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ABSTRACT

Classifier-Free Guidance (CFQG) is a cornerstone of modern conditional diffusion
models, yet its reliance on the fixed or heuristic dynamic guidance weight is pre-
dominantly empirical and overlooks the inherent dynamics of the diffusion process.
In this paper, we provide a rigorous theoretical analysis of the Classifier-Free
Guidance. Specifically, we establish strict upper bounds on the score discrepancy
between conditional and unconditional distributions at different timesteps based
on the diffusion process. This finding explains the limitations of fixed-weight
strategies and establishes a principled foundation for time-dependent guidance.
Motivated by this insight, we introduce Exponential Classifier-Free Guidance
(E-CFG), a novel, training-free method that aligns the guidance strength with the
diffusion dynamics via an exponential decay schedule. Extensive experiments show
that E-CFG not only enhances controllability but also demonstrates significant
performance gains across various benchmarks, including conditional image and
text-to-image generation.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., [2015; |Song & Ermon, [2019; [Song et al., 2020aib) have
received widespread attention in recent years due to their remarkable generative capabilities and have
been successfully applied in a variety of domains, including image synthesis (Rombach et al., 2022b;
Dhariwal & Nicholl 2021)), speech generation (de Oliveira et al.,[2025)), and 3D generation (Woo et al.}
2024). With the advent of conditional diffusion models, researchers have explored how to guide the
generation process using additional information, such as class labels (Dhariwal & Nicholl 2021]) or
textual descriptions (Balaji et al.| |[2022; Ramesh et al., [2022). Among these techniques, classifier-free
guidance (CFG) (Ho, [2022) has emerged as a popular approach to improve sample quality and fidelity.
How to effectively incorporate conditional information remains a central challenge in the design of
conditional diffusion models.

Diffusion models (Sohl-Dickstein et al., 2015} |Song & Ermon, 2019; [Song et al., |2020ajb) are
grounded in the principle of gradually transforming noise into data through a reverse denoising
process, where conditional generation requires effective mechanisms for incorporating guidance.
Most of the conditional diffusion models are based on Bayes’ theory: Early approaches such as
Classifier Guidance (CG) (Dhariwal & Nichol|2021) introduced an auxiliary classifier to steer the
sampling trajectory toward the target condition. While effective, this approach is often unstable and
relies on training an additional classifier, which can be difficult and computationally expensive (Vaeth
et al.| 2024). To address these limitations, Classifier-Free Guidance (CFG) was proposed as a more
practical solution, enabling conditional generation without the need for an external classifier. The
key motivation of CFG lies in its ability to interpolate between unconditional and conditional score
estimates, thus providing a flexible and straightforward mechanism for conditional control.

Despite its success, the original design of CFG fixes guidance in the time domain, which may not be
optimal. Subsequent works have extended CFG by exploring alternative strategies: Kynk&danniemi
et al.| (2024) propose restricting guidance to a limited interval of noise levels; [Sadat et al.| (2025)
choose a low cfg-scale for low frequencies and a high cfg-scale for high frequencies; |Chung et al.
(2025)) constrain classifier-free guidance to the data manifold; [Malarz et al.| (2025)) and |[Zhu et al.
(2025) adjust guidance strength via a time-dependent distribution. These efforts have not only
deepened the community’s understanding of conditional diffusion models but also led to tangible
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improvements in generative performance. Nevertheless, such approaches remain largely heuristic,
motivated by empirical observations rather than grounded in rigorous theory. More importantly,
they often overlook a fundamental aspect of CFG’s design that is about the difference between
conditional and unconditional data distribution. Consequently, while these methods may improve
model performance, they remain sub-optimal, lacking the principled and theoretically-grounded
solutions necessary to combine the conditional and the unconditional score.

In this paper, we aim to provide a theoretical understanding of the difference between conditional
and unconditional outputs in classifier-free guidance. Specifically, we analyze the problem from the
perspective of differences between score functions of conditional and unconditional distributions
in Theorems [T]and 2} Moreover, we explore the relationship of distributions at different timesteps
and locations in Theorems [3| and [4] Theoretically, Theorems [1] and [2] establish rigorous bounds
on the score discrepancies, which in turn reveal intrinsic limitations in existing approaches that
rely on unconditional guidance alone. Furthermore, we empirically validate our theoretical findings
(Figure[T), showing that the derived upper bounds on score MSE hold in practice. Besides, Theorems
and ] show that it’s hard to bound the probability density function (PDF) when the timestep tends
to 0. By integrating these theoretical and empirical insights, we confirm that the difference between
conditional and unconditional outputs is strictly monotonically decreasing in the forward process.
This insight inspires us to design a time-decaying weighting for CFG, which optimally balances
the unconditional and conditional guidance throughout the generation process, thereby enhancing
generation quality.

Building on our theoretical analysis and empirical validations, we propose Exponential Classifier
Guidance (E-CFQG), a novel guidance strategy in conditional diffusion models. The key design of
our approach is to replace the fixed guidance weight with a time-dependent exponentially decaying
function, which aligns strictly with our theoretical conclusions. Meanwhile, our method offers greater
controllability and provides more flexible choices for balancing fidelity and diversity. Importantly, it
is a training-free approach, requiring no additional classifier training, and can be seamlessly applied
to a wide range of advanced diffusion frameworks, such as Stable Diffusion (SD) (Rombach et al.|
2022al), EDM2 (Karras et al., 2024b), U-ViT (Bao et al., |2023)), DiT (Peebles & Xie, [2022)), and
SiT (Ma et al., [2024)). Moreover, E-CFG generalizes well across multiple generative tasks, including
image generation and text-to-image synthesis. e.g., FID (Heusel et al., [2017)) 1.41 on ImageNet
256256 (Deng et al.,2009), improving upon the baseline score of 1.80 by more than 20%. Overall,
our main contributions can be summarized as follows:

1. Theoretical analysis: We provide a rigorous theoretical analysis of the discrepancy in CFG,
revealing that the difference between conditional and unconditional scores dynamically
decays over time. This insight establishes a principled foundation for time-dependent scaling
and exposes the fundamental limitations of a fixed guidance weight.

2. Method design: Guided by our analysis, we propose Exponential Classifier-Free Guid-
ance (E-CFG), a theoretically-grounded, training-free method that implements a time-
dependent exponential decay schedule. This design enhances controllability over the genera-
tion process by aligning guidance strength with the underlying diffusion dynamics.

3. Experimental validation: We demonstrate that E-CFG achieves state-of-the-art perfor-
mance across various conditional generation benchmarks. Moreover, E-CFG can be applied
to various sampling designs, including stochastic differential equations and ordinary differ-
ential equations, demonstrating the versatility of E-CFG. Notably, on ImageNet 256x256,
E-CFG improves the FID score of a strong baseline SiT-XL/2 (REPA) from 1.80 to 1.41,
showcasing significant gains in sample quality and versatility.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015} |Song & Ermon, 2019; [Song et al., [2020azb)) learn
complex data distributions through a two-stage procedure. The forward process adds noise to the data
step by step, while the reverse process removes the noise to recover the target distribution.
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Stochastic Differential Equations (SDEs). Mathematically, diffusion models can be described using
stochastic differential equations. The forward process can be expressed as an SDE |Song et al.|(2020b)):

day = f(xy, 1) dt + g(t) dwy, ()

where f(x¢,t) is the drift coefficient, g(t) is the diffusion coefficient, and wy is a standard Wiener
process. Meanwhile, the corresponding reverse-time SDE (Anderson, |1982)) is:

dzy = | fla0, ) — % (%() + 02(1)) V., log play, )| dt + o(t) dasy, @)

where w; is a standard reverse-time Wiener process, and o (t) is a user-specified noise scale. Common
choices include o(t) = g(t) as in DDPM (Ho et al., [2020) , or o(¢) = 0 as in DDIM(Song et al.,
2020a)) and Probability Flow ODEs (Liu et al., 2022} |Lipman et al., 2022} |Liul 2022).

Fokker-Planck Equation (FPE). The SDE equation|l|is governed by the FPE (Gardiner, |1983):

% — V.- (f(z, )p(z, 1) + %Az (9 p(z,1)), )

where p(x,t) denotes the the probability density function (PDF) of equation |1|at time ¢. The FPE
equation [3] describes the time evolution of the probability density function (PDF), where the first

term (drift term) describes deterministic transport of probability mass, and the second term (diffusion
term) models stochastic spreading due to noise.

