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Abstract—In-hand manipulation using multiple dexterous fin-
gers is a critical robotic skill that can reduce the reliance
on large arm motions, thereby saving space and energy. This
work focuses on in-grasp object movement, which refers to
manipulating an object to a desired pose through only finger
motions within a stable grasp. The key challenge lies in simul-
taneously achieving high precision and large-range movements
while maintaining a constant stable grasp. To address this
problem, we propose a simple and practical approach based on
kinematic trajectory optimization with no need for pretraining
or object geometries, which can be easily applied to novel
objects in real-world scenarios. Adopting this approach, we won
the championship for the in-hand manipulation track at the
9th Robotic Grasping and Manipulation Competition (RGMC)
held at ICRA 2024. Implementation details, discussion, and
further quantitative experimental results are presented in this
work, which aims to comprehensively evaluate our approach and
share our key takeaways from the competition. Supplementary
materials including video and code are available at https:
//rgmc-xl-team.github.io/ingrasp_manipulation.

Index Terms—Multi-fingered in-hand manipulation, trajectory
optimization, Robotic Grasping and Manipulation Competition.

I. INTRODUCTION

IN-HAND manipulation with multi-fingered hands has be-
come increasingly important in recent research on robotic

manipulation, as it is crucial for achieving human-level dexter-
ity [1]. Although the advantages of utilizing the high degrees
of freedom (DoFs) of multi-fingered hands are attractive, co-
ordinating the fingers to efficiently and robustly manipulate in-
hand objects as expected in real-world environments remains
a challenging and unresolved issue.

Amid a diverse range of in-hand manipulation tasks, this
work focuses on a fundamental task, namely in-grasp object
movement, which refers to controlling an object’s pose (po-
sition or orientation) relative to the hand using only finger
motions within a stable grasp [2]–[6], as shown in Fig. 1. This
task was benchmarked in the in-hand manipulation track of the
9th Robotic Grasping and Manipulation Competition (RGMC)
held at ICRA 2024 [7]. Although robot arm motions alone
can sometimes achieve similar desired object movements, they
consume much more energy than finger motions. Moreover,
achieving small desired object movements may require large
arm joint motions, which can be problematic in constrained
spaces with obstacles.
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(a) Scene of the RGMC (b) Reaching one goal

(c) Reaching another goal

Precise in-hand
object movement

Fig. 1. In-grasp object movement task, where the goal is to manipulate the
in-hand object to a desired pose (position) using only finger motions within a
stable grasp. (a) Scene of the Robotic Grasping and Manipulation Competition
(RGMC) at ICRA 2024, where we won the championship for this task. (b)(c)
Precisely moving the object to the desired position in a large in-hand space.

The significance of in-grasp manipulation is that, for many
tasks, desired in-hand object motions can be achieved without
altering the contact locations. Compared with general in-hand
manipulation involving making and breaking contacts, explic-
itly imposing constant stable grasp constraints can significantly
reduce the complexity of problem solving. Moreover, avoiding
contact switching can enhance robustness in real-world scenar-
ios, as the complex mechanics of real-world dynamic contacts
may exacerbate the sim-to-real (model-to-real) gap.

The challenges in this task stem from several factors. First,
a stable grasp with constant contact locations must be strictly
maintained throughout the manipulation process; otherwise,
the object will fall. Second, the reachable space of the in-grasp
object is highly constrained by the limited DoFs (usually ≤ 4)
and the joint limit of each finger, especially when the stable
grasp constraint is maintained between fingers. Third, real-
world task accuracy is affected by imperfect hand kinematics,
imperfect hand control, and modeling gap of contacts. Con-
sequently, achieving precise and large-range in-grasp object
movement in the real world is non-trivial.

To address the above challenges and achieve deployable
multi-fingered in-grasp object movement, this work proposes
a simple and practical approach based on trajectory optimiza-
tion. Specifically, to ensure a constant stable grasp during
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manipulation and generalization across different goals and
objects, we employ geometry-free trajectory optimization with
explicit constraints rather than reinforcement learning, which
may lack control over accuracy. To expand the object’s reach-
able space, we use global full-trajectory planning and allow
rolling contact between the object and all fingertips. Fur-
thermore, to compensate for simplifications in the trajectory
optimization and enhance real-world accuracy, we incorporate
a closed-loop scheme via re-planning and re-execution.

