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Abstract

Neural Networks (NNs) have been widely used in passive acoustic monitoring.
Typically, audio is converted into a Mel Spectrogram as a preprocessing step be-
fore being fed into NNs. In this study, we investigate the Joint Time-Frequency
Scattering transform as an alternative preprocessing technique for analyzing bird
vocalizations. We highlight its superiority over the Mel Spectrogram because it
captures intricate time-frequency patterns and emphasizes rapid signal transitions.
While the Mel Spectrogram often gives similar importance to all sounds, the scat-
tering transform differentiates between rapid and slow variations better. We use a
Convolution Neural Network architecture and an attention-based transformer. Our
results demonstrate that both the NN architectures can benefit from this enhanced
preprocessing, where scattering transform can provide a more discriminative repre-
sentation of bird vocalizations than the traditional Mel Spectrogram.

1 Introduction

Biodiversity is progressively endangered by anthropogenic change, making it essential to monitor
animal populations to build sustainable plans. Utilizing passive acoustic monitoring (PAM) has
become a novel method for observing biodiversity. Benefiting from recent advancements in automatic
recording devices and related technologies Wood et al. [2019], Ruff et al. [2020]. This approach
has been successfully applied in studies of detection of elephant calls, insects, primates, and density
estimates of birds Ganchev et al. [2007], Sanders and Mennill [2014], Zwart et al. [2014], Heinicke
et al. [2015], Wrege et al. [2017], Bjorck et al. [2019].

A primary challenge in PAM is identifying vocalizations of specific species within vast amounts of
audio data. Researchers have developed pattern recognition techniques to find specific predefined
sounds from recordings. However, unlike human speech recognition, which often follows the
structured rules of a particular language with its vocabulary and grammar, animal sounds don’t always
adhere to such predictable patterns. Furthermore, Xie et al. [2022] suggested that although numerous
studies have shown promising results for identifying individual species in short audio clips, the
automated detection of various species in extended, noisy field recordings still presents challenges.
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Our Contributions In this article, we delve into the challenge of identifying bird vocalizations
using artificial neural networks. Here, calls from various bird species might intersect and overlap.
To enhance our approach, we leverage the advancements in joint time-frequency scattering (JTFS)
transform Mallat [2012], Bruna and Mallat [2013]. Different from other data-driven methods that
utilize the Mel Spectrogram as input, (1) we propose to use scattering transform representation for
bird vocalizations and (2) our results show how it significantly augments the performance of both
convolutional neural networks and transformer-based neural networks in the identification of
bird vocalizations. This underscores the potential of the scattering transformation in constructing
a robust and optimized representation for bird vocalization, offering a promising avenue for future
research and applications in PAM.

2 Building Representations for Bird Vocalization

Background Previous research has shown that models based on time-varying sinusoids are effective
for classifying and recognizing standard bird sounds Harma and Somervuo [2004]. Yet, a significant
category of bird sounds exists that don’t precisely fit the mould of pure sinusoids. Instead, these
sounds exhibit a distinct harmonic spectral composition. To address this challenge, researchers have
aimed to create representations for various bird species, and recent studies have leveraged data-driven
approaches in the domain of biodiversity monitoring Tolkova et al. [2021], Cohen et al. [2022], Xie
et al. [2022].

Neural Network-based methods Neural Network-based (NN-based) approaches have revolution-
ized audio recognition Hinton et al. [2012]. Unlike traditional signal processing techniques that
often depend on manually crafted parameters, NN-based methods take spectrograms as input and can
recognize bird species in an end-to-end fashion. McIlraith and Card [1997] studied the recognition
of songs of six species common to Manitoba, Canada, using backpropagation learning in two-layer
perceptrons. Selouani et al. [2005] improved the NN approach by adding a feedback loop to the
multilayer perceptron (MLP) network, and they tested the classification of sixteen Canadian bird
species. Ruff et al. [2020] demonstrated the use of a deep convolutional neural network (CNN) for
automating the detection of owl vocalizations in spectrograms generated from field recordings from
Artuso et al. [2014].

