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Abstract
Natural Language Generation (NLG), and more001
generally generative AI, are among the cur-002
rently most impactful research fields. Cre-003
ative NLG, such as automatic poetry genera-004
tion, is a fascinating niche in this area. While005
most previous research has focused on forms006
of the Turing test when evaluating automatic007
poetry generation — can humans distinguish008
between automatic and human generated poetry009
— we evaluate the diversity of automatically010
generated poetry, by comparing distributions011
of generated poetry to distributions of human012
poetry along structural, lexical, semantic and013
stylistic dimensions, assessing different model014
types (word vs. character-level, general purpose015
LLMs vs. poetry-specific models) and types016
of fine-tuning (conditioned vs. unconditioned).017
We find that current automatic poetry systems018
are considerably underdiverse along all dimen-019
sions — they tend to memorize, do not rhyme020
sufficiently, are semantically too uniform and021
even do not match the length distribution of022
human poetry. Among all models explored,023
character-level style-conditioned models per-024
form slightly better. Our identified limitations025
may serve as the basis for more genuinely cre-026
ative future poetry generation models.027

1 Introduction028

A key aspect of creative language generation is029

the ability to create new, original and interesting030

text, cf. (Colton et al., 2012; Gatt and Krahmer,031

2018; Yi et al., 2020; Elgammal et al., 2017). To032

date, extremely little attention has been given to033

the evaluation of originality and creativity in recent034

creative text generation models such as those for035

automatic poetry generation, despite renewed in-036

terest in the context of recent LLMs (Franceschelli037

and Musolesi, 2023). In fact, existing automatic po-038

etry generation models are typically not evaluated039

regarding how different generated poems are from040

existing poems in the training set but with the Tur-041

ing test: can humans distinguish whether a poem is042

human authored or automatically generated (Hop- 043

kins and Kiela, 2017; Lau et al., 2018; Manjavacas 044

et al., 2019)? However, this form of Turing test 045

and other similar forms of human evaluation may 046

contain an overlooked risk of failure: namely, if the 047

automatically generated instances are (near-)copies 048

of training data instances. 049

In this work, we fill this gap and evaluate, for 050

the first time, automatic poetry generation systems 051

for their diversity. As human evaluation is gener- 052

ally not well suited to assess diversity (Hashimoto 053

et al., 2019), we automatically measure diversity 054

by comparing distributions of generated and ex- 055

isting poems along formal, semantic and stylistic 056

dimensions. This yields much better evidence of 057

the models’ creative capabilities in contrast to be- 058

ing mere ‘stochastic parrots’. 059

Our main contributions are: (i) we conceptualize 060

diversity of poetry generation systems along differ- 061

ent dimensions: diversity on the structural, lexical, 062

semantic and stylistic level; (ii) we assess different 063

types of automatic poetry generation systems for 064

diversity: general purpose word and character-level 065

LLMs, both unconditioned and style-conditioned 066

ones, on the one hand, and poetry-specific mod- 067

els, on the other hand; (iii) we evaluate each class 068

of model for diversity across the different dimen- 069

sions, by comparing the distribution of the human 070

authored training data set to the distribution of gen- 071

erated poems. We find that on a distributional level, 072

generated poems are considerably different from 073

human ones. Concerning general purpose LLMs, 074

some of them exhibit very high risk of memoriza- 075

tion — an extreme form of lack of diversity — and 076

this depends on the size of the training data set, the 077

size and type of the LLM, and the type of train- 078

ing, as we show. Character-level style-conditioned 079

general-purpose LLMs are most diverse. 080

Our work prepares the groundwork for truly 081

creative generative AI models (Veale and Pérez y 082

Pérez, 2020) and also has implications for the de- 083
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tection of generative AI (Sadasivan et al., 2023).084

