
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PLAY BY THE TYPE RULES: INFERRING CONSTRAINTS
FOR LLM FUNCTIONS IN DECLARATIVE PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Integrating LLM powered operators in declarative query languages allows for the
combination of cheap and interpretable functions with powerful, generalizable
language model reasoning. However, in order to benefit from the optimized execu-
tion of a database query language like SQL, generated outputs must align with the
rules enforced by both type checkers and database contents. Current approaches
address this challenge with orchestrations consisting of many LLM-based post-
processing calls to ensure alignment between generated outputs and database val-
ues, introducing performance bottlenecks. We perform a study on the ability of
various sized open-source language models to both parse and execute functions
within a query language based on SQL, showing that small language models can
excel as function executors over hybrid data sources. Then, we propose an ef-
ficient solution to enforce the well-typedness of LLM functions, demonstrating
7% accuracy improvement on a multi-hop question answering dataset with 53%
improvement in latency over comparable solutions.

1 INTRODUCTION

Language models are capable of impressive performance on tasks requiring multi-hop reasoning.
In some cases, evidence of latent multi-hop logic chains have been observed with large language
models (Yang et al., 2024; Lindsey et al., 2025). However, particularly with smaller language models
which lack the luxury of over-parameterization, a two-step “divide-then-conquer” paradigm has
shown promise (Wolfson et al., 2020; Wu et al., 2024; Li et al., 2024).

In tasks like proof verification, languages such as Lean have become increasingly popular as an in-
termediate representation (Moura & Ullrich, 2021). This program synthesis paradigm, or generation
of an executable program to aid compositional reasoning, has been shown to improve performance
on many math-based tasks (Olausson et al.; Wang et al., 2025; Xin et al., 2024). In settings requir-
ing multi-hop reasoning over large amounts of hybrid tabular and textual data sources, the appeal of
program synthesis is two-fold: not only has synthesizing intermediate representations been proven
to increase performance in certain settings (Tjangnaka et al.; Shi et al., 2024; Glenn et al., 2024),
but offloading logical deductions to traditional programming languages when possible allows for
efficient data processing, particular in the presence of extremely large database contexts.

Existing approaches take a two-phase approach to embedding language models into typed program-
ming languages like SQL, where a response is first generated, and an additional call to a language
model is made to evaluate semantic consistency against a reference value. For example, imagine an
example query with a language model function, SELECT * FROM t WHERE city = prompt(’What

is the U.S. capital?’).

A reasonable, factual generation might be “Washington D.C.”. However, when integrating this out-
put to a SQL query against a database with the “city” stored as “Washington DC”, the absence
of exact formatting alignment can yield unintended results that break the reasoning chains of multi-
hop problems. Various approaches have been taken to solve this language model-database alignment
problem: Tjangnaka et al. align unexpected LLM generations to database values by prompting gpt-
3.5-turbo, and Shi et al. (2024) introduce a check() function to evaluate semantic consistency
under a given operator (e.g. =, <, >) via few-shot prompting to a language model. By taking a
post-processing approach to type alignment, these additional calls to language models introduce

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

No Type Hints Types Hints + Constrained DecodingType Hints

#2#1

"players"

What are the points of the player
who won the 2012 NRL Grand Final

with Melbourne ?

select
#1 won 2012 NRL Grand

Final with Melbourne

filter project#3

Points of #2

SELECT points FROM w

WHERE w.name = {{

 LLMQA(

 'Who won the 2012 NRL Grand Final with Melbourne?'

)

}}

Return type: Literal["Ernest Ward",
"Gareth Widdop", ...]

Return type: Any
Return type: Literal["Ernest Ward",
"Gareth Widdop", ...]

generate(optionsSLM ✨ "Gareth
Widdop" ✅

generate()SLM ✨ "Melbourne" ❌

Widdop won the 2012 NRL Grand Final
with Melbourne and has played for the
World All Stars.

name points

Ernest Ward 58

Gareth Widdop 171

... ...

generate()SLM ✨ "Widdop" ❌
),

Figure 1: Visualizing the type policies for aligning text and table values via the scalar function
LLMQA. We display the QDMR form of the question as well (Wolfson et al., 2020). Even with
explicit type hints included in the prompt, small language models often fail to abide by exact for-
matting instructions required for precise alignment to database contexts.

bottlenecks in program execution. In performance-sensitive environments such as database systems
where minimizing latency is critical, this approach is suboptimal.

Our contributions are the following:

• We propose a decoding-level type alignment algorithm for integrated LLM-DBMS sys-
tems, leveraging the type rules of SQL to infer constraints given an expression context.

• We present an efficient DB-first approach for integrating type-constrained language model
functions into any database management system.

• We demonstrate the utility of small language models for generating and executing a query
language for multi-hop question answering over hybrid data sources.

2 BACKGROUND

2.1 PROGRAM REPRESENTATION

We build off of BlendSQL, a query language that compiles to SQL (Glenn et al., 2024). It allows for
combining deterministic SQL operators with generalizable LLM functions capable of unstructured
reasoning.

Each BlendSQL function is denoted by double-curly brackets, “{{” and “}}”. Using a pre-
determined prompt template, it generates a response from a local or remote language model with
optional type-constraints to yield a function output. Given this function output, an AST transforma-
tion rule is applied to the original query AST to yield a syntactically valid SQL query, which can be
executed by the native database execution engine.

