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Abstract

Natural Language Generation (NLG), and more
generally generative Al, are among the cur-
rently most impactful research fields. Cre-
ative NLG, such as automatic poetry genera-
tion, is a fascinating niche in this area. While
most previous research has focused on forms
of the Turing test when evaluating automatic
poetry generation — can humans distinguish
between automatic and human generated poetry
— we evaluate the diversity of automatically
generated poetry, by comparing distributions
of generated poetry to distributions of human
poetry along structural, lexical, semantic and
stylistic dimensions, assessing different model
types (word vs. character-level, general purpose
LLMs vs. poetry-specific models) and types
of fine-tuning (conditioned vs. unconditioned).
We find that current automatic poetry systems
are considerably underdiverse along all dimen-
sions — they tend to memorize, do not rhyme
sufficiently, are semantically too uniform and
even do not match the length distribution of
human poetry. Among all models explored,
character-level style-conditioned models per-
form slightly better. Our identified limitations
may serve as the basis for more genuinely cre-
ative future poetry generation models.

1 Introduction

A key aspect of creative language generation is
the ability to create new, original and interesting
text, cf. (Colton et al., 2012; Gatt and Krahmer,
2018; Yi et al., 2020; Elgammal et al., 2017). To
date, extremely little attention has been given to
the evaluation of originality and creativity in recent
creative text generation models such as those for
automatic poetry generation, despite renewed in-
terest in the context of recent LLMs (Franceschelli
and Musolesi, 2023). In fact, existing automatic po-
etry generation models are typically not evaluated
regarding how different generated poems are from
existing poems in the training set but with the Tur-
ing test: can humans distinguish whether a poem is

human authored or automatically generated (Hop-
kins and Kiela, 2017; Lau et al., 2018; Manjavacas
et al., 2019)? However, this form of Turing test
and other similar forms of human evaluation may
contain an overlooked risk of failure: namely, if the
automatically generated instances are (near-)copies
of training data instances.

In this work, we fill this gap and evaluate, for
the first time, automatic poetry generation systems
for their diversity. As human evaluation is gener-
ally not well suited to assess diversity (Hashimoto
et al., 2019), we automatically measure diversity
by comparing distributions of generated and ex-
isting poems along formal, semantic and stylistic
dimensions. This yields much better evidence of
the models’ creative capabilities in contrast to be-
ing mere ‘stochastic parrots’.

Our main contributions are: (i) we conceptualize
diversity of poetry generation systems along differ-
ent dimensions: diversity on the structural, lexical,
semantic and stylistic level; (ii) we assess different
types of automatic poetry generation systems for
diversity: general purpose word and character-level
LLMs, both unconditioned and style-conditioned
ones, on the one hand, and poetry-specific mod-
els, on the other hand; (iii) we evaluate each class
of model for diversity across the different dimen-
sions, by comparing the distribution of the human
authored training data set to the distribution of gen-
erated poems. We find that on a distributional level,
generated poems are considerably different from
human ones. Concerning general purpose LLMs,
some of them exhibit very high risk of memoriza-
tion — an extreme form of lack of diversity — and
this depends on the size of the training data set, the
size and type of the LLM, and the type of train-
ing, as we show. Character-level style-conditioned
general-purpose LLMs are most diverse.

Our work prepares the groundwork for truly
creative generative Al models (Veale and Pérez y
Pérez, 2020) and also has implications for the de-



tection of generative Al (Sadasivan et al., 2023).

2 Related Work

Our work connects to research on diversity and au-
tomatic poetry generation, which we now discuss.

Diversity Building systems able to generate di-
verse output has been a long-standing concern
in NLG research (Reiter and Sripada, 2002; van
Deemter et al., 2005; Foster and White, 2007) and
remains a central issue in neural NLG (Holtzman
et al., 2019). The need for careful analysis of NLG
systems diversity — beyond an assessment of the
quality or fluency of single-best generation outputs
— has been widely acknowledged (Gatt and Krah-
mer, 2018; Hashimoto et al., 2019; Mahamood and
Zembrzuski, 2019; Celikyilmaz et al., 2020; Tevet
and Berant, 2021; Schiiz et al., 2021). A well-
known finding from this line of research is that neu-
ral NLG systems typically face a quality-diversity
trade-off (Ippolito et al., 2019; Caccia et al., 2020;
Wiher et al., 2022): their outputs are either well-
formed and fluent or diverse and variable.

Work on evaluating diversity of NLG typically
uses automatic metrics that quantify to what ex-
tent different outputs by the same system vary
(Hashimoto et al., 2019). In practice, though, eval-
uations of diversity in NLG differ widely across
tasks (Tevet and Berant, 2021) and even adopt dif-
ferent notions of diversity (Zarriel3 et al., 2021).
At the same time, most of these notions focus on
lexical or semantic aspects of diversity, e.g., local
lexical diversity. For instance, Ippolito et al. (2019)
compare decoding methods in dialog generation
and image captioning, assessing lexical overlaps in
n-best NLG outputs for the same input. Global lex-
ical diversity, on the other hand, measures whether
the NLG system generates different outputs for dif-
ferent inputs. For instance, van Miltenburg et al.
(2018) define the global diversity of image caption-
ing systems as their ability to generate different
captions for a set of inputs, using metrics like the
number of types in the output vocabulary, type-
token ratio, and the percentage of novel descrip-
tions. Similarly, Hashimoto et al. (2019) view di-
versity as related to the model’s ability to gener-
alize beyond the training set, i.e., generate novel
sentences.