085

2 Related Work086

Our work connects to research on diversity and au-087

tomatic poetry generation, which we now discuss.088

Diversity Building systems able to generate di-089

verse output has been a long-standing concern090

in NLG research (Reiter and Sripada, 2002; van091

Deemter et al., 2005; Foster and White, 2007) and092

remains a central issue in neural NLG (Holtzman093

et al., 2019). The need for careful analysis of NLG094

systems diversity – beyond an assessment of the095

quality or fluency of single-best generation outputs096

– has been widely acknowledged (Gatt and Krah-097

mer, 2018; Hashimoto et al., 2019; Mahamood and098

Zembrzuski, 2019; Celikyilmaz et al., 2020; Tevet099

and Berant, 2021; Schüz et al., 2021). A well-100

known finding from this line of research is that neu-101

ral NLG systems typically face a quality-diversity102

trade-off (Ippolito et al., 2019; Caccia et al., 2020;103

Wiher et al., 2022): their outputs are either well-104

formed and fluent or diverse and variable.105

Work on evaluating diversity of NLG typically106

uses automatic metrics that quantify to what ex-107

tent different outputs by the same system vary108

(Hashimoto et al., 2019). In practice, though, eval-109

uations of diversity in NLG differ widely across110

tasks (Tevet and Berant, 2021) and even adopt dif-111

ferent notions of diversity (Zarrieß et al., 2021).112

At the same time, most of these notions focus on113

lexical or semantic aspects of diversity, e.g., local114

lexical diversity. For instance, Ippolito et al. (2019)115

compare decoding methods in dialog generation116

and image captioning, assessing lexical overlaps in117

n-best NLG outputs for the same input. Global lex-118

ical diversity, on the other hand, measures whether119

the NLG system generates different outputs for dif-120

ferent inputs. For instance, van Miltenburg et al.121

(2018) define the global diversity of image caption-122

ing systems as their ability to generate different123

captions for a set of inputs, using metrics like the124

number of types in the output vocabulary, type-125

token ratio, and the percentage of novel descrip-126

tions. Similarly, Hashimoto et al. (2019) view di-127

versity as related to the model’s ability to gener-128

alize beyond the training set, i.e., generate novel129

sentences.130

Besides lexical diversity, work on open-ended or131

creative text generation tasks has been interested in132

diversity at a more general semantic level. For in-133

stance, Zhang et al. (2018) and Stasaski and Hearst 134

(2022) aim at building dialogue systems that gener- 135

ate entertaining and semantically diverse responses 136

in chit-chat dialog, where the goal is to avoid “safe 137

and bland” responses that “average out” the sen- 138

tences observed in the training set. Here, semantic 139

diversity has been measured, e.g., with the help of 140

embedding-based similarity (Du and Black, 2019). 141

In our work on diversity in poetry generation, 142

we complement these lexical and semantic aspects 143

of diversity with aspects of formal diversity. We 144

thus explore whether automatic poetry generation 145

systems are able to capture the ‘full bandwidth’ of 146

realizations of poetry found in the data distribution 147

with which they have been trained, focusing mostly 148

on global diversity. 149

Poetry generation Automatic poetry generation 150

is a long standing dream of AI research, dating 151

back at least to the mid 20th century (e.g., Theo 152

Lutz’ Stochastische Texte). While early modern 153

systems were heavily hand-engineered (Gervás, 154

2001), more recent approaches are all trained on 155

collections of human poetry (Lau et al., 2018; Jham- 156

tani et al., 2019; Agarwal and Kann, 2020) but still 157

extensively utilize human guidance e.g. to enforce 158

formal characteristics of poetry such as rhyming 159

(Wöckener et al., 2021). Belouadi and Eger (2023) 160

have recently released a character-level decoder- 161

only LLM (ByGPT5) capable of learning style- 162

constraints such as rhyming without human involve- 163

ment in model design. 164

In our work, we explore varying poetry genera- 165

tion models with regard to diversity: poetry-specific 166

models that use hand-engineered architectures as 167

well as general purpose LLMs, including ByGPT5. 168

3 Diversity In Poetry Generation 169

We first conceptualize diversity in poetry genera- 170

tion using formal and semantic criteria. As our 171

dataset, we use QuaTrain (Belouadi and Eger, 172

2023) consisting of quatrains (in English and Ger- 173

man). We describe it in more detail in §5.1 below. 174

Memorization. In poetry, as in other forms of 175

art, creativity (Sternberg, 1999) plays a central role. 176

A basic aspect of creativity is the models’ ability 177

to generate poems that are different from the train- 178

ing data, i.e. have not been memorized as a whole. 179

Therefore, we consider a low or minimal degree of 180

memorization as a pre-requisite for diversity and 181

analyze the portion of generated poems that are 182

2



(near-)copies from the training data. To examine183

memorization, we proceed as in Belouadi and Eger184

(2023). We apply the Ratcliff-Obershelp similarity185

(Ratcliff et al., 1988) to compare each poem in a186

sample with poems in the training corpus. If a gen-187

erated quatrain exhibits a similarity score of ≥0.7188

with a quatrain in the training data, we classify it as189

memorized. We define the memorization score of190

a sample as the proportion of memorized quatrains191

in that sample. How much LLMs memorize from192

their training data has been a question of central193

concern recently (McCoy et al., 2023).194

Poem length. Within a sample of generated po-195

ems, we consider differences at the level of poem196

length, i.e., their number of tokens, as a basic as-197

pect of diversity at the formal or structural level.198

We analyze to what extent the length distribution of199

generated poems differs from the distribution in the200

training data. We define the length of a quatrain as201

the number of tokens contained: we eliminate all202

punctuation symbols and split the remaining text203

by white space. We report mean length, standard204

deviation, minimal and maximal length of samples.205

We additionally deploy distance measures between206

training data distribution and generated samples, in207

particular, a metric called histogram intersection208

(Swain and Ballard, 1991), which measures the in-209

tersection area of two normalized histograms (and210

therefore returns values between 0 and 1).211

Rhyme patterns. As a more complex dimension212

of formal diversity, we consider rhyming as a cen-213

tral aspect that characterizes the structure of a poem.214

Diversity can then be assessed by comparing rhyme215

distributions between generated samples and train-216

ing data. In order to classify rhymes in our samples,217

we use the same classifier used to annotate Qua-218

Train. We distinguish between true rhymes, which219

involve different words, and repetitions, which re-220

fer to rhymes based on the same word.221

Lexical diversity. Lexical diversity is a standard222

aspect of diversity evaluation in NLG and is used to223

assess how generation outputs vary in their vocabu-224

lary, either at the local text level or at the global cor-225

pus level. We use the following metrics to measure226

the lexical diversity for both the training data and227

the generated samples: (i) Averaged type token228

ratio (ATTR). We calculate ATTR as the average229

of all type token ratios (Richards, 1987) (TTRs) for230

each quatrain in a sample, i.e. as a measure of local231

lexical diversity. (ii) Moving average type token232

ratio (MATTR). The MATTR (Covington and Mc- 233

Fall, 2010) acts on the corpus level and calculates 234

a moving average by sliding through the corpus us- 235

ing a window of fixed size. We deploy this metric 236

as a measure of global lexical diversity. (iii) Mea- 237

sure of textual, lexical diversity (MTLD). The 238

MTLD (McCarthy, 2005) is calculated as the aver- 239

age length of a substring that maintains a specified 240

TTR level. MTLD is deployed to measure lexical 241

diversity on a global scale. 242

Semantic diversity. Even if a poetry generation 243

system does not directly copy data from the training 244

data, the generated poems may still be semantically 245

very similar to the training data distribution. We 246

employ a multilingual distilled version of Sentence- 247

BERT (SBERT) (Reimers and Gurevych, 2019) as 248

dense vector representations to measure semantic 249

similarity between poems: (i) across the human 250

train set and the generated poems, (ii) within hu- 251

man and generated poems. In particular, for each 252

generated quatrain, we note down the similarity 253

value of the most similar human quatrain, then re- 254

port the average over all those maximum similarity 255

values. We proceed analogously within the human 256

training data and within the automatically gener- 257

ated poems. 258

4 Models 259

Our experiments use 2 different model classes. 260

4.1 Poetry-specific models 261

Deepspeare. Deepspeare (Lau et al., 2018) is 262

specifically designed for poetry generation. Its core 263

architecture consists of an LSTM language model, 264

a pentameter model (specifically designed to learn 265

iambic meter) and a rhyme model. During train- 266

ing, it takes sonnets as input data (three quatrains 267

followed by a couplet) but ultimately processes 268

the contained quatrains by splitting any given son- 269

net. The rhyme model processes ending words of 270

quatrain verses and uses a margin-based loss to 271

discriminate between rhyming and non-rhyming 272

words. It is not limited to specific rhyme patterns 273

but assumes that rhymes exist in the data. At infer- 274

ence time, Deepspeare generates quatrains. 275

Structured Adversary. Like Deepspeare, Struc- 276

tured Adversary (SA) (Jhamtani et al., 2019) incor- 277

porates different components: an LSTM language 278

model and a discriminator used to decide whether 279

line endings are typical for poetry. Both compo- 280

nents are organized in an adversarial setup, where 281
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the language model acts as a generator, trying to282