Certain functions, such as the scalar LLMMAP function, rely on the creation of temporary tables to
integrate function outputs into the wider SQL query. This level of integration with the DBMS allows
for the scaling of BlendSQL to any database which supports the creation of temporary tables, which

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

expire upon session disconnect. Currently, SQLite, DuckDB, Pandas, and PostgreSQL backends are
supported.

In the present work, we focus on two low-level generic functions from which complex reasoning
patterns such as ranking, RAG, and entity linking can be formed.

2.2 LLM FUNCTIONS

For a more thorough description of the below functions, see the online documentation1.

LLMQA The LLMQA function performs a reduce operation to transform a subset of data into a
single scalar value. The full LLMQA prompt template can be found in Figure 4.

LLMMAP The LLMMAP function is a scalar function that takes a single column name and, for
each value v in the column, returns the output of applying f(v). The full prompt LLMMAP prompt
template can be found in Figure 5. We utilize prefix-caching to avoid repeated forward-passes of the
prompt instruction for each of the database values, shown in Figure 2.

2.3 VECTOR SEARCH

All BlendSQL functions can be equipped with a FAISS (Douze et al., 2024) document store and
Sentence Transformer model (Reimers & Gurevych, 2019) to perform vector search given function
inputs. Additionally, BlendSQL functions may use a simplified version of the DuckDB fmt syntax
to transfer values between subqueries, facilitating multi-hop reasoning over heterogeneous data.2.

An example of a simple RAG workflow from the HybridQA dataset (Chen et al., 2020) is shown
below.

SearchQA = LLMQA.from_args(
searcher=HybridSearch(

’all-mpnet-base-v2’,
documents=[

"Walter Jerry Payton was an American football player...",
"The sky is blue..."

],
k=1 # Retrieve top-1 document from KNN search

)
)

/* What is the middle name of the player with the second most National Football
League career rushing yards ? */

SELECT {{
LLMQA(

’What is the middle name of {}?’,
(SELECT player FROM w ORDER BY yards DESC LIMIT 1 OFFSET 1)

)
}}

2.4 QUERY EXECUTION

The role of a query optimizer is to determine the most efficient method for a given query to access the
requested data. We implement a rule-based optimizer with a heuristic cost model. When executing
a program, the query is normalized and converted to an abstract syntax tree (AST), and the nodes of
the query are traversed via the standard SQL order of operations (FROM/JOIN→WHERE→GROUP
BY, etc.). For each operator, the child nodes are then traversed and executed via depth-first search,
with deferred execution of any LLM-based functions. In a cost planning lens, it could be said that
all LLM-based functions are assigned a cost of∞, whereas all native SQL operators are assigned 0.
This process is visualized in Figure 2.

1To ensure anonmyity during review, documentation will be linked upon acceptance.
2https://duckdb.org/docs/stable/sql/functions/text.html#fmt-syntax

3

https://duckdb.org/docs/stable/sql/functions/text.html##fmt-syntax

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

def f(s: str, context: List[str]) -> int:

 """What is the population of {}?

 Args:

 s (str): Value from a "schools.County" column in a SQL database.

 context (List[str]): Context to use in answering the question.

 Returns:

 int: Answer to the above question for each value `s`.

 Examples:


    ```python

    # f() returns the output to the question 'What is the population of {}?'

f(          , ["Riverside, CA is home to a population of 316k people...", ...]) ==

f(           , ["Santa Clara County has a population of 1,936,259...", ...]) ==

SELECT SUM(ss.NumTstTakr) 
AS TotalTestTakers
FROM satscores ss
JOIN schools s ON s.CDSCode = ss.cds
WHERE {{
    LLMSearchMap(
        'What is the population of {}?',
        s.County
    )
}} > 2000000

County CDSCode

Riverside 1

Los Angeles 2

Santa Clara 3

... ...

cds NumTstTakr

1 406

3 28

... ...

What is the population of  Riverside ?

What is the population of  Santa Clara ?

FAISS

Prefix-Cached

SLM ✨generate( , '\d+' )

SLM ✨generate( , '\d+' )

SELECT SUM(ss.NumTstTakr) AS TotalTestTakers

FROM satscores ss

JOIN temp_schools s ON s.CDSCode = ss.cds

WHERE s."What is the population of {}?" > 2000000

Step 4: Generate Type-Constrained Outputs

Step 2: Apply Join
Step 3: Batch Retrieve

from Vector Store

Step 5: Execute Final SQL Against
Database

County What is the
population of {}?

Riverside 316000

Santa Clara 1936259

... ...

Step 1: Convert to AST

Riverside

Santa Clara

SELECT

JOIN WHERE SUM

...... ...

Doc 1
Documents

Figure 2: Execution flow of a MAP function. First, we apply the depth-first search described in
Section 2.4 to eagerly execute the JOIN, filtering down the values required to be passed to following
steps. Then, all distinct values are processed against the LLM UDF and inserted into a temporary
table for usage in the final query.

Upon execution, all LLM-based functions return either a reference to a newly created temporary
table or a SQL primitive, facilitating the given semantic operator it was invoked to perform. Each
LLM function type is given logic to manipulate the broader query AST with this function output,
denoted by TRANSFORMAST in 1. Finally, the AST is synced back to a string representation and
executed against the database. With this approach, all BlendSQL queries compile to SQL in the
dialect of the downstream DBMS. We define the abstract LLM function execution logic utilized in
Algorithm 1 of the Appendix.

