
Top-Personalized-K Recommendation
Anonymous Author(s)

Anonymous
anonymous@anonymous

ABSTRACT
The conventional top-K recommendation, which presents the top-K
items with the highest ranking scores, is a common practice for
generating personalized ranking lists. However, is this fixed-size
top-𝐾 recommendation the optimal approach for every user’s sat-
isfaction? Not necessarily. We point out that providing fixed-size
recommendations without taking into account user utility can be
suboptimal, as it may unavoidably include irrelevant items or limit
the exposure to relevant ones. To address this issue, we introduce
Top-Personalized-𝐾 Recommendation, a new recommendation task
aimed at generating a personalized-sized ranking list to maximize
individual user satisfaction. As a solution to the proposed task,
we develop a model-agnostic framework named PerK. PerK esti-
mates the expected user utility by leveraging calibrated interaction
probabilities, subsequently selecting the recommendation size that
maximizes this expected utility. Through extensive experiments
on real-world datasets, we demonstrate the superiority of PerK
in Top-Personalized-𝐾 recommendation task. We expect that Top-
Personalized-𝐾 recommendation has the potential to offer enhanced
solutions for various real-world recommendation scenarios, based
on its great compatibility with existing models.

CCS CONCEPTS
• Information systems → Collaborative filtering; Personal-
ization; Recommender systems.

KEYWORDS
Recommender System; Collaborative Filtering; Personalization; Rec-
ommendation Size; User Utility
ACM Reference Format:
Anonymous Author(s). 2024. Top-Personalized-K Recommendation. In Pro-
ceedings of the ACM Web Conference 2024 (WWW ’24), May 13-17, 2024,
Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Personalized recommendations have a significant impact on various
daily activities such as shopping, advertising, watching videos, and
listening to music. To generate personalized ranking lists of items,
recommender systems utilize the top-𝐾 recommendation approach
[9], which presents the 𝐾 items with the highest ranking scores,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: An example of top-personalized-𝐾 recommenda-
tion. 1 and 0 represent the relevant and the irrelevant items,
respectively. Note that these labels are not available at the
inference phase. Newly added items have red outlines.

sorted in descending order. This approach has become a common
practice in recent recommender systems [6, 59, 60] due to its opti-
mality with the globally fixed recommendation size [45]. However,
while tremendous efforts have been made on recommender models,
an important question has been overlooked in the previous litera-
ture: is the fixed-size top-𝐾 recommendation the optimal approach
for ensuring every user’s satisfaction?

To elucidate the potential drawbacks of the top-𝐾 recommen-
dation approach, we start with a motivating example with 𝐾 = 5
in Figure 1. For user 1, the top-𝐾 recommendation unavoidably
includes two irrelevant items in the tail, as the ranking list could
not be filled with enough relevant items. Moreover, for user 2, the
recommendation could be further improved by including one ad-
ditional relevant item in the tail, although user 2 receives a more
accurate top-𝐾 recommendation with four relevant items. As such,
globally fixing the recommendation sizes results in (1) exposing
users to irrelevant items that could lead to ad blindness [5] or user
attrition [33], and (2) limiting chances to provide relevant items,
which can curtail user engagement and revenue [18]. In this con-
text, we argue the top-𝐾 recommendation with a globally fixed
recommendation size is not the optimal approach for both user
satisfaction and system efficacy.

Instead of globally fixed recommendation sizes, a recommenda-
tion size that is personalized for individual user satisfaction can
create enhanced solutions for various recommendation scenarios.
Back in Figure 1, by adopting personalized recommendation sizes,
the system can increase both users’ satisfaction by reducing the
effort spent inspecting irrelevant items (user 1) and providing more
relevant items (user 2). Furthermore, the personalized recommenda-
tion size paves a way to further increase user satisfaction in various
applications, especially for systems with limited resources for mak-
ing recommendations: (1) Multi-domain recommender systems [50]

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WWW ’24, May 13–17, 2024, Singapore Anonymous

that display items from various domains on a single constrained
screen can strike a balance in recommendation sizes for the maxi-
mum overall user satisfaction, by employing adapted-sized ranking
lists from each domain (Figure 1 bottom). (2) In the case of sponsored
advertisements [5], advertisers can achieve higher user engagement
with the same promotion expenses by adjusting the number of
promoted items based on each user’s expected utility. (3) In the con-
text of the prefetching mechanism [57], which caches the initial few
seconds of videos expected to be clicked in order to reduce startup
delay, the system can minimize cache size and prevent cache pollu-
tion by adjusting the number of items to be cached. In this sense, we
claim that embracing personalized recommendation sizes not only
enhances user satisfaction but also unlocks diverse optimization
possibilities in real-world systems.

In this paper, we propose Top-Personalized-𝐾 Recommenda-
tion, a new recommendation task resolving the limitation of the
top-𝐾 recommendation. Formally, the top-personalized-𝐾 recom-
mendation refers to providing a ranking list of the variable size that
maximizes individual user satisfaction, which can be quantitatively
measured by user utility [46, 49]. As a solution to the proposed
task, we develop PerK, a framework to determine the personal-
ized recommendation size with any existing recommender model.
PerK first formulates a bi-level optimization problem where the
objective is to determine the recommendation size that maximizes
each user’s utility (Sec 4). To solve this optimization, we introduce
the concept of expected user utility (Sec 5.2), as it is not feasible to
compute the true user utility during the inference phase. We treat
the interaction labels of unobserved items as Bernoulli random
variables and derive the expectation of the user utility for various
widely-used utility measures. Derived expected user utilities can
be computed with the interaction probability of user-item pairs.

The remaining challenge is obtaining accurate interaction prob-
ability with an arbitrary recommender model. The recommender
models do not necessarily output the accurate interaction proba-
bility [12, 24]. They often output unbounded ranking scores that
cannot be treated as probabilities [13, 44] or miscalibrated interac-
tion probabilities that do not accurately reflect the true likelihood
of user-item interactions [14, 28]. To address this problem, we pro-
pose the use of calibrated interaction probability obtained through
the user-wise calibration function (Sec 5.3). The calibration func-
tion maps the ranking scores of the recommender model to well-
calibrated interaction probabilities [24]. We adopt Platt scaling [40]
and instantiate it for each user to consider the different distributions
of the ranking score across users. We train the calibration function
to predict the interactions between pairs in a held-out calibration
set. As a result, the output of the function accurately indicates the
true likelihood of interaction, leading to accurate expected user
utility.

In summary, we aim to find the optimal recommendation size
for each user by (1) obtaining calibrated interaction probability
with user-wise calibration, (2) estimating the expected user utility,
and (3) determining the recommendation size that results in the
maximum expected user utility. The main contributions of our work
can be described as follows:

• We highlight the necessity of personalized recommendation size
based on its practical advantages in real-world scenarios, which
has not been studied well in the previous literature.

• We propose Top-Personalized-𝐾 Recommendation, a new recom-
mendation task where the recommendation size can be adjusted
for each user to enhance individual user satisfaction.

• We develop PerK, a framework to determine the personalized
recommendation size by estimating the user’s expected utility
with the calibrated interaction probability.

• We conduct comprehensive experiments with three base recom-
menders on four real-world datasets, demonstrating the superi-
ority of PerK in the top-personalized-𝐾 recommendation task.

2 RELATEDWORK
To the best of our knowledge, personalized recommendation size
has not been studied well in the previous literature. The nearest
research line is the document list truncation [2, 3] that aims to de-
termine the optimal cutoff position for retrieved documents. Docu-
ment list truncation has been applied in various domains, including
legal document retrieval [31, 51] and searching [53, 58]. The recent
methods [3, 29, 53, 58] formulate the truncation problem as a classi-
fication task that predicts the optimal position among the candidate
cut-off positions. The target label for this classification is given as
a 𝐾-dimensional vector and each element indicates the probability
of being the optimal position. Then, they deploy large and deep
models (e.g., Bi-LSTM [15], Transformer [52]) for the classification.
Limitations.While this task is related to ours, directly applying
truncation methods to the top-personalized-𝐾 recommendation
leads to poor performance for several reasons. First, document re-
trieval datasets [36, 42] have sufficient relevant documents, which
provide rich target labels for classification. In contrast, recommen-
dation datasets suffer from severe sparsity and only a small fraction
of items is relevant for each user. Additionally, recommendation
datasets often include hidden-relevant items among unobserved
ones, providing inaccurate and noisy target labels. Second, the doc-
ument retrieval task leverages high-dimensional features extracted
from text contents (e.g., tf-idf [43] or doc2vec [25]) to train large
transformer models. However, in our scenarios, these additional
features (e.g., review texts) are not always available for unobserved
items [7], and scalar ranking scores are insufficient for training
large transformer models. As a result, state-of-the-art truncation
models (e.g., AttnCut [58] and MtCut [53]) show limited perfor-
mance when applied to the top-personalized-𝐾 task, and a solution
tailored to recommender systems is required.