generate poems that are misclassified by the dis-283

criminator, while the discriminator is trained to284

distinguish generated poems from real ones. SA285

is trained with sonnets as input data. At inference286

time, it generates quatrains.287

4.2 General purpose LLMs288

All models in this category are decoder-only trans-289

former architectures. In our experiments, we train290

them in an unconditioned and style-conditioned291

manner (see Section 5.2).292

GPT2 GPT2 (Radford et al., 2019) is the last293

GPT model made publicly available. It is a large294

word level transformer-based language model pre-295

trained on approximately 40 GB of text. Four differ-296

ent model versions were released, with the number297

of parameters ranging from 125 million to 1.5 bil-298

lion for the largest. In this work, we deploy two299

model versions: GPT2-small (125M parameters)300

and GPT2-large (774M parameters) for both En-301

glish and German.302

GPTneo GPTneo (Black et al., 2022) is an open-303

source token level LLM by EleutherAI (https:304

//www.eleuther.ai/) with the aim to provide305

publicly available replications of GPT3. It is pre-306

trained on 825 GB of text data. Currently, four307

versions have been released, with the number of308

parameters ranging from 125 million up to 20 bil-309

lion. We deploy GPTneo-small and GPTneo-xl310

with 125M and 1.3B parameters for English. GPT-311

neo is not available for German.312

ByGPT5 ByGPT5 (Belouadi and Eger, 2023) is313

a decoder-only character level LLM based on the314

encoder-decoder character level model byT5 (Xue315

et al., 2022) where the encoder part of byT5 is com-316

pletely removed, reducing the number of parame-317

ters by 75%. The remaining decoder-only model318

is then pretrained using OpenWebText for English319

(38GB text data) and CC100 (Conneau et al., 2020)320

(67GB text data) for German. Three versions are321

released for both English and German, with model322

sizes ranging from 73 to 298M parameters. We323

use ByGPT5-base (140M params) and ByGPT5-324

medium (290M) for both English and German.325

5 Experimental Setup326

5.1 Training Data327

We use QuaTrain, a large dataset of quatrains pub-328

lished by Belouadi and Eger (2023). It consists of329

English German

# Quatrains 662,877 1,483,785

Table 1: Size of training data sets.

English and German quatrains and has been gen- 330

erated by aggregating different publicly available 331

poetry datasets. QuaTrain contains human writ- 332

ten quatrains but mixes them synthetically: every 333

sequence of four consecutive lines from the under- 334

lying human data are included in order to increase 335

dataset size. QuaTrain is automatically annotated 336

for meter and rhyme using high-quality classifers 337

(especially for rhyme). Table 1 provides basic in- 338

formation about the size of the dataset. 339

5.2 Training 340

Deepspeare. Deepspeare leverages pretrained 341

static word vectors. We use QuaTrain to train our 342

own English and German word embeddings using 343

Word2vec (Mikolov et al., 2013), training word 344

embeddings with a dimension of 100 and a window 345

size of 5. As Deepspeare is designed to process 346

sonnet data during training, we use training data 347

to create artificial sonnets. Thus, we concatenate 348

three quatrains and append one couplet that we get 349

from an additional dataset (partially contained in 350

QuaTrain) called PoeTrain1. We split the training 351

data into a train, test, and validation set using a 352

ratio of 80 to 10 to 10 (the latter two are used to 353

measure losses each epoch), training for 10 epochs. 354

SA. We use the same word vectors and training 355

data splits as for Deepspeare. Training SA involves 356

1) pretraining the discriminator’s encoder using 357

a publicly available pronouncing dictionary2; 2) 358

training the LM component; 3) training a final ag- 359

gregated model in a generative adversarial setup. 360

We train this final model for 10 epochs. As we 361

encounter different errors when trying to train a 362

German version, we use the English variant only. 363

Unconditioned LLMs. In this setup, we fine- 364

tune our decoder-only LLMs in an unconditioned 365

manner: we process quatrains during training with- 366

out passing any information about rhyme (or meter). 367

1https://github.com/potamides/uniformers/blob/
main/uniformers/datasets/poetrain/poetrain.py
Analyses show that QuaTrain contains 0.4% of English and
66% of German PoeTrain data. Therefore, English sonnets
receive ∼14% and German sonnets ∼5% additional data.

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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We split training data into a train and validation set368

