive controller (MPC) using the uncertainty
estimates provided by the GPIS to successfully navigate around
obstacles to complete multiple manipulation tasks. By modeling
the environment instead of directly adapting the dynamics, our
method is able to solve both low-dimensional peg-in-hole tasks
and high-dimensional rope and cable manipulation tasks. This
enables our method to succeed in 30/30 trials vs 15/30 for a
baseline on a simulated rope manipulation task while requiring
63% fewer control steps to succeed.

I. INTRODUCTION

In unstructured or cluttered environments where full geo-
metric models of obstacles are not available a priori, special
care must be taken to avoid obstacle collisions that could
prevent task completion. The challenge is heightened when
manipulating objects with high-dimensional states, for exam-
ple rope. In this work, we develop a method to identify and
avoid a priori unknown obstacles online using visual and
contact information.

We use a Gaussian process implicit surface (GPIS) [1] to
model obstacles. GPIS uses a Gaussian Process (GP) to learn a
0-level-set surface that we use to model obstacle geometry. Our
method learns a GPIS using visual information from a fixed
view of the scene as well as contact information inferred from
tracking the state of the manipulated object. With access to
a nominal dynamics model, we use tracked state information
to learn where nominal dynamics are incorrect online. This
enables obstacle modeling without specialized tactile sensing,
which may not be available along the surface of a manipulated
object, or full visibility of the obstacle.

In addition, using a GP provides us access to uncertainty
estimates over the model’s prediction. The GP predicts a Gaus-
sian distribution for a given input and the variance of that
distribution can be used to estimate the uncertainty. The uncer-
tainty provides a signal that can be used to tune the sensitivity
of the controller to the GPIS’s predictions as well as aid in
escaping what would otherwise be local minima by seeking
out unvisited regions of the state space.
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Fig. 1. Our method learns a continuous representation of the obstacle
geometry, shown here as a voxel grid with surface normals approximated
by the pink gradients. The blue MPC rollout shows the planned path out
of the previously unknown obstacle as it moves toward the green goal. Our
method reasons about occluded regions and is able to estimate the locations
of obstacles. Robot not visualized.

Prior work has focused on directly adapting dynamics
models to new environments or learning neural networks that
model where dynamics are inaccurate [2]–[4]. These methods
can be used to reason about obstacles. However, our GPIS
representation has properties that can more directly be used to
inform planning, mainly the uncertainty of its predictions.

GPIS has previously been used to model environments and
object geometries [5]–[12]. These works leverage uncertainty
to help construct more accurate geometric models. We use
the uncertainty to escape local minima of the controller and
inform our obstacle identification to jointly tackle the problems
of identifying and avoiding obstacles. These works assume
access to rich perception signals, including visual data with
dynamic viewpoints or tactile sensors. We do not assume that
our viewpoint of the system can change over time nor do we
have access to tactile data when grasped objects make contact
with obstacles, instead relying on a combination of limited
visual data with contacts estimated through state tracking and
knowledge of nominal dynamics.

We show that our method results in higher success rates and
shorter episode lengths than baselines. We show that existing
methods that reason about local minima of MPC controllers to
detect obstacles such as [13] are insufficient for consistently
solving the rope and cable manipulation tasks and planning
methods that do not reason online about the environment fail
when obstacles are occluded.

Specifically, our contributions are a method for learning an



obstacle representation online using a fusion of visual data
and contact data inferred through state tracking and an MPC
controller that leverages GPIS uncertainty estimates to inform
obstacle avoidance.

II. PROBLEM STATEMENT

Let u ∈ U represent the control signal and X ∈ X represent
the state of a grasped object. We assume X = (x1...xn),
meaning X can be represented as an ordered set of n compo-
nents where xi ∈ R3. This representation is useful for high-
dimensional systems like deformable objects, which can be
represented as a collection of particles or points of interest. For
example, a rope can be represented as a set of ordered points.
An example where n = 1 is a peg grasped by a robot in a
peg-in-hole task. This flexible representation enables reasoning
about collisions between different components of manipulated
objects and the environment.

Given an initial state X0 and a goal set G, which we assume
to be reachable, we seek to find a trajectory τ using model pre-
dictive control (MPC) that reaches G with a minimal number
of control steps. G specifies goal locations for a subset of com-
ponents of X. Gi is the goal location for a specific component
i and not all components may have goal configurations. An
example would be where there is a goal location for the center
of a rope but not for other points along the object. A trajectory
τ has a horizon T , a sequence of controls τu = {u0...uT−1},
and a sequence of states τX = {X0...XT }.

We assume access to a depth image D and corresponding
point cloud P of the environment collected without occlusion
from the robot or manipulated object. Pre-generated visual
data prevent visibility issues online due to robot occlusion.
We assume that only the robot and manipulated object state
change over time, meaning the environment is static.

