Under review as a conference paper at ICLR 2023

TOKEN TURING MACHINES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Token Turing Machines (TTM), a sequential, autoregressive Trans-
former model with memory for real-world sequential decision making. Our model
is inspired by the seminal Neural Turing Machine, and has an external memory
consisting of a set of tokens which summarise the previous history. This memory
is efficiently addressed, read and written using a Transformer as the processing
unit/controller at each step. The model’s memory module ensures that a new obser-
vation will only be processed with the contents of the memory (and not the entire
history), meaning that it can efficiently process long sequences with a bounded
computational cost at each step. We show that TTM outperforms other alternatives,
such as other Transformer models designed for long sequences and recurrent neural
networks, on two real-world sequential decision making tasks: online temporal
activity localization from videos and vision-based robot action policy learning.

1 INTRODUCTION

Processing long sequences in a causal manner is a problem central to numerous applications in
robotics and vision. For example, robot action policy learning requires a robot to abstract history of
past observations and leverage this when making decisions in real-time. This is even more important
if the robot is required to learn complicated tasks with long temporal horizons. Similar capabilities
are required by computer vision systems analysing human activities in streaming videos.

A traditional way of handling online observations of variable sequence lengths is to use recurrent
neural networks (RNNs), which are sequential, auto-regressive models (Hochreiter & Schmidhuber,
1997; |Chung et al.| 2014). As Transformers (Vaswani et al.,2017) have become the de facto model
architecture for a range of perception tasks, several works have proposed variants which can handle
longer sequence lengths (Dai et al.l 2019; Tay et al., [2022; [Wu et al.,|2022b). However, in streaming,
sequential inference problems, efficient attention operations for handling longer sequence lengths
themselves are often not sufficient since we do not want to run our entire transformer model for each
time step when a new observation is provided. This necessitates developing models with explicit
memories, enabling a model to fuse relevant past history with current observation to make a prediction
at current time step. Another desideratum for such models, to scale to long sequence lengths, is that
the computational cost at each time step should be constant, regardless of the length of the previous
history.

In this paper, we propose Token Turing Machines (TTMs), a sequential, auto-regressive model with
external memory and constant computational time complexity at each step. Our model is inspired
by Neural Turing Machines (Graves et al.,[2014) (NTM), an influential paper that was among the
first to propose an explicit memory and differentiable addressing mechanism. The original NTM was
notorious for being a complex architecture that was difficult to train, and it has therefore been largely
forgotten as other modelling advances have been made in the field. However, we show how we can
formulate an external memory, and a processing unit which reads and writes to this memory using
Transformers and other operations which are common in modern Transformer architectures. Another
key component of TTMs is a token summarization module, which provides an inductive bias that
intuitively encourages the memory to specialise to different parts of its history during the reading and
writing operations. Moreover, this design choice ensures that the computational cost of our network
is constant irrespective of the sequence length, enabling scalable, real-time, online inference.

In contrast to the original NTM, our Transformer-based modernisation is simple to implement and
train. We demonstrate its capabilities by achieving substantial improvements over strong baselines in
two diverse and challenging tasks: causal temporal action localisation from videos and vision-based
robot action policy learning.

Under review as a conference paper at ICLR 2023

Robot
control
vector

Outputs

: Processing Processing
.. —t Memory —f Read unit Memory [~ Read unit
: (i.e., layers) (i.e., layers)

Step t+1

Figure 1: TTM overview with robot examples. Each dotted rectangle shows TTM at each step.

2 TOKEN TURING MACHINES

Token Turing Machines are new sequential auto-regressive models, with core components being
the (external) memory and the processing unit, as shown in Fig. [T} The memory at time step ¢,
Mt € R™*4 consists of a set of m tokens of dimensionality d. In Token Turing Machines (TTMs),
the interface between the processing unit and memory are done purely in terms of “read” and “write”
operations. The result of memory “read” is fed to the processing unit. The output from the processing
unit is “written” to the memory.

As illustrated in Fig. |1} the input at time step I € R™*4, is merged with the memory M to retrieve
relevant tokens from both, which are then processed further to produce O € R"*?. The outputs of
this step, along with the previous inputs and current memory are then used to write to the memory,
M1, which will be used at the next time step. As many sequential decision making tasks require
predictions at each time step, we also include a linear output head at each step.