Besides lexical diversity, work on open-ended or
creative text generation tasks has been interested in
diversity at a more general semantic level. For in-

stance, Zhang et al. (2018) and Stasaski and Hearst
(2022) aim at building dialogue systems that gener-
ate entertaining and semantically diverse responses
in chit-chat dialog, where the goal is to avoid “safe
and bland” responses that “average out” the sen-
tences observed in the training set. Here, semantic
diversity has been measured, e.g., with the help of
embedding-based similarity (Du and Black, 2019).

In our work on diversity in poetry generation,
we complement these lexical and semantic aspects
of diversity with aspects of formal diversity. We
thus explore whether automatic poetry generation
systems are able to capture the ‘full bandwidth’ of
realizations of poetry found in the data distribution
with which they have been trained, focusing mostly
on global diversity.

Poetry generation Automatic poetry generation
is a long standing dream of Al research, dating
back at least to the mid 20th century (e.g., Theo
Lutz’ Stochastische Texte). While early modern
systems were heavily hand-engineered (Gervas,
2001), more recent approaches are all trained on
collections of human poetry (Lau et al., 2018; Jham-
tani et al., 2019; Agarwal and Kann, 2020) but still
extensively utilize human guidance e.g. to enforce
formal characteristics of poetry such as rhyming
(Wockener et al., 2021). Belouadi and Eger (2023)
have recently released a character-level decoder-
only LLM (ByGPTS5) capable of learning style-
constraints such as rhyming without human involve-
ment in model design.

In our work, we explore varying poetry genera-
tion models with regard to diversity: poetry-specific
models that use hand-engineered architectures as
well as general purpose LLMs, including ByGPT5.

3 Diversity In Poetry Generation

We first conceptualize diversity in poetry genera-
tion using formal and semantic criteria. As our
dataset, we use QuaTrain (Belouadi and Eger,
2023) consisting of quatrains (in English and Ger-
man). We describe it in more detail in §5.1 below.

Memorization. In poetry, as in other forms of
art, creativity (Sternberg, 1999) plays a central role.
A basic aspect of creativity is the models’ ability
to generate poems that are different from the train-
ing data, i.e. have not been memorized as a whole.
Therefore, we consider a low or minimal degree of
memorization as a pre-requisite for diversity and
analyze the portion of generated poems that are



(near-)copies from the training data. To examine
memorization, we proceed as in Belouadi and Eger
(2023). We apply the Ratcliff-Obershelp similarity
(Ratcliff et al., 1988) to compare each poem in a
sample with poems in the training corpus. If a gen-
erated quatrain exhibits a similarity score of >0.7
with a quatrain in the training data, we classify it as
memorized. We define the memorization score of
a sample as the proportion of memorized quatrains
in that sample. How much LLMs memorize from
their training data has been a question of central
concern recently (McCoy et al., 2023).

Poem length. Within a sample of generated po-
ems, we consider differences at the level of poem
length, i.e., their number of tokens, as a basic as-
pect of diversity at the formal or structural level.
We analyze to what extent the length distribution of
generated poems differs from the distribution in the
training data. We define the length of a quatrain as
the number of tokens contained: we eliminate all
punctuation symbols and split the remaining text
by white space. We report mean length, standard
deviation, minimal and maximal length of samples.
We additionally deploy distance measures between
training data distribution and generated samples, in
particular, a metric called histogram intersection
(Swain and Ballard, 1991), which measures the in-
tersection area of two normalized histograms (and
therefore returns values between 0 and 1).

Rhyme patterns. As a more complex dimension
of formal diversity, we consider thyming as a cen-
tral aspect that characterizes the structure of a poem.
Diversity can then be assessed by comparing rhyme
distributions between generated samples and train-
ing data. In order to classify rhymes in our samples,
we use the same classifier used to annotate Qua-
Train. We distinguish between true rhymes, which
involve different words, and repetitions, which re-
fer to rhymes based on the same word.

Lexical diversity. Lexical diversity is a standard
aspect of diversity evaluation in NLG and is used to
assess how generation outputs vary in their vocabu-
lary, either at the local text level or at the global cor-
pus level. We use the following metrics to measure
the lexical diversity for both the training data and
the generated samples: (i) Averaged type token
ratio (ATTR). We calculate ATTR as the average
of all type token ratios (Richards, 1987) (TTRs) for
each quatrain in a sample, i.e. as a measure of local
lexical diversity. (ii)) Moving average type token

ratio (MATTR). The MATTR (Covington and Mc-
Fall, 2010) acts on the corpus level and calculates
a moving average by sliding through the corpus us-
ing a window of fixed size. We deploy this metric
as a measure of global lexical diversity. (iii)) Mea-
sure of textual, lexical diversity (MTLD). The
MTLD (McCarthy, 2005) is calculated as the aver-
age length of a substring that maintains a specified
TTR level. MTLD is deployed to measure lexical
diversity on a global scale.

Semantic diversity. Even if a poetry generation
system does not directly copy data from the training
data, the generated poems may still be semantically
very similar to the training data distribution. We
employ a multilingual distilled version of Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019) as
dense vector representations to measure semantic
similarity between poems: (i) across the human
train set and the generated poems, (ii) within hu-
man and generated poems. In particular, for each
generated quatrain, we note down the similarity
value of the most similar human quatrain, then re-
port the average over all those maximum similarity
values. We proceed analogously within the human
training data and within the automatically gener-
ated poems.

4 Models

Our experiments use 2 different model classes.