Our key contributions are highlighted as follows:
1) We propose a simple and practical trajectory optimiza-

tion approach for multi-fingered in-grasp object move-
ment. The approach does not rely on large-scale training,
complex contact models, or even object geometries,
making it easily applicable to real-world novel objects.
Compared with existing works, it achieves a larger
object reachable space while ensuring task accuracy.

2) Beyond the validation of our solution through the
RGMC, this work presents a detailed quantitative analy-
sis of our approach through extensive real-world exper-
iments. Moreover, we share the implementation details
(including the source code) and practical insights gained
from the competition.

Thanks to its accuracy, robustness, and generalizability, our
approach won the championship of the in-hand manipulation
track of the RGMC [7]. Additionally, our approach was
awarded the Most Elegant Solution among all tracks of the
RGMC, owing to its concise and novel formulation.

II. PRELIMINARIES

A. Competition Task Setup

The competition task involves two objects: a known cylin-
drical object and a novel object. The poses of the object
are tracked using an attached AprilTag marker. The initial
grasp is set by a human operator with no restrictions. For
the known object, cylinders of three sizes are provided, and
each team can select one based on their hand design. We
chose the smallest cylinder with a diameter of 60 mm and
a height of 80 mm. The novel object is randomly assigned
on-site during the competition. Goal waypoints are given as
a sequence of 10 positions relative to the initial object’s
(AprilTag’s) position. After forming the initial grasp, the hand
is tasked to autonomously and continuously move the object
(AprilTag) through the waypoints one by one. These waypoints
are sampled within a 5×5×5 (cm) cubic space centered at the
initial object position. Goal object orientations are not assigned
in the competition. Each goal waypoint should be reached
within a 20-second time budget. The evaluation metric is the
accumulated position error across the 10 waypoints. If the
object is dropped, it cannot be manually reset to continue with
the remaining waypoints. The best of two runs on each object
is used to rank the teams. More details of the competition rules
can be found in [8].

B. Notations and Definitions

In this work, qi,t represents the joint position vector of
the ith finger at time t. For convenience, we denote Qt =

(a) Initial grasp (𝑡 = 0) (b) Goal reaching ( 𝑡 = 𝑇 )
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Fig. 2. Formulation of the in-grasp object movement. The objective is to find
a hand joint trajectory to move the object, starting from To,0 and reaching
To,d at time step T while maintaining a constant stable grasp.

[q1,t; · · · ; qn,t], where n is the number of fingers in grasp.
The pose of the ith fingertip at time t is denoted as Ti,t. The
object pose at time t is denoted as To,t, with the position and
orientation respectively denoted as po,t and Ro,t. The desired
object pose is denoted as To,d. The world frame (coordinates)
and object frame are denoted as W and O, respectively.
The notations are summarized in Fig. 2. We use [a; b] to
denote the vertical concatenation of column vectors a and b.
Following the theory of Lie groups and Lie algebra for robotics
[9], we denote the conversion from axis-angle rotation vector
r ∈ so(3) to rotation matrix R ∈ SO(3) as R = exp(r∧) and
the inverse conversion as r = ln(R)∨.

In this work, we define the weighted scalar distance d
between two poses T1 and T2 as

d(T1,T2,W ) =
1

2
eTWe =

1

2
pT
eWppe +

1

2
rTe Wrre, (1)

where e = [pe; re] ∈ se(3), in which pe = p1 − p2 is the

position error vector, and re = ln
(
exp(r∧1 ) (exp(r

∧
2 ))

−1
)∨

is the rotation error vector. In addition, W = diag(Wp,Wr)
is a weighting matrix for different dimensions of the errors.

III. METHOD

A. Trajectory Optimization

We define the full trajectory as a sequence of T + 1
points. As illustrated in Fig. 2, the objective of the trajectory
optimization is to find a hand joint trajectory Q1:T to move
the object from the initial configuration (Q0 and To,0) to the
desired object pose To,d as closely as possible at the end of
the trajectory, during which the fingers maintain a stable grasp
and avoid self-collisions.

We consider this problem under the following assumptions:
1) The in-hand object is rigid.
2) The initial grasp (defined by Q0 and To,0) is a stable

and manipulable grasp.
3) The object surface near the grasp contact points is

smooth and exhibits low curvature.
4) The hand and object move at a slow speed, allowing the

manipulation process to be treated as quasi-static with
negligible inertial effects.