2.1 MEMORY INTERFACE

There are several principles which motivate the design of our memory interface: Intuitively, we do
not wish to read from (or write to) all memory tokens at each time step. This is because although
the memory should contain (summarised) information from the entire past history, only some of this
information may be relevant for the processing at the current stage. Therefore, we consider selective
reading of a smaller subset of tokens to be a good inductive bias that will encourage the model to
make use of a memory that stores relevant information over varying time scales Such “selective
reading” is in contrast to most previous recurrent models (e.g., RNNs) directly digesting history
vectors.

Moreover, there may be redundancies in the input stream, I?, due to the information that we already
have in our memory, M ¢, and due to the data itself (for example, videos contain redundant frames;
not all parts of an image are relevant to the task at hand). Therefore, a mechanism to summarise
tokens, both from the memory and the input stream, is a core component of our approach. We discuss
this summarisation procedure next in Sec. [2.1.1|before describing reading (Sec.[2.1.2)), processing

(Sec.2.1.3) and writing (Sec. 2.1.4).

2.1.1 TOKEN SUMMARISATION

There are multiple methods of summarising a sequence of p tokens with dimensionality d, V€ Rp*d,
to Z € R¥*4 where k < p. Examples include (Ryoo et al., 2021} Jaegle et al., 2021} Yin et al.,
2022; Rao et al., 2021} [Fayyaz et al., [2022} |Cordonnier et al.,|2021)) which have been proposed in the
context of more efficient transformer backbones for processing higher-resolution images. We adopt a
similar approach as a core component of our reading and writing mechanisms. Our method is based
on (Ryoo et al.,[2021}; Jaegle et al.| 2021)) motivated by the fact that these approaches are simple,
fully-differentiable and have achieved strong results in a number of domains.

Under review as a conference paper at ICLR 2023

\
Memory
(m=96
tokens) r=16
_ tokens | processing Unit
Token Summariser (Transformer
layers)

Input:
n = 3076 tokens
per step j

Figure 2: TTM Read. Note how it greatly reduces the computation of the subsequent processing
module by summarising the input sequence as well.

Concretely, we summarise a set of tokens V' by computing an importance weight vector, w; over
the p tokens which we use to compute a weighted summation. Here, we compute each importance
weight either using a MLP function or using a learned query vector, ¢;, computed as:

w; = (V') = softmax(MLP(V)), or (1)
w; = a; (V) = softmax(¢; V' /Vd). 2)

These weights are then used to perform a weighted summation of the inputs:
zi = si{(V) = w;V, (3)

where each token z; summarises all the tokens from the complete set V. As we select k tokens, this
means that we learn a matrix Q € R¥*¢ to obtain a matrix 1/ of importance weights in practice.

Overall, we denote this summarisation function as Sy : RP*¢ — R¥*d which we use for both
memory read and write.

2.1.2 READING FROM MEMORY

In contrast to Neural Turing Machines (Graves et al.,[2014), where inputs and memory are separately
processed and merged later, we take a unified memory-input reading strategy. This is motivated
by the fact that some of the inputs, I?, are redundant given the information that we already have in
memory.

As illustrated in Fig. [2| we concatenate the tokens in memory, M* composed of m tokens, with the
input stream, I* composed of n tokens, and summarise these tokens into a smaller subset of 7 tokens.
Our read operator is thus defined as

Z' =Read(M", I') = S, ([M*|| X)), 4)
where [Mt|| X] denotes the concatenation of these two matrices. This essentially is a function of
R(r+m)xd _y Rrxd Thus, the read operator filters the information in the memory and input which

should be passed to the subsequent processing unit. Note that by reducing the number of tokens
passed to the processing module, we also substantially reduce the computational cost of this stage.

Memory addressing by location using positional embedding In principle, the token summarisa-
tion module described above enables content-based addressing of the memory. This was referred as
“read by content” in the Neural Turing Machines. In order to also make the model take advantage of
locations of the tokens within the memory (and also to distinguish tokens from memory vs. tokens
from inputs), we add a learnable positional embedding (Dosovitskiy et al.| |2020) before each read
module. This approach, fusing position information into the tokens, has an effect of read/write by
location (+ content) without modifying the overall process.

2.1.3 PROCESSING UNIT

Our processing unit is a generic function, O' = Process(Z"), that operates on the 7 tokens obtained
from the read operation, Z*. The processing function generates a set of r output tokens, O¢, which

Under review as a conference paper at ICLR 2023

Output:
—— r= 16 tokens

m =96

Processing Unit Old memory tokens New memory
(Transformer (m =96 Token Summariser (m=96
layers) tokens) tokens)

tokens

Figure 3: TTM Write, formulated as the token summarisation.

are used in the subsequent write operation. Moreover, for tasks which require a prediction at each
time-step, we add a linear output-head Y = Output(O?) = W, 0" to the output tokens.