using a ratio of 90 to 10. All models except GPT-369

neo (being available only in English) are trained370

both in English and German. We fine-tune all mod-371

els (English and German) for 10 epochs.372

Style-conditioned LLMs. In contrast to uncon-373

ditioned training, we provide information about374

rhyme (and meter) by prepending special style to-375

kens to each quatrain during training. This follows376

the setup of Belouadi and Eger (2023) and makes377

models explicitly aware of different rhyme schemes.378

As for the unconditioned variants, all models ex-379

cept GPTneo are trained in English and German.380

We use the same validation split and again fine-tune381

each model for 10 epochs.382

Summary. We end up with 23 models that can383

be assigned to three categories: 1) Poetry spe-384

cific LSTM-based models (Deepspeare and SA).385

Besides a language model part, these models incor-386

porate additional specialized components to han-387

dle poetry-specific stylistic features such as rhyme.388

We have three models in total for English and Ger-389

man. 2) Unconditioned LLMs (transformer-based390

decoder-only general purpose LLMs). These mod-391

els do not possess any specialized architecture for392

poetry. No information about meter or rhyme has393

actively been passed during training. We have two394

subcategories: word and character level models.395

The first group (GPT2, GPTneo) processes data396

on the word/subword level. ByGPT5 represents397

the character-level group. We have 10 models in398

total (6 English and 4 German ones). 3) Style-399

conditioned LLMs. These have the same archi-400

tecture, models, and subgroups as category 2. In-401

formation about rhyme (and meter) is passed in402

the form of special tokens during training (only).403

In order to distinguish between unconditioned and404

style-conditioned model variants, we append the405

prefix “poetry” to style-conditioned models.406

Table 5 (appendix) provides an overview of all407

models belonging to the second and third category408

(transformer-based LLMs).409

5.3 Sampling410

From each model class, we randomly draw 500411

generated poems. Whenever wo do a direct com-412

parison between training and generated data (e.g.413

when comparing lexical diversity), we randomly414

draw 10 samples of size 500 (matching the sample415

size) from the train set and use mean results as rep-416

resentatives. We deploy this strategy to mitigate417

the large discrepancy in size between human data 418

and generated poems. We mainly provide results 419

for samples obtained via standard sampling. How- 420

ever, we briefly discuss the effects of sampling and 421

search during decoding in Section 7. 422

6 Experiments and Results 423

We first investigate structural properties of the gen- 424

erated poems (repetition of instances on a surface 425

level, length distributions, rhyming), then consider 426

lexical and semantic properties. 427

Model EN DE

poetry-GPT2-small 0.010 0.002
poetry-GPT2-large 0.806 0.094
poetry-GPTneo-small 0.141 -
poetry-GPTneo-xl 0.886 -
poetry-byGPT5-base 0.000 0.002
poetry-byGPT5-medium 0.006 0.048
poetry-GPT2-large (660k) 0.806 0.822

Table 2: Memorization rates in samples generated by
the listed models.

Memorization Table 2 shows the calculated 428

memorization scores for samples from a subset 429

of our models. Our poetry-specific LSTM mod- 430

els show no memorization. Unconditioned LLMs 431

exhibit similar results. The only model slightly af- 432

fected is the large English version of GPT2, with 433

a score of 0.2%. Thus, we omit all these results 434

from the table. However, the third category of 435

style-conditioned LLMs reveals remarkable dif- 436

ferences, with memorization scores ranging from 437

0% to 88%. Within each model family, the mem- 438

orization rate for larger models is strictly higher 439

compared to smaller ones. The strength of this cor- 440

relation not only varies across model families, but 441

also appears to depend on the language: the memo- 442

rization rates for the English GPT2 variants show 443

a substantial increase from 1% (small) to approxi- 444

mately 80% (large), while the rates for the German 445

models experience a smaller increase, from 0.2% 446

to below 10%. Models of the GPTneo family gen- 447

erally show the highest memorization values, with 448

14% for the small variant (the highest value of all 449

small models) and 88% for the XL variant (with 450

1.3B parameters the by far largest model in our col- 451

lection). The memorization rates of the character- 452

level ByGPT5 models are remarkably low compar- 453

atively. The English base variant of ByGPT5 is the 454

5



(a) QuaTrain (EN) (b) Deepspeare (EN) (c) ByGPT5-medium (EN)

Figure 1: Length distribution of human poems (left), Deepspeare (middle) and ByGPT5-base (right) for English.

only style-conditioned model that has a score of455

0. The medium English model shows a score of456

0.6%. Memorization rates for the German models457

increase from 0.2% to roughly 5%, representing458

the second-smallest rise observed.459

Analysis: Since our German and English data460

vary vastly in size, we reduce the size of the Ger-461

man training data set to fit the size of the English462

training data (we randomly select 660k German463

quatrains) to see its effect on memorization and464

retrain poetry-GPT2-large on it, which had around465

80% memorization for English but less than 10%466

for German. On the reduced size of the training467

data set, the German model has now similar mem-468

orization as the English model (see results below469

dashed line in Table 2). This indicates that the470

memorization rates are not language dependent but471

depend on model and training data size: larger mod-472

els trained on less data memorize more. Examples473

for different levels of memorization are provided474

in Tables 9, 10 and 11 in the appendix.475

Length Table 6 (appendix) reports statistics on476

the length of poems, both human and automatically477

generated.478

Humans poems in English have on average 34 to-479

kens, while German poems have 25 tokens. The his-480

togram intersection values of different models with481

human poems range from 0.04 (poetry-GPT2-small482

German) to 0.95 (GPT2-small German) — it is re-483

markable that style conditioning worsens the match484

so much for this model. The character-level LLMs485

— variants of ByGPT5 — fit the human distribu-486

tion the best on average, independent of whether487

the model is trained with style-conditioning or not.488

The poetry-specific Deepspeare model matches the489

human distribution worst: the generated poems are490

too short and too underdiverse (in terms of standard491

deviation). Models typically fit the German distri-492

bution, with more training data, better. Figure 1 493

illustrates the length distribution of human poems, 494

Deepspeare and ByGPT5-medium for English. 495

Rhyme Figure 2 (a) shows the distributions of 496

rhyme schemes in our human training datasets (ex- 497

emplarily for German), while Table 8 shows the cor- 498

responding numerical values. Most rhymes in the 499

training data are classified as real rhymes. For both 500

languages, roughly 20% of all quatrains in training 501

do not rhyme at all (rhyme scheme ABCD). Ex- 502

cluding ABCD, the top 3 dominant rhyme schemes 503

by appearance are AABB, ABAB and ABBC for 504

both datasets, with a total share of approximately 505

40% in each language, and all between 10-20%. 506

Poetry-specific models: Figure 4 (appendix) 507

shows the distributional plots for Deepspeare and 508

SA. We see that ABCD dominates throughout all 509

samples, with portions of roughly 45% for the En- 510

glish models and approximately 25% for the Ger- 511

man version of Deepspeare, which means that these 512

models achieve a lower diversity in their rhyme pat- 513

terns compared to human data. Besides ABCD, no 514

other rhyme patterns dominate, the most frequent 515

non-ABCD rhyme schemes typically make up less 516

than 10% of all schemes. 517

Figures 5 and 6 (appendix) show the distribu- 518

tions of rhyme patterns for unconditioned LLMs. 519

For unconditional LLMs, the distributions are even 520

more skewed towards the ABCD scheme (clearly 521

above 50% and even above 70% for word-level 522

models), suggesting that these models are even 523

more incapable of learning the concept of rhyming. 524

While models of the ByGPT5 family rhyme better, 525

they also have more repetitions, with the English 526

base version and the medium German version being 527

affected the most. 528

Style-conditioned LLMs are shown in Figures 529

7 and 8 (appendix). They achieve better diversity 530
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(a) QuaTrain (DE) (b) poet.-GPT2-small (DE) (c) poet.-ByGPT5-med. (DE) (d) GPT2-large (DE)

Figure 2: Distribution of rhyme schemes in the training data (a) and generated samples (b,c,d).