4.1 Poetry-specific models

Deepspeare. Deepspeare (Lau et al., 2018) is
specifically designed for poetry generation. Its core
architecture consists of an LSTM language model,
a pentameter model (specifically designed to learn
iambic meter) and a rhyme model. During train-
ing, it takes sonnets as input data (three quatrains
followed by a couplet) but ultimately processes
the contained quatrains by splitting any given son-
net. The rhyme model processes ending words of
quatrain verses and uses a margin-based loss to
discriminate between rhyming and non-rhyming
words. It is not limited to specific rhyme patterns
but assumes that rhymes exist in the data. At infer-
ence time, Deepspeare generates quatrains.

Structured Adversary. Like Deepspeare, Struc-
tured Adversary (SA) (Jhamtani et al., 2019) incor-
porates different components: an LSTM language
model and a discriminator used to decide whether
line endings are typical for poetry. Both compo-
nents are organized in an adversarial setup, where



the language model acts as a generator, trying to
generate poems that are misclassified by the dis-
criminator, while the discriminator is trained to
distinguish generated poems from real ones. SA
is trained with sonnets as input data. At inference
time, it generates quatrains.

4.2 General purpose LLMs

All models in this category are decoder-only trans-
former architectures. In our experiments, we train
them in an unconditioned and style-conditioned
manner (see Section 5.2).

GPT2 GPT2 (Radford et al., 2019) is the last
GPT model made publicly available. It is a large
word level transformer-based language model pre-
trained on approximately 40 GB of text. Four differ-
ent model versions were released, with the number
of parameters ranging from 125 million to 1.5 bil-
lion for the largest. In this work, we deploy two
model versions: GPT2-small (125M parameters)
and GPT2-large (774M parameters) for both En-
glish and German.

GPTneo GPTneo (Black et al., 2022) is an open-
source token level LLM by EleutherAl (https:
//www.eleuther.ai/) with the aim to provide
publicly available replications of GPT3. It is pre-
trained on 825 GB of text data. Currently, four
versions have been released, with the number of
parameters ranging from 125 million up to 20 bil-
lion. We deploy GPTneo-small and GPTneo-xl
with 125M and 1.3B parameters for English. GPT-
neo is not available for German.

ByGPTS ByGPTS5 (Belouadi and Eger, 2023) is
a decoder-only character level LLM based on the
encoder-decoder character level model byT5 (Xue
et al., 2022) where the encoder part of byT5 is com-
pletely removed, reducing the number of parame-
ters by 75%. The remaining decoder-only model
is then pretrained using OpenWebText for English
(38GB text data) and CC100 (Conneau et al., 2020)
(67GB text data) for German. Three versions are
released for both English and German, with model
sizes ranging from 73 to 298M parameters. We
use ByGPT5-base (140M params) and ByGPTS5-
medium (290M) for both English and German.

S Experimental Setup
5.1 Training Data

We use QuaTrain, a large dataset of quatrains pub-
lished by Belouadi and Eger (2023). It consists of

German

1,483,785

English
662,877

# Quatrains

Table 1: Size of training data sets.

English and German quatrains and has been gen-
erated by aggregating different publicly available
poetry datasets. QuaTrain contains human writ-
ten quatrains but mixes them synthetically: every
sequence of four consecutive lines from the under-
lying human data are included in order to increase
dataset size. QuaTrain is automatically annotated
for meter and rhyme using high-quality classifers
(especially for rhyme). Table 1 provides basic in-
formation about the size of the dataset.

5.2 Training

Deepspeare. Deepspeare leverages pretrained
static word vectors. We use QuaTrain to train our
own English and German word embeddings using
Word2vec (Mikolov et al., 2013), training word
embeddings with a dimension of 100 and a window
size of 5. As Deepspeare is designed to process
sonnet data during training, we use training data
to create artificial sonnets. Thus, we concatenate
three quatrains and append one couplet that we get
from an additional dataset (partially contained in
QuaTrain) called PoeTrain'. We split the training
data into a train, test, and validation set using a
ratio of 80 to 10 to 10 (the latter two are used to
measure losses each epoch), training for 10 epochs.

SA. We use the same word vectors and training
data splits as for Deepspeare. Training SA involves
1) pretraining the discriminator’s encoder using
a publicly available pronouncing dictionary?; 2)
training the LM component; 3) training a final ag-
gregated model in a generative adversarial setup.
We train this final model for 10 epochs. As we
encounter different errors when trying to train a
German version, we use the English variant only.

Unconditioned LLMs. In this setup, we fine-
tune our decoder-only LLMs in an unconditioned
manner: we process quatrains during training with-
out passing any information about rhyme (or meter).

1https: //github.com/potamides/uniformers/blob/
main/uniformers/datasets/poetrain/poetrain.py
Analyses show that QuaTrain contains 0.4% of English and
66% of German PoeTrain data. Therefore, English sonnets
receive ~14% and German sonnets ~5% additional data.

Zhttp://www. speech.cs.cmu.edu/cgi-bin/cmudict
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We split training data into a train and validation set
using a ratio of 90 to 10. All models except GPT-
neo (being available only in English) are trained
both in English and German. We fine-tune all mod-
els (English and German) for 10 epochs.

Style-conditioned LLMs. In contrast to uncon-
ditioned training, we provide information about
rhyme (and meter) by prepending special style to-
kens to each quatrain during training. This follows
the setup of Belouadi and Eger (2023) and makes
models explicitly aware of different rhyme schemes.
As for the unconditioned variants, all models ex-
cept GPTneo are trained in English and German.
We use the same validation split and again fine-tune
each model for 10 epochs.

