
Efficiently Parameterized Neural Metriplectic Systems

Anonymous Author(s)
Affiliation
Address
email

Abstract

Metriplectic systems are learned from data in a way that scales quadratically in both1

the size of the state and the rank of the metriplectic data. Besides being provably2

energy conserving and entropy stable, the proposed approach comes with approxi-3

mation results demonstrating its ability to accurately learn metriplectic dynamics4

from data as well as an error estimate indicating its potential for generalization to5

unseen timescales when approximation error is low. Examples are provided which6

illustrate performance in the presence of both full state information as well as when7

entropic variables are unknown, confirming that the proposed approach exhibits8

superior accuracy and scalability without compromising on model expressivity.9

1 Introduction10

The theory of metriplectic, also called GENERIC, systems [1, 2] provides a principled formalism11

for encoding dissipative dynamics in terms of complete thermodynamical systems that conserve12

energy and produce entropy. By formally expressing the reversible and irreversible parts of state13

evolution with separate algebraic brackets, the metriplectic formalism provides a general mechanism14

for maintaining essential conservation laws while simultaneously respecting dissipative effects.15

Thermodynamic completeness implies that any dissipation is caught within a metriplectic system16

through the generation of entropy, allowing for a holistic treatment which has already found use in17

modeling fluids [3, 4], plasmas [5, 6], and kinetic theories [7, 8].18

From a machine learning point of view, the formal separation of conservative and dissipative effects19

makes metriplectic systems highly appealing for the development of phenomenological models. Given20

data which is physics-constrained or exhibits some believed properties, a metriplectic system can be21

learned to exhibit the same properties with clearly identifiable conservative and dissipative parts. This22

allows for a more nuanced understanding of the governing dynamics via an evolution equation which23

reduces to an idealized Hamiltonian system as the dissipation is taken to zero. Moreover, elements24

in the kernel of the learned conservative part are immediately understood as Casimir invariants,25

which are special conservation laws inherent to the phase space of solutions, and are often useful26

for understanding and exerting control on low-dimensional structure in the system. On the other27

hand, the same benefit of metriplectic structure as a “direct sum” of reversible and irreversible parts28

makes it challenging to parameterize in an efficient way, since delicate degeneracy conditions must29

be enforced in the system for all time. In fact, there are no methods at present for learning general30

metriplectic systems which scale optimally with both dimension and the rank of metriplectic data—an31

issue which this work directly addresses.32

Precisely, metriplectic dynamics on the finite or infinite dimensional phase space P are generated by a33

free energy function(al) F : P → R, F = E+S defined in terms of a pair E,S : P → R representing34

energy and entropy, respectively, along with two algebraic brackets {·, ·}, [·, ·] : C∞(P)×C∞(P) →35

C∞(P) which are bilinear derivations on C∞(P) with prescribed symmetries and degeneracies36

{S, ·} = [E, ·] = 0. Here {·, ·} is an antisymmetric Poisson bracket, which is a Lie algebra37

realization on functions, and [·, ·] is a degenerate metric bracket which is symmetric and positive38

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

semi-definite. When P ⊂ Rn for some n > 0, these brackets can be identified with symmetric39

matrix fields L : P → Skewn(R),M : P → Symn(R) satisfying {F,G} = ∇F · L∇G and40

[F,G] = ∇F ·M∇G for all functions F,G ∈ C∞(P) and all states x ∈ P . Using the degeneracy41

conditions along with ∇x = I and abusing notation slightly then leads the standard equations for42

metriplectic dynamics,43

ẋ = {x, F}+ [x, F] = {x, E}+ [x, S] = L∇E +M∇S,

which are provably energy conserving and entropy producing. To see why this is the case, recall that44

L⊺ = −L. It follows that the infinitesimal change in energy satisfies45

Ė = ẋ · ∇E = L∇E · ∇E +M∇S · ∇E = −L∇E · ∇E +∇S ·M∇E = 0,

and therefore energy is conserved along the trajectory of x. Similarly, the fact that M⊺ = M is46

positive semi-definite implies that47

Ṡ = ẋ · ∇S = L∇E · ∇S +M∇S · ∇S = −∇E ·L∇S +M∇S · ∇S = |∇S|2M ≥ 0,

so that entropy is nondecreasing along x as well. Geometrically, this means that the motion of a48

trajectory x is everywhere tangent to the level sets of energy and transverse to those of entropy,49

reflecting the fact that metriplectic dynamics are a combination of noncanonical Hamiltonian (M =50

0) and generalized gradient (L = 0) motions. Note that these considerations also imply the51

Lyapunov stability of metriplectic trajectories, as can be seen by taking E as a Lyapunov function.52

Importantly, this also implies that metriplectic trajectories which start in the (often compact) set53