2.2  CLASSIFIER-FREE GUIDANCE.

For conditional diffusion, we incorporate conditioning variables y into the generative process. To
remove the need for an external classifier like Classifier Guidance (CG) (Dhariwal & Nichol, 2021)),
Classifier-Free Guidance (CFG) (Hol 2022)) proposes a method derived from Bayes’ theorem

Viogp(y | x:) = Vlegp(x: | y) — Viegp(ay). 4)

Specifically, CFG incorporates conditional information into the denoising network based on Bayes’
theorem, and the generation process is given by

é(xtvta y) =w [Eg(It,t, y) - 69($t7ta @)} + 69(It7 tv ®)7 (5)

where eg (2, t,y) is trained with conditional information and ey (x¢, ¢, &) is trained without it. The
parameter w controls the strength of conditional guidance. In most previous work(Liu et al.| 2022
Ho, 2022)), w is fixed during the generation process. Recent several studies (Sadat et al., 2025}
Kynkaanniemi et al., 2024; Wang et al., |2024b; Zhu et al.,|2025) find that a fixed w is sub-optimal in
CFG. However, most of these methods are based on heuristic designs and lack clear design guidelines.
We provide a detailed discussion about these works in Appendix

3 METHOD

3.1 THEORETIC ANALYSIS OF FORWARD DIFFUSION PROCESS

In diffusion models, the forward diffusion process is formulated as the Ornstein—Uhlenbeck (OU)
process. i.e,

dzy = f(t)z:dt + g(t)dw. (6)

Two widely used parameterizations are the Variance-Preserving SDE (VP-SDE) and the Variance-
Exploding SDE (VE-SDE) (Song et al.| | 2020b).

VP-SDE. VP-SDE is designed to keep the marginal variance of x; bounded during the forward
process, typically matching the discrete-time DDPM formulation. A common choice is f(t) =
f%ﬁt, g(t) = +/Bs, where 3; controls the noise schedule. The process gradually drives x; towards

an isotropic Guassion with fixed variance. Therefore, Eq. @becomes dr; = — %thtdt + +/Brdwy.

VE-SDE. The VE formulation increases the variance of x; over time, corresponding to a pure diffusion

2
— do}

process. A typical parameterization is f(t) =0, g(t) = \/ 5, leading to dzy = 1/ %dwt.
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The forward diffusion process aims to transform unknown data distributions into predefined ones
(e.g., Gaussian). Although the initial distributions under different conditions differ in the early stages,
they become increasingly similar as the process progresses. As shown by our mathematical analysis,
this convergence is non-uniform, meaning that the rate at which conditional information is lost also
varies over time. This property challenges the commonly used fixed guidance strategy, indicating that
a constant guidance strength is not consistent with the mathematical properties of diffusion.

To guide the design of a time-dependent weighting function w(¢), we consider the mean-square error
between the scores of distributions induced by different initial conditions.

Score MSE Bounds. Denote p(z;,t) = p(z4, t|y) for the conditional distribution given y, then we
aim to estimate upper bound of mean square loss of scores between p(xy, t) and p(x¢, t):

Theorem 1 (VP-SDE Score MSE Bound). Assume that the sample space is bounded and closed.
Then we consider the VP-SDE

e =~ B(t)edt + /BTT) s, ™

let p(x,t) and p(x,t) denote the probability densities at time t, induced by initial distributions p(x)
and p(xq), respectively.

Then, the mean-square error (MSE) between the scores satisfies the uniform bound

a(t)

[V1ogp(z,t) — Viogp(z, t)]| < 2200

C, Vzx € supp, t >0, ®)

where a(t) = exp (—3 fg Bsds),a(t) = a(t),/ fot +#tsyds, and C'is a constant.

Proof. See in Appendix [B.1] O
Theorem 2 (VE-SDE Score MSE Bound). Assume that the sample space is bounded and closed.

Then we consider the VE-SDE
[do?
d.’L't = ngwt . (9)

let p(x,t) and p(x,t) denote the probability densities induced by initial distributions p(xo) and
p(xo), respectively. Assume that the sample space is bounded and closed.

Then, the mean-square error (MSE) between the scores satisfies the uniform bound

1
HVIng(I’,t)7v10g]§(1‘,t)“ < 0'27@)0’ VI’ESMPP, tZO, (10)
where C'is a constant.
Proof. See in Appendix [B.2] O

Based on Theorems and the uniform upper bound on the score difference between p(x, t|y) and
p(x:) decreases over time. This indicates that, as the diffusion process progresses, the influence of
the conditioning information gradually diminishes. However, the theoretical bounds in equation|[§]
and equation [I0]become singular as t — 0, making them inconvenient to use directly for practical
weighting. To address this, we approximate the decreasing trend with an exponentially decaying
function w(t), which provides a smooth and well-behaved weight across all time steps while capturing
the essential decay pattern suggested by the theoretical analysis.

In addition, we can estimate the bound between p(x1, t1) and p(xa,t2), t1 < to in Theoremand@
which claim that when fixing p(z2, t2), the upper bound of p(x1, 1) becomes larger as ¢; tends to 0
and z; deviates further from z5. Via these estimations, we can take an insight into the difference of
PDF when t — 0.
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Harnack-type PDF Inequalities. The probability density functions themselves satisfy the follow-
ing inequalities, which provide further insight into the evolution of the distributions over time:

Theorem 3 (Harnack-type Inequality of VP-SDE). Let p(z;,t) € C*1(R™ x [0, +00)) denote the
probability density function of the VP-SDE equation[/} and define

1 t
s(t) = f/ Brdr, t(s) =s"1(t).
2 Jo
Then for any o > 1, 1,22 € R™,0 < 51 < 52 < 400, the following inequality holds:

S = o?||lxy — xol|? o2 — ||z ||?
plan b)) <l (o2) (2)  exp (el el Ty

where m > n and || - || denotes the Euclidean distance.

Proof. See in Appendix O

Theorem 4 (Harnack-type Inequality of VE-SDE). Similarly, let p(x,t) € C*1(R™ x [0, 4+00))
denote the probability density function of the VE-SDE equation[9} and define

s(t) = a2, t(s) =s"1(t).
Then for any oo > 1, 1,22 € R?,0 < 51 < 52 < 400, the following inequality holds for p:

plentls0)) < platls2) (2) - (“”x”) (12)

s1 4(s9 — s1)
Proof. See in Appendix [B.4] O

We take VP-SDE for example, fix xo = x, s5 = s, and assume p(z, t(s)) > 0, then we can see that
the upper bound of p(x1,¢(s1)) is increasing as s; decreases and d(x1, z) increases. When ¢t — 0, it
becomes harder to bound the PDF, which indicates that the *'magnitude’ or *amplitude’ of the PDF at
early times (small s;) can be much larger than at later times. Moreover, the closer we are to the initial
time, the greater the diversity of the PDF, which amplifies the differences between different initial
distributions. We can obtain similar conclusion from VE-SDE using the same method.

These inequalities complement the score MSE bounds, offering a detailed view of how the densities
evolve and spread over time, further supporting the design of the exponentially decaying weighting
function w(t).

Relationship between Harnack-type Inequalities and MSE Bound. Both approaches quantify
how initial discrepancies propagate under the SDE: the MSE-bound tracks score differences (relative
Fisher information), while the Harnack inequality controls the semigroup pointwise and hence
transport distances. Essentially, they offer complementary perspectives on KL divergence evolution,
with one providing a “local-in-space” view of the other. More details on their deeper connection and
the derivation of Theorems [I0]and [I2} which both provide bounds on the KL divergence, are given in

Appendix [C]
3.2 EXPONENTIAL CLASSIFIER-FREE GUIDANCE(E-CFG)

Empirical Validation. To further substantiate our theoretical analysis, we conduct empirical
experiments to validate theorems above. We design experiments to compare the conditional and
unconditional scores during the sampling process. In Figure [Ta| we focus on MSE of conditional
score and unconditional score on VP-SDE, and find that when ¢ — 0, the upper bound of MSE
exponentially increases, as predicted by Theorem I} Complementarily, Figure|1b|presents the cosine
similarity between the two scores. We observe that the cosine similarity decreases as ¢ — 0, which
indicates that not only the magnitudes but also the directions of the conditional and unconditional
scores gradually diverge. Together, these results demonstrate from both magnitude and directional
perspectives that the discrepancy between conditional and unconditional scores increases as ¢ — 0,
in full agreement with our theoretical predictions. Moreover, we visualize these discrepancies as
heatmaps across spatial locations on various timesteps in the Appendix Figure [6]
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Figure 1: Following|Song et al.| (2020b)), both (a) and (b) only present results for ¢ > o > 0, where
the sampling procedure is more stable. (a) shows that the MSE of conditional score and unconditional
score can be bounded by a function which tends to 0 when t — 400 ; (b) shows that the normalized
cosine similarity between the two vectors decreases over reverse time, indicating that their directions
gradually diverge in the reasoning process.