In our experiments, we use a standard Transformer (Vaswani et al.,|2017) and MLPMixer (Tolstikhin
et al.,[2021)) as our processing unit, although other architectures are possible too.

2.1.4 WRITING TO MEMORY

We also formulate our write operation as a token summarisation process, which we observed to be
both simple and effective.

As illustrated in Fig. [3| our write mechanism preserves tokens in the memory, M?, by learning to
re-select them. And it adds new tokens to the memory by selecting them from either the output of
the processing module, OF, or from the inputs It. Therefore, we formulate our write operations as
selecting n tokens (i.e., the size of the memory) from the concatenation of current memory, input and
output tokens, as denoted by

M = Write(M*, 0, I') = S,,([M*]|O*||T"]). 6))
Therefore, the tokens in memory will be erased if they are not re-selected. Similar to the read

operation, positional embedding is used to distinguish tokens from memory, input, and output. This
essentially is a function of R(*+m+r)xd _, pmxd,

2.2 DISCUSSION

Our proposed Token Turing Machine can be viewed as a modernisation of Neural Turing Machines
(NTM) (Graves et alJ, 2014) by using Transformer-based models for the processing unit and its
interfaces with the (external) memory.

Our reading and writing mechanisms differ to NTM in that we use token summarisation (Sec.
as the core component that unifies the two operations. NTM, on the other hand, uses a complex range
of “content” and “’location’ addressing strategies to produce the indices in the memory to read and
write to, and learns a combination of matrix additions and deletions for the memory modifications.

And whilst we use a Transformer (or a Mixer) for the processing unit, NTM used either fully-
connected feedforward or LSTM networks for its processing unit (or controller). The architectural
choices of NTM meant that it was difficult to train in practice. On the other hand, we have not
witnessed training instabilities with our TTM model in the experiments that we present next.

Both TTMs and NTMs in general could be viewed as a new form of recurrent neural networks. The
operations in TTMs can be summarised, in the recurrent network form, as follows:

Z' = Read(I*, M") (6)
O" = Process(Z") 7
M = Write(M?, O, I') (8)
Y* = Output(O"))

where the functions Read(), Process(), Write(), and Output() are what we discussed in this section.

Under review as a conference paper at ICLR 2023

3 EXPERIMENTS

3.1 VIDEO ACTIVITY DETECTION

Temporal Activity Detection in videos focus on making fine-grained action predictions per every time
step. In general, datasets for detection (Caba Heilbron et al., 2015} [Sigurdsson et al.,[2016; | Yeung
et al., 2018), contain long-range videos with multiple overlapping activities, capturing an expressive
temporal context. Hence, detection is more challenging compared to classification, which only makes
a prediction once per video. Also, detection models often need to look at more frames to generate
good representations in temporal context, which can be computationally expensive, particularly in
Transformer-based architectures due to their quadratic cost.

We focus on making online inferences, generating activity predictions for each incoming frame. That
is, the decision is made without accessing frames in future steps.

3.1.1 DATASET AND SETTINGS

Charades dataset (Sigurdsson et al., 2016) contains ~9.8k videos of 157 daily household activities,
separated into ~7.9k training and ~1.8k validation clips. Each video may include multiple overlap-
ping activities (w/ an average of 6.8 activity instances per video), annotated with frame-level labels.
The average length of a video is 30 seconds. This is a challenging setting, especially for temporal
activity detection, as a model needs to predict multiple potential activity classes per each frame,
considering the interactions between different activities and longer temporal context.

For our evaluation, we use the standard ‘charades_v1_localize’ setting, where we uniformly sample
25 frames from each video in the validation set and compute mean average precision (mAP).

3.1.2 BASELINES AND IMPLEMENTATION

We use ViViT (Arnab et all [2021)) as our backbone. As was done in its original work, we made
ViViT represent 32 frame segments. Given a continuous sequence of frames, ViViT converts it into a
sequence of representations where each element is from a 32-frame segment. We use ViViT-B with
its original settings: the input frame resolution is 224-by-224, and the video patch size is 16 x 16 x 2
(i.e., an image patch of 16 x 16 over 2 frames). It generates 14-by-14-by-16 (i.e., 3136) tokens, and
this becomes our ‘step input’ for TTMs: n = 3136. Alternatively, we do spatial average pooling per
frame, getting 16 tokens per step: n = 16

We tested various memory sizes (m), and we use m = 96 as the default setting. The number of reads
is 7 = 16 (or 32). The processing unit in TTMs is implemented to have a small overhead. In the
case of using Transformers or MLPMixers, we used the hidden size of 512 and a single module. The
training of the models was done by providing video segments of 6 steps (i.e., 32 x 6 frames) at a
time. We include the detailed training settings in Appendix.