The core idea of our trajectory optimization approach is
concise: trying to minimize the terminal object pose er-
ror while maintaining constant contact locations. However,



YU et al.: ROBOTIC IN-HAND MANIPULATION FOR LARGE-RANGE PRECISE OBJECT MOVEMENT: THE RGMC CHAMPION SOLUTION 3

constraining the exact contact locations is challenging, as
it requires precise initial contact locations and high-fidelity
geometries of the object and fingertips, which are hard to
obtain in practice. Consequently, we simplify the constant
stable grasp constraint as fixing the fingertip positions (i.e.,
the center of the hemispherical tips) in the object frame O.
Note that this simplification implies that we ignore the small
changes in contact positions resulting from rolling between
the object and fingertips (i.e., rotation of the fingertips in the
object frame). We assume that, for objects with low-curvature
surfaces, minor changes in contact positions caused by rolling
will not significantly affect the manipulation result.

The trajectory optimization problem is specifically formu-
lated as follows. The termination cost regarding the desired
object pose is defined as

Jobject = d(WTo,T ,
WTo,d,Wo), (2)

where the distance d(·) is defined in (1). If the goal object
orientation is not specified, we can assign zero orientation
weights to the weighting matrix Wo.

The cost for a constant stable grasp is defined as

Jfinger =

T∑
t=1

n∑
i=1

d(OTi,t,
OTi,0,Wf), (3)

where OTi,0 is the initial fingertip pose in the object frame
O. Here, the constant grasp requirement is treated as a soft
constraint to avoid strictly infeasible situations. By assigning
zero orientation weights to Wf , we can fully allow rolling.

Additionally, we include a joint-space penalty to reduce (or
restrict) the joint trajectory length and make the waypoints
distributed evenly:

Jjoint = λ

T−1∑
t=0

∥(Qt+1 −Qt)∥22, (4)

where λ is a scalar weight.
The trajectory optimization problem is then formulated as

min
Q1:T ,To,1:T

J = Jobject + Jfinger + Jjoint

s.t. Qmin ⪯ Qt ⪯ Qmax, ∀t ∈ [1, T ]

Fcollision(Qt) ⪯ 0, ∀t ∈ [1, T ],

(5)

where the first hard constraint is the joint limit constraint,
and the second avoids collisions between fingers. In particular,
for the competition, we constrain the distances between four
critical points selected on the index and ring fingers. Given
the initial stable grasp, the trajectory optimization does not
explicitly use the object geometry, allowing it to be applied to
novel objects with no need for object reconstruction.

Note that we include the object poses To,1:T in the op-
timization variable, different from that in [5] which only
included the finger joint angles. This is because the object
pose in their work could be represented by the thumb-tip pose
under the assumption of rigid thumb-object contact, whereas
our object pose cannot be inferred from finger poses due to
the rolling contact. Allowing thumb-object rolling enlarges
the object’s reachable space. The object orientations in the
optimization variables are represented by axis-angle rotation

vectors ∈ so(3). The analytical gradients, hardware setup, and
other implementation details are provided in Appendix.

B. Closed-Loop Execution

We adopt a closed-loop execution scheme simply based on
re-planning and re-execution to further improve the accuracy.
After each iteration of trajectory optimization and actual exe-
cution, we plan and execute a new trajectory from the current
state to the desired object pose. We repeat this re-planning and
re-execution process until any of the following conditions is
met: 1) the actual error is smaller than the planned error (i.e.,
the distance between To,d and planned To,T ); 2) the predefined
maximum number of re-planning attempts Nreplan is reached;
or 3) the time budget is exceeded. This strategy helped us
achieve very high precision in the competition.

In addition, the competition requires continuous reaching of
a series of waypoints in a large space, which necessitates long-
horizon solvability and robustness. Our strategy is to move the
fingers back to the initial state (along the forward trajectory)
after reaching each waypoint, as the initial state is usually a
better start for trajectory optimization to the next goal.

IV. EXPERIMENTAL RESULTS

First, we quantitatively analyze the performance of the
proposed approach and the effects of hyper-parameters, using
the known cylinder object shown in Fig. 1. Then, we validate
the generalization of the approach to novel objects, using
the everyday objects shown in Fig. 3. We use the following
metrics: 1) planned error: the positional distance between To,d
and planned To,T from the initial full trajectory planning (not
replanning), and 2) execution error: the distance to the goal
after the actual execution.