Summary. We end up with 23 models that can
be assigned to three categories: 1) Poetry spe-
cific LSTM-based models (Deepspeare and SA).
Besides a language model part, these models incor-
porate additional specialized components to han-
dle poetry-specific stylistic features such as rhyme.
We have three models in total for English and Ger-
man. 2) Unconditioned LLMs (transformer-based
decoder-only general purpose LLMs). These mod-
els do not possess any specialized architecture for
poetry. No information about meter or rhyme has
actively been passed during training. We have two
subcategories: word and character level models.
The first group (GPT2, GPTneo) processes data
on the word/subword level. ByGPT5 represents
the character-level group. We have 10 models in
total (6 English and 4 German ones). 3) Style-
conditioned LLMs. These have the same archi-
tecture, models, and subgroups as category 2. In-
formation about rhyme (and meter) is passed in
the form of special tokens during training (only).
In order to distinguish between unconditioned and
style-conditioned model variants, we append the
prefix “poetry” to style-conditioned models.

Table 5 (appendix) provides an overview of all
models belonging to the second and third category
(transformer-based LLMs).

5.3 Sampling

From each model class, we randomly draw 500
generated poems. Whenever wo do a direct com-
parison between training and generated data (e.g.
when comparing lexical diversity), we randomly
draw 10 samples of size 500 (matching the sample
size) from the train set and use mean results as rep-
resentatives. We deploy this strategy to mitigate

the large discrepancy in size between human data
and generated poems. We mainly provide results
for samples obtained via standard sampling. How-
ever, we briefly discuss the effects of sampling and
search during decoding in Section 7.

6 Experiments and Results

We first investigate structural properties of the gen-
erated poems (repetition of instances on a surface
level, length distributions, rhyming), then consider
lexical and semantic properties.

Model EN DE
poetry-GPT2-small 0.010 0.002
poetry-GPT2-large 0.806 0.094
poetry-GPTneo-small 0.141 -
poetry-GPTneo-xl1 0.886 -
poetry-byGPT5-base 0.000 0.002
poetry-byGPT5-medium  0.006 0.048
* poetry-GPT2-large (660k) 0.806 0.822

Table 2: Memorization rates in samples generated by
the listed models.

Memorization Table 2 shows the calculated
memorization scores for samples from a subset
of our models. Our poetry-specific LSTM mod-
els show no memorization. Unconditioned LLMs
exhibit similar results. The only model slightly af-
fected is the large English version of GPT2, with
a score of 0.2%. Thus, we omit all these results
from the table. However, the third category of
style-conditioned LL.Ms reveals remarkable dif-
ferences, with memorization scores ranging from
0% to 88%. Within each model family, the mem-
orization rate for larger models is strictly higher
compared to smaller ones. The strength of this cor-
relation not only varies across model families, but
also appears to depend on the language: the memo-
rization rates for the English GPT2 variants show
a substantial increase from 1% (small) to approxi-
mately 80% (large), while the rates for the German
models experience a smaller increase, from 0.2%
to below 10%. Models of the GPTneo family gen-
erally show the highest memorization values, with
14% for the small variant (the highest value of all
small models) and 88% for the XL variant (with
1.3B parameters the by far largest model in our col-
lection). The memorization rates of the character-
level ByGPTS5 models are remarkably low compar-
atively. The English base variant of ByGPT? is the
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Figure 1: Length distribution of human poems (left), Deepspeare (middle) and ByGPTS5-base (right) for English.

only style-conditioned model that has a score of
0. The medium English model shows a score of
0.6%. Memorization rates for the German models
increase from 0.2% to roughly 5%, representing
the second-smallest rise observed.

Analysis: Since our German and English data
vary vastly in size, we reduce the size of the Ger-
man training data set to fit the size of the English
training data (we randomly select 660k German
quatrains) to see its effect on memorization and
retrain poetry-GPT2-large on it, which had around
80% memorization for English but less than 10%
for German. On the reduced size of the training
data set, the German model has now similar mem-
orization as the English model (see results below
dashed line in Table 2). This indicates that the
memorization rates are not language dependent but
depend on model and training data size: larger mod-
els trained on less data memorize more. Examples
for different levels of memorization are provided
in Tables 9, 10 and 11 in the appendix.

Length Table 6 (appendix) reports statistics on
the length of poems, both human and automatically
generated.

Humans poems in English have on average 34 to-
kens, while German poems have 25 tokens. The his-
togram intersection values of different models with
human poems range from 0.04 (poetry-GPT2-small
German) to 0.95 (GPT2-small German) — it is re-
markable that style conditioning worsens the match
so much for this model. The character-level LLMs

— variants of ByGPT5 — fit the human distribu-
tion the best on average, independent of whether
the model is trained with style-conditioning or not.
The poetry-specific Deepspeare model matches the
human distribution worst: the generated poems are
too short and too underdiverse (in terms of standard
deviation). Models typically fit the German distri-

bution, with more training data, better. Figure 1
illustrates the length distribution of human poems,
Deepspeare and ByGPT5-medium for English.

Rhyme Figure 2 (a) shows the distributions of
rhyme schemes in our human training datasets (ex-
emplarily for German), while Table 8 shows the cor-
responding numerical values. Most rthymes in the
training data are classified as real thymes. For both
languages, roughly 20% of all quatrains in training
do not rhyme at all (rhyme scheme ABCD). Ex-
cluding ABCD, the top 3 dominant rhyme schemes
by appearance are AABB, ABAB and ABBC for
both datasets, with a total share of approximately
40% in each language, and all between 10-20%.