In NN-based approaches, preprocessing plays an important role. Preprocessing generates represen-
tations that serve as the inputs for the NNs. We then train the NNs to extract features from these
representations for classification tasks. Consequently, efficient representations can significantly
enhance the performance of the NNs.

Different representations are used in NN-based method for bird vocalization. In McIlraith and
Card [1997], the author built the representation using linear predictive coding and windowed Fourier
transforms. In Ruff et al. [2020], they generated multiple spectrograms with different parameters as
the input of their CNN. Among various representations, the Mel Spectrogram is the most commonly
used one. It visually depicts how a signal’s frequency spectrum changes over time Gong et al. [2021],
Xie et al. [2019]. Recently, Wang et al. [2022] demonstrated that the joint time–frequency scattering
(JTFS) transform outperforms the performance of a Mel-frequency representation in chick call
recognition. This finding inspires the exploration of scattering transforms for species classification
tasks that display similar spectrotemporal patterns.

Figure 1: Illustation of the input data and our method.
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Dataset In this paper, we focus on developing NN-based techniques for multi-label classification of
bird vocalizations. We initially build a dataset using various recordings of individual bird vocalizations.
In our preparation process, we choose bird calls from two different species and position them randomly
within a 1-second time frame. These bird calls might start at different times within this span. We
then merge them to form the new clip. In the dataset, every clip is a combination of two birds
chosen from a set of 15 species: olsfly, grepew, wewpew, eawpew, yebfly, acafly, aldfly, wilfly, leafly,
hamfly, gryfly, dusfly, pasfly, corfly, and bubfly. An illustration of our dataset is shown in Figure 1.
Given a mixture of two birds, we aim to refine the preprocessing phase to construct a more effective
representation suitable for NN-based models. This helps us identify which bird species are vocalizing
within that clip.

Figure 2: Mel Spectrogram M of different kinds of birds. The red box indicates a transition from
a quickly varying pitch to a slower one. The Mel Spectrogram assigns similar amplitudes to the
entire sound. Hamfly: Hammond’s Flycatcher; oasfly: Olive-sided Flycatcher; eawpew: Eastern
Wood-Pewee; leafly: Least Flycatcher.

Figure 3: Scattering representation S of different kinds of birds. The blue box indicates a transition
from a quickly varying pitch to a slower one. In the scattering transform, faster varying components
are emphasized with greater amplitudes, while the slower varying parts are given diminished ampli-
tudes. We also observed similar patterns in oasfly vocalization.

Method The Joint time–frequency scattering transform decomposes an audio waveform by a
wavelet filterbank. The main idea behind scattering transforms is to capture hierarchical structures
within the signal. When we apply them jointly in time and frequency, they can tease out intricate
patterns that might be missed by other types of transformations. Given a audio clip x(t), we consider
3 orders of scattering transform, order 0, order 1 and order 2, denoted as S0(J,Q, t), S1(J,Q, t) and
S2(J,Q, t), where J is the averaging scale and Q is the number of wavelets per octave. Here S0

corresponds to the original signal’s average, S1 is obtained by applying a wavelet transform followed
by a modulus operation to the original signal, which provides time and frequency information
separately. S2 is calculated by further processing the S1 coefficients, which captures interactions
between time and frequency localized structures, revealing joint time-frequency patterns that the first
order might miss, we refer more details of scattering transform to Mallat [2012]. For our dataset, we
specify J = 6 and Q = 16. Considering a 1-second audio clip sampled at 44,100 Hz, the resulting
dimensions are as follows: S0 has a shape of (1, 345), S1 is (63, 345), and S2 is (158, 345). We
subsequently concatenate S0, S1, and S2 to construct the comprehensive scattering representation,
S ∈ R222×345.
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Here, we compare the scattering representation S and the commonly used Mel Spectrogram M
of different birds. As illustrated in Figure 2 and Figure 3, the Mel Spectrogram M contains a
significant amount of environmental noise. In contrast, within the scattering transformation, such
noise, which remains relatively consistent over time, is primarily encapsulated by S0. Both S1 and
S2 capture the patterns without losing on temporal resolution. Moreover, the scattering transform
excels in discerning swift or ephemeral sound structures. As illustrated in the case of the eawpew bird
vocalization: the call typically starts with a rapidly fluctuating pitch, which then transitions to a slower
variation. In the Mel Spectrogram M, both the fast and slow varying sound structures are represented
with similar amplitudes. However, when utilizing the scattering representation S, the fast varying
sound is manifested with a more pronounced signal (a greater amplitude) while the slow varying one
appears more subdued. This distinction arises primarily due to the second-order scattering, S2. It
captures rapid temporal fluctuations in a signal, such as the transition from a fast varying to a slow
varying sound, which is a signature characteristic observed in certain bird vocalizations.