3 PRELIMINARIES
3.1 Recommendation with Implicit Feedback
Implicit Feedback. In this paper, we focus on the recommendation
with implicit feedback [16], a widely adopted scenario for top-𝐾
recommendation [9]. LetU and I denote a set of users and a set
of items, respectively. For a pair of 𝑢 ∈ U and 𝑖 ∈ I, an interaction
label𝑌𝑢,𝑖 is given as 1 if their interaction is observed and 0 otherwise.
It is noted that when 𝑌𝑢,𝑖 = 0, it indicates either that the item is
irrelevant to the user or that it can be a hidden-relevant item of
the user [47]. A dataset D = {(𝑢, 𝑖) |𝑌𝑢,𝑖 = 1} consists of positive

Top-Personalized-K Recommendation WWW ’24, May 13–17, 2024, Singapore

pairs, and is split into a training set Dtr and a validation set Dval.
I−
𝑢 = {𝑖 | (𝑢, 𝑖) ∉ Dtr} denotes the unobserved itemset of 𝑢.
Recommender Model. A recommender model 𝑓𝜃 : U × I → R
learns to assign a ranking score to each user-item pair. In the liter-
ature, a variety of model architectures for 𝑓𝜃 have been deployed,
including matrix factorization [22], neural networks [14, 28], and
graph neural networks [13, 59]. To train recommender models,
point-wise loss (e.g., binary cross-entropy, mean squared error),
pair-wise loss (e.g., BPR [44], Margin Ranking loss [56]), and list-
wise loss (e.g., InfoNCE [38], Sampled Softmax [62]) have been
adopted. After the recommender model is trained, we produce a
ranking list 𝜋 with unobserved items in I−

𝑢 by sorting the ranking
scores 𝑓𝜃 (𝑢, 𝑖) in descending order.

3.2 User Utility
In this paper, we adopt user utility for the quantitative measurement
of user satisfaction yielded by recommendation [46, 49]. User utility
evaluates the ranking list 𝜋 based on how much the recommended
items are exposed and relevant to the user:

𝑈 (𝜋 |𝑢) =
∑︁
𝑖∈𝜋

𝜔 (rank(𝑖 |𝜋))𝜌 (𝑌𝑢,𝑖) . (1)

The function𝜔 (·) maps an item’s rank to the item’s exposure based
on the position-bias model [8], and 𝜌 (·) casts the relevance of an
item to the user utility.1 rank(𝑖 |𝜋) is the rank of item 𝑖 in the rank-
ing list 𝜋 . Depending on the formulation of 𝜔 (·) and 𝜌 (·), we can
represent various utility measures. For example, Discounted Cumu-
lative Gain (DCG) [19] can be represented with 𝜔 (𝑟) = 1

log2 (1+𝑟)
and 𝜌 (𝑌) = 1{𝑌=1} (𝑌). Additionally, other utility measures, such
as Normalized Discounted Cumulative Gain [19], Penalized Dis-
counted Cumulative Gain [19, 58], F1 score [41], and Truncated
Precision [28, 41] have been adopted in the literature and will be
investigated in this work.

3.3 Top-K Recommendation
Definition 1 (Top-𝐾 Recommendation). The top-𝐾 recommenda-
tion refers to providing a ranking list of 𝐾 items with the highest
ranking scores.

Typically, the recommendation size (𝐾) is globally fixed and pre-
defined by systems, taking into account platform constraints such
as screen size, thumbnail dimensions, and promotion expense. The
probability ranking principle [45] guarantees that this approach
maximizes user utility under a fixed value of 𝐾 and for any decreas-
ing function of 𝜔 (·) in Eq.1. That is, we get:

𝜋𝐾 = argsort
𝑖∈I−

𝑢

𝑓𝜃 (𝑢, 𝑖) [: 𝐾] = argmax
𝜋∈Π𝐾

𝑈 (𝜋 |𝑢), (2)

where [: 𝐾] denotes to take the first 𝐾 elements of the list and Π𝐾
is a set of all possible ranking lists, each with a size of 𝐾 . In the rest
of this paper, 𝜋𝐾 represents the sorted top-𝐾 ranking list obtained
by Eq.2 (e.g., 𝜋𝑚 denotes the top-𝑚 ranking list).

1In the evaluation phase, we have the true relevance (i.e., irrelevant or hidden-relevant)
for unobserved items.

Limitations. Despite the prevalence and advancements in the
top-𝐾 recommendation, as discussed in Section 1, the top-𝐾 rec-
ommendation has limitations in that it provides a fixed-size rec-
ommendation without consideration of user utility. In this case,
users must inspect irrelevant items to filter them out, which can
be time-consuming, especially in domains with lengthy inspection
times (e.g., movies). This process can negatively impact user satis-
faction [1], resulting in users ignoring future recommendations [5]
or even leaving the system [33]. Moreover, the fixed size scheme
may further degrade the efficiency of real-world applications, such
as presenting an equal number of items from each domain without
taking into account user preferences or promoting an equal number
of items to each user without considering the users’ expected util-
ity. Nevertheless, the methodology for determining the appropriate
number of items to present remains unexplored.

4 PROPOSED TASK
We here firstly propose a new recommendation task, named Top-
Personalized-𝐾 Recommendation, as a means to overcome the
limitation of the top-𝐾 recommendation.

Definition 2 (Top-Personalized-𝐾 Recommendation). The top-
personalized-𝐾 recommendation refers to providing a ranking list
where the recommendation size is optimized in [𝐾] for each user,
to maximize individual user utility.2

This approach ensures that each user receives a tailored-sized rec-
ommendation, helps avoid presenting irrelevant items and provid-
ing more number of relevant items. The problem of finding the
optimal recommendation size 𝑘max can be formulated as the fol-
lowing bi-level optimization problem:

𝑘max = argmax
𝑘∈[𝐾]

𝑈 (𝜋𝑘 |𝑢)

s.t. 𝜋𝑘 = argmax
𝜋∈Π𝑘

𝑈 (𝜋 |𝑢)

= argsort
𝑖∈I−

𝑢

𝑓𝜃 (𝑢, 𝑖) [: 𝑘], ∀𝑘 ∈ [𝐾] .

(3)

Fortunately, the inner optimization can be done readily since the
top-𝑘 ranking list 𝜋𝑘 is the optimal ranking list for each 𝑘 . Then,
in the outer optimization, we would like to select the 𝑘 where 𝜋𝑘
yields the highest user utility. However, it is noted that directly
computing the user utility is infeasible, since we do not have access
to the true relevance of unobserved items in the inference phase.
Applications.While our work primarily focuses on the technical
aspects, the proposed task has several implications for real-world
applications. Various scenarios can adopt personalized recommen-
dation sizes by modifying the constraint in Eq.3. For instance, in
multi-domain recommender systems [32, 50], the total number of
recommended items from various domains is constrained due to the
single limited screen. Instead of displaying the equivalent number
of items from each domain, we can adjust the recommendation size
of each domain to maximize the overall utility under the constraint
(Refer to Appendix A.2 for the modified optimization problem).
Similarly, in sponsored advertisement [5, 61], the advertiser has a
budget constraint on the promotion expenses. In this case, instead
of promoting the same number of items to all users, the system can
2 [𝐾] = {1, 2, 3, ..., 𝐾 }

WWW ’24, May 13–17, 2024, Singapore Anonymous

present personalized numbers of promotions depending on each
user’s utility while still satisfying the global budget constraint.

5 PROPOSED FRAMEWORK
5.1 Overview
We propose PerK, a novel framework to find the optimal recom-
mendation size for the top-personalized-𝐾 recommendation. PerK
is a model-agnostic framework, allowing it to be adapted for any
item recommendation scenario with existing recommenders. To
solve the bi-level optimization problem in Eq.3, PerK utilizes:
• (Sec 5.2) Expected User Utility: Expected user utility can be
estimated by treating the interaction labels for unobserved items
as Bernoulli random variables. PerK derives the computational
form of the expected user utility for widely-used utility functions,
which can be computed with the interaction probabilities.

• (Sec 5.3) Calibrated Interaction Probability: To obtain accu-
rate interaction probabilities, PerK utilizes user-wise calibration
functions instantiated and trained for each user. The calibration
function maps the ranking scores of the recommender model to
the calibrated interaction probabilities.

To sum up, given a pre-trained recommender model, (1) PerK trains
the user-wise calibration functions and gets the calibrated interac-
tion probabilities for unobserved items (Sec 5.3), (2) PerK estimates
the expected user utility for each candidate size𝑘 with the calibrated
probability (Sec 5.2), (3) PerK selects the size with the maximum
expected user utility, and provides the recommendation list having
the selected size (Sec 5.4).