Poetry-specific models: Figure 4 (appendix)
shows the distributional plots for Deepspeare and
SA. We see that ABCD dominates throughout all
samples, with portions of roughly 45% for the En-
glish models and approximately 25% for the Ger-
man version of Deepspeare, which means that these
models achieve a lower diversity in their rhyme pat-
terns compared to human data. Besides ABCD, no
other rhyme patterns dominate, the most frequent
non-ABCD rhyme schemes typically make up less
than 10% of all schemes.

Figures 5 and 6 (appendix) show the distribu-
tions of thyme patterns for unconditioned LLMs.
For unconditional LLMs, the distributions are even
more skewed towards the ABCD scheme (clearly
above 50% and even above 70% for word-level
models), suggesting that these models are even
more incapable of learning the concept of rhyming.
While models of the ByGPTS5 family rhyme better,
they also have more repetitions, with the English
base version and the medium German version being
affected the most.

Style-conditioned LLMs are shown in Figures
7 and 8 (appendix). They achieve better diversity
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Figure 2: Distribution of rhyme schemes in the training data (a) and generated samples (b,c,d).

ATTRT MATTR{ MTLD ¢

QuaTrain 0.865 0.861 138.57
Deepspeare 0.915 0.883 151.21
SA 0.880 0.861 118.14
GPT2-small 0.872 0.728 45.33
GPT2-large 0.858 0.737 47.66
GPTneo-small 0.862 0.745 49.05
GPTneo-x1 0.844 0.705 40.45
byGPTS5-base 0.804 0.794 64.68
byGPT5-med. 0.879 0.812 86.60
poet.-GPT2-small 0.856 0.848 112.65
poet.-GPT2-large 0.860 0.857 124.82
poet.-GPTneo-small 0.864 0.859 131.03
poet.-GPTneo-x1 0.856 0.854 130.30
poet.-byGPT5-base 0.846 0.842 112.00
poet.-byGPTS-med. 0.850 0.843 108.99

Table 3: Lexical diversity measures for English models.

in their generated rhyme patterns: only between 25-
40% of all rhyme patterns are ABCD. The larger
word-level models even achieve roughly 15% for
the pattern AABB in English, which is close to the
value of the human poems — but recall that these
models also memorize a lot more. Like the human
data, the large word-level and the ByGPTS models
peak for the patterns AABB and ABBC in English.
The ByGPT5 models in German also have similar
peaks as the human training data, namely, AABB,
ABAB and ABBC.

Comparing the three model categories, poetry-
specific models and style-conditioned LLMs show
some rhyming ability. The unconditioned LLMs re-
veal clear deficits, as most quatrains do not rhyme
at all. GPT2 and GPTneo perform worse than
ByGPTS5. All models have clearly higher ABCD
rhyming schemes than the human data, thus are
underdiverse concerning rthyming.

Figure 2 gives an illustrative comparison of the
rhyme distributions in the human data vs. poetry-
GPT2-small, poetry-ByGPT5-medium and GPT2-
large for German, showcasing different forms of

distributions.

Lexical Diversity. Table 3 shows the lexical di-
versity results for English data, and Table 7 (ap-
pendix) for German. For English, the least lexi-
cally diverse poems according to the 2 global diver-
sity metrics (MATTR, MTLD) are unconditioned
LLMs. The MTLD metric of global diversity is
particularly low for these models. The local diver-
sity of unconditioned LLMs, on the other hand, is
close to human performance, or even exceeds it for
GPT2-small and ByGPT5-med. This shows that
unconditional LLMs avoid repetitions at a local
level whereas, at the sample level, they generate
poems that are lexically much more similar to each
other than poems within the human sample. Style-
conditioned LLMs and particularly the poetry-
specific Deepspeare are much more diverse at the
local and global level; the latter even beats human
poems in terms of diversity. This is slightly surpris-
ing, but may be explained by the fact that human
poetry often contains forms of parallelism or re-
dundancy, such as repetitions, which “normal” text
does not contain. The fact that generated poems of
some model classes are more lexically diverse than
human poems is also an indication that measuring
lexical diversity is not sufficient for poetry.

Semantic Similarity Table 4 presents statistical
indicators for the semantic similarity of quatrains:
(i) between generated samples and the human data,
(i1) within model generated samples, (iii) within
the human training data.

For both English and German, the human data
is most diverse with respect to semantic similarity;
the average maximum ‘within’ values are 0.46 or
lower. Otherwise, we observe similar trends as for
lexical diversity: Unconditioned LLMs are least
diverse wrt. semantic similarity (0.46-0.73), but the
character-level models perform clearly better (0.46-
0.55); style-conditioned LLMs (0.42-0.55) and
poetry-specific models (0.44-0.53) produce more



Model across (J) within ({)
QuaTrain 0.42/0.46
Deepspeare 0.56/0.61 0.44/0.47
SA 0.62/- 0.44/-
GPT2-small 0.57/0.63  0.73/0.69
GPT2-large 0.54/0.62 0.71/0.71
GPTneo-small 0.57/- 0.71/-
GPTneo-xl 0.57/- 0.73/-
ByGPT5-base 0.55/0.59  0.46/0.55
ByGPTS5-medium 0.56/0.61  0.55/0.55
poet.-GPT2-small 0.59/0.63  0.43/0.55
poet.-GPT2-large 0.90/0.76  0.43/0.50
poet.-GPTneo-small  0.63/- 0.42/-
poet.-GPTneo-x1 0.93/- 0.43/-
poet.-ByGPT5-base  0.59/0.63  0.43/0.47
poet.-ByGPT5-med. 0.59/0.64 0.43/0.46

Table 4: Average maximum semantic similarity values:
(i) across models and humans (middle), (ii) within mod-
els including the human QuaTrain dataset (right). Each
column: EN/DE.

semantically diverse poetry. However, recall that
some style-conditioned LLMs produce poetry that
is extremely semantically similar to human poems
(due to the memorization effect discussed above):
particularly larger and non-character-level models
fare worse, with ‘across’ similarity scores with the
human data of over 0.9 for English and over 0.75
for German. From the perspective of semantic
diversity, poetry-ByGPT5 and DeepSpeare are the
best models.