Design of Methods. Based on the analysis in Section the score MSE bounds (Theorems
and [2) and the Harnack-type PDF inequalities (Theorems [3] and ) reveal a consistent trend: as
the diffusion process progresses, the influence of initial conditions and conditioning information
gradually diminishes, while early stages exhibit large variance and diversity in the distributions.
Specifically, the score differences between conditional and unconditional distributions are large at
early times, and the PDF upper bounds become less tight as ¢ — 0, reflecting high uncertainty and
spread. These observations naturally motivate a time-dependent weighting function w(t) that is large
enough to guide the model at later stages but smoothly suppressed during early noisy stages to avoid
instability.

Thus we propose an exponentially decaying form for weight in Classifier-Free Guidance:
w(t) = wo exp(—At),

which provides a smooth, monotonic decay consistent with the theoretical bounds. Figure 2] further
provides a comparison between the common CFG and our E-CFG.

Algorithm 1 Reverse Diffusion with CFG Algorithm 2 Reverse Diffusion with E-CFG
Require: 7 ~ N (0,1;),0 <w e R Require: x7 ~ N(0,1,),w(t) € C[0, +00)
1: fori =T to 1 do 1: fori =T to1do
20 €(m) = €p(me) + wlée(r) — €x ()] 20 €d(me) = €p(me) +w(l)[€c(®e) — €x(xt)]
3: i}‘;’(wt) < (il:t — 1= o_zté?j(mt)) it 3: air‘;’(a:t) R (mt — 41— dtéfj(mt) /\/5775
4. Li—1 = \/dt_liz(mt) + \/1 — &t_lé‘g’(mt) 4: Li—1 = \/&t_li‘g’(mt) + \/1 — @t_lé:)(mt)
5: end for 5: end for
6: return x 6: return x

Figure 2: Comparison between reverse diffusion process by CFG and Our Method. We propose that
CFG guidance weight w(t) be a time-decay function.

In practice, to allow more convenient tuning of the guidance strength, we adopt this exponential form
for w(t):

w(t) = wo exp ()\(1 _ tnlx)), (13)

where t,,x denotes the maximum timestep in the diffusion sampling process, which is used to nor-
malize the timestep ¢. Compared with the unnormalized form w(t) = wpe™*?, this normalized variant
offers clearer boundary behavior, makes A directly interpretable as the overall decay rate, and ensures
consistency across different sampling schedules by decoupling the weight decay from the absolute
scale of ¢. Figure [3]illustrates the noise-to-image generation pipeline of our proposed E-CFG. At
each timestep ¢ during generation, the dynamic guidance weight w(t) adaptively balances conditional
and unconditional outputs, leveraging theoretical bounds on the score function gradient to guide the
sampling. This adaptive scheme allows the model to more accurately follow the target conditional
distribution while maintaining sample diversity. Furthermore, our method can be combined with the
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approach of [Kynkidénniemi et al.| (2024), in which w(t) = 1 either at the beginning of generation
or as t approaches zero, demonstrating the flexibility and compatibility of E-CFG with existing
interval-based guidance strategies.

Diffusion Dynamics For VP and VE |>

wfw:ed w(t) == woe)‘(l_t/tm)

A o (@) + i 62 (20) — &0 (2] | —> 8 & (@) PO ENEDEIERED)

t=T

Figure 3: Noise to Image Process of E-CFG: Dynamic guidance weight w(¢) adaptively balances
conditional and unconditional outputs at each timestep t during generation, guided by theoretical
bounds on the score function. Moreover, we can choose to add the method of | Kynkaidnniemi et al.|
(2024), where we fix the w(t) = 1 at the beginning of generation or when ¢ tends to 0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate our method on multiple generative tasks, including conditional

image and text-to-image generation. Experiments are conducted on ImageNet
and MS-COCO 2014) text-to-image datasets. All models are based on advanced diffu-
sion backbones, including U-ViT 2023), DiT (Peebles & Xie] [2022), Stable Diffusion
(Rombach et al}[2022b) and SiT 2024, using pre-trained weights where applicable.

Evaluation metrics. Quantitative evaluation uses FID (Heusel et al, 2017), IS (Salimans et al.,
2016), and Precision/Recall (Kynkédinniemi et al., 2019) score to assess both fidelity and conditional
alignment. All experiments are implemented in PyTorch and TensorFlow and run on NVIDIA RTX
4090 GPUs.

4.2 EXPERIMENTAL RESULT

Toy Example. Figure 4| presents a 2D toy example comparing three conditional sampling methods:
EDM2 (Karras et al.,[2024b), 3-CFG (Malarz et al.} [2025)), and our proposed method. The figure
demonstrates that our method produces a more adaptive weighting strategy, resulting in fewer outliers
and better alignment with the target distribution compared to the baselines.

(a) Ground truth (b) Sample distribution (c) Sample distribution (d) Sample distribution
distribution with guidance(EDM?2) with guidance(B-cfg) with guidance(Ours)

N L

N L
'Y

'

Figure 4: A two-dimensional distribution featuring two classes represented by gray and orange regions.
Approximately 99% of the probability mass is inside the shown contours. (a) Ground truth samples
from the orange class. (b) EDM2 (w = 1) produces some outliers. (¢) 8-CFG (a = b = 2,w = 1)
produces more outliers. (d) Our method (E-CFG, wy = 1, A = 0.6) generates fewer outliers and
better matches the target distribution.

Results on DiT. In Table[T] we quantitatively evaluate our E-CFG on the different ImageNet (256
x 256, 512 x 512, class-conditional) benchmarks based on DiT diffusion architectures. We also
compare with the recent SOTA Rectified Diffusion (Wang et al., 2024a) methods. As shown in
the Table[T] E-CFG shows comprehensive improvements across all metrics, exhibiting particularly
significant gains in FID and IS scores. Additionally, E-CFG is validated on the higher-resolution
ImageNet-512 dataset, demonstrating that it remains effective for high-resolution data.
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Results on SiT. For the SiT baselines, we utilize REPA as our pre-trained guidance model. During
training, REPA aligns the noisy latent features of the diffusion model with representations from pre-
trained visual encoders (e.g., MAE (He et al., 2021)), DINO (Caron et al., [2021))), thereby enhancing
its generative capabilities. At inference, REPA employs both full (Yu et al., 2025) and interval
(Kynkésnniemi et al.| 2024) guidance strategies within the timestep range (¢;, ;). We evaluate both
strategies for a fair comparison. As shown in Table([I] our proposed E-CFG achieves comprehensive
performance improvements at no additional overhead. This effectiveness extends to evaluations using
ODE samplers, where E-CFG also boosts model performance. Collectively, these results demonstrate
the effectiveness of E-CFG and its robustness across different samplers.

Table 1: Quantitative Comparison. Comparison of different evaluation metrics on Class-Conditional
ImageNet datasets with different architectures.

ImageNet

Model ( 256 %256 ), 50k samples, 250 inference timesteps FID|] ISt sFID| Prect Rect
DiT-XL/2 (w = 1.5, ODE sampler) 229 2768 4.6 0.83  0.57
DiT-XL/2 (Rectified Diffusion, w = 1.5, ODE) 2.13 / / 0.83  0.58
DiT-XL/2 + Ours(wg = 1, A = In 2, ODE) 2.07 2915 4.6 0.83  0.59
SiT-XL/2 (REPA)(w = 1.35, SDE) 1.80 284.0 4.5 0.81  0.61
SiT-XL/2 (REPA) + Ours (wg = 1, A = 1, SDE) 1.51  315.0 4.6 0.80  0.62
SiT-XL/2 (REPA, Interval) (w = 1.8,¢; = 0,t, = 0.7, SDE) 1.42  305.7 4.7 0.80  0.65
SiT-XL/2 (REPA, Interval) + Ours (wo = 1.8, A = 0.03, SDE) 141 308.0 4.7 0.80  0.65
SiT-XL/2 (REPA)(w = 1.8, ODE) 3.64  366.0 4.9 0.86 0.54
SiT-XL/2 (REPA)+Ours(wy = 1.7, A = 0.15, ODE) 340 3642 4.7 0.86  0.55
SiT-XL/2 (REPA, Interval) (w = 1.8,¢; = 0,t, = 0.7, ODE) 1.56 283.1 4.6 0.78  0.66

SiT-XL/2 (REPA, Interval) + Ours (wy = 1.8, A = 0.03, ODE) 1.54 286.0 4.6 0.78  0.66

Model ( 512x512 ), 10k samples, 100 inference timesteps

DiT-XL/2 (w = 1.5, SDE) 6.81 2295 200 0.82  0.62
DiT-XL/2 + Ours(wy = 1, A = In 2, SDE) 6.54 2809 19.7 0.83 0.60