We assume access to a function dx(x1, x2) that provides a
distance between state components.

We assume access to a dynamics model f(X,u) that pre-
dicts the next state of the system given the current state and
some control. f will be applied to a novel environment with
obstacles that f may not be able to model.

This work addresses modeling obstacles online and guiding
the controller to regions where the prediction error of f is
relatively low, thus allowing task completion.

III. METHOD

Our method can be split into two parts: learning obstacle
representations online and using that information for control.

A. Online Obstacle representation

We learn a GPIS online during task execution. GPIS uses
a Gaussian process (GP) to fit a 0-level-set surface given
exterior, surface, and interior points. The GPIS is defined as:

GPIS : R3 → R;GPIS(x)


< 0 if x is interior
= 0 if x is on the surface
> 0 if x is exterior

(1)

We generate labels from state observations, using dynamics,
and use visual data to clean these labels. This enables obstacle
detection in visible and occluded regions of the environment.

1) Dynamics-Based Label Generation: For an observed
transition (Xt,ut,Xt+1), we identify regions of state space
where f is inaccurate by comparing the realized next state
Xt+1 to the state predicted by the dynamics X̂t+1. We generate
labels Yt+1, Ŷt+1 ∈ Rn, corresponding to Xt+1 and X̂t+1,
using Equations (2) and (3) for each state component.

Yi
t+1 = min
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γ
dx(X

i
t,X

i
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dx(Xi
t, X̂

i
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)
(2)

Ŷi
t+1 = 2Yi

t+1 − 1 (3)

We use γ ∈ [1,∞) to account for inaccuracies in f in
freespace, where higher values of γ lead to a higher tolerance
of dynamics error. This is useful when working with learned
dynamics models or inaccurate simulators. At each timestep,
we add data from Xt+1 and X̂t+1

Calculating the labels in this way uses knowledge of nom-
inal dynamics to estimate unreachable regions. Visited state
components Xi

t have a label between 0 and 1 and lower val-
ues correspond to less accurate dynamics. X̂i

t is interior when
Ŷi

t ≤ 0. γ controls the associated dynamics error threshold.
Adding both Yi

t and Ŷi
t to the GPIS allows it to interpolate

a 0-level-set surface between positive and negative labels.
When X̂t+1 is added to the GPIS, it is possible to place

interior points in freespace, thereby incorrectly blocking paths
to the goal. To compensate for this, we include a parameter
δ which interpolates between Xt and X̂t+1. We then add
components from the interpolation, X̂δ

t+1, to the GPIS. In
scenarios with tight corridors or thin obstacles, a lower value
of δ can be helpful.

2) Visual Label Cleaning: Only using dynamics to generate
labels can lead to false positives as one part of an object being
in contact with an obstacle can cause the entire object to stop
moving. To help address this, we use visual data to clean the
labels. Specifically, we determine if components are visible
and, if so, whether they are in contact with the environment.

We construct visual labels by projecting component coordi-
nates into image coordinates. Given the intrinsic and extrinsic
camera parameters, we can recover pixel coordinates (u, v)
and depth z for a state component. Letting D(u, v) be the
depth value in the depth image D at (u, v), a state component
is visible if z < D(u, v). Visible components are given a label
of 1. Components of X that are within a distance rc of P are
marked as in contact, meaning a label of 0. rc is a parameter
whose value is informed by the resolution of the point cloud
and the geometry of the grasped object. We do not add the
dynamics predictions of visible freespace components to the
GPIS to avoid incorrectly adding interior points to the GPIS.

We add data to the GPIS at each timestep and use gradient
descent to tune the GP kernel parameters. We seed the GPIS
at initialization with G with label of 1 since we assume goal
configurations are reachable.



3) Visual Mean Prior: In addition to using visual informa-
tion to update labels, we also use it to set a prior mean function
for the GPIS. We use our visual observations to construct a
more informative prior than assuming that unvisited states are
in freespace. We construct a voxel grid from the initial point
cloud observation of the scene where occupied voxels have a
value of -1, labeling them as interior points. We calculate our
prior mean for a query point by indexing into this voxel grid.

4) Maintaining Tractability: Gaussian processes struggle
with large amounts of data due to the computational complex-
ity of computing posterior predictions. To address this issue,
we limit the size of the online data set to a value Dmax and
remove excess data points. We remove data whose label values
are closest to the mean label value of the data set to preserve
diversity of the data.

B. Control

Our MPC cost function is J(τ) = Jg(τ)+αJo(τ)+Jc(τ)+
βJe(τ) where the different terms are: a goal directed cost
Jg , an obstacle repulsion cost Jo, a collision cost Jc, and an
exploration cost Je. α, β ∈ R are used to weigh the costs.