ATTR ↑ MATTR ↑ MTLD ↑

QuaTrain 0.865 0.861 138.57

Deepspeare 0.915 0.883 151.21
SA 0.880 0.861 118.14

GPT2-small 0.872 0.728 45.33
GPT2-large 0.858 0.737 47.66
GPTneo-small 0.862 0.745 49.05
GPTneo-xl 0.844 0.705 40.45
byGPT5-base 0.804 0.794 64.68
byGPT5-med. 0.879 0.812 86.60

poet.-GPT2-small 0.856 0.848 112.65
poet.-GPT2-large 0.860 0.857 124.82
poet.-GPTneo-small 0.864 0.859 131.03
poet.-GPTneo-xl 0.856 0.854 130.30
poet.-byGPT5-base 0.846 0.842 112.00
poet.-byGPT5-med. 0.850 0.843 108.99

Table 3: Lexical diversity measures for English models.

in their generated rhyme patterns: only between 25-531

40% of all rhyme patterns are ABCD. The larger532

word-level models even achieve roughly 15% for533

the pattern AABB in English, which is close to the534

value of the human poems — but recall that these535

models also memorize a lot more. Like the human536

data, the large word-level and the ByGPT5 models537

peak for the patterns AABB and ABBC in English.538

The ByGPT5 models in German also have similar539

peaks as the human training data, namely, AABB,540

ABAB and ABBC.541

Comparing the three model categories, poetry-542

specific models and style-conditioned LLMs show543

some rhyming ability. The unconditioned LLMs re-544

veal clear deficits, as most quatrains do not rhyme545

at all. GPT2 and GPTneo perform worse than546

ByGPT5. All models have clearly higher ABCD547

rhyming schemes than the human data, thus are548

underdiverse concerning rhyming.549

Figure 2 gives an illustrative comparison of the550

rhyme distributions in the human data vs. poetry-551

GPT2-small, poetry-ByGPT5-medium and GPT2-552

large for German, showcasing different forms of553

distributions. 554

Lexical Diversity. Table 3 shows the lexical di- 555

versity results for English data, and Table 7 (ap- 556

pendix) for German. For English, the least lexi- 557

cally diverse poems according to the 2 global diver- 558

sity metrics (MATTR, MTLD) are unconditioned 559

LLMs. The MTLD metric of global diversity is 560

particularly low for these models. The local diver- 561

sity of unconditioned LLMs, on the other hand, is 562

close to human performance, or even exceeds it for 563

GPT2-small and ByGPT5-med. This shows that 564

unconditional LLMs avoid repetitions at a local 565

level whereas, at the sample level, they generate 566

poems that are lexically much more similar to each 567

other than poems within the human sample. Style- 568

conditioned LLMs and particularly the poetry- 569

specific Deepspeare are much more diverse at the 570

local and global level; the latter even beats human 571

poems in terms of diversity. This is slightly surpris- 572

ing, but may be explained by the fact that human 573

poetry often contains forms of parallelism or re- 574

dundancy, such as repetitions, which “normal” text 575

does not contain. The fact that generated poems of 576

some model classes are more lexically diverse than 577

human poems is also an indication that measuring 578

lexical diversity is not sufficient for poetry. 579

Semantic Similarity Table 4 presents statistical 580

indicators for the semantic similarity of quatrains: 581

(i) between generated samples and the human data, 582

(ii) within model generated samples, (iii) within 583

the human training data. 584

For both English and German, the human data 585

is most diverse with respect to semantic similarity; 586

the average maximum ‘within’ values are 0.46 or 587

lower. Otherwise, we observe similar trends as for 588

lexical diversity: Unconditioned LLMs are least 589

diverse wrt. semantic similarity (0.46-0.73), but the 590

character-level models perform clearly better (0.46- 591

0.55); style-conditioned LLMs (0.42-0.55) and 592

poetry-specific models (0.44-0.53) produce more 593
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Model across (↓) within (↓)

QuaTrain 0.42/0.46

Deepspeare 0.56/0.61 0.44/0.47
SA 0.62/- 0.44/-

GPT2-small 0.57/0.63 0.73/0.69
GPT2-large 0.54/0.62 0.71/0.71
GPTneo-small 0.57/- 0.71/-
GPTneo-xl 0.57/- 0.73/-
ByGPT5-base 0.55/0.59 0.46/0.55
ByGPT5-medium 0.56/0.61 0.55/0.55

poet.-GPT2-small 0.59/0.63 0.43/0.55
poet.-GPT2-large 0.90/0.76 0.43/0.50
poet.-GPTneo-small 0.63/- 0.42/-
poet.-GPTneo-xl 0.93/- 0.43/-
poet.-ByGPT5-base 0.59/0.63 0.43/0.47
poet.-ByGPT5-med. 0.59/0.64 0.43/0.46

Table 4: Average maximum semantic similarity values:
(i) across models and humans (middle), (ii) within mod-
els including the human QuaTrain dataset (right). Each
column: EN/DE.