3 INFERRING TYPE CONSTRAINTS VIA EXPRESSION CONTEXT

When integrating LLM-based user-defined functions (UDFs) into a declarative language like SQL,
it is not always clear what form the function output should take. For example, we may have the
“Washington D.C.” / “Washington DC” misalignment described in Section 1, as well as more explicit
errors in the type checking phase of query execution.

We define three methods for handling the output of LLM UDFs below. For all methods, to ac-
commodate our Python-style prompting patterns, we map the strings “True” and “False” to their
boolean counterparts, which in turn get interpreted by “1” and “0” by SQLite. Additionally, since
all database values are lowercase-normalized, we lowercase the language model output to avoid pe-
nalizing unconstrained capitalization differences. (e.g. “Washington D.C.” vs. “washington d.c.”).

As an illustrative example, we will take the following query. We use the aggregate function LLMQA
introduced in Section 2.2, which returns a single scalar value.

CREATE TABLE t(
name TEXT,
age INTEGER

);
INSERT INTO t VALUES(’Steph Curry’, 37);

/* Is Lebron James older than Steph Curry? */
SELECT {{LLMQA(’How old is Lebron James?’)}} > age FROM t
WHERE name = ’Steph Curry’

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 NO TYPE HINTS

By default, the language model will be prompted to return an answer to the question with no explicit
type hints or coercion. After querying the language model and applying the AST transformation
rules for the aggregate LLMQA function, the final query could be:

SELECT ’The answer is 40.’ > age FROM t WHERE name = ’Steph Curry’

Note that SQLite’s type affinity allows for implicit coercion of certain TEXT literals to NUMERIC
datatypes, such as the string “40”. However, as an unconstrained language model with no explicit
constraints may return unnecessary commentary with no applicable type conversion rules (e.g. “The
answer is...”), type affinity is often rendered insufficient for executing a valid and faithful query with
integrated language model output, particularly for small language models (SLMs).

3.2 TYPE HINTS

In this mode, a Python-style type hint is inserted into the prompt alongside the question. For the
working query, this would be “Return type: int”. Only the previously mentioned “True” / “False”
coercion is handled by the BlendSQL interpreter, and all other outputs are inserted into the wider
SQL query as a TEXT datatype.

As with the “No Type Hints” setting, type affinity rules are relied on to cast inserted language
model output to most SQLite datatypes. Given the desired datatype is included via instruction in
the prompt, executing with a sufficiently capable instruction-finetuned language model may yield a
final SQL query of:

SELECT ’40’ > age FROM t WHERE name = ’Steph Curry’

3.3 TYPE HINTS & CONSTRAINED DECODING

When executed with type constraints, the process is three-fold:

1) Infer the return type of the LLM-based UDF given Table 1, and insert the Python-style type
hint into the prompt.

2) Retrieve a regular expression corresponding to the inferred return type, and use it to perform
constrained decoding.

3) Cast the language model output to the appropriate native Python type (e.g. INTEGER =
int(s)) and perform an AST transform on the wider SQL query.

Barring any user-induced syntax errors, the output of the language model is guaranteed to result in
a query that is accepted by the SQL type checker.

The resulting query in this mode would be something such as:

SELECT 40 > age FROM t WHERE name = ’Steph Curry’

Database Driven Constraints In addition to primitive types generated from pre-defined regular
expressions, we also consider the LITERAL datatype as all distinct values from a column. This
enables alignment between LLM generations and database contents at the decoding level, in a single
generation pass. We represents these type hints by inserting “Literal[’a’, ’b’, ’c’]” in our prompts.
Figure 1 demonstrates this, using an LLMQA function to align unstructured document context with
a structured table.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Function Context Inferred Signature
f() = TRUE f()→ bool
f() > 40 f()→ int
f() BETWEEN 60.1 AND 80.3 f()→ float

city = f()* f()→ Literal[ ’Washington DC’ , ’San Jose’ ]

team IN f()* f()→ List[Literal[ ’Red Sox’ , ’Mets’ ]]
ORDER BY f() f()→ Union[float, int]
SUM(f()) f()→ Union[float, int]
SELECT * FROM VALUES f()* f()→ List[Any]

Table 1: Sample of type inference rules for BLENDSQL UDFs. Highlighted values indicate
references to all distinct values of the predicate’s column argument. Asterisks (*) refer to rules
which only apply to the aggregate LLMQA function. In “Type Hints & Constrained Decoding”
mode, each return type is used to fetch a regular expression to guide generation of function output
(e.g. int→ \d+).

4 EXPERIMENTS

4.1 EFFICIENCY AND EXPRESSIVITY

We first validate both the efficiency and expressivity of BlendSQL as an intermediate representation
by comparing against LOTUS (Patel et al., 2024b) on the TAG-benchmark questions. LOTUS is a
declarative API for data processing with LLM functions, whose syntax builds off of Pandas (pan-
das development team, 2020). TAG-Bench is a dataset built off of BIRD-SQL dataset (Li et al.,
2023) for text-to-SQL. The annotated queries span 5 domains from BIRD, and each requires rea-
soning beyond what is present in the given database. For example, given the question “How many
test takers are there at the school/s in a county with population over 2 million?”, a language model
must apply a map operation over the County column to derive the estimated population from ei-
ther its parametric knowledge. The average size of tables in the TAG-Bench dataset is 53,631 rows,
highlighting the need for efficient systems. We show the execution flow of this example in Figure 2.