5.2 Expected User Utility
We cannot compute the true user utility in Eq.3, sincewe do not have
access to the true relevance of unobserved items in the inference
phase. To overcome this issue, PerK estimates the expected user
utility instead of the true value by treating the interaction label 𝑌
for unobserved items as Bernoulli random variables. We defined
the expected user utility as follows:

E𝑌 [𝑈 (𝜋 |𝑢)] = E𝑌
[∑︁
𝑖∈𝜋

𝜔 (rank(𝑖 |𝜋))𝜌 (𝑌𝑢,𝑖)
]
. (4)

For simplicity, we transform the above formalization for the top-𝑘
ranking list 𝜋𝑘 as follows:

E𝑌 [𝑈 (𝜋𝑘 |𝑢)] = E𝑌
[𝑘∑︁
𝑟=1

𝜔 (𝑟)𝜌 (𝑌𝑢,𝑟)
]
. (5)

With slight abuse of terminology, let 𝑌𝑢,𝑟 denote the interaction
variable for user 𝑢 and the 𝑟 th item in 𝜋𝑘 . In the rest of this sec-
tion, we derive the computational form of expected user utility for
four widely-adopted utility measures. Due to the lack of space, we
cannot provide the complete step-by-step process. Please refer to
Appendix A.1 for a detailed derivation procedure.

5.2.1 NormalizedDiscountedCumulativeGain (NDCG). NDCG
[19], one of the most established utility measures, is formulated as:

𝑈NDCG (𝜋𝑘 |𝑢) =
𝑈DCG (𝜋𝑘 |𝑢)
𝑈IDCG (𝜋𝑘 |𝑢)

=

∑𝑘
𝑟=1

1{𝑌=1} (𝑌𝑢,𝑟)
log2 (1+𝑟)∑min(𝑆𝑢

𝑌
,𝑘)

𝑟=1
1

log2 (1+𝑟)

. (6)

𝑆𝑢
𝑌

=
∑
𝑖∈I−

𝑢
𝑌𝑢,𝑖 is the sum of all interaction variables for unob-

served items of user 𝑢. The expected NDCG with respect to the
random variable 𝑌 is:

E𝑌 [𝑈NDCG (𝜋𝑘 |𝑢)] (7a)

=

| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚) · E𝑌 |𝑆𝑢

𝑌
=𝑚

[∑𝑘
𝑟=1

1{𝑌=1} (𝑌𝑢,𝑟)
log2 (1+𝑟)∑min(𝑆𝑢

𝑌
,𝑘)

𝑟=1
1

log2 (1+𝑟)

]
(7b)

=

| I−
𝑢 |∑︁

𝑚=1

∑𝑘
𝑟=1

𝑃 (𝑌𝑢,𝑟=1)𝑃 (𝑆𝑢𝑌−𝑟 =𝑚−1)
log2 (1+𝑟)∑min(𝑚,𝑘)

𝑟=1
1

log2 (1+𝑟)
(7c)

≈
𝑀∑︁
𝑚=1

∑𝑘
𝑟=1

𝑃 (𝑌𝑢,𝑟=1)𝑃 (𝑆𝑢𝑌 =𝑚−1)
log2 (1+𝑟)∑min(𝑚,𝑘)

𝑟=1
1

log2 (1+𝑟)
. (7d)

(Eq.7b): Since investigating all possible combinations of 𝑌𝑢,𝑟 is in-
tractable, we aggregate the summation over possible 𝑆𝑢

𝑌
by adopt-

ing the total expectation theorem [4]. (Eq.7c): 𝑈DCG (𝜋𝑘 |𝑢) and
𝑈IDCG (𝜋𝑘 |𝑢) are conditionally independent given 𝑆𝑢

𝑌
and 𝑆𝑢

𝑌−𝑟
=

𝑆𝑢
𝑌
− 𝑌𝑢,𝑟 . (Eq.7d): For scalability, we adopt two simple approxi-

mations: (1) We aggregate the summation only to𝑀 ≤ 2000 rather
than |I−

𝑢 | (here,𝑀 is a hyperparameter), since the users are likely
to interact with only a few items among the unobserved items. (2)
We replace 𝑃 (𝑆𝑢

𝑌−𝑟
=𝑚 − 1) with 𝑃 (𝑆𝑢

𝑌
=𝑚 − 1) as we confirmed

that the effect of one interaction for 𝑆𝑢
𝑌
is negligible. These sim-

ple techniques make the expected user utility can be estimated in
real-time. 𝑃 (𝑆𝑢

𝑌
= 𝑚 − 1) = 𝑃 (∑𝑖∈I−

𝑢
𝑌𝑢,𝑖 = 𝑚 − 1) follows the

Poisson-Binomial distribution [26], and can be computed only with
the interaction probabilities 𝑃 (𝑌𝑢,𝑖 = 1) for 𝑖 ∈ I−

𝑢 .

5.2.2 PenalizedDiscountedCumulativeGain (PDCG). PDCG
[19], a utility measure based on DCG, has a penalizing term for the
irrelevant items in the ranking list.3

𝑈PDCG (𝜋𝑘 |𝑢) =
𝑘∑︁
𝑟=1

1{𝑌=1} (𝑌𝑢,𝑟) − 1{𝑌=0} (𝑌𝑢,𝑟)
log2 (1 + 𝑟)

. (8)

The expected PDCG with respect to interaction variable 𝑌 is com-
puted as follows:

E𝑌 [𝑈PDCG (𝜋𝑘 |𝑢)] = E𝑌
[𝑘∑︁
𝑟=1

1{𝑌=1} (𝑌𝑢,𝑟) − 1{𝑌=0} (𝑌𝑢,𝑟)
log2 (1 + 𝑟)

]
=

𝑘∑︁
𝑟=1

2 · 𝑃 (𝑌𝑢,𝑟 = 1) − 1
log2 (1 + 𝑟)

.

(9)

5.2.3 F1 Score (F1). F1 [41] is a utility measure computed as the
harmonic mean of Precision and Recall.

𝑈F1 (𝜋𝑘 |𝑢) =
2 ·

∑𝑘
𝑟=1 1{𝑌=1} (𝑌𝑢,𝑟)

𝑘
·
∑𝑘
𝑟=1 1{𝑌=1} (𝑌𝑢,𝑟)

𝑆𝑢
𝑌∑𝑘

𝑟=1 1{𝑌=1} (𝑌𝑢,𝑟)
𝑘

+
∑𝑘
𝑟=1 1{𝑌=1} (𝑌𝑢,𝑟)

𝑆𝑢
𝑌

=
2 ·∑𝑘𝑟=1 1{𝑌=1} (𝑌𝑢,𝑟)

𝑆𝑢
𝑌
+ 𝑘 .

(10)

3It is called DCG in the document retrieval field [53, 58], however, we call it PDCG to
distinguish it from DCG in the item recommendation field in Eq.6.

Top-Personalized-K Recommendation WWW ’24, May 13–17, 2024, Singapore

The expected F1 with respect to the interaction variable 𝑌 is com-
puted as follows:

E𝑌 [𝑈F1 (𝜋𝑘 |𝑢)] =
| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚)

2 ·∑𝑘𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1|𝑆𝑢
𝑌
=𝑚)

𝑚 + 𝑘

≈
𝑀∑︁
𝑚=1

2 ·∑𝑘𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1)𝑃 (𝑆𝑢
𝑌
=𝑚 − 1)

𝑚 + 𝑘 .

(11)
Here, we use the total expectation theorem and apply the same
approximations as done in Eq.7.

5.2.4 Truncated Precision (TP). TP [28, 41] is a utility measure
that addresses the limitations of Recall and Precision.4

𝑈TP (𝜋𝑘 |𝑢) =
∑𝑘
𝑟=1 1{𝑌=1} (𝑌𝑢,𝑟)
min(𝑘, 𝑆𝑢

𝑌
) . (12)

The expected TP with respect to the interaction variable 𝑌 is com-
puted as follows:

E𝑌 [𝑈TP (𝜋𝑘 |𝑢)] =
| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚)

∑𝑘
𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1|𝑆𝑢

𝑌
=𝑚)

min(𝑘,𝑚)

≈
𝑀∑︁
𝑚=1

∑𝑘
𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1)𝑃 (𝑆𝑢

𝑌
=𝑚 − 1)

min(𝑘,𝑚) .

(13)

Here, we use the total expectation theorem and apply the same
approximations as done in Eq.7.

5.2.5 Interaction Probability. Up to this point, we have for-
mulated the computational forms of expected user utility for four
widely-adopted utility measures: NDCG (Eq.7), PDCG (Eq.9), F1
(Eq.11), and TP (Eq.13). In common, these measures all require
the interaction probability 𝑃 (𝑌𝑢,𝑟 = 1) for the estimation. In the
following subsection, we present our solution to obtain accurate
interaction probabilities with an arbitrary recommender model.

5.3 Calibrated Interaction Probability
Recommender models do not necessarily output accurate inter-
action probability. They often output the ranking score that can
have any value of an unbounded real number [13, 44, 59], making
it difficult to treat it as a probability. Furthermore, even when a
model is trained to output probabilities [14, 28], it has been demon-
strated that these probabilities may not accurately reflect the true
likelihood (i.e., model miscalibration) [12, 24].