semantically diverse poetry. However, recall that594

some style-conditioned LLMs produce poetry that595

is extremely semantically similar to human poems596

(due to the memorization effect discussed above):597

particularly larger and non-character-level models598

fare worse, with ‘across’ similarity scores with the599

human data of over 0.9 for English and over 0.75600

for German. From the perspective of semantic601

diversity, poetry-ByGPT5 and DeepSpeare are the602

best models.603

7 Discussion604

Sampling/Searching We deploy various decod-605

ing strategies to determine to what extent these can606

alter the various aspects of diversity in the gen-607

erated poems. We use different combinations of608

temperature-based sampling (Ackley et al., 1985),609

Nucleus sampling (Top-p) (Holtzman et al., 2019)610

and Top-k sampling (Fan et al., 2018) as sampling611

strategies and further deploy two variants of con-612

trastive search (Su et al., 2022). Results indicate613

that the various techniques can only slightly in-614

crease diversity in one or more aspects. Moreover,615

aggressive sampling often leads to output degenera-616

tion, causing the models to (partially) repeat verses617

in a quatrain. We provide some examples in the618

appendix, see Tables 12 to 17 as well as Figures 9619

to 14. 620

Which is the most diverse model? We have seen 621

that unconditioned LLMs exhibit poor results with 622

regard to different dimensions of diversity: they 623

do not rhyme, are lexically underdiverse and do 624

not show sufficient semantic variation. However, 625

character-level models are more diverse than word 626

level models. Style-conditioned models perform 627

better regarding rhyming, semantic variation, and 628

lexical variation but word level style-conditioned 629

models are prone to severe memorization from 630

the training data, in particular when the model 631

is large and the training set is small. Character- 632

level style-conditioned LLMs produce overall best 633

diversity results and do not deteriorate as a func- 634

tion of model/training data size. In terms of diver- 635

sity, poetry-specific Deepspeare performs similar 636

as character-level LLMs but requires more model- 637

ing effort from human experts (e.g., in developing 638

rhyming components). 639

8 Conclusion 640

To date, evaluation of automatic poetry generation 641

has almost exclusively focused on human evalua- 642

tion and forms of the Turing test. Our work shows 643

that an automatic assessment of the diversity of 644

generated poems covers an important blind spot 645

of existing studies. Our evaluations shed light on 646

the fact that none of the state-of-the-art poetry gen- 647

erators is able to match the level of diversity in 648

human poems, confirming previous evaluations of 649

diversity in other NLG tasks (Ippolito et al., 2019; 650

Schüz et al., 2021; Stasaski and Hearst, 2022). Our 651

study also adds a new dimensions to previous work 652

on diversity, by showing that diversity on the level 653

of rhyming is particularly hard to achieve for neu- 654

ral generators and interacts with other dimensions 655

of diversity in poetry generation, i.e., style condi- 656

tioned LLMs do not only achieve a better match 657

with human rhyme distributions, but also higher 658

lexical and semantic diversity. We also find that 659

memorization — a general and widely discussed 660

limitation of LLMs (Carlini et al., 2021) — is a 661

potential issue in poetry generation, especially for 662

certain combinations of model sizes and finetuning 663

schemes, complementing existing studies in this 664

area (Mireshghallah et al., 2022). 665

We release all code upon acceptance. 666
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Limitations667

Our work evaluates a range of existing state-of-668

the-art approaches, such as poetry-specific models669

like Deepspeare or pretrained LLMs. These models670

differ in various ways, with respect to their architec-671

ture, training scheme, pretraining, and the type of672

data they expect during training and/or finetuning.673

In light of these differences, it is difficult to isolate674

exactly how different aspects of a poetry generator675

impact on the diversity of its outputs. While our676

work investigated the influence of the model archi-677

tecture on a high level (character vs. word), further678

aspects — and in particular pre-training — may be679

worth investigating in future work.680

Generally, our work is concerned with the eval-681

uation of NLG systems; evaluation methods and682

evaluation metrics (Zhao et al., 2019; Zhang et al.,683

2020; Yuan et al., 2021; Chen and Eger, 2023;684

Peyrard et al., 2021) are a well-known and notori-685

ous issue in this research field. While a lot of recent686

work has aimed at improving common practices in687

human evaluation (Belz et al., 2023) or advancing688

the study of metrics for quality or fluency of NLG689

outputs, the evaluation of diversity is comparatively690

under-researched. In this work, we aimed at provid-691

ing a range of metrics assessing different aspects692

of diversity, but could not cover all potentially in-693

teresting ways of measuring diversity. Here, future694

work could look at further aspects of formal and695

structural diversity (e.g. at the level of syntax, or696

meter), or other aspects of semantic diversity (e.g.697

topical diversity, rhetorical figures). Future work698

could also consider more (diverse) languages and699

other genres and datasets for poetry.700

Ethics Statement701

Often, the discussion of creative AI systems in702

public discourse is surrounded by misconceptions,703

hypes and even myths (Veale, 2012). Our work704

contributes to a careful operationalization and ob-705

jective assessment of the creative capbalities of AI706

systems in the area of poetry generation.707

All the datasets, models and code used in this708

work are publicly available or will be made avail-709

able upon publication. We have not collected pri-710

vate or sensitive data and have only used language711

models with free access, such that our experiments712

can be fully replicated by anyone.713
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A Example Appendix 1024

Model EN DE

GPT2-small 124M 124M
GPT2-large 774M 774M
GPTneo-small 125M -
GPTneo-xl 1.3B -
byGPT5-base 140M 140M
byGPT5-medium 290M 290M

Table 5: Overview of transformer-based models. Each model is trained both unconditioned and style-conditioned.

(a) GPT2-small (b) GPT2-large

(c) GPTneo-small (d) GPTneo-xl

Figure 3: Maximum similarity plots for English style-conditioned GPT2 and GPTneo.