3 Results

To evaluate the enhancement in performance offered by the scattering-based approach across various
neural network models, we test it on two architectures: a convolutional neural network (CNN) and
an attention-based method (transformer). The CNN structure we use has two 3x3 convolutional
layers (with 4 and 8 channels respectively), followed by ReLU activations and 2x2 max-pooling.
The output is flattened and passed through two linear layers for classification. The transformer is
adapted from Gong et al. [2021], employing a purely attention-based approach based on the Vision
Transformer Dosovitskiy et al. [2020].

Figure 4: Training loss using CNN. Figure 5: Validation accuracy using CNN.

Figure 6: Training loss using transformer. Figure 7: Validation accuracy using transformer.

We compare the CNN’s performance and transformer’s performance using scattering representation
S and the commonly used Mel Spectrogram M. The results are shown in Figure 4, 5, 6 and 7. We
observe that using scattering representation accelerates convergence for both CNN and transformer
during training. During validation, the scattering representation outperforms the Mel Spectrogram.
Specifically, using CNN with the scattering representation, the model achieves a validation accuracy
of 59.88% in the first epoch and reaches 77.58% after 20 epochs. In contrast, using the Mel
Spectrogram, the final accuracy is only 58.17%. When using transformer, the model achieves a
validation accuracy of 81.97% in the first epoch and 94.12% after 100 epochs, while Mel Spectrogram
achieves 86.33% after 100 epochs. Our findings indicate that instead of using complicated NN-based
methods like transformers, applying signal processing techniques (scattering) can also significantly
boost performance in bird vocalization tasks.
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4 Conclusion

In this paper, we discussed the Joint Time-Frequency Scattering (JTFS) transform and how it differs
from the Mel Spectrogram in the context of bird vocalization analysis. We use the JTFS transform to
preprocess bird vocalizations and improve the performance of NN-based models in bird vocalization
recognition tasks. The JTFS’s ability to represent complex time-frequency interactions makes it more
suitable for the task of bird vocalization analysis. We hope that this work will inspire researchers
to develop advanced signal processing techniques, enhancing input representations for NN-based
methods in biodiversity monitoring.

5 Discussion

Mel Spectrogram and JTFS Mel Spectrogram focuses on representing the spectral information of a
signal in a way that’s more aligned with human hearing. The strength of JTFS lies in providing a highly
detailed analysis, capturing both time and frequency characteristics while preserving the signal’s
hierarchical structure. This makes JTFS particularly useful in tasks requiring a deep understanding of
signal properties. Taking the eawpew as an example, the Mel Spectrogram effectively captures how
the frequency varies over time, providing a clear spectral representation. On the other hand, the JTFS
offers a more detailed analysis, such as the rate at which the frequency changes, delving deeper into
the dynamics of the sound’s characteristics. The detailed and extensive analysis provided by JTFS
makes it particularly suitable for various animal vocalization tasks, especially in scenarios where the
frequency changes rapidly. For tasks like human speech, where frequency changes are less rapid, the
Mel Spectrogram should suffice as it efficiently captures the necessary spectral information.

6 Future Work

This study focuses on a two-class classification problem using JTFS as preprocessing. We plan to
explore multi-label classification problems, integrating JTFS with various methods, ranging from
classical approaches such as Independent Component Analysis (ICA) to more neural network-based
structures.
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