To address this, we introduce a post-processing calibration func-
tion 𝑔𝜙 : R → [0, 1] that maps the ranking score 𝑠𝑢,𝑖 = 𝑓𝜃 (𝑢, 𝑖)
of a pre-trained recommender to the calibrated interaction prob-
ability 𝑔𝜙 (𝑠𝑢,𝑖) = 𝑃 (𝑌𝑢,𝑖 = 1|𝑠𝑢,𝑖). A probability 𝑝 is regarded cali-
brated if it indicates the ground-truth correctness likelihood [23]:
E[𝑌 |𝑔𝜙 (𝑠) = 𝑝] = 𝑝 . For example, if we have 100 user-item pairs
with 𝑝 = 0.2, we expect 20 of them to have interactions (𝑌 = 1).

We adopt Platt scaling 𝑔𝜙 (𝑠) = 𝜎 (𝑎𝑠 + 𝑏) [40], a generalized
form of temperature scaling [12]. This calibration function has
been deployed effectively for model calibration in computer vision

4For example, Precision cannot have a value of 1 if 𝑘 is larger than 𝑆𝑢
𝑌
. TP is referred

to as Recall in [28]. However, in this work, we use the term Truncated Precision to
distinguish it from the standard definition of Recall.

Algorithm 1: Top-Personalized-K Recommendation with
PerK
Input :Training set Dtr, validation set Dval, pre-trained

recommender model 𝑓𝜃 , maximum
recommendation size 𝐾 , expected user utility
E𝑌 [𝑈 (𝜋𝑘 |𝑢)]

Output :Top-personalized-𝐾 recommendation 𝜋perK

1 Fit user-wise calibration 𝑔𝜙𝑢 on 𝑓𝜃 ⊲ Section 5.3

2 𝜋𝐾 = argsort𝑖∈I−
𝑢
𝑓𝜃 (𝑢, 𝑖) [: 𝐾] ⊲ Top-𝐾 Recommendation

3 for 𝑘 ∈ [𝐾] do
4 𝜋𝑘 = 𝜋𝐾 [: 𝑘]
5 Compute E𝑌 [𝑈 (𝜋𝑘 |𝑢)] with 𝑔𝜙𝑢 ⊲ Section 5.2

6 𝑘max = argmax𝑘∈[𝐾] E𝑌 [𝑈 (𝜋𝑘 |𝑢)].
7 𝜋perK = 𝜋𝑘max

[11, 34], natural language processing [10], and recommender system
[24]. The key difference is that PerK instantiates the calibration
function for each user, while previous calibration work [24] deploys
one global calibration function covering all users. That is, we have:

𝑔𝜙𝑢 (𝑠) = 𝜎 (𝑎𝑢𝑠 + 𝑏𝑢), ∀𝑢 ∈ U . (14)

The user-specific parameters 𝜙𝑢 = {𝑎𝑢 , 𝑏𝑢 } are related to the dis-
tribution of the ranking score of each user [23, 24]. Therefore, the
user-wise calibration function can consider the different distribu-
tions of the ranking score across users.

We train the calibration function to predict the interactions of
pairs in a calibration set constructed for each user. It is a common
practice to adopt the validation set as the calibration set [12, 24]. In
this work, the calibration set for user 𝑢 is constructed as follows:

Dcal
𝑢 = {(𝑢, 𝑖, 𝑌𝑢,𝑖 = 1) |𝑖 ∈ Ival

𝑢 } ∪ {(𝑢, 𝑖, 𝑌𝑢,𝑖 = 0) |𝑖 ∈ I−
𝑢 \ Ival

𝑢 },
(15)

where Ival
𝑢 = {𝑖 | (𝑢, 𝑖) ∈ Dval}. We also use the binary cross-

entropy loss, a widely-adopted loss function for the calibration of
binary classifiers [12, 23, 24], as our calibration loss.

Lcal
𝑢 =

∑︁
(𝑢,𝑖,𝑌𝑢,𝑖) ∈Dcal

𝑢

−𝑌𝑢,𝑖 log(𝑔𝜙𝑢 (𝑠𝑢,𝑖))−(1−𝑌𝑢,𝑖)log(1−𝑔𝜙𝑢 (𝑠𝑢,𝑖)) .

(16)
During the fitting of the calibration function, the base recommender
model 𝑓𝜃 is fixed and only 𝑔𝜙𝑢 is updated. It is worth mention-
ing that Platt scaling with binary cross-entropy is mathematically
equivalent to logistic regression and can be efficiently solved. Addi-
tionally, as we only have two learnable parameters for each user, our
calibration functions have a negligible impact on space complexity.

5.4 Optimization Procedure
Algorithm 1 presents the entire procedure of PerK solving the
bi-level optimization in Eq.3 for the top-personalized-𝐾 recommen-
dation. (line 1): PerK first fits the user-wise calibration function 𝑔𝜙𝑢
withDcal

𝑢 andLcal
𝑢 on top of pre-trained and fixed recommender 𝑓𝜃 .

(line 2): PerK generates top-𝐾 recommendation by sorting the rank-
ing score. (line 3-5): For each candidate size 𝑘 , PerK estimates the

WWW ’24, May 13–17, 2024, Singapore Anonymous

Table 1: Average user utility of recommendations produced by compared methods when they are optimized for each target
utility measure. Improv. denotes the improvement of PerK over MtCut. The numbers in boldface denote the best result in each
setting. *We conduct the paired t-test with a 0.05 level and every Improv. is statistically significant.

Base Method MovieLens 10M CiteULike MovieLens 25M Amazon Books
Model NDCG PDCG F1 TP NDCG PDCG F1 TP NDCG PDCG F1 TP NDCG PDCG F1 TP

Oracle 0.6190 0.6702 0.3152 0.7078 0.3020 -0.3677 0.1806 0.3940 0.5961 0.6089 0.2883 0.6812 0.1895 -0.7438 0.1133 0.2643

Top-1 0.4549 -0.0902 0.0546 0.4549 0.1837 -0.6326 0.0338 0.1837 0.4392 -0.1216 0.0492 0.4392 0.0961 -0.8078 0.0216 0.0961
Top-5 0.3925 -0.6428 0.1541 0.3751 0.1489 -2.0787 0.0842 0.1401 0.3729 -0.7561 0.1357 0.3547 0.0786 -2.4938 0.0507 0.0741
Top-10 0.3725 -1.3715 0.1984 0.3584 0.1495 -3.3650 0.1024 0.1483 0.3496 -1.5372 0.1757 0.3328 0.0828 -3.9401 0.0582 0.0852
Top-20 0.3734 -2.8434 0.2228 0.3849 0.1668 -5.4853 0.1108 0.1907 0.3460 -3.0494 0.2013 0.3510 0.0955 -6.2660 0.0584 0.1155

BPR Top-50 0.4057 -7.1636 0.2117 0.4841 0.2021 -10.8747 0.0930 0.2834 0.3740 -7.3813 0.1983 0.4421 0.1203 -11.8590 0.0496 0.1826

Rand 0.3872 -3.6387 0.2046 0.4144 0.1738 -6.2622 0.1003 0.2058 0.3611 -3.8266 0.1865 0.3801 0.0998 -7.1022 0.0535 0.1284
Val-𝑘 0.4562 -0.0640 0.2270 0.4906 0.1922 -0.6162 0.1061 0.2266 0.4368 -0.0532 0.2052 0.4347 0.1093 -0.8378 0.0563 0.1362

AttnCut 0.4604 -0.0702 0.2371 0.4969 0.2024 -0.6142 0.1063 0.2835 0.4392 -0.1214 0.2087 0.4392 0.1203 -0.8078 0.0566 0.1826
MtCut 0.4621 -0.0167 0.2383 0.5037 0.2034 -0.6022 0.1071 0.2838 0.4413 -0.0616 0.2140 0.4639 0.1212 -0.8078 0.0568 0.1826

PerK 0.4901 0.2087 0.2538 0.5711 0.2159 -0.4971 0.1117 0.2993 0.4687 0.1876 0.2300 0.5401 0.1261 -0.7952 0.0619 0.1894
Improv. 6.06%* - 6.50%* 13.38%* 6.15%* - 4.30%* 5.46%* 6.21%* - 7.48%* 16.43%* 4.04%* - 8.98%* 3.72%*
Oracle 0.5760 0.4792 0.2896 0.6688 0.2813 -0.4076 0.1685 0.3690 0.5310 0.3544 0.2513 0.6157 0.1444 -0.8246 0.0885 0.2076

Top-1 0.4081 -0.1839 0.0474 0.4081 0.1700 -0.6601 0.0304 0.1700 0.3761 -0.2479 0.0393 0.3761 0.0666 -0.8668 0.0150 0.0666
Top-5 0.3521 -0.8801 0.1350 0.3368 0.1403 -2.1273 0.0786 0.1330 0.3206 -1.0628 0.1117 0.3055 0.0563 -2.6231 0.0370 0.0537
Top-10 0.3360 -1.6822 0.1764 0.3251 0.1384 -3.4438 0.0942 0.1368 0.3011 -1.9434 0.1474 0.2873 0.0606 -4.1048 0.0434 0.0638
Top-20 0.3397 -3.2150 0.2023 0.3545 0.1529 -5.5941 0.1015 0.1733 0.2980 -3.5640 0.1721 0.3033 0.0712 -6.4683 0.0443 0.0888