Results on other models and datasets. In Table 2] we Latent Space (MS-COCO)

further extend our gvaluatiqr} to text—to—irpage generation, ~yr ) FID,,
another representative conditional generation task. On MS-

COCO, we validate the effectiveness of E-CFG on both U- U-ViT(w = 2) 5.37
ViT (Bao et al.}[2023)) and Stable Diffusion 1.5 (Rombach] U-ViT+Ours 5.8
et al| 2022b)), as reported in Table 2] Our method consis- (wo = 2, A = 0.2) )
tently improves. performance across architec.tur.es, lowgriqg Model CLIPt
the FID of U-ViT from 5.37 to 5.28, and achieving a gain in

CLIP-Score on Stable Diffusion. SD15(w = 5) 31.8
In addition, we also test E-CFG on ImageNet-64 under SD15+Ours 31.9

the autoguidance (Karras et all, 2024a), where the model (wo = 5,A = 0.2)

operates directly in the pixel domain rather than a la- pjxe] Space (ImageNet-64)
tent space. Notably, EDM2-S with autoguidance already
achieves an exceptionally strong FID of 1.04, represent- Model FID|
ing a near-saturation performance for pixel-space diffusion EpM2-S(no autoguidance) — 1.58
models. Remarkably, our E-CFG further reduces this num-  EpM2-S-autog(w = 1.7) 1.04
ber to 1.03. These results highlight that E-CFG serves asa  EDM2-S-autog+Ours
plug-and-play extension to improved CFG methods (e.g., (y, = 1.7, ) = 0.05) 1.03
autoguidance), enhancing their effectiveness without sacri-
ficing efficiency. Also, more detailed results are provided in Table 2: Evaluation of E-CFG on

Appendix [D] MS-COCO and ImageNet-64.

4.3 MORE ANALYSIS

Robustness of the Sampler. As shown in Table 3] integrating E-CFG with SiT-XL/2 (REPA) yields
consistent performance gains across various timesteps and sampling schemes. At 50 inference steps,
the FID score improves from 3.36 to 3.20 for SDE sampling and from 3.46 to 3.25 for ODE sampling.
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These improvements become even more pronounced at 20 steps, particularly with the ODE sampler.
This indicates that E-CFG can be applied in scenarios requiring fewer inference steps.

Table 3: Ablation Comparison. Comparison of different evaluation metrics on Class-Conditional
ImageNet datasets with different architectures and fewer timesteps.

ImageNet( 256 <256 )

Model 50 inference timesteps FID| sFID] Prect Rect
SiT-XL/2 (REPA)(w = 1.8, SDE) 336 45 0.86 0.54
SiT-XL/2 (REPA) + Ours (wg = 1.7, A = 0.15, SDE)  3.20 4.6 0.86 0.54
SiT-XL/2 (REPA)(w = 1.8, ODE) 346 45 0.86 0.54

SiT-XL/2 (REPA)+Ours(wy = 1.7, A = 0.15, ODE) 3.25 44 0.86  0.55

Model 20 inference timesteps

SiT-XL/2 (REPA)(w = 1.8, SDE) 4.38 11.8 0.79  0.53
SiT-XL/2 (REPA) + Ours (wy = 1.7, A = 0.15, SDE)  4.30 12.1 0.79  0.54
SiT-XL/2 (REPA)(w = 1.8, ODE) 3.29 4.6 0.85 0.54

SiT-XL/2 (REPA)+Ours(wy = 1.7, A = 0.15, ODE) 3.10 4.5 0.85 0.54

Qualitative Comparison. Figure [3] presents a qualitative comparison between E-CFG and the
Baseline. The examples highlighted in the red box show that E-CFG significantly enhances generation
quality. Specifically, samples generated by E-CFG can effectively mitigate issues such as distortion
and blurred texture in generated images. Moreover, this improvement remains consistent across
various samplers and sampling steps, demonstrating the effectiveness and generalizability of E-CFG.

DiT (ODE-250) +E-CFG SiT (ODE-250) +E-CFG SiT (SDE-50) +E-CFG

Figure 5: Qualitative Comparison. Qualitative comparison on Class-Conditional ImageNet datasets
with different architectures and samplers. The sampler used and the number of inference steps are
indicated in parentheses.

5 CONCLUSION

In this work, we provide a rigorous theoretical analysis of Classifier-Free Guidance by establishing
upper bounds on the discrepancy between conditional and unconditional scores. Our results reveal the
intrinsic limitations of fixed-weight strategies and establish a principled foundation for time-dependent
scaling. Building on these insights, we propose Exponential Classifier-Free Guidance (E-CFG), a
training-free method that aligns guidance strength with diffusion dynamics via an exponential
schedule. Both theoretical analysis and empirical validation confirm the effectiveness of our approach:
E-CFG consistently improves controllability and achieves state-of-the-art performance across multiple
backbones, datasets, and sampling strategies. Our framework opens the door for principled guidance
design beyond heuristic rules, and we hope it will inspire future work on theoretically grounded
methods for conditional diffusion models.

LLM Statement. We use LLM to polish the writing, such as correcting grammar and other errors.
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APPENDIX OVERVIEW

This appendix provides additional details and supplementary results to support the main paper. In
Section[A] we review related literature to place our work in a broader context. Section [B|presents the
detailed proofs of the theoretical results introduced in the main text. In Section|[C| we further explore
the connection between our MSE bound and Harnack-type inequalities, highlighting their theoretical
implications. Finally, Section [D]reports additional experimental results and visualizations.

A RELATED WORK

A scaling factor for conditional diffusion models was first introduced in CG (Dhariwal & Nichol,
2021)), which controls the trade-off between fidelity and diversity:

[ = 16, uncond + v Xg(ze,t)Viogp(y | 2¢), (14)

where /1 uncond denotes the predicted mean of the unconditional denoiser, 3g(z;, t) is the predicted
covariance (or noise scale) at step ¢, and V log p:(y | z;) represents the conditional score function
with respect to the label y. The hyperparameter v is the classifier-free guidance scale: v > 1
strengthens conditioning at the cost of diversity, while v < 1 weakens conditioning but increases
sample diversity. This scaling modifies the reverse sampling distribution as:

plre1 | 2) p(y | 24-1)

Z(zt,y) , Z(rny) =Y pl@a | 2)p (Y zea). (15)

Tt—1

ﬁ(xt—l | ztay) =

Then CFG (Ho\ |[2022) eliminates the need for an external classifier by jointly training the network for
both conditional and unconditional predictions:

€9 (xh t, y) = [49,uncond + b (xta t)v Ingt (y | xt)a €9 (Z‘t, t, ¢>) = M6 ,uncond- (16)

where € is the neural network’s output for noise prediction. Substituting these into equation [T4]and
setting v = w yields the CFG formulation:

é($t7ta y) =w [69<xt7tay) - 69($t7t7 ¢)] + Eg(xta t7 ®)7 (]7)

We see that CFG and CG are using the same scaling factor. And for now CFG with this scaling
technique that has been widely adopted in mainstream diffusion models, typically with a fixed
CFG-scale.

However, recent studies have pointed out that using a constant guidance weight is not necessarily
optimal and may lead to limitations in balancing fidelity and diversity. Specifically, several works
have proposed various forms of dynamic or time-dependent scaling strategies to improve generation
quality. |Sadat et al.| (2025)) proposes Frequency-Decoupled Guidance (FDG), an improved version
of classifier-free guidance that operates in the frequency domain, which chooses a low cfg-scale
for low frequencies and a high cfg-scale for high frequencies. [Kynkadanniemi et al.|(2024) observe
that applying a constant classifier-free guidance (CFG) weight across all noise levels is suboptimal:
guidance harms diversity in the high-noise regime, has little effect in the low-noise regime, and
is only beneficial in the middle. They propose restricting guidance to a limited interval of noise
levels, which both improves sample fidelity and diversity while reducing computational cost. Poleski
et al| (2025) proposes a geometric guidance method for CG to address the vanishing gradient
issue in late denoising stages of probabilistic approaches. Its core innovation enforces fixed-length

gradient updates (|| Vp||-normalized) proportional to data dimension (v/D/T’), maintaining consistent
guidance strength throughout sampling. |Lin et al.[(2024) rescale classifier-free guidance to prevent
over-exposure. [Malarz et al.| (2025)) propose [3-adaptive scaling to address the trade-off between
image quality and prompt alignment in standard CFG. It dynamically adjusts guidance strength
via a time-dependent S-distribution 3(¢), enforcing weak guidance at initial/final steps (t = 0,7
and strong guidance during critical mid-denoising phases. Wang et al.|(2024b)) investigate different
time-dependent schedulers for the guidance weight. Their analysis and experiments confirm that
dynamic weighting strategies outperform fixed weights, with high weights being beneficial in the
mid-noise regime but detrimental at the extremes. |Chung et al.|(2025) and|Chen et al.|(2025) improve
diffusion model performance by constraining CFG to the data manifold, enabling higher-quality
generation, better inversion, and smoother interpolation at lower guidance scales. Shen et al.| (2024)
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mitigate spatial inconsistency in classifier-free guidance by introducing Semantic-aware CFG, which
segments latent images into semantic regions via attention maps and adaptively assigns region-
specific guidance scales, leading to more balanced semantics and higher-quality generations. ' Wang
et al.| (2025) propose Diffusion-NPO, which incorporates non-parametric optimization into diffusion
sampling via nearest-neighbor matching, improving sample diversity and quality without retraining
and working across different models and datasets.