3.1.3 EXPERIMENTAL RESULTS

In Table[I] we compare TTMs with prior state-of-the-art in temporal activity detection on Charades.
The previous work we compare against include multiple backbone architectures (e.g., I3D (Carreira &
Zisserman, 2017), X3D (Feichtenhofer 2020)) as well as different techniques for long-term temporal
modeling on top of the backbones (e.g., super-events (Piergiovanni & Ryool 2018)), TGM (Piergio-
vanni & Ryoo, [2019), Coarse-Fine (Kahatapitiya & Ryoo, 2021} [Kahatapitiya et al., 2021), and
MS-TCT (Daz et al., [2022)).

Importantly, we grouped the approaches based on whether they support online inference or not. While
most of the backbone models enable online inference by focusing on recent frames at hand, some
approaches require a longer temporal window including future frames (e.g., the global snapshot of
the entire video) to make a prediction for a given frame.

In addition, we compared TTMs with different sequential/temporal modeling architectures, applied
on top of the same backbone model we use (i.e., ViViT). These include temporal Transformers and
temporal MLPMixers (Tolstikhin et al.,|2021), as well as more traditional sequential models like
a LSTM. In addition, we implement a recurrent version of Transformers, which takes state tokens
and input tokens to predict the next state tokens and output tokens. For temporal Transformers and
MLPMixers, a temporal window of 6 steps is used. The models are over a fixed window, capturing

Under review as a conference paper at ICLR 2023

Table 1: Comparison with the state-of-the-art methods on Charades temporal activity detection.

Method | Setting | modality | mAP
I3D + super-events (Piergiovanni & Ryoo, [2018) offline | RGB + Flow | 19.41
13D + super-events + TGM (Piergiovanni & Ryool 2019) | offline RGB + Flow | 22.30
13D + STGCN (Ghosh et al., [2020) offline RGB + Flow 19.09
13D + biGRU + VS-ST-MPNN (Mavroudi et al.,[2020) offline | RGB + Object | 23.7
Coarse-Fine (w/ X3D) (Kahatapitiya & Ryoo, 2021 offline RGB 25.1
I3D + CTRN (Dai et al.,|2021al) offline RGB 253
13D + MS-TCT (Dat et al.| [2022) offline RGB 254
13D + PDAN (Dai et al.,|2021b) offline RGB + Flow 26.5
13D + CTRN (Dai et al., [2021al) offline RGB + Flow 27.8
13D (Carreira & Zisserman, 2017) online RGB + Flow 17.22
X3D (Feichtenhofter, 2020) online RGB 18.87
ViViT-B (Arnab et al.,[2021)) online RGB 23.12
ViViT-B + TTM (ours) online RGB 25.51
ViViT-L (Arnab et al., [2021) online RGB 25.25
ViViT-L + TTM (ours) online RGB 27.06

Table 2: TTM vs. different sequence modeling methods. ViViT-B was used as the backbone. TTM-
Transformer means we use Transformer as the processing unit, and TTM-Mixer means we use
MLPMixer as the processing unit. FLOP measure is for computation in addition to the backbone.

Method | mAP weighted mAP GFLOPS
ViViT only | 23.12 33.89 -
Alternate temporal models

Temporal MLPMixer (tokens=16+16) 21.04 32.04 0.065
Temporal Transformer (tokens=16+16) | 21.63 32.61 0.103
Causal Transformer (tokens=96) 24.99 36.17 0.147
Temporal MLPMixer (tokens=80+16) 25.0 35.99 0.192
Temporal Transformer (tokens=80+16) | 24.44 35.61 0.317
Causal Transformer (tokens=1344) 23.05 34.25 1.175
Causal Transformer (tokens=3072) 22.56 33.44 4.066
Temporal MLPMixer (tokens=3072) 23.33 34.26 6.075
Temporal Transformer (tokens=3072) 22.42 33.46 24.416
Alternate recurrent networks

LSTM 21 314 0.03
Recurrent Transformer (tokens=16+16) | 24.76 35.23 0.103
Token Turing Machines

TTM-Mixer (n = 16) 24.96 35.94 0.04
TTM-Transformer (n = 16) 24.95 35.96 0.075
TTM-Mixer (n = 3136) 25.12 36.26 0.655
TTM-Transformer (n = 3136) 25.51 36.51 0.69

6 x 32 = 192 frames. The raw output from ViViT has 14 x 14 x 16 tokens per step, giving us a total
of 3136 x 6 = 18816 input tokens. We used aggressive (spatial) pooling and (temporal) striding to
make their computational cost as low as TTMs, and FLOPS become comparable.