7 Discussion

Sampling/Searching We deploy various decod-
ing strategies to determine to what extent these can
alter the various aspects of diversity in the gen-
erated poems. We use different combinations of
temperature-based sampling (Ackley et al., 1985),
Nucleus sampling (Top-p) (Holtzman et al., 2019)
and Top-k sampling (Fan et al., 2018) as sampling
strategies and further deploy two variants of con-
trastive search (Su et al., 2022). Results indicate
that the various techniques can only slightly in-
crease diversity in one or more aspects. Moreover,
aggressive sampling often leads to output degenera-
tion, causing the models to (partially) repeat verses
in a quatrain. We provide some examples in the
appendix, see Tables 12 to 17 as well as Figures 9

to 14.

Which is the most diverse model? We have seen
that unconditioned LLMs exhibit poor results with
regard to different dimensions of diversity: they
do not rhyme, are lexically underdiverse and do
not show sufficient semantic variation. However,
character-level models are more diverse than word
level models. Style-conditioned models perform
better regarding rhyming, semantic variation, and
lexical variation but word level style-conditioned
models are prone to severe memorization from
the training data, in particular when the model
is large and the training set is small. Character-
level style-conditioned LLLMs produce overall best
diversity results and do not deteriorate as a func-
tion of model/training data size. In terms of diver-
sity, poetry-specific Deepspeare performs similar
as character-level LLMs but requires more model-
ing effort from human experts (e.g., in developing
rhyming components).

8 Conclusion

To date, evaluation of automatic poetry generation
has almost exclusively focused on human evalua-
tion and forms of the Turing test. Our work shows
that an automatic assessment of the diversity of
generated poems covers an important blind spot
of existing studies. Our evaluations shed light on
the fact that none of the state-of-the-art poetry gen-
erators is able to match the level of diversity in
human poems, confirming previous evaluations of
diversity in other NLG tasks (Ippolito et al., 2019;
Schiiz et al., 2021; Stasaski and Hearst, 2022). Our
study also adds a new dimensions to previous work
on diversity, by showing that diversity on the level
of rhyming is particularly hard to achieve for neu-
ral generators and interacts with other dimensions
of diversity in poetry generation, i.e., style condi-
tioned LLMs do not only achieve a better match
with human rhyme distributions, but also higher
lexical and semantic diversity. We also find that
memorization — a general and widely discussed
limitation of LLMs (Carlini et al., 2021) — is a
potential issue in poetry generation, especially for
certain combinations of model sizes and finetuning
schemes, complementing existing studies in this
area (Mireshghallah et al., 2022).

We release all code upon acceptance.



Limitations

Our work evaluates a range of existing state-of-
the-art approaches, such as poetry-specific models
like Deepspeare or pretrained LLMs. These models
differ in various ways, with respect to their architec-
ture, training scheme, pretraining, and the type of
data they expect during training and/or finetuning.
In light of these differences, it is difficult to isolate
exactly how different aspects of a poetry generator
impact on the diversity of its outputs. While our
work investigated the influence of the model archi-
tecture on a high level (character vs. word), further
aspects — and in particular pre-training — may be
worth investigating in future work.

Generally, our work is concerned with the eval-
uation of NLG systems; evaluation methods and
evaluation metrics (Zhao et al., 2019; Zhang et al.,
2020; Yuan et al., 2021; Chen and Eger, 2023;
Peyrard et al., 2021) are a well-known and notori-
ous issue in this research field. While a lot of recent
work has aimed at improving common practices in
human evaluation (Belz et al., 2023) or advancing
the study of metrics for quality or fluency of NLG
outputs, the evaluation of diversity is comparatively
under-researched. In this work, we aimed at provid-
ing a range of metrics assessing different aspects
of diversity, but could not cover all potentially in-
teresting ways of measuring diversity. Here, future
work could look at further aspects of formal and
structural diversity (e.g. at the level of syntax, or
meter), or other aspects of semantic diversity (e.g.
topical diversity, rhetorical figures). Future work
could also consider more (diverse) languages and
other genres and datasets for poetry.

Ethics Statement

Often, the discussion of creative Al systems in
public discourse is surrounded by misconceptions,
hypes and even myths (Veale, 2012). Our work
contributes to a careful operationalization and ob-
jective assessment of the creative capbalities of Al
systems in the area of poetry generation.