As a concurrent work, RAAG|Zhu et al.| (2025) recompute w at every reverse step via a lightweight
exponential map of the current RATIO: w(p;) = 1 4+ (Wmax — 1) exp(—ap;), which is similar to
the form of our E-CFG. However, their greedy search strategy makes the procedure more computa-
tionally involved. Moreover, RAAG is primarily designed for text-to-image generation under strong
conditioning, whereas our analysis highlights intrinsic properties of diffusion dynamics, making
the applicability of our framework broader and not restricted to text-to-image tasks. Finally, their
exponential design is motivated by empirical intuition, while ours is supported by formal theorems,
providing a stronger theoretical grounding.

While these approaches have shown promising improvements, they are still largely heuristic in nature
and often lack rigorous theoretical justification, leaving the principles of adaptive weight design
not fully understood. To address this gap, our work provides a theoretical foundation for adaptive
guidance. By establishing a sequence of results (Theorems[TH4), we uncover structural properties of
diffusion processes under different initial distributions. These insights naturally motivate the design
of adaptive, theoretically grounded scaling functions, complementing prior heuristic strategies. In
this way, our framework bridges practical heuristics and principled analysis, offering a more robust
and general basis for conditional generation.

B PROOF OF THEOREMS

B.1 PROOF OF THEOREM[I]

Proof of Theorem[l] For VP-SDE

1
dzy = *iﬁtxtdt + v/ Bedwy, (18)
we can represent z; with xg:
= a(t)zo + o(t)E, (19)

where a(t) = exp (—3 fof Bsds),a(t) = a(t)y /fot af—fs)ds, and & ~ N (0, ).

Hence we can get the p(z¢, t|z):

||z — a(t)zol?
.t = ( — ), 20
p(, tlzo) 2o ()2 P 202(t) 0)
by using Bayes formula, we can get theprobablity density function :

_ e = a(®xol?

p(z,t) = / W eXP( T@)P(ﬂﬁo)mm (21)

then we can get the score:

Vp(l't, t)
I = - 22
VIO = )
xro—T xTr— xT 2
B fRn i(?‘a(%) - €Xp ( - zi‘gt()t)[)l*l )P(UCO)du’Uo 23)
S exp (= L2050l ) p )
1
= O’T(t) (a(t)E[mdxt =z — x) (24)
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Denote that p(xo|y) = p(xo), consider the MSE:

- a(t)
IVlogp(x,t) — Vg p(, t)|| = UTmIIExwp[J?OIxt = 2] = By oplaplee = 2], (29)
then we try bounding f(t,x) = ||Ez,~p, [vo|z: = 2] — Eqrp, [z0]2; = 2]|| term. Assume that

f(t, ) is a smooth function on R™ X [0, +00), it’s easy to find that
f(O, :,C) =0, f(—I—OO, x) = ”EIONP[‘rO] - EZE()Nﬁ[wM ”7

hence f(t,x) is a bounded function on ¢, and we denote its bound by C(x).Note that we cannot say

that when ¢t — 0, %HEIONP[xOmt = x| — Eyy oplwg |z = 2]|| — 0, because o(t) — 0, too.

In practical engineering applications of diffusion models, the sample space is often assumed to be
compact, reflecting the fact that physical quantities are naturally limited and numerical simulations
are performed on finite domains. So C'(x) can be bounded by C' without loss of convince.Assume
that we talk about 2 on any bounded domain K with sup, ¢ |2| < R. Let total variation distance

be TV(1,v) = & [ |u(de) — v(do)

f(t’x) = HE”MNPt [XO ‘ Ty = (ﬂ] - EItNﬁt [XO | Ty = x] ||

- H /350(17(170 | 20 = @) = p(xo | 2 = ) deH

<2M-TV(p(- |2 = 2), B(- | 20 = x))
<2R=C.

Then we can rewrite equation 23]

O
B.2 PROOF OF THEOREM[Z]
Proof of Theorem[2] For VE-SDE
do?
dv, = d—ttdwt. 27)
we can represent z; with xg:
ry = x0 + 0 ()&, (28)
where & ~ N(0,1).
Like the proof of Theorem|I] we have
. 1
[

B.3 PROOF OF THEOREM [3]

First we give Lemma|[T]and Lemma ] without proof as below:
Lemma 1 (Cut-off Function (Evans, |1998)). There exists a cut-off function n € CS°(Bg) with
0<n <1, suchthatn=1on Bg, and for any x € R",

C . C
[V|(z) < = An(z) > 2 (30)

where C' > 0 depends only on the dimension n.
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Lemma 2 (Bochner formula and Bakry—Emery Inequality of Heat equation with Witten Laplacian
(Bakry & Emeryl, 2006)). Define linear operator L = A — N ¢ -V, and V%@ is positive semi-definite,
then for any g € C®, we have

1

SUVal® =[V2g* + (Vg, VLg) + Vg" V26V, 31)

and furthermore
1 o |Lg? T2
5LIVeI" 2 == +(Vg, VLg) + Vg  V7éVyg (32)

where [V?g|? = X7, _,(0ij9)* and m > n denotes the virtual dimension.

Then we first prove such lemma:

Lemma 3 (Cut-off Function for Heat Equation with Witten Laplacian). There exists a cut-off function
n € CP(Bgr)with0 < n <1, such thatn =1 on B%, and for any x € R", ¢ = k(|z|)z,k > 0 on
Bg,

C . C
[Vnl(z) < = An(x) > g Vo Vin(z) <0, (33)

C > 0 depends only on the dimension n.

Proof. Step 1. Construction of the cutoff. We construct a radial cutoff function by setting

n@) = (%)
where 1) € C'2°(]0, 00)) satisfies:

¥ =1on(0,1/2], ¥ =0onl,o00), P <0,
together with the standard cutoff estimates
W< CVy, W <C
Step 2. Gradient estimate. Writing = |z|, we compute
1 o\ T
Vin(z) = EW(E) o

Hence

V@) < 5l ()| < 5V

Step 3. Laplacian estimate. Using the radial Laplacian formula, we have
1 - n—1 .

= V" (&) + 7V (%)

The first term is bounded by C'/R? since |¢"’| < C. For the second term, note that ¢ = 0 when

r < R/2, and for r € [R/2, R], we have

An(x)

n—1,.. C
rR ¢/(§> = R2’
Therefore c o
An(@) < =, Anl) 2 -0

Step 4. Witten Laplacian estimate. Finally,
Ln(x) = An(z) — kz - V(z).
Since ,
and ¢’ <0, the term k(z)x - Vn(z) < 0. O
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Lemma 4 (Bochner Formula and Bochner Inequality of Heat Equation with Witten Laplacian (Bakry
& Emeryl, 2006)). Define linear operator L = A — V¢ -V, and V¢ is positive semi-definite, then
forany g € C3, we have

1
LIV = [V2g1” + (Vg, VLg) + Vg V?6Vy, (34)

and furthermore
1 5 |Lgl T2
5 LIVl 2 =" +(Vg, VLg) + VgV éVyg (35)

where |V?g|> = ', (dij9)* and m > n denotes the virtual dimension.

Based on this we give proof of Theorem [5}

Theorem 5 (Gradient Estimate of Heat Equation with Witten Laplacian). Let u be a positive solution
to the heat equation

A= (A —V¢-V)u, (36)
on (0,T] x Br. Assume that V*¢ is positive semi-definite, ¢ = k(|x|)z,k > 0 on Bg, then for any
t,z) € (0,T] x By, the following inequality holds:

|Vul? O < ma? C’a2< n a? )

u? au_2t+R2

where m > n denotes the virtual dimension, C(m,n) is a constant depends on (m,n).

a—1 37)

Proof. We define linear operator L = A — V¢ - V, and function f = logu, F = t(|V f|?> — ad; f),
then applying it into equation 36} we have
Ouf =Lf +|VfP, (38)
F a-1
Lf ==V +0f=—— - VA%, (39)

at «

Af=Lf+(V0.5f) = 2 + (Vo “19L9r). 0)

at

Based on Lemma[d]and equation [38]equation [39] equation[40] we can get
LE =t((A = V¢ V)|V[]* = adi(A = V¢ V)[))
=t (2]V?f]> +2(Vf,VLf) — ad,(Lf) + 2V fTV?¢V )

> ¢ (;ILfIQ +2(Vf,VLf) = ady(Lf) + 2VfTV2¢Vf>

_F _a=1 2
A= E (2GS |

- m

+t (2 <Vf,V (—F _a- 1|Vf|2>> —o@(—% - al|vf|2>>

at « «

- < 2 (lf +2(a—DF|VS]? + (a — 1)2tVf|4)> - é (Vf,VF)

mao?