Table [2| shows the results. The FLOPS described are per-step inference time, excluding the backbone
computation. We are able to confirm that TTM, due to its external memory interactions, enables
much more efficient online inference compared to other types of sequential/temporal models. TTMs
achieve reasonable accuracies with much smaller computation (e.g., GFLOPS of causal Transformer
vs. TTM is 0.147 vs. 0.04 and they perform similarly). When a sufficient amount of computation is
provided, i.e., when many input tokens are used, TTMs perform better while using less compute. The
other temporal models like causal Transformers and MLPMixers have difficulty scaling due to the
overfitting.

Under review as a conference paper at ICLR 2023

Table 3: Using different processing unit architec- Table 4: Different Token Summarisation

tures in TTMs.
Architecture | mAP GFLOPS Method ‘ mAP__ GFLOPS
MLP 240 0651 Pooling 17.08 0.021
. MLP 25.51 0.69
MLPMixer 25.12 0.655 Latent 24.92]384
Transformer | 25.51 0.690 arent query : :

Table 5: TTM vs. different history/memory update. They all use Transformer processing units, and
MLP-based token summarisations. The number of input tokens per step, n = 3176.

Method | mAP GFLOPS
Pooling + sampling 21.63 0.103
Concatenate (Memorizing Transformer-style) | 20.3 2.225
Erase and Add (NTM-style write) 24.1 0.271
TTM without memory 22.52 0.69
TT™M 25.51 0.69

3.2 ABLATIONS

Here, we conduct a number of ablations to investigate different components of Token Turing Machines.
We use ViViT-B as the backbone. Unless specified, the models use Transformer processing units by
default, and MLP-based token summarisations. The number of input tokens per step is n = 3136.

Processing units: Table 3] compares TTMs with different processing units. The default processing
unit, i.e., Transformer, is compared against MLPMixer and a simple MLP. We observe that MLPMixer-
based TTM provides a good speed-accuracy trade-off.

Token summarisation: Table 4] compares different token summarisation methods used within
TTMs. Essentially, we are comparing different form of the «; function in Equation[I] which influences
both memory read and write in TTMs. We compare the MLP-based «, the latent query-based o, and
a simple pooling-based summarisation (i.e., no learning) method.

Different memory read/write: We compare memory read/write mechanisms of TTMs with their
alternatives, motivated by prior work including (Graves et al.,2014; Wu et al.|[2022b)). Specifically, we
implemented the memory write of concatenating every observed input tokens. We also implemented
the memory write mechanism designed in (Graves et al.,2014): write by erase and addition. Finally,
a memory-free version of TTM was implemented to confirm the importance of the memory. This
was done by zeroing out the memory of the TTM after each step, making it spend exactly the same
amount of computation. Table [5]shows the results.

3.3 ROBOT LEARNING

To study how TTM scales to a real-world robotic control setting, we integrate it to a real kitchen
environment described in SayCan (Ahn et al.| 2022)). An Everyday Robots|robot, a mobile manipu-
lator with RGB observations, is placed in an office kitchen to interact with common objects using
concurrent (Xiao et al.} 2020) continuous closed-loop control from pixels. Here, at each time step, the
input to the model are an image from the robot’s mounted camera and the task instruction in natural
language. The expected output is an action vector for robot arm and base control. The policy was
trained under a supervised behavioral cloning (BC) setting with human demonstrations.

3.3.1 DATASET AND SETTINGS

We use the dataset and settings as described in SayCan (Ahn et al.,|2022) with the additional inclusion
of controls for base motion. We collect the dataset to train imitation learning policies: a real-world
dataset of teleoperated human demonstrations of successful policy rollouts filtered by engineered
success detectors. Such real2real setup includes a training dataset of 89,000 teleoperated episodes
collected in a mock kitchen across 551 tasks involving skills like picking, placing, and manipulating
furniture. Each task instruction (with different objects) were given in the form of a text sentence,

https://everydayrobots.com/

Under review as a conference paper at ICLR 2023

Figure 4: Example input frames from the robot task “pick pepsi can” (top) and “open top drawer”
(bottom). We learn one action policy, which needs to cover all 551 task instructions.