NCF Top-50 0.3721 -7.6021 0.1966 0.4525 0.1866 -11.0026 0.0870 0.2618 0.3237 -8.0277 0.1744 0.3870 0.0916 -12.1148 0.0384 0.1437

Rand 0.3527 -3.9939 0.1866 0.3821 0.1609 -6.4157 0.0910 0.1884 0.3102 -4.3422 0.1603 0.3298 0.0749 -7.3212 0.0407 0.0987
Val-𝑘 0.4123 -0.1030 0.2071 0.4554 0.1794 -0.5801 0.0989 0.2101 0.3769 -0.5071 0.1729 0.3842 0.0791 -0.8935 0.0422 0.1018

AttnCut 0.4154 -0.0839 0.2068 0.4612 0.1812 -0.5527 0.0991 0.2619 0.3762 -0.1166 0.1755 0.3994 0.0918 -0.8668 0.0437 0.1438
MtCut 0.4195 0.0805 0.2153 0.4798 0.1891 -0.5499 0.1006 0.2627 0.3798 -0.0142 0.1837 0.4079 0.0923 -0.8667 0.0441 0.1441

PerK 0.4482 0.0928 0.2293 0.5335 0.2061 -0.5177 0.1080 0.2764 0.4056 0.0047 0.1960 0.4742 0.0982 -0.8646 0.0468 0.1553
Improv. 6.84%* - 6.50%* 11.19%* 8.99%* - 7.36%* 5.22%* 6.79%* - 6.70%* 16.25%* 6.39%* - 6.12%* 7.77%*
Oracle 0.6249 0.7459 0.3094 0.7051 0.3471 -0.2352 0.2104 0.4400 0.5893 0.4840 0.2864 0.6772 0.1782 -0.7571 0.1061 0.2454

Top-1 0.4749 -0.0502 0.0565 0.4749 0.2182 -0.5636 0.0420 0.2182 0.4236 -0.1527 0.0490 0.4236 0.0919 -0.8162 0.0213 0.0919
Top-5 0.4004 -0.5959 0.1531 0.3799 0.1829 -1.8801 0.1068 0.1735 0.3603 -0.8313 0.1349 0.3427 0.0744 -2.5187 0.0487 0.0699
Top-10 0.3763 -1.3345 0.1952 0.3584 0.1829 -3.1084 0.1270 0.1816 0.3391 -1.6383 0.1741 0.3237 0.0783 -3.9772 0.0552 0.0803
Top-20 0.3734 -2.8186 0.2180 0.3793 0.1999 -5.1979 0.1303 0.2244 0.3379 -3.1805 0.1988 0.3449 0.0898 -6.3212 0.0543 0.1077

LightGCN Top-50 0.3997 -7.1674 0.2068 0.4673 0.2354 -10.5738 0.1037 0.3174 0.3687 -7.5533 0.1951 0.4396 0.1117 -11.9466 0.0449 0.1663

Rand 0.3875 -3.5835 0.2001 0.4062 0.2075 -6.0557 0.1182 0.2450 0.3527 -3.9406 0.1839 0.3735 0.0938 -7.1826 0.0497 0.1187
Val-𝑘 0.4652 0.0417 0.2225 0.4894 0.2296 -0.4288 0.1286 0.2620 0.4253 -0.0864 0.1953 0.4439 0.1017 -0.8469 0.0532 0.1247

AttnCut 0.4749 -0.0412 0.2237 0.4899 0.2260 -0.5616 0.1291 0.3186 0.4242 -0.1527 0.2041 0.4359 0.1121 -0.8162 0.0516 0.1707
MtCut 0.4761 0.1171 0.2318 0.4949 0.2369 -0.5487 0.1319 0.3223 0.4317 0.0649 0.2113 0.4440 0.1185 -0.8162 0.0536 0.1761

PerK 0.4993 0.3309 0.2489 0.5702 0.2551 -0.3989 0.1383 0.3438 0.4543 0.0876 0.2277 0.4742 0.1261 -0.7912 0.0571 0.1878
Improv. 4.87%* - 7.38%* 15.22%* 7.68%* - 4.85%* 6.67%* 5.24%* - 7.76%* 6.80%* 6.41%* - 6.53%* 6.64%*

expected user utility E𝑌 [𝑈 (𝜋𝑘 |𝑢)] by using the calibrated interac-
tion probability 𝑔𝜙𝑢 (𝑠𝑢,𝑖) = 𝑃 (𝑌𝑢,𝑖 = 1|𝑠𝑢,𝑖). (line 6-7): Lastly, PerK
select 𝑘max, the recommendation size with the highest expected
user utility, and provide the top-personalized-𝐾 recommendation
𝜋perK = 𝜋𝑘max to user 𝑢.

6 EXPERIMENTS
6.1 Experiment Setup
We provide a summary of the experiment setup due to limited space.
Please refer to Appendix A.3 for more details. We will publicly
provide the GitHub repository of this work in the final version.

6.1.1 Datasets. We use four real-world datasets including Movie-
Lens 10M,5 CiteULike [54], MovieLens 25M, and Amazon Books
[37]. These datasets are publicly available and have been widely
used in the literature [13, 14, 27, 55]. We adopt the 20-core setting

5https://grouplens.org/datasets/movielens/

for all datasets as done in MovieLens datasets. We randomly split
each user’s interactions into a training set (60%), a validation set
(20%), and a test set (20%).

6.1.2 Methods Compared. We compare PerK with various tradi-
tional and recent methods. Specifically, we adopt

• Oracle: It uses the ground-truth labels of the test set to
determine the optimal recommendation size for each user.

and three traditional methods:

• Top-𝑘 : It denotes the top-𝑘 recommendation with globally
fixed recommendation size. We adopt 𝑘 ∈ {1, 5, 10, 20, 50}.

• Rand: It randomly selects the recommendation size for each
user. It represents the lower bound of the performance.

• Val-𝑘 : It selects the recommendation size that maximizes
validation utility for each user.

and two state-of-the-art methods for truncating document retrieval
results:

Top-Personalized-K Recommendation WWW ’24, May 13–17, 2024, Singapore

• AttnCut [58]: It deploys a classificationmodel with Bi-LSTM
and Transformer encoder to predict the best cut-off position.

• MtCut (MMoECut) [53]: It deploys MMoE [30] on top of
AttnCut architecture and adopt multi-task learning.

and the proposed framework:
• PerK (ours): We determine the personalized recommenda-
tion size by estimating the expected user utility with cali-
brated interaction probability.

For a quantitative comparison of user utility, we set the maximum
recommendation size to 50 for all methods. We also tried 100 and
observed a similar performance improvement for PerK.

6.1.3 Base Recommender Models (𝑓𝜃). We adopt three widely-used
recommender models with various model architectures and loss
functions: BPR [44], NCF [14], and LightGCN [13]. The ranking
score from the base recommender model serves as input for PerK,
AttnCut, and MtCut.

6.2 Comparison of User Utility
Table 1 presents the average user utility yielded by the recommen-
dation of each compared method. For a fair comparison, we adopt the
same base model and the same target utility throughout the training
of AttnCut, MtCut, and PerK in each experimental configuration. We
report the average result of three independent runs.
Benefits of Top-Personalized-𝐾 Recommendation.We first ob-
serve that personalizing the recommendation size results in higher
user utility than the globally fixed size. Oracle shows significantly
higher utility compared to the best value of Top-𝑘 . This upper
bound on user utility highlights the importance of the proposed
task in improving user satisfaction. Accordingly, methods determin-
ing the personalized recommendation sizes (i.e., AttnCut, MtCut,
and PerK) generally outperform Top-𝑘 . Furthermore, we notice that
Top-𝑘 shows a large performance deviation depending on the rec-
ommended size. Therefore, the system should avoid naively setting
a globally fixed recommendation size and instead determine the
personalized size for improved user satisfaction.
Effectiveness of PerK. We observe that PerK outperforms the
competitors in the top-personalized-𝐾 recommendation task. Val-𝑘
does not perform well since overfitting to the validation utility
is not effective due to the sparse and noisy interactions. Further-
more, the effectiveness of the methods for document list truncation
(i.e., AttnCut and MtCut) remains limited, since the target label for
the classification does not provide enough supervision due to the
hidden-positive and noisy interactions. Indeed, we discovered that
they can be easily overfitted to select the size that works well glob-
ally (Figure 2), resulting in comparable performance to the best of
Top-𝑘 . In contrast, PerK does not rely on a deep model and consid-
ers the hidden-relevant items, to estimate the expected user utility.
PerK directly computes the expected user utility in mathematical
form with the calibrated interaction probability and significantly
outperforms AttnCut and MtCut in the top-personalized-𝐾 task.