N @awﬁvwﬁ - ? +OF +2(a =1t (Vf, 0V f)
2
> <mi2 (Ft +2(a— 1)FVf2>) - % (V£ VE) - § +OF

[\

L AamD) (VEV(=IVI? +ad V)

~

:( 2 (ﬁf+2(a—1)FVf2>>—2<Vf,VF)—§+8tF,

mao?

17
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hence we have

(0 —L)F < — (m2a2 <F2 +2(a — 1)F|Vf|2>) + ? +2(Vf VF). (41)

Let us consider the cut-off function 7 which satisfies (V¢, Vi) > 0(Lemma . We use the Bochner
technique to estimate its upper bound, V1" € (0, T'], suppose nF attains its maximum over (0,7"] x
Bp at (to, xo). Without loss of generality, assume (nF")(to, o) > 0; otherwise, the conclusion of the
theorem holds trivially. Consequently, we have 7(z¢), F'(t9, o) > 0, which implies z¢g ¢ 0Bg, to >
0. Thus, (%o, xo) lies in the interior of (Br)7. Then we consider
(00 —L)(F) = —F -Lyy— 2 (Vn, VF) + (0, — L)F
=—F-An+F-(Vo,Vn) —2(Vn,VF) +n(0, —L)F

C
< 5 F = 2(Vi, VF) + F - (V6, V)

— . ( (mZQ (Zf +2(a— 1)FVf|2)> + ? +2(Vf, VF>> :

Applying VF' = w — %F, we have

O~ 0P to.0) < 157 = 2 (70,00 + 2L P 4 p (96, 9m)
+n (— (TnQQQ (};) +2(a— 1)F|Vf2>) + % +2(V{, VF>)

Using the properties of maximum
V(nF)(to, o) = 0, A(nF)(to, z0) < 0,0:(nF)(to,x0) = 0,
and applying Lemma [I]so that

C +2C? 2 nF? 4(a-1) 5  NF
< _ Lk S A Ml
- R? F ma? tg mao? nFIVI+ to (42)
_ C+2C? 2 nF?  4(a-—1) 5 nF

+2(Vf,V(nF))) = 2F(Vf,Vn) + F - (Vo, Vn) (45)
_C+20? 2 nF?  4(a-1) 5  NF
SR T T har T Tmar VI (40

then let us consider two of the terms %nFWﬂQ +2F (Vf,Vn),

4a—-1 4(a—1
Mo D) pwse +2r (s, v = 20Dy pw e - arv vy
m mo
> M nF|Vf|?
m
4(a 1)R? al? + ma202
ma202
>__ 7
~ Ao — 1)R2F
then inequality 47| can be turn into
ma?C? C +2C? 2 nF? 77F
< F— —+ — -
0= (4(a— DR TR ) ma? fo | F- Vo, V),

18
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then we divide F' and then get

ma? ma?C? C+20% g
5 fo (4(04— DR? TR +%+<V¢, V77>>
ma? ma?C? . C +2C? n 1
2 "\4(a - 1)R? R2 to

nF(to, z0) <

IN

ma?  ma? ma2C? C +20?
< + + to
2 2 4l —1)R? R?
ma?  Cra? o?
< 1)1
STy TR (a 1 > ’

(Cy = max{m?C?/8,C? + C/2}),
On Br,n=1,Vn =0, so for all (t,x) € (0,T"] x Br

t(IVfI? — a0if) = = F(T',x) = nF(T",z) < nF (to, z0)
2

< ma2+01a2( «

2 R? + 1>T/’

a—1
T’ is arbitrary, so
2

(IVFPP = adif) < o + 2

ma? ClaQ( @ +1). 48)

a—1

From Theorem [3 we can conclude Theorem [6]

Theorem 6 (Harnack-type Inequality of Heat Equation with Witten Laplacian ). Let u be a positive
solution of the heat equation dyu = Lu in (0,T] x Bgr, where a > 1. For any x1, x5 € B% and

0 <t <ty <T, the following inequality holds:

t2\ % o?||lzy — x9l]2 Ca a?
U(l?l,tl) § u($2,t2) (ti) exp <4||(t21_tlz) —+ ﬁ <1 -+ a_ 1) (tQ — t1)>, (49)

where C = C(m,n).

Proof. Let f = log u. Consider the line segment
L(s) = (1 = s)(ta, x2) + s(t1,21)-
We have

log “EL1) _ | o ds

u(xa, ta) ds
1
= /U [VF(L(s)) - (w1 — 2) + 0 f(L(s)) (t1 — t2)] ds.

Moreover, using the inequality
1 mao Ca a?
—Of<——|VFPH+—+ | | —+1]],
s =g VI +{R2 <041+ )]

we get

1
u(wa,to) 0

tog U < [ 942 o1~ o

2[(1 — S)tQ —+ Stl]

+ % <O‘2 + 1) )(t2 —tl)}ds.

a—1

(= IR +
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Using the inequality

t2 —tl 2 Oéd2(1131,$2)
L — - L < ——1=
VAL a1 = a2l = 2 EHV AP (L)) < TP
we obtain
u(ry,t1)  ad?(xy,m3) ma, ta  Ca a?
1 < —In—=4+ — 1) (t2 —t1).
Ogu(l‘g,tg)i 4(t2—t1) * 2 nt1+R2 Oé—1+ (2 1)
O
Finally, we can prove Theorem [3}
Proof of Theorem 3] The VP-SDE is given by
1
dr; = _iﬂtxtdt +V/ BrdWr, (50)
and its corresponding Fokker-Planck equation (FPE) is
Opi(x 1
p(;i ) _ 50t (Va - [zpe(@)] + Aupy(2)) (51)
We can reparameterize ¢ by letting ds = %@dt. Then,
1 t
s(t) = 5 / Bydr, (52)
2 Jo
d 1_d
=B —. 53
ar ~ 27as 43
Thus,
Opu(s)(®)  Opydt  Opi(x) 1
N £ e =V, A, . 54
ds ords = ot 1 v ol A oY
For this new FPE 5 (@)
Pt(s)\ X
TR = V- fape) (@)] + Dapro (@), (55)
the corresponding SDE is
dzy(s) = —4(5)ds + V2dW. (56)

Assume p(z, t) is a positive solution to this FPE, and let u(z,t) = p(x, t)el”I’/2. Computing the
right-hand side:

V(zp) = zVp +np = (nu+ zVu — |gc|2u)e_|”¢"2/27 (57)
Ap=V-[(Vu-— xu)efﬁﬂ] = [Au — nu — 2zVu + |x|2u]e*|x|2/2, (58)
V(xp) + Ap = [Au — xVu]e_mQ/Q. (59)

Thus, the FPE for u is
&L%;(x):Au—x-VuzAu—V(b-Vu, (b:@, (60)

which satisfies the equation in Theorem [6] and we can easily figure out that k(|z|) =1 > 0.

Therefore, for any o > 1,z1,250 € M,0 < 57 < s2 < 400, and let R — oo, the following
inequality holds:

mao

s2) > o’z — 22
u(zy,t(s1)) < u(w2,t(s2)) (51> exXp < A(s3 — 51) 6
Rewriting it in terms of p, we obtain
s2) % o?llay — x| | [la2]® — [l ])?
" < ¢ o2 . 62
p(xlv (51)) = p('TQa (82)) (81> exp < 4(82 _ 81) + 2 ( )
O
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B.4 PROOF OF THEOREM[4]

First we give Lemma 5| without proof as below:
Lemma 5 (Bochner Formula and Bakry—Emery Inequality (Bakry & Emery, [2006)). For any g € C*,
we have

1

FAIVgl = [V2g* + (Vg, VAg), (63)

and furthermore

|Agl|?
n

1
5AIVgl* > +(Vg, VAg) (64)

where |[V?g|? = Z;szl(aijg)?