Table 2 shows the sample-level latency of LOTUS and BlendSQL programs on 60 questions from
the TAG-Bench dataset. Using the same quantized Llama-3.1-8b and 16GB RTX 5080, latency
decreases by 53% from 1.7 to 0.76 seconds, highlighting the efficiency of BlendSQL, in addition
to the expressivity of the two simple map and reduce functions. Full details of the benchmark
implementations are included in Appendix B.

Program Model Hardware Execution
Time (s) (↓)

Avg. Tokens per
Program (↓)

LOTUS Llama-3.1-70b-Instruct 8 A100 3 127Llama-3.1-8b-Instruct.Q4 1 RTX 5080 1.7 (+/- 0.06)

BlendSQL Llama-3.1-8b-Instruct.Q4 1 RTX 5080 0.76 (+/- 0.002) 76

Table 2: Latency measures for LLM-based data analysis programs on TAG-Bench. For RTX
5080 results, average runtime across 5 runs is displayed. Llama-3.1-70b-Instruct results are taken
from Biswal et al. (2024).

4.2 HYBRID QUESTION ANSWERING EXPERIMENTS

We evaluate our program synthesis with type constraints approach on the HybridQA dataset (Chen
et al., 2020), containing questions requiring multi-hop reasoning over both tables and texts from
Wikipedia. For example, given a question “What are the points of the player who won the 2012
NRL Grand Final with Melbourne?”, a Wikipedia article must be referenced to find the winner
of the NRL Grand Final, but the value of this player’s points is only available in a table. While
the table values contain explicit links to unstructured article, we explore a more realistic unlinked

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

setting, where the unstructured content must be retrieved via some RAG-like method. We evaluate
our approaches on the first 1,000 examples from the HybridQA validation set. On average across the
validation set, the tables have 16 rows and 4.5 columns, and the unstructured text context is 9,134
tokens.

Metrics We adopt the official exact match (EM) and F1 metrics provided by the HybridQA au-
thors, as well as semantic denotation accuracy used in Cheng et al. (2023). This denotation accuracy
is more robust to structural differences between predictions and ground truth annotations pointing
to the same semantic referent (e.g. “two” vs. “2”).

Models In order to evaluate the performance of models at various sizes, we use the Llama 3
series of models (Dubey et al., 2024). Specifically, we use Llama-3.2-1B-Instruct, Llama-3.2-3B-
Instruct, Llama-3.1-8B-Instruct, and Llama-3.3-70B-Instruct. Additionally, we evaluate gemma-3-
12b-it (Team et al., 2024). All models except for Llama-3.3-70B-Instruct are run on 4 24GB A10
GPUs. Llama-3.3-70B-Instruct is hosted with vLLM Kwon et al. (2023) on 4 80GB A100 GPUs.

Few-Shot Parsing In the parsing phase, a language model is prompted to generate a BlendSQL
query given a (question, database) pair. We use an abbreviated version of the BlendSQL
documentation3 alongside 4 hand-picked examples from the HybridQA train split for our prompt.

Execution We execute BlendSQL queries against a local SQLite database using the LLMQA and
LLMMAP functions described in Section 2. Additionally, we define a LLMSEARCHMAP function,
which is a map function connected to unstructured article contexts via a hybrid BM25 / vector
search. For both the LLMSEARCHMAP and LLMQA search, we use all-mpnet-base-v2 (Song
et al., 2020). All article text is split into sentences before being stored in the search index. We set
the number of retrieved sentences (k) to 1 for the LLMSEARCHMAP function, and 10 for the LLMQA
function.

For all constrained decoding functionality, we use guidance (Guidance, 2023), which traverses a
token trie at decoding time to mask invalid continuations given a grammar.

Baselines We also evaluate traditional end-to-end approaches to the hybrid question answering
task with the Llama models. In “No Context”, we prompt the model with only the question in an
attempt to discern how much of the HybridQA dataset exists in the model’s parametric knowledge.
In “All Context”, the entire table and text context is passed in the prompt. In “RAG”, we use the
same hybrid BM25 / mpnet retriever used in the BlendSQL functions to fetch 30 sentences from
the text context. The retrieved text context and all table context are passed in the prompt with the
question.

5 RESULTS

5.1 IMPACT OF TYPING POLICIES ON EXECUTION ACCURACY

Figure 3 shows the impact of the typing policies described in Section 3, with different combinations
of parsing and execution models. In all settings, Type Hints + Constrained Decoding outperforms
the rest of the policies. We observe a steep drop-off in performance moving from the 3b model to
the 1b model as a function executor.

We see the biggest performance lift when using the 3b model to execute the functions derived from
the larger 70b parameter model, where denotation accuracy rises by 6.6 points after applying type
constraints. This indicates that despite occasionally failing to follow exact formatting instructions
when prompted, it is still possible to efficiently extract the desired response from the model’s prob-
ability distribution via constrained decoding.