6.3 Personalized Recommendation Size
Figure 2 shows the distributions of recommendation sizes deter-
mined by Oracle, PerK, and MtCut. The base model is BPR and the
target user utility is F1. We have the following findings: (1) The

(a) MovieLens 25M

(b) Amazon Books

Figure 2: Distribution of recommendation sizes from each
method. Three figures in the same row share the y-axis.

Table 2: Calibration error and user utility for each calibration
method. User utilities are computed when each calibration
method is applied to PerK. Lower is better for ECE.

Dataset Calibration ECE ↓ NDCG PDCG F1 TP

ML10M
uncalibrated 0.1284 0.4083 -0.1071 0.1966 0.4481

global 0.0046 0.4255 0.0838 0.2175 0.4925
user-wise 0.0011 0.4482 0.0928 0.2293 0.5335

CiteULike
uncalibrated 0.0480 0.1811 -0.5667 0.0975 0.2512

global 0.0017 0.1940 -0.5306 0.1054 0.2639
user-wise 0.0003 0.2061 -0.5177 0.1080 0.2764

ML25M
uncalibrated 0.1572 0.3612 -0.2311 0.1669 0.3812

global 0.0422 0.3761 -0.1015 0.1757 0.4007
user-wise 0.0098 0.4056 0.0047 0.1960 0.4742

ABooks
uncalibrated 0.3371 0.0812 -0.8864 0.0427 0.1391

global 0.0581 0.0946 -0.8655 0.0449 0.1477
user-wise 0.0171 0.0982 -0.8646 0.0468 0.1553

distributions of Oracle show that the optimal recommendation size
for maximum user utility differs for each user. (2) The distributions
of MtCut are severely skewed towards 𝑘 ∈ [10, 20] and have a high
peak in that range. The reason is that MtCut is overfitted to select
the globally well-performing 𝑘 which falls into the range of [10,
20] (refer to F1 on MovieLens 25M and Amazon Books with BPR in
Table 1). (3) The distributions of PerK are smooth and fairly close
to those of Oracle. It is noted that we can set the constraints for the
minimum recommendation size in Eq.3, if the system requires it.

6.4 Ablation Study for Calibration
Table 2 presents the ablation study on the calibration method with
NCF [14] as a base model. We compare (1) the calibration perfor-
mance, and (2) user utility when it is applied to PerK. The calibration
performance is measured by Expected Calibration Error (ECE) [35],
a widely used metric for measuring the gap between the output
probability and true likelihood of interaction [12, 24]. We observe
that the proposed user-wise calibration function shows lower ECE
than the global calibration function. Accordingly, PerK yields higher
user utilities when it adopts user-wise calibration, demonstrating
the superiority of the proposed user-wise calibration over the global
calibration.

WWW ’24, May 13–17, 2024, Singapore Anonymous

Table 3: Space and Time analysis. #Params. denotes the num-
ber of learnable parameters and Time denotes the wall time
(in ms) used for generating a ranking list for a user.

Base Method ML10M CiteULike ML25M ABooks
model #Params. Time #Params. Time #Params. Time #Params. Time

BPR Top-k 5.041M 2.871 1.291M 2.086 11.574M 2.374 34.542M 2.636
PerK 5.181M 3.022 1.292M 2.241 11.898M 2.652 34.857M 2.973

NCF Top-k 10.092M 4.092 2.581M 2.566 23.156M 3.067 69.117M 7.767
PerK 10.232M 4.406 2.588M 2.817 23.480M 3.378 69.432M 8.871

LightGCN Top-k 5.042M 3.195 2.571M 2.493 23.147M 2.628 34.542M 3.781
PerK 5.181M 3.449 2.577M 2.759 23.472M 2.969 34,857M 4.106

(a) NDCG (b) F1

Figure 3: Hyperparameter study of𝑀

6.5 Space and Time analysis
Table 3 shows the number of learnable parameters and inference
time of Top-𝑘 and PerK. The target user utility is NDCG for PerK.
We use PyTorch [39] with CUDA on GTX Titan Xp GPU and Intel
Xeon(R) E5-2640 v4 CPU. First, PerK does not significantly increase
the number of learnable parameters from Top-𝑘 . PerK only has two
additional parameters for each user’s calibration function, and it has
a negligible impact considering the size of the user embedding is
typically selected in the range of 64-128. Second, the inference time
is increased by about 10%. To speed up the estimation of expected
user utility, (1) We perform the user-wise calibration for all users
together with a few matrix operations and estimate the expected
user utility with various 𝑘 in a parallel way, and (2) We adopt two
approximation techniques for fast computation of the expected user
utility in Eq.7d. The hyperparameter study for 𝑀 , which is used
for this approximation, with BPR is presented in Figure 3. We can
see that it is enough to aggregate the summation in Eq.7d just to
𝑀 = 2000 rather than to the number of all unobserved items |I−

𝑢 |.

6.6 Case Study
We present a case study on Amazon dataset to provide concrete
examples of how PerK can be applied in real-world applications.
Single-domain scenario. Figure 4 (a) shows a case study of the
single-domain scenario on Amazon Books with BPR as a base model
and F1 as a target utility. Real-world recommender systems often
display trending items alongside personalized ones, to create a
balanced experience that encompasses both popular choices and in-
dividual preferences [17]. We determine the number of personalized
items with PerK, and the remaining slots are then populated with
trending items. As a result, F1 for the personalized items increases
by a large margin for both users, and more trending items can be
presented to the second user. In this context, the top-personalized-
𝐾 recommendation allows the system to strike a balance between
the exploration-exploitation trade-off by effectively adjusting the
number of personalized items.

(a) Single-domain scenario on Amazon Books

(b) Multi-domain scenario on Amazon

Figure 4: Case study. 1 and 0 represent the relevant and the ir-
relevant labels, which are unavailable at the inference phase.
Decimal numbers indicate the F1 score.

Multi-domain scenario. Figure 4 (b) shows a case study of the
multi-domain scenario on the four largest domains of Amazon
datasets with BPR as a base model and F1 as a target utility. Here,
we have a constraint on the total recommendation size considering
the system’s limited resources, such as screen size and thumbnail
dimensions. We generate top-personalized-𝐾 recommendations for
each domain by slightly modifying Eq.3, to maximize the average
F1 across all domains under the constraint that the total recom-
mendation size should not exceed 40 (The modified optimization
problem for this scenario is presented in Appendix A.2). As a result,
we can see that the average F1 score increases as we adopt the
top-personalized-𝐾 recommendation scheme. This example demon-
strates that the top-personalized-𝐾 recommendation can be adopted
to multi-domain systems for displaying the optimized number of
items from each domain on a single constrained page.

7 CONCLUSION
We first highlight the necessity of personalized recommendation
size based on its practical advantages in real-world scenarios, which
has not been studied well in the previous literature. Then, we pro-
pose Top-Personalized-𝐾 Recommendation, a new recommenda-
tion task that aims to find the optimal recommendation size for
each user to maximize individual user satisfaction. As a solution
to the top-personalized-𝐾 recommendation, we propose PerK, a
framework determining the recommendation size that maximizes
the expected user utility estimated by using calibrated interaction
probabilities. In our thorough experiments on real-world datasets,
PerK outperforms recent competitors in the top-personalized-𝐾
recommendation task. We believe that the top-personalized-𝐾 rec-
ommendation can provide enhanced solutions for various item
recommendation scenarios and anticipate future work on applica-
tions including multi-domain recommender systems, sponsored
advertisements, and prefetching mechanisms.

Top-Personalized-K Recommendation WWW ’24, May 13–17, 2024, Singapore

REFERENCES
[1] Enrique Amigó, Stefano Mizzaro, and Damiano Spina. 2022. Ranking Interruptus:

When Truncated Rankings Are Better and How to Measure That. In SIGIR. 588–
598.

[2] Avi Arampatzis, Jaap Kamps, and Stephen Robertson. 2009. Where to stop
reading a ranked list? Threshold optimization using truncated score distributions.
In SIGIR. 524–531.

[3] Dara Bahri, Yi Tay, Che Zheng, Donald Metzler, and Andrew Tomkins. 2020.
Choppy: Cut transformer for ranked list truncation. In SIGIR. 1513–1516.

[4] Patrick Billingsley. 2008. Probability and measure. John Wiley & Sons.
[5] Andrei Broder, Massimiliano Ciaramita, Marcus Fontoura, Evgeniy Gabrilovich,

Vanja Josifovski, Donald Metzler, Vanessa Murdock, and Vassilis Plachouras. 2008.
To swing or not to swing: learning when (not) to advertise. In CIKM. 1003–1012.

[6] Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie
Li, and Irwin King. 2022. Learning binarized graph representations with multi-
faceted quantization reinforcement for top-k recommendation. In KDD. 168–178.

[7] Zhiyong Cheng, Ying Ding, Lei Zhu, and Mohan Kankanhalli. 2018. Aspect-
aware latent factor model: Rating prediction with ratings and reviews. In WWW.
639–648.