A. Trajectory Optimization

We first validate the trajectory optimization itself. We
choose the eight corners of the 5×5×5 (cm) cubic space as the
most representative and challenging goal object positions, and
we task the hand to manipulate the cylinder to continuously
reach these eight corners for five iterations (giving a total of
40 waypoints without human intervention). No replanning is
involved. The planned error, open-loop execution error, and
optimization time cost are shown in Fig. 4, where we also
explore the effects of the number of trajectory steps T .

The results show that the actual execution errors of the
terminal object pose are larger than the planned errors, pri-
marily due to the simplification of rolling in the trajectory
optimization and other practical factors; but the open-loop
execution errors remain acceptable, averaging less than 1 cm
across the 40 waypoints. Second, the different choices of the
trajectory steps T have little impact on the execution error.
This may be attributed to the physical compliance from the
low-level PD controller and the soft fingers, which increase the
tolerance of fingertip positions along the trajectory. However,
when T = 1, we observe that the fingers may excessively
compress the object, as the optimization does not account
for in-trajectory grasping. Third, the time cost of optimization
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Fig. 3. Experiments of in-grasp object movement with various objects, including a thick cylinder lid, box, presenter remote, and screwdriver. For each object,
the images in the first row are from the top-view camera used for object pose tracking, where the red points and green circles represent the AprilTag centers
and the desired positions, respectively; the images in the second row are from another camera used only for visualization.
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Fig. 4. Evaluation of the trajectory optimization with different numbers of
trajectory steps T . Each bar shows the average error/time over 40 waypoints
at the corners of the 5 × 5 × 5 (cm) cubic space, and the values for each
waypoint are also plotted as the scattered diamond-shaped points.
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Fig. 5. Evaluation of the closed-loop execution scheme with different
maximum re-planning times Nreplan. Each iteration contains reaching the
eight corners of the 5×5×5 (cm) cubic space, with no human resets between
iterations. Each bar shows the average error across the eight corners, and the
error for each corner is also plotted as the scattered diamond-shaped points.

increases with the number of trajectory steps T . As a trade-off
between resolution and efficiency, we choose T = 3 for the
competition and subsequent experiments. On average, it takes
approximately 2 s to plan a trajectory on a laptop with an Intel
i7-9750H CPU (2.6 GHz) and a 16-GB RAM.

B. Closed-Loop Execution

We evaluate the improvements in task accuracy achieved
using the closed-loop manipulation scheme. We task the hand

to manipulate the cylinder to continuously reach the eight
corners of the 5 × 5 × 5 (cm) cubic space for five iterations
without human intervention. We also test the effects of the
maximum re-planning times allowed Nreplan.

The results in Fig. 5 indicate that: 1) the closed-loop
scheme effectively reduces the final object position errors
(from approximately 10 mm to approximately 5 mm); 2) when
Nreplan ≤ 4, the system continuously reaches the 40 way-
points without a significant drop in accuracy, demonstrating
great long-term robustness; and 3) when Nreplan = 8, the
accuracy in the first and second iteration exceeds that at lower
Nreplan, but the errors in subsequent iterations increase due to
slippage between the object and fingertips. Our observations
suggest that increased times of re-planning may reduce the
contact quality (e.g., slippage or non-tip finger-object con-
tacts). Consequently, as a strategy for the competition, we set
Nreplan = 4 in the first run to ensure more conservative results
and Nreplan = 8 in the second run to aim for higher precision.

C. Additional Evaluations
Appendix contains hyper-parameters, performances compe-

tition performances, comparison with the baseline, evaluation
of the object reachable space and novel objects, analysis of
task error variance, effect of moving back to the initial state,
impact of excessive re-planning, effect of cost weight, and
experiments with object orientation goals.

V. CONCLUSION

This work proposes a simple and practical approach for in-
grasp object movement via trajectory optimization, which won
the ICRA 2024 RGMC in-hand manipulation competition and
the Most Elegant Solution award. Our approach is concise
and easy to implement, as it requires no pre-training or object
geometries. The quantitative experimental results demonstrate
that our approach performs effectively and robustly in the real
world, as it can continuously reach 40 waypoints in a large
5× 5× 5 (cm) in-hand space with an average error of 5 mm.
Furthermore, it generalizes well to various everyday objects.
We hope that this work provides a comprehensive account of
our solution and insights gained from the competition, con-
tributing to future research on dexterous in-hand manipulation
with a focus on real-world robustness and practicality.
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