3https://github.com/parkervg/blendsql/blob/4ab4aa7c7a9868ad1e61626f2398ea29e67c8c3a/
docs/reference/functions.md

7

https://github.com/parkervg/blendsql/blob/4ab4aa7c7a9868ad1e61626f2398ea29e67c8c3a/docs/reference/functions.md
https://github.com/parkervg/blendsql/blob/4ab4aa7c7a9868ad1e61626f2398ea29e67c8c3a/docs/reference/functions.md


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0

10

20

30

40

50
D

en
ot

at
io

n 
Ac

cu
ra

cy

1.6
6.1 9.4

1.6
8.4 11.5

4.2
10.8 13.1

Parsing Model = 3b

3.0

15.3 17.0

4.2

15.5 17.6

5.9

17.7 19.7

Parsing Model = 8b

1b 3b 8b
Execution Model

0

10

20

30

40

50

D
en

ot
at

io
n 

Ac
cu

ra
cy

5.5

18.6
23.6

6.5

22.1
26.4

9.1

26.4 29.1

Parsing Model = 12b

1b 3b 8b
Execution Model

8.0

33.3
40.4

9.6

38.7
45.9

12.7

45.3
50.2

Parsing Model = 70b

No Type Hints
Type Hints
Type Hints + Constrained Decoding

Figure 3: Impact of various typing policies on HybridQA validation performance across model
sizes. All programs are generated using 4 few-shot examples and BlendSQL documentation. “12b”
refers to gemma-3-12b-it, all other sizes refer to variants of Llama 3 Instruct. “Denotation Accuracy”
refers to the semantic denotation metric used in Cheng et al. (2023). Descriptions of typing policies
can be found in Section 3

5.2 PROGRAM SYNTHESIS VS. BASELINES

As shown in Table 3, all small models (< 70b) achieve the best performance when executing a
program generated by a 70b model. The 70b model in a traditional RAG setting achieves best
performance on the hybrid multi-hop reasoning dataset. Some of this success may be attributed to
the model’s parametric knowledge: with no context, it achieves a denotation accuracy of 6.6.

When tasked with executing a program containing the decomposition of multi-hop questions, a
Llama-3.2-3b-Instruct can come close to the performance of a Llama-3.1-8b-Instruct in the RAG
setting (45.3 vs. 45.6 denotation accuracy). This is notable, particularly given the fact that executed
programs raised some error on 102 out of 1000 samples and fail to produce a prediction. Taking
into consideration only the 899 executed programs, the 3b model achieves a denotation accuracy
of 50.3. These errors are either syntax errors (e.g. missing parentheses, invalid quote escapes)
or semantic errors (e.g. hallucinating a column name), and can be remedied with both rule-based
post-processing or finetuning via rejection sampling. We explore the relationship between syntactic
errors and downstream performance in Appendix A.1, and categorize execution errors in Table 4 .

6 RELATED WORK

6.1 COMBINING LANGUAGE MODELS WITH DATABASE SYSTEMS

Combining language models with structured data operators is a widely studied topic. To the best
of our knowledge, Bae et al. (2023) were the first to propose the idea of putting calls to a neural
model into a SQL query. Others have since continued exploration into domain-specific languages

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Mode Accuracy F1 Denotation Accuracy

1b

No Context 1.5 3.85 2.1
All Context 8.0 12.27 8.8
RAG 8.9 12.02 9.7
Program Execution 12.1 16.93 12.7

3b

No Context 3.1 5.67 3.6
All Context 37.3 45.02 38.8
RAG 35.7 42.57 37.7
Program Execution 41.8 48.70 45.3

8b

No Context 3.8 7.38 4.5
All Context 42.9 50.5 44.4
RAG 43.8 50.98 45.6
Program Execution 46.9 53.85 50.1

70b

No Context 5.7 10.19 6.6
All Context - - -
RAG 54.5 63.55 57.8
Program Execution - - -

Table 3: Results on the first 1k samples of the HybridQA validation set for Llama-Instruct
models. “Program Execution” refers to the execution of a BlendSQL program generated by Llama-
3.3-70b-Instruct. Best scores for each model size are in bold.

for combining the generalized computations of language models with the structured reasoning of
traditional database query languages (Cheng et al., 2023; Dorbani et al.; Tjangnaka et al.; Patel
et al., 2024a).

These approaches integrate language models with database management systems at varying levels.
While Patel et al. (2024a) intervenes via a Pandas API, Dorbani et al. build out a set of custom UDFs
for the online analytical processing DBMS DuckDB (Raasveldt & Mühleisen, 2019). Tjangnaka
et al. build out UDFs for the PostgreSQL DBMS (PostgreSQL, 2025), with additional calls to lan-
guage models to determine the semantic equivalency LM-generated values against native database
values.

A subset of work specifically explores efficient methods for optimizing LLM functions in relational
systems (Kim et al., 2024; Liu et al., 2024).

6.2 CONSTRAINED DECODING

Constrained decoding refers to the process of controlling the output of language models by applying
masks at the decoding level, such that generations adhere to a specific pre-determined constraint
(Deutsch et al., 2019). These constraints are typically encoded via regular expressions or context-
free grammars, and optimized decoding engines have emerged for deriving and applying masks
(Willard & Louf, 2023; Geng et al., 2023; Park et al., 2025; Dong et al., 2024; Guidance, 2023).

Most relevant to our work is Mündler et al. (2025), who present an algorithm to enforce the well-
typedness of LLM-generated TypeScript code. Whereas they tackle the problem of determining
whether a partial program can be completed into a well-typed program, we explore type inference
and constraints for integrating LLM outputs into a declarative query language.