W Pick [Knock Upright [Move [Open/Close Drawer
100

Figure 6: Average task success

75 rate in real-robot evaluation.
gj 50 Model | Success
E BC ResNet 79.80

25 BC EfficientNet 80.08

No memory 79.26
TT™ 89.26
’ BC-Zero ResNet BC-Zero EfficientNet TTM without memory T™

Figure 5: Real robot experiment; per-task success rates.

and the robot was asked to learn a single model for all such tasks. A policy trained on the dataset is
evaluated again in the same kitchen in real-time. The tasks are grouped into 5 different types, Pick,
Knock, Upright, Move, and Open/Close Drawer, and we report success rate of each type.

3.3.2 BASELINES AND IMPLEMENTATION

We follow the learning framework describe in SayCan (Ahn et al.,[2022). Here the first baseline we
benchmark against is the ResNet based control policy network, called BC-Zero ResNet, developed in
and used in SayCan. A second baseline we consider is BC-Zero with the image
trunk swapped for a pretrained EfficientNet (Tan & Lel [2019), while still applying film conditioning
(Perez et al. [2017) for language as described in (Jang et all, for ResNet. We call this the
BC-Zero EfficientNet. EfficientNet is computationally more efficient and pretraining on ImageNet
improves object understanding.

Against these baselines we benchmark the proposed TTM architecture. TTM treats EfficientNet
outputs as the input tokens. The memory size of TTM was m = 96, the number of reads was r = 16,
and n = 27 after aggregation. A Transformer with 8 layers was used as the processing unit by default.
We also compare TTM against its memory-less version, which uses the same framework and the
compute to the TTM. The only difference is that the memory has been zeroed out.

3.4 REAL-ROBOT RESULTS

We compare TTM against the baselines discussed above including BC-Zero used in SayCan. Inputs
to the models are images from the robot’s mounted headcam, previous actions executed in the episode
and natural language instruction for the task. Outputs are action vectors to control the robot in real
evaluation, as discussed in Section[3.3.1]

Fig. 5] and Table [6] show the results. We observe significant improvements with TTM in the task
success rate, since knowledge of previous history is critical for this task. Fig.] shows frames from
the real robot in operation.

Under review as a conference paper at ICLR 2023

4 RELATED WORK

Our TTM model is related to prior works on designing Transformers that can process long sequence
lengths and temporal context, and also models that can store and retrieve relevant information from
memory.

The quadratic cost of self-attention is well known. And there is a wide body of work on reducing this
to enable transformers to handle longer sequence lengths, as summarized in surveys such as (Tay
et al., 2022;|2020). Common themes include local- or sparse-attention (Zaheer et al., 2020; Liu et al.,
20215 |Child et al., 2019), pooling or reducing the number of tokens within the network (Ryoo et al.,
2021} Jaegle et al., 2021} Rae et al.||2019) and approximations of the attention matrix (Choromanski
et al.,|2020; |Wang et al., [2020; |Peng et al.l 2021). However, in the sequential inference problems
considered in this paper, efficient operations for handing longer sequence lengths are often not
sufficient themselves, as we do not want to perform redundant operations at every new time step,
when new input tokens are given.

One manner of reducing redundancy over time-steps is to leverage models with memory. There are
a number of works using Transformers to retrieve relevant information from external memories or
knowledge bases (Khandelwal et al.|[2019; Borgeaud et al.,|2022} |Guu et al., [2020; [Wu et al.| 2022b).
In contrast to these approaches, the memory of our model are actually the historical observations
of the model, which inform the current and future predictions; we learn to maintain/read/write
to the memory. Another method for reusing computation from previous time steps is to perform
causal attention. In this case, the previous activations of the model can be cached, as done in the
original implementation of the Transformer (Vaswani et al.,[2017). However, with this approach, the
computation cost at each step still linearly increases over time as the sequence length of previous
tokens increase. Transformer-XL (Dai et al., |2019) also builds upon this idea, and uses relative
positional embeddings to make better use of previous history tokens. MemViT (Wu et al.|[2022a)) also
uses token activations from previous time-steps to increase the contextual information provided at the
current time step. However, once again, the computational cost at each step still increases over time.