B Decoding methods 1025
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Sample L. µ σ m M h

QuaTrain EN 34.2 7.6 14 67 1.00
QuaTrain DE 25.5 7.0 9 48 1.00

Deepspeare EN 24.2 3.8 14 35 0.37
SA EN 31.0 5.9 9 47 0.81
Deepspeare DE 20.0 3.1 12 32 0.56

GPT2-small EN 28.2 7.1 8 70 0.68
GPT2-large EN 29.5 8.1 4 68 0.74
GPTneo-small EN 28.4 7.3 9 59 0.69
GPTneo-xl EN 26.1 6.6 10 60 0.56
byGPT5-base EN 29.8 13.6 4 150 0.75
byGPT5-med. EN 24.8 7.3 5 47 0.51
GPT2-small DE 24.7 6.8 9 50 0.95
GPT2-large DE 23.3 6.1 7 45 0.88
byGPT5-base DE 24.8 6.8 4 52 0.91
byGPT5-med. DE 26.7 7.4 10 59 0.89

p.-GPT2-small EN 29.7 5.2 19 52 0.68
p.-GPT2-large EN 29.7 5.7 16 55 0.67
p.-GPTneo-small EN 29.0 4.9 17 57 0.63
p.-GPTneo-xl EN 29.7 5.3 12 51 0.67
p.-byGPT5-base EN 30.2 6.4 13 63 0.74
p.-byGPT5-med. EN 29.5 5.9 13 60 0.72
p.-GPT2-small DE 53.8 6.6 34 78 0.04
p.-GPT2-large DE 56.4 8.2 34 83 0.06
p.-byGPT5-base DE 26.7 6.9 11 45 0.93
p.-byGPT5-med. DE 26.3 6.8 11 45 0.94

Table 6: Reported statistical measures as well as distance measures regarding the length of training data and
generated quatrains. std stands for the standard deviation, while m and M denote the minimal and maximal values.
h is the histogram intersection score between a sample and the corresponding training data. To facilitate comparison,
we draw 10 samples of size 500 from the train set and report mean values

(a) Deepspeare (EN) (b) Deepspeare (DE) (c) Structured Adversary

Figure 4: Distribution of rhyme schemes for samples generated by poetry-specific models. Deepspeare vs. Structured
Adversary.
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(a) GPT2-small (b) GPT2-large

(c) GPTneo-small (d) GPTneo-xl

(e) byGPT5-base (f) byGPT5-medium

Figure 5: Rhyme plots for samples generated by English unconditioned large language models.
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(a) GPT2-small (b) GPT2-large

(c) byGPT5-base (d) byGPT5-medium

Figure 6: Rhyme plots for samples generated by German unconditioned large language models.

ATTR ↑ MATTR ↑ MTLD ↑

QuaTrain 0.871 0.854 146.50

DeepSpeare 0.943 0.901 203.49

GPT2-small 0.864 0.721 45.29
GPT2-large 0.882 0.710 41.02
ByGPT5-base 0.863 0.803 84.12
ByGPT5-med. 0.781 0.752 50.93

poetry-GPT2-small 0.805 0.854 164.21
poet.-GPT2-large 0.793 0.839 129.35
poet.-ByGPT5-base 0.860 0.844 120.91
poet.-ByGPT5-med. 0.861 0.844 126.44

Table 7: German
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(a) GPT2-small (b) GPT2-large

(c) GPTneo-small (d) GPTneo-xl

(e) byGPT5-base (f) byGPT5-medium

Figure 7: Rhyme plots for samples generated by English style-conditioned large language models.

17



(a) GPT2-small (b) GPT2-large

(c) byGPT5-base (d) byGPT5-medium

Figure 8: Rhyme plots for samples generated by German style-conditioned large language models.

EN DE
Rhyme Real Rep. Real Rep.

AAAA 0.007 0.002 0.005 0.001
AAAB 0.015 0.002 0.007 0.001
AABA 0.008 0.001 0.006 0.001
AABB 0.183 0.009 0.139 0.002
AABC 0.036 0.002 0.056 0.001
ABAA 0.012 0.002 0.008 0.001
ABAB 0.098 0.008 0.153 0.004
ABAC 0.059 0.004 0.079 0.002
ABBA 0.037 0.002 0.057 0.001
ABBB 0.017 0.002 0.009 0.001
ABBC 0.158 0.006 0.113 0.002
ABCA 0.014 0.001 0.010 0.001
ABCB 0.070 0.004 0.076 0.002
ABCC 0.048 0.003 0.077 0.002
ABCD 0.189 0.000 0.197 0.000

Table 8: Distribution of rhymes and repetitions in QuaTrain.
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Human Generated Score

But give me leave , in proper time , But give me leave, in proper time, 0.711
To rearrange the broken chime To rearrange the broken chime
With one who is as good , at least , With one who is as good and sad as he,
In all respects , as the deceased . Till one straight line of light appear,

Of the tenants of the wood ; Look! It’s red!" 0.836
How the tortoise bears his shell , How the tortoise bears his shell,
How the woodchuck digs his cell , How the woodchuck digs his cell,
And the ground mole sinks his well And the ground mole sinks his shell, -

That lent such splendors to the gypsy brown That lent such splendors to the gypsy brown 0.98
Of sunburnt cheeks what more could woman do Of sunburnt cheeks what more could woman do
To show her pious zeal ? They went astray , To show her pious zeal? They went astray,
But nature led them as it leads us all . But nature led them as it leads us all.

Table 9: poetry-GPT2-small

Human Generated Score

Which one was e’er so dear , so kind , Which one was e’er so dear, so kind, 0.98
So beautiful as Longing ? So beautiful as Longing?
The thing we long for , that we are The thing we long for, that we are
For one transcendent moment , For one transcendent moment,

And every shore encircles thine . I can remember thee. 0.82
Rule , Britannia , Rule, Britannia,
Britannia rule the waves , Britannia rule the waves,
Britons never shall be slaves . Britons never shall be slaves.

In the kingdom of Wabasso , From the courts of Shawondasee, 0.855
In the land of the White Rabbit . From the land of the White Rabbit.
He it was whose hand in Autumn He it was whose hand in Autumn
Painted all the trees with scarlet , Painted all the trees with scarlet,

Table 10: poetry-byGPT5-medium

Human Generated Score

From persecution of misguided folk , To carve so well, upon thy self-built throne 0.805
Accustoming my spirit to ignore Accustoming my spirit to ignore
The burden of the cross , while picturing The burden of the cross, while picturing
The bliss of disembodied souls , the grace The bliss of disembodied souls, the grace

Not only high but mean ! With wisdom ’s strength Not only high but mean! With wisdom’s strength 0.981
He filled our mitred Wilfred , born to rule ; He filled our mitred Wilfred, born to rule;
To saintly Cuthbert gave the spirit of prayer ; To saintly Cuthbert gave the spirit of prayer;
On me , as one late born , He lays a charge On me, as one late born, He lays a charge