Based on this we give proof of Theorem [7}

Theorem 7 (Gradient Estimate of Heat equation). Let u be a positive solution to the heat equation
Ou = Au, (65)

on (0, T)] x Bg. Then for any (t,z) € (0,T] x B, the following inequality holds:

|Vu|? du _na?  Ca? ( a?
B G-asat! ) 66
u? TR * R? + a—1/ (66)
where C(n) is a constant depends on n.
Proof. Like the proof of Theorem[3} just turn L into A and then we can get the conclusion. O

From Theorem [7] we can conclude Theorem 8

Theorem 8 (Harnack-type Inequality of Heat Equation). Let u be a positive solution of the heat
equation Oyu = Aw in (0,T] X Bg, where a > 1. For any x1,xs € Bg and 0 < t; <ty <T, the

following inequality holds:

ta\ a?|lzy — 22| Ca a?
u(z1,t1) < u(za, ta) (h) exp (4(7&2—251) tm It (t2—t1) ),  (67)
where C = C(n).

Proof. Like the proof of [f] O

Finally, we can prove Theorem [4}

Proof of TheoremH] The VE-SDE form is given by dz; = %th, and its corresponding FPE
form is Opa(x) )
(T 1do;
=-—"A, .
o = S A (pula)
2
We can reparameterize ¢ by letting s = %a?, which gives g—f = %dd%. Therefore,
3pt(s) (z) _ %ﬂ _ Ope(z) 1

= =A .
Os ords ot Tam — Lap(@)
2°dt
For this new FPE m)‘(%(m) = A, (pt(x)), its corresponding SDE form is:
dl‘t(s) = \/idWS.
Assume p(z, t) is the fundamental solution of this FPE, satisfying Theorem|8]

Thus, for any a > 1, 21,29 € M, and 0 < 51 < s3 < 400, let R — oo, the following inequality

holds:
5 2 _ 2
u(z1,t(51))) < ul(wa, t(s2)) (:) exp (‘M) (68)
0
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C RELATIONSHIP BETWEEN MSE BOUND AND HARNACK-TYPE INEQUALITY

C.1 HARNACK-TYPE INEQUALITY TO KL-DIVERGENCE

Starting from Harnack-type inequality, we can arrive at log-Harnack inequality. Consider SDE
dX; = —X,dt + V2dW,,
we obtain Theorem [0
Theorem 9 (log-Harnack inequality). Letu(t,z) = P, f(z) = [ pi(x,y) f(y)dy with the OU Mehler

kernel i (z,y) = (2ms;) ™™/ ? exp(— %) st = 17 ~2t, Assume supp(f) C B(0, R). Then
foreveryt > 0 and every z,y € R",

Filog f(y) <log Pif(x)+ |z —y | sup \/ 75/(2 t))
z€[z,y]
where S'(z,t) = (R? +e 2 |2 > +2e7 'R |z )+ |z | R+e7t | 2 |2 —ne™?),[z,y] :=
{z+0(y —x) : 0 €0, 1]}. In particular, on any bounded domain K with sup ¢ i |z| < M one has
—t
Pylog f(y) < log Pf(x)+ | =~y | ¢ ra(Csal-amn) @)
t
=log Pif(z) + Sk(t) [z —y | . (70)

Proof. From Theorem [5|we conclude that a Gradient estimate holds on R™:
|Vul? ou _ ma?
—a— < —,
u? u 2t
where o > 1, m > n. For ¢, we have

—t
€ t

Vi logpi(z,y) = ?t(y —e 'z), (71)
neiQt
Az logpi(z,y) = — " (72)
Thus
Oilogu = % (73)
_ JQapu(,y) — - Vapi(z,y)) f(y)dy 4

[ i@ y)f(y)dy
_ J(Aslogpi(w,y) + [[Valog iz, y)|* — x - Valog pi(w, y))pe(x, y) f (y)dy

(75)
Jei(@,y) f(y)dy
= ]EYNTrt,m [AL 10g @t(x7 Y) + ||v1, 10g @t(x7 Y)H2 —z-Vy log @t(l‘a Y)} ’ (76)
—2t —2t —t
=Ey~or., {— e ‘ —e tz|? - e—(a: Y — eth)} , 77
! St St

where 7 ,, = % Assupp(f) C B(0,R),

—2t —2t —t
ne e _ e _
Oilogu = Eyor, , {— Y —e 2P - —(z- Y —e" |x|2)}
St St St
—2t —2t
<2 L (R4 |z 420 'R |)?
St St
e’ —t 2
+ (lz|R+e " x|
St
—t
e
<—((RP+e |z P42 'R |z )+ |z | R+e |z |? —ne™)
t
—t
e
= —08'(x,1).
5 S @)
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Thus
2 —t
IV log u)? < @ ta (ESK($ t)) (78)

|V iogul < \/ —tS’(m t)) (79)

we can easily get that

mao? et

logu(t,y) —logu(t,z) <|x—y| sup — +a (S’(znf)), (80)
z€[z,y] 2t St
by Jesen’s inequality, we have

—2t
Pilog f(y) <log Pif(x)+ |z —vy| sup \/ 75’(2 t)) (81)

St
as desired. O

Thus we can conclude such theorem.

Theorem 10 (entropy—cost inequality). Let K C R" be compact, and assume the transition kernels
Pi(z,-) = pi(x,-)dy satisfy the pointwise log-Harnack inequality|69 above for all x,y € K. Then
Sfor any two probability measures i, v supported in K and any coupling w € Il(u, v),

KL(Pw || P < [ [ le = o] Sic(®) n(da. dy) = Sic(t) Bo[1X - Y1)

Taking the infimum over couplings,
KL(Pw || Pop) < Sk (t) Wa(p, v) < Sk (t) Wa(p,v), (82)

so in particular the KL at time t is bounded by a compact-set constant Sk (t) times the initial
Wasserstein distance.

Proof. Recall the variational (Donsker—Varadhan) formula for relative entropy of two probability
densities p, u (Donsker & Varadhan, [1975)):

KL(Pw || Pp) = ;élgb { /qb(z) Pv(dz) — log/e¢(z) Pt,u(dz)},

where B;, denotes bounded measurable functions, P;v(dz) f oi(y, z) v(dy)dz, Pyu(dz) =
fw wi(x, z) p(dr) dz.

For an arbitrary bounded ¢ set f = ¢® > 1. Then

/ (=) oely, 2) dz < log / e oy (2, 2) dz + [z — | Sk (£).

Taking the supremum over all bounded ¢ yields exactly

KL (¢ily.) | i) < o=l Sxc (o).

Now fix any coupling 7 € II(u, ). By convexity of KL under mixtures (or the standard coupling
inequality),

KL(Pw | ) = KL( [ euly ) otdy) | [ oute. ) nlao))
< [[ KLotw ) L or(a ) n(da.dy)

Using the kernel bound and factoring Sk (¢) yields
KL(Pw | P < [ [ lo = alSuc(0) (. dy) = Sic ()B4 (1X - V.

Taking infimum over 7 gives the W; form. Finally the monotonicity W; < W yields the stated
Ws-bound. O
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C.2 SCcoORE MSE BOUND TO KL-DIVERGENCE

Definition 1 (Relative Fisher Information). Let v and p be two probability measures on R™ such that
v is absolutely continuous with respect to . The relative Fisher information of v with respect to i is

defined by

10l = |

V log %(m)szV(x),

where g—z denotes the Radon—Nikodym derivative of v with respect to u, and V log Z—Z is the score

function of v relative to p.

Intuitively, I(v || 1) measures the squared L*(v)-distance between the score functions of v and ji.

Theorem 11. Let X; € R" be the output of the SDE
dXt = (l(Xt, t)dt + g(t)th

Then for the above KL-divergence, we have

d 1
g KL(Pw || Pep) = —592@)—’(3’/ | Peps)-

For OU process
dX, = —X,dt +V2W,,

we have the form:

d
&KL(PW || Pep) = —I(Pv || Pep).

Proof. We note P,v = p;, Py = g4 for convenience. FPE of equation@]is

1
Opr = =V - (apy) + QUQ(t)APt,

as for differential entropy H(X;) = — | p; log p;dz, we obtain

d
—H(Xy) = —/&&pt 10gptd33—/3tptd$

dt
= */&spt log psdx

1
:/V-(apt)logptdx—/igz(t)Apt log p;dz,

then we calculate the terms in the above equation,

/V(apt)logptdf:(_1)/<atpt’vpft>
- —/<at,th>

= Ept [v : a‘t]7

using Alogp = Ap/p — (Vlogp)?,

1 1
/592(t)Apt logptdx 592(t)/ptA10gpt

- %gg(ﬂ / pe(Api/pe = (Viogpy)?)

1
= —§gz(t)/pt(V10gpt)2,

24

(83)

(84)

(85)



Under review as a conference paper at ICLR 2026

SO we obtain

d 1
aH(Xt) = 592(15) /pt(Vlogpt)2 +Ep, [V - ay).