The classical solution for dealing with long and variable sequence lengths are recurrent neural
networks, which share the same parameters across multiple time-steps to be able to generalise to
varying sequence lengths. LSTMs (Hochreiter & Schmidhuber, |1997) and GRUs (Chung et al., 2014)
are the most well-known form of these networks, as they were formulated to handle the “vanishing
and exploding gradient” problem (Hochreiter et al., |2001). Transformers have been adapted to
recurrent networks, with models such as Block-Recurrent Transformers (Hutchins et al.,2022), which
is an RNN with a transformer operating on a sequence (or block) of tokens, instead of traditional
RNNs which have a single previouss state.

Our model, however, is based on another formulation of RNNs, the Neural Turing Machine
(NTM) (Graves et al., [2014). This model architecture is based on the von Neumann computer
architecture, and consists of a controller and external memory which is read and written to using
explicit addressing operations in a differentiable manner. The original NTM was a complex model
that was notorious for being difficult to train. Our formulation can be thought of as a modernisation
of this architecture using Transformer-based operations as primitives. Our model is simple and easy
to train, and we have also applied it to complex problems in robotics and computer vision that the
original NTM was never demonstrated for.

5 CONCLUSION

We introduce Token Turing Machines for sequential decision making. Token Turing Machines
could be viewed as a modernisation of Neural Turing Machines, with memory reads/writes designed
in terms of token summarisations. It has good perks of modern Transformer-based models while
also benefiting from having an external memory: constant compute regardless of the length of the
history. Such capability is particularly important in many sequential decision making and online
inference problems, such as robot action policy learning. We confirmed its power on real-world tasks
with challenging visual inputs: Charades activity localization, and vision-based robot action policy
learning.

Under review as a conference paper at ICLR 2023

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian
Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth,
Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine,
Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek
Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Tosheyv,
Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan Yan. Do as i can
and not as i say: Grounding language in robotic affordances. In arXiv preprint arXiv:2204.01691,
2022.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lucié, and Cordelia Schmid.
Vivit: A video vision transformer. In ICCV, 2021.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International Conference on
Machine Learning, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jaxk

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
A large-scale video benchmark for human activity understanding. In Proceedings of the ieee
conference on computer vision and pattern recognition, pp. 961-970, 2015.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299-6308, 2017.

Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short
note about kinetics-600, 2018.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Jean-Baptiste Cordonnier, Aravindh Mahendran, Alexey Dosovitskiy, Dirk Weissenborn, Jakob
Uszkoreit, and Thomas Unterthiner. Differentiable patch selection for image recognition. In CVPR,
2021.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702-703, 2020.

Rui Dai, Srijan Das, and Francois Bremond. Ctrn: Class temporal relational network for action
detection. In BMVC 202 1-The British Machine Vision Conference, 2021a.

Rui Dai, Srijan Das, Luca Minciullo, Lorenzo Garattoni, Gianpiero Francesca, and Francois Bremond.
Pdan: Pyramid dilated attention network for action detection. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 2970-2979, 2021b.

Rui Dai, Srijan Das, Kumara Kahatapitiya, Michael S Ryoo, and Francois Bremond. Ms-tct: Multi-
scale temporal convtransformer for action detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20041-20051, 2022.

10

http://github.com/google/jax

Under review as a conference paper at ICLR 2023

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-x1: Attentive language models beyond a fixed-length context. In ACL, 2019.

Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and Yi Tay. Scenic: A jax
library for computer vision research and beyond. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 21393-21398, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Juergen Gall. Adaptive token sampling
for efficient vision transformers. In ECCV, 2022.

Christoph Feichtenhofer. X3D: Expanding architectures for efficient video recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203-213,
2020.

Pallabi Ghosh, Yi Yao, Larry Davis, and Ajay Divakaran. Stacked spatio-temporal graph convolutional
networks for action segmentation. In The IEEE Winter Conference on Applications of Computer
Vision, pp. 576-585, 2020.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International Conference on Machine Learning, 2020.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jiirgen Schmidhuber, et al. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-recurrent
transformers. In NeurIPS, 2022.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In /ICML, 2021.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. 2022.

Kumara Kahatapitiya and Michael S Ryoo. Coarse-fine networks for temporal activity detection in
videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8385-8394, 2021.

Kumara Kahatapitiya, Zhou Ren, Haoxiang Li, Zhenyu Wu, and Michael S Ryoo. Self-supervised pre-
training with classification labels for temporal activity detection. arXiv preprint arXiv:2111.13675,
2021.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman.
The kinetics human action video dataset, 2017.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. arXiv preprint arXiv:1911.00172,
2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

Under review as a conference paper at ICLR 2023

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012-10022, 2021.