7 CONCLUSION

In this work, we propose an efficient decoding-level approach for aligning the generated outputs of
LLM UDFs with database contents. Additionally, we present evidence that small language models
can excel as function executors on a complex multi-hop reasoning dataset when given appropriate
constraints. This approach, while initially developed in a SQL-like language, can be extended to any
typed declarative programming language.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun Kweon, Jungwoo
Oh, Lei Ji, Eric Chang, Tackeun Kim, et al. Ehrxqa: A multi-modal question answering dataset
for electronic health records with chest x-ray images. Advances in Neural Information Processing
Systems, 36:3867–3880, 2023.

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kamsetty, Shu Liu, Joseph E Gonzalez, Carlos
Guestrin, and Matei Zaharia. Text2sql is not enough: Unifying ai and databases with tag. arXiv
preprint arXiv:2408.14717, 2024.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hy-
bridqa: A dataset of multi-hop question answering over tabular and textual data. arXiv preprint
arXiv:2004.07347, 2020.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding language models in symbolic
languages. In International Conference on Learning Representations (ICLR 2023)(01/05/2023-
05/05/2023, Kigali, Rwanda), 2023.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. A general-purpose algorithm for constrained
sequential inference. In Proceedings of the 23rd Conference on Computational Natural Language
Learning (CoNLL), pp. 482–492, 2019.

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen.
Xgrammar: Flexible and efficient structured generation engine for large language models. arXiv
preprint arXiv:2411.15100, 2024.

Anas Dorbani, Sunny Yasser, Jimmy Lin, and Amine Mhedhbi. Beyond quacking: Deep integration
of language models and rag into duckdb.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding
for structured nlp tasks without finetuning. arXiv preprint arXiv:2305.13971, 2023.

Parker Glenn, Parag Dakle, Liang Wang, and Preethi Raghavan. Blendsql: A scalable dialect for
unifying hybrid question answering in relational algebra. In Findings of the Association for Com-
putational Linguistics ACL 2024, pp. 453–466, 2024.

Guidance. Guidance: A language model programming framework. https://github.com/
guidance-ai/guidance, 2023. Accessed: 2025-08-11.

Kyoungmin Kim, Kijae Hong, Caglar Gulcehre, and Anastasia Ailamaki. Optimizing llm in-
ference for database systems: Cost-aware scheduling for concurrent requests. arXiv preprint
arXiv:2411.07447, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Lark. Lark is a parsing toolkit for python, built with a focus on ergonomics, performance and
modularity. https://github.com/lark-parser/lark. Accessed: 2025-08-27.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36:42330–42357, 2023.

10

https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://github.com/lark-parser/lark


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xiang Li, Shizhu He, Fangyu Lei, JunYang JunYang, Tianhuang Su, Kang Liu, and Jun Zhao.
Teaching small language models to reason for knowledge-intensive multi-hop question answering.
In Findings of the Association for Computational Linguistics: ACL 2024, pp. 7804–7816, 2024.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E Gonzalez, Ion Stoica, and
Matei Zaharia. Optimizing llm queries in relational workloads. CoRR, 2024.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In International Conference on Automated Deduction, pp. 625–635. Springer, 2021.

Niels Mündler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. Type-
constrained code generation with language models. Proceedings of the ACM on Programming
Languages, 9(PLDI):601–626, 2025.

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cedegao E Zhang, Armando Solar-Lezama, Joshua B
Tenenbaum, and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by combin-
ing language models with first-order logic provers.

The pandas development team. pandas-dev/pandas: Pandas, February 2020. URL https://doi.
org/10.5281/zenodo.3509134.

Kanghee Park, Timothy Zhou, and Loris D’Antoni. Flexible and efficient grammar-constrained
decoding. arXiv preprint arXiv:2502.05111, 2025.

Liana Patel, Siddharth Jha, Parth Asawa, Melissa Pan, Carlos Guestrin, and Matei Zaharia. Semantic
operators: A declarative model for rich, ai-based analytics over text data, 2024a. URL https:
//arxiv.org/abs/2407.11418.

Liana Patel, Siddharth Jha, Melissa Pan, Harshit Gupta, Parth Asawa, Carlos Guestrin, and Matei
Zaharia. Semantic operators: A declarative model for rich, ai-based data processing. arXiv
preprint arXiv:2407.11418, 2024b.

PostgreSQL. Postgresql: The world’s most advanced open source relational database, 2025. URL
https://www.postgresql.org/.

Mark Raasveldt and Hannes Mühleisen. Duckdb: an embeddable analytical database. In Proceed-
ings of the 2019 international conference on management of data, pp. 1981–1984, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL http://arxiv.org/
abs/1908.10084.

Qi Shi, Han Cui, Haofeng Wang, Qingfu Zhu, Wanxiang Che, and Ting Liu. Exploring hybrid
question answering via program-based prompting. arXiv preprint arXiv:2402.10812, 2024.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
training for language understanding. Advances in neural information processing systems, 33:
16857–16867, 2020.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Shicheng Liu Jialiang Xu Wesley Tjangnaka, Sina J Semnani Chen Jie Yu, and Monica S Lam. Suql:
Conversational search over structured and unstructured data with large language models.

11

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://arxiv.org/abs/2407.11418
https://arxiv.org/abs/2407.11418
https://www.postgresql.org/
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv e-prints, pp. arXiv–2504, 2025.

Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. arXiv
preprint arXiv:2307.09702, 2023.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel Deutch, and
Jonathan Berant. Break it down: A question understanding benchmark. Transactions of the
Association for Computational Linguistics, 8:183–198, 2020.