[8] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An experi-
mental comparison of click position-bias models. In WWW. 87–94.

[9] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
recommender algorithms on top-n recommendation tasks. In RecSys. 39–46.

[10] Shrey Desai and Greg Durrett. 2020. Calibration of Pre-trained Transformers. In
EMNLP. 295–302.

[11] Zhipeng Ding, Xu Han, Peirong Liu, and Marc Niethammer. 2021. Local temper-
ature scaling for probability calibration. In ICCV. 6889–6899.

[12] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration
of modern neural networks. In ICML. 1321–1330.

[13] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR. 639–648.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[17] Sarika Jain, Anjali Grover, Praveen Singh Thakur, and Sourabh Kumar Choudhary.
2015. Trends, problems and solutions of recommender system. In International
conference on computing, communication & automation. IEEE, 955–958.

[18] Dietmar Jannach and Michael Jugovac. 2019. Measuring the business value of
recommender systems. ACM Transactions on Management Information Systems
(TMIS) 10, 4 (2019), 1–23.

[19] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[20] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

[21] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[22] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[23] Meelis Kull, Telmo Silva Filho, and Peter Flach. 2017. Beta calibration: a well-
founded and easily implemented improvement on logistic calibration for binary
classifiers. In AISTATS. 623–631.

[24] Wonbin Kweon, SeongKu Kang, and Hwanjo Yu. 2022. Obtaining Calibrated
Probabilities with Personalized Ranking Models. In AAAI. 4083–4091.

[25] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In ICML. 1188–1196.

[26] Lucien Le Cam. 1960. An approximation theorem for the Poisson binomial
distribution. Pacific J. Math. 10, 4 (1960), 1181–1197.

[27] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for
recommender systems. In KDD. 305–314.

[28] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In WWW. 689–698.

[29] Yen-Chieh Lien, Daniel Cohen, and W Bruce Croft. 2019. An assumption-free
approach to the dynamic truncation of ranked lists. In SIGIR. 79–82.

[30] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018.
Modeling task relationships in multi-task learning with multi-gate mixture-of-
experts. In KDD. 1930–1939.

[31] Yixiao Ma, Qingyao Ai, Yueyue Wu, Yunqiu Shao, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2022. Incorporating Retrieval Information into the Truncation of
Ranking Lists for Better Legal Search. In SIGIR. 438–448.

[32] Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. 2017. Cross-domain
recommendation: An embedding and mapping approach.. In IJCAI. 2464–2470.

[33] Sean M McNee, John Riedl, and Joseph A Konstan. 2006. Being accurate is
not enough: how accuracy metrics have hurt recommender systems. In CHI.
1097–1101.

[34] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua
Zhai, Neil Houlsby, Dustin Tran, and Mario Lucic. 2021. Revisiting the calibration
of modern neural networks. In NeurIPS. 15682–15694.

[35] Mahdi PakdamanNaeini, Gregory Cooper, andMilos Hauskrecht. 2015. Obtaining
well calibrated probabilities using bayesian binning. In AAAI.

[36] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading
comprehension dataset. In CoCo@NeurIPS.

[37] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In EMNLP-IJCNLP.
188–197.

[38] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
NeurIPS.

[40] John Platt, Alexander Smola, Peter Bartlett, Bernhard Scholkopf, and Dale Schuur-
mans. 1999. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers 10, 3
(1999), 61–74.

[41] David MW Powers. 2011. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. Journal of Machine Learning
Technologies 2 (2011), 37–63. Issue 1.

[42] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval
13, 4 (2010), 346–374.

[43] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Citeseer, 29–48.

[44] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[45] Stephen E Robertson. 1977. The probability ranking principle in IR. Journal of
documentation 33, 4 (1977), 209–304.

[46] Yuta Saito and Thorsten Joachims. 2022. Fair Ranking as Fair Division: Impact-
Based Individual Fairness in Ranking. In KDD. 1514–1524.

[47] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.
2020. Unbiased recommender learning from missing-not-at-random implicit
feedback. In WSDM. 501–509.

[48] Harvey M Salkin and Cornelis A De Kluyver. 1975. The knapsack problem: a
survey. Naval Research Logistics Quarterly 22, 1 (1975), 127–144.

[49] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings.
In KDD. 2219–2228.

[50] Jie Tang, Sen Wu, Jimeng Sun, and Hang Su. 2012. Cross-domain collaboration
recommendation. In KDD. 1285–1293.

[51] Stephen Tomlinson, Douglas W Oard, Jason R Baron, and Paul Thompson. 2007.
Overview of the TREC 2007 Legal Track.. In TREC.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

[53] Dong Wang, Jianxin Li, Tianchen Zhu, Haoyi Zhou, Qishan Zhu, Yuxin Wen,
and Hongming Piao. 2022. MtCut: A Multi-Task Framework for Ranked List
Truncation. InWSDM. 1054–1062.

[54] Hao Wang, Binyi Chen, and Wu-Jun Li. 2013. Collaborative topic regression with
social regularization for tag recommendation. In IJCAI.

[55] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In KDD. 1235–1244.

[56] Markus Weimer, Alexandros Karatzoglou, Quoc Le, and Alex Smola. 2007.
Cofirank-maximum margin matrix factorization for collaborative ranking. In
NeurIPS. 222–230.

[57] Stefan Wilk, Dominik Schreiber, Denny Stohr, and Wolfgang Effelsberg. 2016.
On the effectiveness of video prefetching relying on recommender systems for
mobile devices. In 2016 13th IEEE Annual Consumer Communications &Networking
Conference (CCNC). IEEE, 429–434.

[58] Chen Wu, Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan, and Xueqi Cheng.
2021. Learning to Truncate Ranked Lists for Information Retrieval. In AAAI.

[59] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and
Xing Xie. 2021. Self-supervised graph learning for recommendation. In SIGIR.
726–735.

[60] Lianghao Xia, Chao Huang, and Chuxu Zhang. 2022. Self-supervised hypergraph
transformer for recommender systems. In KDD. 2100–2109.

[61] Song Yao and Carl FMela. 2011. A dynamicmodel of sponsored search advertising.
Marketing Science 30, 3 (2011), 447–468.

[62] An Zhang, Wenchang Ma, Xiang Wang, and Tat-Seng Chua. 2022. Incorporating
Bias-aware Margins into Contrastive Loss for Collaborative Filtering. In NeurIPS.

WWW ’24, May 13–17, 2024, Singapore Anonymous

A APPENDIX
A.1 Derivation of Expected User Utility
A.1.1 Normalized Discounted Cumulative Gain (NDCG).
The expected NDCG with respect to the random variable 𝑌 is:

E𝑌 [𝑈NDCG (𝜋𝑘 |𝑢)] = E𝑌
[𝑈DCG (𝜋𝑘 |𝑢)
𝑈IDCG (𝜋𝑘 |𝑢)

]
=

∑︁
𝑌𝑢,1,...,𝑌𝑢,|I−𝑢 |

𝑃 (𝑌𝑢,1, ..., 𝑌𝑢, | I−
𝑢 |)

𝑈DCG (𝜋𝑘 |𝑢) |𝑌𝑢,∗
𝑈IDCG (𝜋𝑘 |𝑢) |𝑌𝑢,∗

.

(17)
𝑈DCG (𝜋𝑘 |𝑢) and𝑈IDCG (𝜋𝑘 |𝑢) are conditionally independent given
𝑌𝑢,∗. Since investigating all possible combinations of 𝑌𝑢,𝑟 is in-
tractable, we re-formulate the above equation with the summation
over possible 𝑆𝑢

𝑌
by adopting the total expectation theorem [4].

E𝑌 [𝑈NDCG (𝜋𝑘 |𝑢)] =
| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚) E𝑌 |𝑆𝑢

𝑌
=𝑚

[𝑈DCG (𝜋𝑘 |𝑢)
𝑈IDCG (𝜋𝑘 |𝑢)

]
=

| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚)

E𝑌 |𝑆𝑢
𝑌
=𝑚 [𝑈DCG (𝜋𝑘 |𝑢)]

𝑈IDCG (𝜋𝑘 |𝑢) |𝑆𝑢
𝑌
=𝑚

.