1) Goal Cost: The goal cost in (4) drives the controller
toward the goal. 1gt is 1 when the goal distance is less than
rg for all state components with defined goals and is weighted
by a parameter η ∈ R. rg is the distance from the goal that
would indicate task success. 1gt helps the controller converge
to the goal by creating a deeper basin in the cost function near
the goal that the controller can exploit.

Jg(τ) =

T∑
t=1

(
−η · 1gt +

∑
i∈G

d(Gi,Xi
t)

)
(4)

2) Obstacle Repulsion Cost: We construct a cost in (5) that
repels the controller from the surface predicted by the GPIS.
By making posterior predictions on the samples in the GPIS’s
data set, we can identify a set of obstacle points O.

Jo(τ) =
1

|O|

T∑
t=1

n∑
i=1

∑
o∈O

align(xi
t−1,x

i
t, o)

dx(xi
t, o)

2
(5)

We use the uncertainty of the GPIS prediction to construct
O. For a component in the GP’s data set, let µ be the posterior
mean of the GP at that point and let σ be the posterior standard
deviation. µ+ Zσ, where µ is the posterior mean, σ is the
posterior standard deviation, and Z is the Z-score of a standard
Normal distribution corresponding to a given confidence level
ζ ∈ (0, 1) computes an upper bound on the GP’s prediction.
Points where this upper bound is less than or equal to 0 are
added to O. By incorporating the uncertainty in this way, we
can choose to be more or less conservative about obstacle
avoidance. Higher values of ζ are useful in situations with
tight corridors or thin obstacles.

We penalize motion toward detected obstacle points by
comparing the trajectory with the GPIS gradient. We define
align(xt,xt−1, o) = max(cos(xt −xt−1,−∇GPIS(o)), 0),
where cos is the cosine similarity and −∇GPIS(o) is the
negative gradient of the GPIS at an obstacle point o ∈ O.

3) Exploration Cost: This cost Je(τ) = −
T∑

t=1
σ2s

t uses the

variance of the GPIS at a state X, where σ2
t ∈ Rn is the

posterior variance for the n components. As in prior work,
we use the uncertainty to gain information by exploring new
regions of state space. We also find this form of exploration
helps escape from what would otherwise be local minima.

We choose one component s ∈ [1, n] every Te timesteps
whose corresponding variance we optimize. We choose the
component with the minimum posterior mean prediction from
the GPIS. This is done to focus exploration on the part of the
object that is most likely to be stuck.

4) Collision Cost: We define a collision cost in (6). This
cost identifies transitions that would intersect with the surface
predicted by the GPIS. This is done by calculating the same
predicted upper bound as for Jo for states along the rollout.

Jc(τ) =

T∑
t=1

n∑
i=1

C · 1GPIS(xi
t)+Zσt≤0 (6)

IV. RESULTS

We evaluate our method on peg-in-hole and rope manipu-
lation tasks, demonstrating the method’s utility across varied
state dimensionalities. We use model predictive path integral
control (MPPI) [14] for our MPC controller. We execute 1 step
of the plan, replanning at each timestep. We use a Matern
kernel for the GPIS, implemented through [15]. Parameter
values can be found in Table II in Appendix A.

A. Peg-in-Hole

We use the peg-in-hole tasks defined in [13] in which a
grasped peg simulated in PyBullet [16] is navigated to a hole.
A success is placing the peg within 2 cm of the hole within 500
control steps. The state is (x, y, z, Rx, Ry), where (x, y, z) is
the R3 position of the end-effector and (Rx, Ry) are reaction
forces on the end-effector. The control signal is (∆x,∆y). We
use the R3 position for the GPIS. For these tasks, n = 1.

We compare our method to TAMPC [13] and use their
dynamics model learned wihout the presence of obstacles for
f . We do not use any visual data for our method to provide a
comparison to TAMPC, which does not use visual input. We
also perform an ablation by removing uncertainty information.
We remove the exploration cost and do not calculate upper
bounds for the collision and obstacle repulsion costs.

We evaluate for 30 trials. We achieve higher success rates
than TAMPC and our ablation on these tasks with a shorter
episode length, as shown in Table I. We believe this is
due to the learned GPIS providing a dense representation of
the environment, allowing for collision checking as well as
providing an uncertainty signal that we can use for exploration.
The learned surface also approximates the true obstacle con-
figuration in the regions visited by the robot, as seen in Fig. 2.