Zhuofeng Wu, He Bai, Aonan Zhang, Jiatao Gu, VG Vydiswaran, Navdeep Jaitly, and Yizhe Zhang.
Divide-or-conquer? which part should you distill your llm? arXiv preprint arXiv:2402.15000,
2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv e-prints, pp. arXiv–2405, 2024.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837, 2024.

A APPENDIX

Algorithm 1 LLM Function Execution
Require: Query AST A, language model L, database D, function F
Ensure: A′: Transformed AST

1: T ← TABLEREFS(F ) ▷ Gather all tables referenced in F
2: for each t in T do
3: if t /∈ D then
4: MATERIALIZECTE(D,A, t) ▷ Materialize CTE if needed
5: end if
6: if HASSESSIONTEMPTABLE(D, t) then ▷ Fetch previously written-to temp table, if exists
7: t← GETSESSIONTEMPTABLE(D, t)
8: end if
9: end for

10: R← F (L,D, T ) ▷ Get response from language model
11: A′ ← TRANSFORMAST(A,R, TYPE(F )) ▷ Transform AST, given response and function type
12: return A′

A.1 EXPLORING TRAINING-FREE APPROACHES

Context-Free Grammar Guide Despite the efficiency of executing program-based solutions for
question answering tasks, the implementation of a parsing step allows for potential execution errors.
These execution errors may be due to syntax (e.g. subquery missing a parentheses), or semantics
only noticeable at runtime (e.g. referencing a non-existent column). We design a context-free gram-
mar to guide BlendSQL parsing at generation time to solve for many syntactic errors. The grammar
is implemented via Lark (Lark), and we leverage guidance to translate the grammar into an opti-
mized constrained decoding mask at generation time (Guidance, 2023). This grammar ensures that
generated BlendSQL queries meet certain conditions, such as having balanced parentheses, and spe-
cialized functions are used in the correct context (e.g. LLMMAP must receive a quoted string and
table reference as arguments4). However, the context-free grammar is unable to verify semantic
constraints, such as ensuring that the table passed to LLMMAP exists within the current database.

Shown in Figure 7, despite the CFG preventing many syntax errors that would otherwise have oc-
curred, the downstream denotation accuracy is not consistently improved. Specifically, smaller mod-
els that are more prone to simple synactic mistakes benefit more from the CFG guide, whereas the

4Since these aren’t semantic constraints, this really only enforces that it looks like a table reference

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

LLMQA Prompt

Answer the question given the context, if provided.
Keep the answers as short as possible, without leading context.
For example, do not say ’The answer is 2’, simply say ’2’.

Question: {{question}}

Output datatype: {{return_type}}

{% if context is not none %}
Context: {{context}}
{% endif % }

Answer:

Figure 4: Prompt for the LLMQA function.

LLMMAP Prompt

Complete the docstring for the provided Python function.
The output should correctly answer the question provided for each input value.
On each newline, you will follow the format of f({value}) == answer.

def f(s: str) -> bool:
"""Is an NBA team?
Args:

s (str): Value from the "w.team" column in a SQL database.

Returns:
bool: Answer to the above question for each value ‘s‘.

Examples:
‘‘‘python
# f() returns the output to the question ’Is an NBA team?’
f("Lakers") == True
f("Nuggets") == True
f("Dodgers") == False
f("Mets") == False
‘‘‘
"""
...

def f(s: str) -> {{return_type}}:
"""{{question}}
Args:

s (str): Value from the {{table_name}}.{{column_name}} in a
SQL database.

Returns:
{{return_type}}: Answer to the above question for each value ‘s‘.

Examples:
‘‘‘python
# f() returns the output to the question ’{{question}}’
f({{value}}) =

Figure 5: Prompt for the LLMMAP function. The instruction and few-shot example(s) are prefix
cached, enabling quick batch inference over the sequence of database values.

large Llama-3.3-70b-Instruct is actually harmed by the constraints. We hypothesize this may be due
to errors in the Lark CFG or guidance’s use of fast-forward tokens5, though leave deeper exploration
of this to future work.

5https://github.com/guidance-ai/llguidance/blob/main/docs/fast_forward.
md

13

https://github.com/guidance-ai/llguidance/blob/main/docs/fast_forward.md
https://github.com/guidance-ai/llguidance/blob/main/docs/fast_forward.md


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1b 3b 8b 70b
Parsing Model

4

2

0

2

4

D
en

ot
at

io
n 

Ac
cu

ra
cy

 C
ha

ng
e

CFG Constrained Generation
No Documentation (Only few-shot examples)

Figure 6: Impact of ablations for different parsing models. While larger models show decreased
performance when removing descriptive documentation, smaller models exhibit moderate gains.
Results shown use a Llama-3.1-8b-Instruct as a function executor in the “Type Hints + Constrained
Decoding” setting, described in Section 3.3.

1b 3b 8b 70b
Parsing Model

0

50

100

150

200

156

238

58
33

14

75

27 41

Syntax Errors
No CFG Guide
CFG Guide

1b 3b 8b 70b
Parsing Model

0

10

20

30

40

0.90

11.90
18.10

46.90

1.40

14.00
18.60

46.80

Denotation Accuracy
No CFG Guide
CFG Guide

Figure 7: Decreasing syntax errors isn’t strongly correlated with improved downstream perfor-
mance. The real difficulty of semantic parsing lies in the semantic alignment, not shallow syntactic
grammaticality. Results shown use a Llama-3.1-8b-Instruct as a function executor in the “Type Hints
+ Constrained Decoding” setting, described in Section 3.3.