(18)
𝑈DCG (𝜋𝑘 |𝑢) and𝑈IDCG (𝜋𝑘 |𝑢) are conditionally independent given
𝑆𝑢
𝑌
, and 𝑈IDCG (𝜋𝑘 |𝑢) |𝑆𝑢

𝑌
=𝑚 =

∑min(𝑚,𝑘)
𝑟=1

1
log(1+𝑟) . The expected

DCG with respect to 𝑌 conditioned on 𝑆𝑢
𝑌
=𝑚 can be computed as

follows:

E𝑌 |𝑆𝑢
𝑌
=𝑚 [𝑈DCG (𝜋𝑘 |𝑢)] = E𝑌 |𝑆𝑢

𝑌
=𝑚

[𝑘∑︁
𝑟=1

1{𝑌=1} (𝑌𝑢,𝑟)
log2 (1 + 𝑟)

]
=

𝑘∑︁
𝑟=1

𝑃 (𝑌𝑢,𝑟 = 1|𝑆𝑢
𝑌
=𝑚)

log2 (1 + 𝑟)

=

𝑘∑︁
𝑟=1

𝑃 (𝑌𝑢,𝑟 = 1)𝑃 (𝑆𝑢
𝑌−𝑟

=𝑚 − 1)
𝑃 (𝑆𝑢

𝑌
=𝑚)log2 (1 + 𝑟)

,

(19)

where 𝑆𝑢
𝑌−𝑟

= 𝑆𝑢
𝑌
− 𝑌𝑢,𝑟 . After aggregating Eq.18 and Eq.19, we get

E𝑌 [𝑈NDCG (𝜋𝑘 |𝑢)] =
| I−
𝑢 |∑︁

𝑚=1

∑𝑘
𝑟=1

𝑃 (𝑌𝑢,𝑟=1)𝑃 (𝑆𝑢𝑌−𝑟 =𝑚−1)
log2 (1+𝑟)∑min(𝑚,𝑘)

𝑟=1
1

log2 (1+𝑟)
. (20)

For scalability, we adopt two simple approximations and get

E𝑌 [𝑈NDCG (𝜋𝑘 |𝑢)] ≈
𝑀∑︁
𝑚=1

∑𝑘
𝑟=1

𝑃 (𝑌𝑢,𝑟=1)𝑃 (𝑆𝑢𝑌 =𝑚−1)
log2 (1+𝑟)∑min(𝑚,𝑘)

𝑟=1
1

log2 (1+𝑟)
. (21)

The details about the approximations are presented in Sec 5.2.1.

A.1.2 F1 Score (F1). The expected F1 with respect to the interac-
tion variable 𝑌 is computed as follows:

E𝑌 [𝑈F1 (𝜋𝑘 |𝑢)] =
| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚) E𝑌 |𝑆𝑢

𝑌
=𝑚 [𝑈F1 (𝜋𝑘 |𝑢)]

=

| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚)

2 ·∑𝑘𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1|𝑆𝑢
𝑌
=𝑚)

𝑚 + 𝑘

=

| I−
𝑢 |∑︁

𝑚=1

2 ·∑𝑘𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1)𝑃 (𝑆𝑢
𝑌−𝑟

=𝑚 − 1)
𝑚 + 𝑘

≈
𝑀∑︁
𝑚=1

2 ·∑𝑘𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1)𝑃 (𝑆𝑢
𝑌
=𝑚 − 1)

𝑚 + 𝑘 .

(22)
Here, we use the total expectation theorem and apply the same
approximations as done in Eq.7.

A.1.3 Truncated Precision (TP). The expected TP with respect
to the interaction variable 𝑌 is computed as follows:

E𝑌 [𝑈TP (𝜋𝑘 |𝑢)] =
| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚) E𝑌 |𝑆𝑢

𝑌
=𝑚 [𝑈TP (𝜋𝑘 |𝑢)]

=

| I−
𝑢 |∑︁

𝑚=1
𝑃 (𝑆𝑢𝑌 =𝑚)

∑𝑘
𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1|𝑆𝑢

𝑌
=𝑚)

min(𝑘,𝑚)

=

| I−
𝑢 |∑︁

𝑚=1

∑𝑘
𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1)𝑃 (𝑆𝑢

𝑌−𝑟
=𝑚 − 1)

min(𝑘,𝑚)

≈
𝑀∑︁
𝑚=1

∑𝑘
𝑟=1 𝑃 (𝑌𝑢,𝑟 = 1)𝑃 (𝑆𝑢

𝑌
=𝑚 − 1)

min(𝑘,𝑚) .

(23)

Here, we use the total expectation theorem and apply the same
approximations as done in Eq.7.

A.2 PerK on Multi-Domain Scenario
In the multi-domain scenario, PerK generates top-personalized-𝐾
recommendations for each domain by slightly modifying Eq.3:

{𝑘𝑥max}𝑥∈S = argmax
{𝑘𝑥 }𝑥 ∈S

∑︁
𝑥∈S

𝑈 (𝜋𝑘𝑥 |𝑢, 𝑥)

s.t. 𝜋𝑘𝑥 = argsort
𝑖∈I−

𝑢,𝑥

𝑓 𝑥
𝜃
(𝑢, 𝑖) [: 𝑘], ∀𝑘𝑥 ∈ [𝐾], 𝑥 ∈ S∑︁

𝑥∈S
𝑘𝑥 ≤ 𝑁

(24)

𝑘𝑥 is the recommendation size for domain 𝑥 and S is set of all do-
mains.𝑈 (𝜋𝑘𝑥 |𝑢, 𝑥) is user utility of user 𝑢 and domain 𝑥 . I−

𝑢,𝑥 is the
unobserved itemset of user 𝑢 and domain 𝑥 , 𝑓 𝑥

𝜃
is the recommender

model for domain 𝑥 (it can be any cross/multi-domain recommender
model). 𝑁 is the total recommendation size and N is the natural
numbers set. To briefly explain, PerK finds the recommendation
size for each domain to maximize the average user utility across
all domains under the constraint that the total recommendation
size should not exceed 𝑁 . This optimization problem is a variant
of the Knapsack problem [48] and can be solved by dynamic pro-
gramming. We present a case study of the multi-domain scenario
on the four largest domains of Amazon datasets in Section 6.6.

Top-Personalized-K Recommendation WWW ’24, May 13–17, 2024, Singapore

A.3 Detailed Experiment Setup
We will publicly provide the GitHub repository of this work in the
final version.

A.3.1 Dataset Statistics. Data statistics after the preprocessing
are presented in Table 4.

Table 4: Data statistics after the preprocessing.

Dataset #Users #Items #Interactions Sparsity
MovieLens 10M 69,838 8,939 9,985,038 98.40%

CiteULike 3,277 16,807 178,187 99.68%
MovieLens 25M 162,414 18,424 24,811,113 99.17%
Amazon Books 157,809 112,048 8,460,428 99.95%

A.3.2 Training ofMethods Compared. For AttnCut andMtCut,
we use the source code of the authors.6 We use a 𝐾-dimentional
ranking score vector for the input of the models. We have tried
to use the item embeddings as additional features for the models,
but it did not increase the performance. For each dataset, hyper-
parameters are tuned by using grid searches on the validation set.
We use Adam optimizer with learning rate in {10−2, 10−3, 10−4}
and weight decay in {0, 10−1, 10−3, 10−5, 10−7, 10−9}. We set the
batch size to 64 and the embedding size to 64. The number of lay-
ers and the number of transformer heads are chosen from {1, 2}
and the dropout ratio is set to 0.2. Each model is trained until the
convergence of validation performance.

A.3.3 Training of BaseRecommenderModels. We adopt three
widely-used recommender models with various model architectures
and loss functions. Bayesian Personalized Ranking (BPR) [44] cap-
tures the user-item relevance by the inner product of the user and
the item embeddings, and is trained with the loss function that
makes the model put the higher ranking score on the observed
pair than the unobserved pair. Neural Collaborative Filtering (NCF)
[14] adopts the feed-forward neural networks to output the ranking
score of a user-item pair and is trainedwith the binary cross-entropy
loss. LightGCN (LGCN) [13] adopts simplified Graph Convolutional
Networks (GCN) [21] to capture the high-order interaction between
the user and the item, and is trained with the loss function of BPR.
Since PerK is a model-agnostic framework, other models can be
also adopted for PerK in future work.

For all the base recommender models, we basically follow the
source code of the authors and use PyTorch [39] for the imple-
mentation. For each dataset, hyperparameters are tuned by us-
ing grid searches on the validation set. We use Adam optimizer
[20] with learning rate in {10−2, 10−3, 10−4} and weight decay in
{0, 10−1, 10−3, 10−5, 10−7, 10−9}. We set the batch size to 8192 and
the embedding size is chosen from {64, 128} for all base models. For
NCF and LGCN, the number of layers is chosen from {1, 2}. The
negative sample rate is set to 1 for all models. Each model is trained
until the convergence of validation performance.

6https://github.com/Woody5962/Ranked-List-Truncation

https://github.com/Woody5962/Ranked-List-Truncation

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Recommendation with Implicit Feedback
	3.2 User Utility
	3.3 Top-K Recommendation

	4 Proposed Task
	5 Proposed Framework
	5.1 Overview
	5.2 Expected User Utility
	5.3 Calibrated Interaction Probability
	5.4 Optimization Procedure

	6 Experiments
	6.1 Experiment Setup
	6.2 Comparison of User Utility
	6.3 Personalized Recommendation Size
	6.4 Ablation Study for Calibration
	6.5 Space and Time analysis
	6.6 Case Study

	7 Conclusion
	References
	A Appendix
	A.1 Derivation of Expected User Utility
	A.2 PerK on Multi-Domain Scenario
	A.3 Detailed Experiment Setup