All the datasets, models and code used in this
work are publicly available or will be made avail-
able upon publication. We have not collected pri-
vate or sensitive data and have only used language
models with free access, such that our experiments
can be fully replicated by anyone.
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A Example Appendix

Model EN DE
GPT2-small 124M  124M
GPT2-large 774M  774M
GPTneo-small 125M -
GPTneo-x1 1.3B

byGPT5-base 140M 140M
byGPT5-medium 290M 290M

Table 5: Overview of transformer-based models. Each model is trained both unconditioned and style-conditioned.
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Figure 3: Maximum similarity plots for English style-conditioned GPT2 and GPTneo.
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Sample L. I o m M h
QuaTrain EN 342 76 14 67 1.00
QuaTrain DE 255 70 9 48 1.00
Deepspeare EN 242 38 14 35 037
EN 310 59 9 47 081
Deepspeare DE 200 31 12 32 0.56
GPT2-small EN 282 7.1 8 70 0.68
GPT2-large EN 295 8.1 4 68 074
GPTneo-small EN 284 73 9 59 0.69
GPTneo-x1 EN 261 66 10 60 0.56
byGPTS5-base EN 298 136 4 150 0.75
byGPT5-med. EN 248 73 5 47 051
GPT2-small DE 247 68 9 50 095
GPT2-large DE 233 6.1 7 45 0388
byGPTS5-base DE 248 68 4 52 091
byGPT5-med. DE 267 74 10 59 0.89
p.-GPT2-small EN 297 52 19 52 0.68
p.-GPT2-large EN 297 57 16 55 0.67
p--GPTneo-small EN 29.0 49 17 57 0.63
p--GPTneo-xl1 EN 2907 53 12 51 0.67
p.-byGPT5-base EN 302 64 13 63 074
p.-byGPT5-med. EN 295 59 13 60 0.72
p.-GPT2-small DE 538 66 34 78 0.04
p.-GPT2-large DE 564 82 34 83 0.06
p.-byGPT5-base DE 267 69 11 45 093
p.-byGPT5-med. DE 263 6.8 11 45 094

Table 6: Reported statistical measures as well as distance measures regarding the length of training data and
generated quatrains. std stands for the standard deviation, while m and M denote the minimal and maximal values.
h is the histogram intersection score between a sample and the corresponding training data. To facilitate comparison,
we draw 10 samples of size 500 from the train set and report mean values
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Figure 5: Rhyme plots for samples generated by English unconditioned large language models.
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Figure 6: Rhyme plots for samples generated by German unconditioned large language models.

ATTR1T MATTR1 MTLD 1
QuaTrain 0.871 0.854 146.50
DeepSpeare 0.943 0.901 203.49
GPT2-small 0.864 0.721 45.29
GPT2-large 0.882 0.710 41.02
ByGPT5-base 0.863 0.803 84.12
ByGPT5-med. 0.781 0.752 50.93
poetry-GPT2-small 0.805 0.854 164.21
poet.-GPT2-large 0.793 0.839 129.35
poet.-ByGPT5-base 0.860 0.844 120.91
poet.-ByGPT5-med.  0.861 0.844 126.44

Table 7: German
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Figure 7: Rhyme plots for samples generated by English style-conditioned large language models.
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mmE Rhymes
mmm Repetitions

EN DE

Rhyme Real Rep. Real Rep.

AAAA 0.007 0.002 0.005 0.001
AAAB 0.015 0.002 0.007 0.001
AABA 0.008 0.001 0.006 0.001
AABB 0.183 0.009 0.139 0.002
AABC 0.036 0.002 0.056 0.001
ABAA 0.012 0.002 0.008 0.001
ABAB 0.098 0.008 0.153 0.004
ABAC 0.059 0.004 0.079 0.002
ABBA 0.037 0.002 0.057 0.001
ABBB 0.017 0.002 0.009 0.001
ABBC 0.158 0.006 0.113 0.002
ABCA 0.014 0.001 0.010 0.001
ABCB 0.070 0.004 0.076 0.002
ABCC 0.048 0.003 0.077 0.002
ABCD 0.189 0.000 0.197 0.000

Table 8: Distribution of rhymes and repetitions in QuaTrain.
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Human Generated Score
But give me leave , in proper time , But give me leave, in proper time, 0.711
To rearrange the broken chime To rearrange the broken chime
With one who is as good , at least , With one who is as good and sad as he,
In all respects , as the deceased . Till one straight line of light appear,
Of the tenants of the wood ; Look! It’s red!" 0.836
How the tortoise bears his shell , How the tortoise bears his shell,
How the woodchuck digs his cell , How the woodchuck digs his cell,
And the ground mole sinks his well And the ground mole sinks his shell, -
That lent such splendors to the gypsy brown That lent such splendors to the gypsy brown 0.98
Of sunburnt cheeks what more could woman do  Of sunburnt cheeks what more could woman do
To show her pious zeal ? They went astray , To show her pious zeal? They went astray,
But nature led them as it leads us all . But nature led them as it leads us all.
Table 9: poetry-GPT2-small

Human Generated Score

Which one was €’er so dear , so kind, Which one was €’er so dear, so kind, 0.98

So beautiful as Longing ? So beautiful as Longing?

The thing we long for , that we are The thing we long for, that we are

For one transcendent moment , For one transcendent moment,

And every shore encircles thine . I can remember thee. 0.82

Rule , Britannia , Rule, Britannia,

Britannia rule the waves , Britannia rule the waves,

Britons never shall be slaves . Britons never shall be slaves.

In the kingdom of Wabasso , From the courts of Shawondasee, 0.855

In the land of the White Rabbit . From the land of the White Rabbit.