Then we consider the term S(p¢, ¢:) = — [ pt log qidz,

d

&S(pt,éh) = _/6tpt 1Og%d$—/&3ﬂhd$
qt

1
:/V-(apt)logqtdx—/ng(t)Apt log g1dx

bt L 5 bt
+ | V-(a —dx—/f t)Aq—dz,
[ @ [ So0aa”

then we calculate the terms in the above equation,

/V - (apy) log grdz = (—1) / <atpt’ VQ?>

= —/<at7V10th>pt,

Vo — piV
[ 7@ ar = (1) [ (o 252
qt qi
4
:_/<atant_M>
a

:Ept[v'at]+/<at7V10th>ptv

1 1 Vp: — peV
/QQ(t)AQtpzdx—292(t)/<V(]taqt ptqut qt>

2 q ;
1
= —592@) / (Vlogqs, Vlogp, — Vogqs) pr,

1 1
/592(t)Apt log q;dx = —592(15)//<VIOgPt7VIOth>Pt7

SO we obtain
d

1
35 a) = —592@) /pt[(VIqut)2 —2(Vlogpt, Vlog ¢;)] + Ep, [V - af).

Then we have

d 1,
&KL(ptHQt) =39 (O (pe |l gr)-

Still, we consider SDE
dX; = —X;dt + V2W,,

we have such conclusion via Theorem [T1]and [Tk
Theorem 12 (KL Bound for Ornstein—Uhlenbeck SDE). Consider the Ornstein—-Uhlenbeck SDE
dX, = — X, dt + vV2dW,,

by Theorem([I|we obtain
—2t

2 €
I(pe |l qe) < 4R A=
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and let p; and q; be the distributions of two solutions with different initial conditions. Then, there
exists a constant C' > 0 such that for all t > 0,

—2s —2t

) o0 e e
KL = I(ps |l gs)ds < AR?—— _ds<2R*—
el = [ 1pla)as< [ ar gt o an<am g,

t
where I(ps || gs) denotes the relative Fisher information (or score MSE) of ps with respect to gs.

In particular, this provides an explicit upper bound for the KL divergence between p; and q; in terms

of t.
C.3 CONCLUSION

Via Theorem [I] and [3] we can get Theorem [I2] and [I0} which both bound the KL-divergence
KL(pt || g)-

We can observe that these two approaches are closely related in spirit:

* The MSE-bound approach (Theorem 12) directly controls the relative Fisher information

2
I(pt || qt) = Ept[‘spt - SQt| ]’
and then integrates it over time to obtain an explicit upper bound for the KL-divergence.

* The Harnack inequality approach (Theorem [I0)) instead provides a pointwise control on the
semigroup, which, via coupling and Wasserstein distances, leads to a KL upper bound of the
form

KL(Pw | Pip) < Sxc(t) Wi, v) < Sic(t) Wa(u,v).

* In essence, both methods link the KL divergence at time ¢ to some notion of discrepancy at
the initial time: MSE-bound does it via the score difference (relative Fisher information),
while Harnack-bound does it via transport distances (W7 or W5s). The MSE bound can be
seen as a “local-in-space” version of the Harnack control: if the pointwise kernel control from
Harnack implies a bound on V log p;, then integrating it yields a Fisher-information-type
bound. Thus, the two approaches are complementary perspectives on how initial differences
propagate under the dynamics of the SDE.

This observation highlights that controlling either the score differences or the pointwise semigroup
can provide rigorous quantitative bounds on the evolution of KL divergence in diffusion processes.

D ADDITIONAL EXPERIMENTS

More Visualized Analysis on Theorem I} In Figure[6] each pixel in the heatmap corresponds to
the logarithmic ratio of the conditional prediction to the unconditional prediction at a specific spatial
location and channel. A value of zero (shown as white) indicates no difference (ratio=1). Positive
values (red) indicate amplification of the conditional prediction relative to the unconditional one,
while negative values (blue) indicate suppression. Importantly, the further a pixel’s value deviates
from zero—whether red or blue—the larger the discrepancy between the two predictions. Thus, both
strong red and strong blue regions highlight locations where the conditional and unconditional outputs
differ most significantly.

Building on Theorem|T} these heatmaps provide a visual representation of how the score discrepancy
evolves over time and across spatial locations. In particular, the early timesteps (larger ¢ indices in
the backward diffusion process) show relatively mild color variations, consistent with the theoretical
bound |Vlogp — Vlogp| o< aft)/o?(t), which predicts smaller score differences at well-mixed
later times. Conversely, at timesteps closer to the end of the reverse diffusion (smaller ¢ indices),
the heatmaps exhibit more pronounced red and blue regions, indicating larger deviations between
conditional and unconditional predictions. This aligns with the theoretical observation that the MSE
between scores can be large near small diffusion times, where initial distribution differences are
amplified. Therefore, the heatmaps not only highlight spatially localized discrepancies but also
corroborate the temporal trend predicted by Theorem [T} illustrating that both strong positive (red)
and negative (blue) regions correspond to locations and timesteps with significant score mismatch.
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log2(ratio)

Ratio (log2) Heatmaps at Different Timesteps
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Figure 6: Heatmaps of the logarithmic ratio (log,) between conditional and unconditional predic-
tions at selected timesteps. White indicates no difference (ratio=1), while red and blue highlight
amplification and suppression, respectively. Stronger colors denote larger deviations between the two

predictions.

Analysis of Parameters in E-CFG. As shown in Figure[7a]and[7b] wy sets the initial or maximum
guidance strength, and A controls the rate of exponential decay.
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(a) Effect of wo (Fixed A = 1.0)

(b) Effect of A (Fixed wg = 1.0)

Figure 7: (a) demonstrates the impact of initial weight wg; (b) illustrates how different A\ values affect

the decay profile.

The Effect of \. Table [d] presents an ablation study on the hyperparameter A\. While the results
demonstrate that various \ values are effective for enhancing performance, the best outcome is
achieved with A = log e. The results indicate that this E-CFG design is effective.

ImageNet(256x256) 50k samples, 250 SDE inference timesteps

Model FID|
REPA (Fixed CFG = 1.35) 1.80
REPA (A = log 2) 1.68
REPA (A = 1(loge)) 1.51
REPA (\ = log 3) 1.58

Table 4: Comparison between the different effect of A, fixing wy = 1.0.

Results on More Framework. In Table [5] we show the results of our E-CFG on autoguidance

introduced by [Karras et al.| (20244) with the model of EDM2 (Karras et al.,[2024b). Autoguidance

involves two denoiser networks Dy (z; 0, ¢) and D;(x; 0, c) and the guiding effect is achieved by
extrapolating between the two denoising results by a factor w:

Dw(l’;U, C) = le(x;Ua C) + (1 - U))Do(l';o', C),
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based on their method, we make w be a time-variance function w(o) with the same formula of
equation As shown in Table [5] our dynamic guidance w(o) consistently improves over the
static guidance baseline. On ImageNet-64, where the model operates directly in the pixel do-
main, our method achieves lower FID and FD-DINOv2 2024), indicating that dynamic
weighting not only preserves fidelity but also enhances semantic alignment. On high-resolution
ImageNet-512, which is considerably more challenging, we also observe clear gains under the
same setting, confirming that the proposed E-CFG can robustly integrate with autoguidance across
scales. These results highlight the generality of our approach: the time-dependent extrapolation
scheme provides a more adaptive balance between fidelity and diversity than a fixed scalar weight.

ImageNet(64 < 64)

Model FID| FDpmow: 4
EDM2-S-autog(w = 1.7) 1.04 56.3
EDM2-S-autog+Ours(wy = 1.7, A = 0.05) 1.03 52.6
ImageNet (512x512), 10k samples

EDM2-S-autog (w = 1.4) 5.27 121.2

EDM2-S-autog+Ours(wo = 1.4, A = 0.1)  5.25 117.9

Table 5: We evaluated conditional image generation on ImageNet with EDM2 and Autogu-
idance.

Denoising Process. As shown in Figure 8] we provide a qualitative comparison of intermediate
decoding results between our E-CFG and the baseline across the denoising trajectory. From step 250
down to 50, both methods generate visually similar results. However, in the final refinement stage
(from step 50 to 0), the difference becomes more pronounced: our E-CFG produces sharper structures
and more coherent details, highlighting the benefit of dynamically adjusting the guidance strength in
the later denoising steps.

E-CFG

timestep

w/o E-CFG

Figure 8: Comparison between results during the denoising process of E-CFG and Baseline.

Additional Results. Figure [0] shows additional results using our E-CFG method on DiT and SiT
models.
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(b) Images generated by the SiT-XL/2 (REPA) model with E-CFG on ImageNet-256.

Figure 9: Additional results for E-CFG.
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