B. Simulated Rope Manipulation
In this task, a two-armed, 16-dof robot removes a rope from

under a hook. The hook has a barrier that occludes part of the
top of the obstacle, as shown in Fig. 3. A success is defined



Environment Method Success Control Steps
(Given Success)

Peg-U
Ours .93 95.4± 16.9

TAMPC .80 232.7 ± 48.0
Unc. Ablation .5 158.1 ± 67.3

Peg-I
Ours .97 150.1± 18.3

TAMPC .67 215.7 ± 23.3
Unc. Ablation 0 -

Peg-T
Ours .97 83.3± 21.2

TAMPC .80 152.9 ± 28.4
Unc. Ablation .1 452.7 ± 10.8

Sim. Rope Manipulation

Ours 1 128.4± 18.9
Unc. Ablation .87 264.9 ± 44.6

TAMPC .5 345.5 ± 38.4
Partial SDF 0 -

TABLE I
SUCCESS RATES AND 95% CONFIDENCE INTERVALS FOR CONTROL STEPS.
CONTROL STEP STATISTICS ARE CALCULATED FOR SUCCESSFUL TRIALS.

Fig. 2. Trajectory and surface for the Peg-T task. The modeled obstacle with
confidence adjustment is in purple. The arrows represent GPIS obstacle points
and point in the direction of the gradient. Trajectory starts at the green circle
and ends at the blue star.

as placing the center of the rope in a sphere of radius 5cm
above the hook within 500 steps.

We learn f offline using dynamics data generated with
Mujoco [17]. In simulation, we attach the rope to floating
grippers and sample random trajectories. We represent the rope
as 25 articulated links and track the R3 position for each link.
The set of 25 positions is the set of state components. The
control is [∆pl,∆pr] ∈ R6, where ∆pl is the R3 change in
the left gripper’s position and ∆pr is the R3 change in the
right gripper’s position. We fit a 3-layer multi-layer perceptron
(MLP) to this data. The MLP’s hidden layer is of size 512.

Our MPPI controller outputs changes in gripper positions.
We use the Jacobian psuedoinverse method [18] in the Deep-
Mind Control Suite [19] to calculate the new joint positions.
We use CDCPD2 [20] to estimate the rope state to fit our par-
tial observability assumption. CDCPD2 includes regularization
terms that promote smoothness of the estimate and prevent
large deviations in the estimate between timesteps, leading to
reasonable estimates for occluded portions of the rope.

We compare our method to TAMPC, the ablation of the un-
certainty, and a baseline which directly uses the partial visual
information without any online adaptation. For the TAMPC
state distance function used to determine if the controller is

Fig. 3. Simulated rope task. a) The robot moves the center of the rope to the
green goal region. The barrier occludes part of the obstacle. b) Camera angle

Fig. 4. Multiple views of the same voxelized GPIS. The surface corresponding
to the table is not visualized. The arrows show the gradient of the surface.

stuck in a local minima, we consider the R3 position of the
center of the rope to provide a more focused distance than
a distance in the original R75 state space of the rope. We
do not train a residual dynamics model online for TAMPC
as the online data is insufficient for training a useful model
for the high-dimensional state-action space. Our other baseline
computes a signed distance field (SDF) of the environment
generated from a partial view of the environment. This baseline
uses MPPI with a horizon of 150 and 3000 samples.

Our results in Table I show that our method achieves higher
success rates and shorter episode lengths over 30 trials. We
also recover an approximation of the obstacle geometry in
Fig. 4. We believe TAMPC’s trap representation provides a
sparser signal to the controller and struggles to cover the
space of possible local minima induced by the hook. The non-
adaptive baseline cannot reason about the occluded part of the
obstacle, leading it to collide with the obstacle.

V. CONCLUSION

We propose a method for modeling a priori unknown
obstacles to enable manipulation in novel environments. We
achieve higher success rates and lower trajectory lengths
across multiple tasks, including high-dimensional deformable
object manipulation tasks. Our method leverages a novel
fusion of visual and inferred contact information to model
obstacles using a Gaussian process implicit surface, enabling
data efficient obstacle modeling. We propose a novel MPC cost
function that leverages GPIS gradients to guide the controller
away from obstacles. Future work could include extending the
GPIS to reason about environments where nominal dynamics
are inaccurate for reasons other than obstacles.
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APPENDIX A

Peg-in-Hole Sim. Rope
λ MPPI temperature .01 .1
K MPPI samples 500 300
T MPPI horizon T: 10, U: 15, I: 20 25
Σ MPPI noise diag[.2×2] diag[.001×6]
ν 1.5 .5
γ 1 1.5
δ U: .25, I, T: 1 1
Dmax 3000 3000
ζ I, T:.85, U: .9 .75
α .003 .0008
β .6 .4
η 1 .1
C 1000 10
Te - 5
rg .02 .05
rc - .01

TABLE II
PARAMETERS