Effrosyni Mavroudi, Benjamin Béjar Haro, and René Vidal. Representation learning on visual-
symbolic graphs for video understanding. In European Conference on Computer Vision, pp. 71-90.
Springer, 2020.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film:
Visual reasoning with a general conditioning layer. CoRR, abs/1709.07871, 2017. URL http:
//arxiv.org/abs/1709.07871.

AlJ Piergiovanni and Michael S Ryoo. Learning latent super-events to detect multiple activities in
videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5304-5313, 2018.

AJ Piergiovanni and Michael S. Ryoo. Temporal gaussian mixture layer for videos. In International
Conference on Machine learning, pp. 5152-5161, 2019.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicyvit:
Efficient vision transformers with dynamic token sparsification. In NeurlPS, 2021.

Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, and Anelia Angelova. Token-
learner: Adaptive space-time tokenization for videos. In NeurIPS, 2021.

Gunnar A Sigurdsson, Giil Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta.
Hollywood in homes: Crowdsourcing data collection for activity understanding. In European
Conference on Computer Vision, pp. 510-526. Springer, 2016.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pp. 843-852, 2017.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys (CSUR), 2022.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In NeurIPS, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Memvit: Memory-augmented multiscale vision transformer for efficient
long-term video recognition. In CVPR, 2022a.

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers.
In ICLR, 2022b.

12

http://arxiv.org/abs/1709.07871
http://arxiv.org/abs/1709.07871

Under review as a conference paper at ICLR 2023

Ted Xiao, Eric Jang, Dmitry Kalashnikov, Sergey Levine, Julian Ibarz, Karol Hausman, and Alexander
Herzog. Thinking while moving: Deep reinforcement learning with concurrent control. arXiv
preprint arXiv:2004.06089, 2020.

Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and Li Fei-Fei. Every
moment counts: Dense detailed labeling of actions in complex videos. International Journal of
Computer Vision, 126(2-4):375-389, 2018.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In CVPR, 2022.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33:17283—-17297, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

13

Under review as a conference paper at ICLR 2023

A APPENDIX

ETHICS STATEMENT

In this paper, we proposed a sequential, autoregressive transformer model. The applications of our
model are quite general (although we applied to robotic control and temporal localisation in video,
many other applications exist), and it is not possible to be aware of all of its use-cases. Therefore, it
is important to be cognizant that each application has its own merits and societal impacts depending
on the specifics of the system, and how it is built and deployed.

A.1 CHARADES TRAINING

For Charades (Sigurdsson et al.,[2016) training, we initialize ViViT (Arnab et al.,[2021) backbones
with pretrained weights (Base model: JFT (Sun et al.l |[2017) — Kinetics-400 (Kay et al., [2017),
Large model: JFT — Kinetics-600 (Carreira et al., [2018))) and initialize TTM-head with random
weights. We finetune models with a batch size of 32 and Adam optimizer (Kingma & Ba, [2014)
with an initial learning rate of 1e-4 (with backbone learning rate further scaled by 0.1) and a cosine
schedule for 100 epochs on 32 TPUv3 cores. To prevent overfitting, we use color/scale jitter, random
augmentations (Cubuk et al., 2020) and mixup (Zhang et al.,[2017). Our implementation is based
on Jax (Bradbury et al.l 2018)) and the Scenic library (Dehghani et al., [2022). We use sigmoid
cross-entropy loss with a label smoothing of 0.1. Our inputs contain 6 temporal steps, each with 32
frames of 224 x224 resolution, and the loss is applied to the last step only. This allows better training
for the TTM memory module.

A.2 ROBOT POLICY TRAINING
In our robot experiments, all architectures are trained in a behavioral cloning setting on the real2real

dataset described in Section For the training of the policy, we follow experimental setup of
SayCan (Ahn et al. 2022).

14

	Introduction
	Token Turing Machines
	Memory Interface
	Token Summarisation
	Reading from Memory
	Processing Unit
	Writing to memory

	Discussion

	Experiments
	Video Activity Detection
	Dataset and Settings
	Baselines and Implementation
	Experimental results

	Ablations
	Robot Learning
	Dataset and Settings
	Baselines and Implementation

	Real-robot results

	Related Work
	Conclusion
	Appendix
	Charades Training
	Robot Policy Training