B BENCHMARKING DETAILS

Both systems are evaluated on the same RTX 5080 16GB GPU. The max context length is set to
8000 for all evaluations.

BlendSQL Setup We use blendsql==0.0.48 for our runtime experiment. We use llama-cpp-
python version 0.3.16, pointing to llama.cpp@4227c9be4268ac844921b90f31595f81236bd317.
The Q4_K_M quant from bartowski/Meta-Llama-3.1-8B-Instruct-GGUF model is used.

LOTUS Setup We use lotus-ai==1.1.3 for our runtime experiment. Generation is performed
using ollama version 0.6.7, which uses llama.cpp@e54d41befcc1575f4c898c5ff4ef43970cead75f
as its backend. The Q4_K_M quant, referenced by ollama via llama3.1:8b, is used.

14

https://github.com/abetlen/llama-cpp-python/commit/c37132bac860fcc333255c36313f89c4f49d4c8d
https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
https://github.com/ollama/ollama/blob/v0.11.6/Makefile.sync
https://ollama.com/library/llama3.1:8b


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1 3 5
llmsearchmap_k

10
15

20
llm

qa
_k

0.5010 0.5010 0.5010

0.5030 0.5030 0.5040

0.4980 0.4980 0.4990

0.498

0.499

0.500

0.501

0.502

0.503

0.504

Figure 8: Hyperparameter sweeps for various settings of k in our hybrid vector search components

Error Type Count
Empty LLMQA Context 48
Generic SQLite Syntax 13
BlendSQL Column Reference Error 13
Hallucinated Column 11
Tokenization Error 6
Hallucinated Table 4
F-String Syntax 1
Misc. 1

Table 4: Categorization of execution errors raised by programs generated by Llama-70-
Instruct. Results shown are from 1000 examples from the HybridQA validation set.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 1 3 4 5 6 8 10 11 13 16 18 19 20 21 24 25 27 29 30 33 35 36 37 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 10
6
10

7
10

8
10

9
11

0
11

1
95

2
10

00

query_id

0

2

4

6

8

10

12

La
te

nc
y 

(s
)

blendsql
lotus
LOTUS Mean: 1.7
BlendSQL Mean: 0.8

Figure 9: Sample level latency of declarative LLM programs across question types on TAG-
Benchmark. Results shown are averaged across 5 runs on an RTX 5080.

C EXAMPLE PROGRAMS

Below contains a short sample of BlendSQL queries generated by Llama-3.3-70b-Instruct.

/* What is the difference in time between José Reliegos of Spain and the person
born 5 September 1892 who competed at the 1928 Olympics ? */

SELECT
CAST(REPLACE("time", ’:’, ’.’) AS REAL) -
(SELECT CAST(REPLACE("time", ’:’, ’.’) AS REAL)
FROM w
WHERE athlete = {{

LLMQA(
’Who was born on 5 September 1892 and competed at the 1928 Olympics?’

)
}})

FROM w
WHERE athlete = ’josé reliegos’

/* Which # 1 ranked gymnast is the oldest ? */
WITH t AS (

SELECT gymnasts FROM w
WHERE rank = 1

) SELECT gymnasts FROM t
ORDER BY {{LLMSearchMap(’What year was {} born?’, t.gymnasts)}} ASC LIMIT 1

/* What city is the university that taught Angie Barker located in ? */
SELECT {{

LLMQA(
’In what city is {}?’,
(SELECT institution FROM w WHERE name = ’angie barker’)

)
}}

/* In which city is this institute located that the retired American
professional basketball player born on November 23 , 1971 is affiliated with
? */

SELECT {{
LLMQA(

’In which city is {} located?’,
(

SELECT "school / club team" FROM w
WHERE player = {{

LLMQA(
’What is the name of the retired American professional
basketball player born on November 23, 1971?’

)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

}}
)

)
}}

/* How many players whose first names are Adam and weigh more than 77.1kg? */
SELECT COUNT(*) FROM Player p
WHERE p.player_name LIKE ’Adam%’
AND p.weight > {{LLMQA(’What is 77.1kg in pounds?’)}}

/* Of the 5 racetracks that hosted the most recent races, rank the locations by
distance to the equator. */

WITH recent_races AS (
SELECT c.location FROM races ra
JOIN circuits c ON c.circuitId = ra.circuitId
ORDER BY ra.date DESC LIMIT 5

) SELECT * FROM VALUES {{
LLMQA(

’Order the locations by distance to the equator (closest -> farthest)’,
options=recent_races.location,
quantifier=’{5}’

)
}}

17


	Introduction
	Background
	Program Representation
	LLM Functions
	Vector Search
	Query Execution

	Inferring Type Constraints via Expression Context
	No Type Hints
	Type Hints
	Type Hints & Constrained Decoding

	Experiments
	Efficiency and Expressivity
	Hybrid Question Answering Experiments

	Results
	Impact of Typing Policies on Execution Accuracy
	Program Synthesis vs. Baselines

	Related Work
	Combining Language Models with Database Systems
	Constrained Decoding

	Conclusion
	Appendix
	Exploring Training-Free Approaches

	Benchmarking Details
	Example Programs