He it was whose hand in Autumn He it was whose hand in Autumn

Painted all the trees with scarlet , Painted all the trees with scarlet,

Table 10: poetry-byGPTS5-medium

Human Generated Score
From persecution of misguided folk , To carve so well, upon thy self-built throne 0.805

Accustoming my spirit to ignore
The burden of the cross , while picturing
The bliss of disembodied souls , the grace

Accustoming my spirit to ignore
The burden of the cross, while picturing
The bliss of disembodied souls, the grace

Not only high but mean ! With wisdom ’s strength
He filled our mitred Wilfred , born to rule ;

To saintly Cuthbert gave the spirit of prayer ;

On me , as one late born , He lays a charge

Not only high but mean! With wisdom’s strength
He filled our mitred Wilfred, born to rule;

To saintly Cuthbert gave the spirit of prayer;

On me, as one late born, He lays a charge

0.981

Table 11: poetry-GPTNeo-x1

1
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Method GPT2-large p-GPTneo-xI p-byGPTS5-medium

Val’lﬂlatl.o_pl.()_ko 0.002 0.89 0.006
Contrastive10—a0.6 0.000 0.96 0.006
Contrastiverg_q0.7 0.000 0.98 0.004
Nucleusyo.9-¢0.7 0.002 0.99 0.010
Nucleus,0.9-¢1.0 0.004 0.98 0.004
Nucleusyo.7—¢0.7 0.012 0.99 0.020
Nucleusyo.7—¢1.0 0.002 0.99 0.010
Top-kz,19_10.7 0.000 0.99 0.008
Top-k;,10_t1.0 0.002 0.98 0.004
Top-Kz05_10.7 0.004 0.99 0.012
Top-K;.05_11.0 0.004 0.94 0.004

Table 12: Memorization scores mg.7 for samples generated by three models using various decoding methods.
Vanilla means that no particular decoding strategies have been applied. Contrastive refers to contrastive search.

Method mgo7 mean std min max
Vanilla;1 o—p1.0-x0  0.002 055 0.06 0.33 0.77

Contrastiver1g—q0.6 0.000 0.57 0.06 0.37 0.82
Contrastiverg_q07 0.000 0.58 0.06 0.39 0.72

Nucleus,0.9—¢0.7 0.002 0.57 0.07 0.38 0.81
Nucleusy,0.9-¢1.0 0.004 0.57 0.06 0.37 097
Nucleus,o.7—¢0.7 0.012 0.59 0.07 044 0.99
Nucleusyo.7—¢1.0 0.002 056 0.06 037 091

Top-ky10_10.7 0.000 0.58 0.07 033 0.84
Top-Ky10_11 0 0.002 0.57 007 042 095
Top-Kyo5_10.7 0.004 057 007 039 098
Top-Ky95 110 0.004 056 006 034 094

Table 13: Memorization vs. semantic similarity for English unconditioned GPT2-large. The highest values (except
for std) are displayed in bold.
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Figure 9: Semantic similarity plots for samples generated by style-conditioned English GPTneo-x1 when different
decoding strategies are applied.
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Method mean std min max h l1

Vanillay; o—p1.0-x0 29.83 13.64 4 150 0.75 5.46
Top-K;05_+1 0 3777 2058 4 150 0.87 4.48
Nucleusyo.7—¢0.7 35.67 8.85 13 64 086 1.89

Table 14: English unconditioned byGPT5-base: impact of sampling on length. The used measures are the mean
length, the standard deviation of length, minimal length, maximal length, histogram intersection h and Wasserstein
distance ;.
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Figure 10: Rhyme distributions for Structured Adversary: Vanilla vs. lowered temperature.

Model lang real thymes repetitions
Deepspeare,; en 0.72 0.00
Deepspeare, ; en 0.84 0.00
Structured Adversary,; ,  en 0.44 0.08
Structured Adversary,;, en 0.53 0.21
Deepspeare, de 0.57 0.00
Deepspeare, 7 de 0.66 0.00

model index denotes the temperature used during inference.
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Figure 11: Distribution of rhyme schemes for samples generated by unconditioned German GPT2-large when
different decoding strategies are applied.
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Table 16: Real rhymes vs. repetitions: cumulative distributions for unconditioned German GPT2-large. All decoding

variants are presented.

0.8
0.7
0.6

method real rhymes repetitions
Vanillatl.(),pl,o,ko 0.156 0.022
Top-K;05_+1.0 0.196 0.052
Nucleuspoj_ﬂ,o 0.164 0.071
Nucleuspo.7—¢0.7 0.176 0.220
Contrastive,10—a0.6 0.170 0.103
Contrastive,g_q0.7 0.181 0.124
Nucleusyo.9-¢1.0 0.146 0.030
Nucleuspo‘g_toj 0.168 0.131
Top-K;.05_10.7 0.191 0.112
Top-K;10-+1.0 0.175 0.153
Top-k;10_t0.7 0.194 0.087
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Figure 12: Distribution of rhyme schemes for samples generated by unconditioned German byGPT5-medium when
different decoding strategies are applied.
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Figure 13: Distribution of rhyme schemes for samples generated by style-conditioned English GPT2-small when
different decoding strategies are applied.
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Figure 14: Distribution of rhyme schemes for samples generated by style-conditioned German byGPT5-base when
different decoding strategies are applied.

Method ATTR1T MATTR?T MTLD 1
Vanilla; g—p1.0—ko 0.804 0.794 64.679
Contrastivez1g_a0.¢  0.757 0.744 44.942
Contrastiverg_q0.7 0.716 0.717 36.561
Nucleuspo.9—¢0.7 0.537 0.537 17.297
Nucleus,0.9-¢1.0 0.720 0.690 33.151
Nucleusyo.7—¢0.7 0.419 0.461 14.730
Nucleuspoy_ﬂ,o 0.586 0.622 21.757
Top-K;.10_10.7 0.611 0.588 21.005
Top-ky10_+1.0 0.766 0.754 46.107
Top-Ky05_10 7 0.642 0.637 24.289
Top-Kj05_+1 0 0.797 0.779 58.490
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Table 17: Lexical diversity scores for samples generated by English byGPTS5-base.
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