Table 11: poetry-GPTNeo-xl
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Method GPT2-large p-GPTneo-xl p-byGPT5-medium

Vanillat1.0−p1.0−k0 0.002 0.89 0.006

Contrastivek10−α0.6 0.000 0.96 0.006
Contrastivek6−α0.7 0.000 0.98 0.004

Nucleusp0.9−t0.7 0.002 0.99 0.010
Nucleusp0.9−t1.0 0.004 0.98 0.004
Nucleusp0.7−t0.7 0.012 0.99 0.020
Nucleusp0.7−t1.0 0.002 0.99 0.010
Top-kk10−t0.7 0.000 0.99 0.008
Top-kk10−t1.0 0.002 0.98 0.004
Top-kk25−t0.7 0.004 0.99 0.012
Top-kk25−t1.0 0.004 0.94 0.004

Table 12: Memorization scores m0.7 for samples generated by three models using various decoding methods.
Vanilla means that no particular decoding strategies have been applied. Contrastive refers to contrastive search.

Method m0.7 mean std min max

Vanillat1.0−p1.0−k0 0.002 0.55 0.06 0.33 0.77

Contrastivek10−α0.6 0.000 0.57 0.06 0.37 0.82
Contrastivek6−α0.7 0.000 0.58 0.06 0.39 0.72

Nucleusp0.9−t0.7 0.002 0.57 0.07 0.38 0.81
Nucleusp0.9−t1.0 0.004 0.57 0.06 0.37 0.97
Nucleusp0.7−t0.7 0.012 0.59 0.07 0.44 0.99
Nucleusp0.7−t1.0 0.002 0.56 0.06 0.37 0.91
Top-kk10−t0.7 0.000 0.58 0.07 0.33 0.84
Top-kk10−t1.0 0.002 0.57 0.07 0.42 0.95
Top-kk25−t0.7 0.004 0.57 0.07 0.39 0.98
Top-kk25−t1.0 0.004 0.56 0.06 0.34 0.94

Table 13: Memorization vs. semantic similarity for English unconditioned GPT2-large. The highest values (except
for std) are displayed in bold.

(a) Vanillat1.0−p1.0−k0 (b) Contrastivek6−α0.7 (c) Nucleusp0.7−t0.7

Figure 9: Semantic similarity plots for samples generated by style-conditioned English GPTneo-xl when different
decoding strategies are applied.
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Method mean std min max h l1

Vanillat1.0−p1.0−k0 29.83 13.64 4 150 0.75 5.46
Top-kk25−t1.0 37.77 20.58 4 150 0.87 4.48
Nucleusp0.7−t0.7 35.67 8.85 13 64 0.86 1.89

Table 14: English unconditioned byGPT5-base: impact of sampling on length. The used measures are the mean
length, the standard deviation of length, minimal length, maximal length, histogram intersection h and Wasserstein
distance l1.

(a) Vanillat1.0−p1.0−k0 (b) Temperaturet0.7

Figure 10: Rhyme distributions for Structured Adversary: Vanilla vs. lowered temperature.

Model lang real rhymes repetitions

Deepspearet1.0 en 0.72 0.00
Deepspearet0.7 en 0.84 0.00
Structured Adversaryt1.0 en 0.44 0.08
Structured Adversaryt0.7 en 0.53 0.21

Deepspearet1.0 de 0.57 0.00
Deepspearet0.7 de 0.66 0.00

Table 15: Real rhymes vs. repetitions: cumulative distributions for Deepspeare and Structured Adversary. The
model index denotes the temperature used during inference.

(a) Top-kk25−t1.0 (b) Nucleusp0.7−t1.0 (c) Nucleusp0.7−t0.7

Figure 11: Distribution of rhyme schemes for samples generated by unconditioned German GPT2-large when
different decoding strategies are applied.
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method real rhymes repetitions

Vanillat1.0−p1.0−k0 0.156 0.022
Top-kk25−t1.0 0.196 0.052
Nucleusp0.7−t1.0 0.164 0.071
Nucleusp0.7−t0.7 0.176 0.220

Contrastivek10−α0.6 0.170 0.103
Contrastivek6−α0.7 0.181 0.124
Nucleusp0.9−t1.0 0.146 0.030
Nucleusp0.9−t0.7 0.168 0.131
Top-kk25−t0.7 0.191 0.112
Top-kk10−t1.0 0.175 0.153
Top-kk10−t0.7 0.194 0.087

Table 16: Real rhymes vs. repetitions: cumulative distributions for unconditioned German GPT2-large. All decoding
variants are presented.

(a) Contrastivek6−α0.7 (b) Top-kk10−t0.7 (c) Nucleusp0.7−t0.7

Figure 12: Distribution of rhyme schemes for samples generated by unconditioned German byGPT5-medium when
different decoding strategies are applied.

(a) Nucleusp0.7−t1.0 (b) Top-kk25−t0.7 (c) Nucleusp0.7−t0.7

Figure 13: Distribution of rhyme schemes for samples generated by style-conditioned English GPT2-small when
different decoding strategies are applied.
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(a) Contrastivek10−α0.6 (b) Nucleusp0.9−t0.7 (c) Nucleusp0.7−t0.7

Figure 14: Distribution of rhyme schemes for samples generated by style-conditioned German byGPT5-base when
different decoding strategies are applied.

Method ATTR ↑ MATTR ↑ MTLD ↑

Vanillat1.0−p1.0−k0 0.804 0.794 64.679

Contrastivek10−α0.6 0.757 0.744 44.942
Contrastivek6−α0.7 0.716 0.717 36.561

Nucleusp0.9−t0.7 0.537 0.537 17.297
Nucleusp0.9−t1.0 0.720 0.690 33.151
Nucleusp0.7−t0.7 0.419 0.461 14.730
Nucleusp0.7−t1.0 0.586 0.622 21.757
Top-kk10−t0.7 0.611 0.588 21.005
Top-kk10−t1.0 0.766 0.754 46.107
Top-kk25−t0.7 0.642 0.637 24.289
Top-kk25−t1.0 0.797 0.779 58.490

Table 17: Lexical diversity scores for samples generated by English byGPT5-base.
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