K = {x |E(x) ≤ E(x0)} remain there for all time.54

In phenomenological modeling, the entropy S is typically chosen from Casimirs of the Poisson55

bracket generated by L, i.e. those quantities C ∈ C∞(P) such that L∇C = 0. On the other hand,56

the method which will be presented here, termed neural metriplectic systems (NMS), allows for all of57

the metriplectic data L,M , E, S to be approximated simultaneously, removing the need for Casimir58

invariants to be known or assumed ahead of time. The only restriction inherent to NMS is that the59

metriplectic system being approximated is nondegenerate (c.f. Definition 3.1), a mild condition60

meaning that the gradients of energy and entropy cannot vanish at any point x ∈ P in the phase space.61

It will be shown that NMS alleviates known issues with previous methods for metriplectic learning,62

leading to easier training, superior parametric efficiency, and better generalization performance.63

Contributions. The proposed NMS method for learning metriplectic models offers the following64

advantages over previous state-of-the-art: (1) It approximates arbitrary nondegenerate metriplectic65

dynamics with optimal quadratic scaling in both the problem dimension n and the rank r of the66

irreversible dynamics. (2) It produces realistic, thermodynamically consistent entropic dynamics67

from unobserved entropy data. (3) It admits universal approximation and error accumulation results68

given in Proposition 3.7 and Theorem 3.9. (4) It yields exact energy conservation and entropy stability69

by construction, allowing for effective generalization to unseen timescales.70

2 Previous and Related Work71

Previous attempts to learn metriplectic systems from data separate into “hard” and “soft” constrained72

methods. Hard constrained methods enforce metriplectic structure by construction, so that the73

defining properties of metriplecticity cannot be violated. Conversely, methods with soft constraints74

relax some aspects of metriplectic structure in order to produce a wider model class which is easier to75

parameterize. While hard constraints are the only way to truly guarantee appropriate generalization76

in the learned surrogate, the hope of soft constrained methods is that the resulting model is “close77

enough” to metriplectic that it will exhibit some of the favorable characteristics of metriplectic78

systems, such as energy and entropy stability. Some properties of the methods compared in this work79

are summarized in Table 1.80

Soft constrained methods. Attempts to learn metriplectic systems using soft constraints rely on81

relaxing the degeneracy conditions L∇S = M∇E = 0. This is the approach taken in [9], termed82

SPNN, which learns an almost-metriplectic model parameterized with generic neural networks83

through a simple L2 penalty term in the training loss, Lpen = |L∇E|2 + |M∇S|2. This widens84

the space of allowable network parameterizations for the approximate operators L,M . While85

2

the resulting model violates the first and second laws of thermodynamics, the authors show that86

reasonable trajectories are still obtained, at least when applied within the range of timescales used87

for training. A similar approach is taken in [10], which targets larger problems and develops an88

almost-metriplectic model reduction strategy based on the same core idea.89

Hard constrained methods. Perhaps the first example of learning metriplectic systems from data90

was given in [11] in the context of system identification. Here, training data is assumed to come from91

a finite element simulation, so that the discrete gradients of energy and entropy can be approximated92

as ∇E(x) = Ax,∇S(x) = Bx. Assuming a fixed form for L produces a constrained learning93

problem for the constant matrices M ,A,B which is solved to yield a provably metriplectic surrogate94

model. Similarly, the work [12] learns M , E given L, S by considering a fixed block-wise decoupled95

form which trivializes the degeneracy conditions, i.e. L = [⋆ 0;0 0] and M = [0 0;0 ⋆]. This96

line of thought is continued in [13] and [14], both of which learn metriplectic systems with neural97

network parameterizations by assuming this decoupled block structure. A somewhat broader class98

of metriplectic systems are considered in [15] using tools from exterior calculus, with the goal of99

learning metriplectic dynamics on graph data. This leads to a structure-preserving network surrogate100

which scales linearly in the size of the graph domain, but also cannot express arbitrary metriplectic101

dynamics due to the specific choices of model form for L,M .102

A particularly inspirational method for learning general metriplectic systems was given in [16] and103

termed GNODE, building on parameterizations of metriplectic operators developed in [17]. GNODE104

parameterizes learnable reversible and irreversible bracket generating matrices L,M in terms of state-105

independent tensors ξ ∈ (Rn)
⊗3 and ζ ∈ (Rn)

⊗4: for 1 ≤ α, β, γ, µ, ν ≤ n, the authors choose106

Lαβ(x) =
∑

γ ξαβγ∂
γS and Mαβ(x) =

∑
µ,ν ζαµ,βν∂

µE∂νE, where ∂αF = ∂F/∂xα, ξ is to-107

tally antisymmetric, and ζ is symmetric between the pairs (α, µ) and (β, ν) but antisymmetric within108

each of these pairs. The key idea here is to exchange the problem of enforcing degeneracy conditions109

L∇E = M∇S = 0 in matrix fields L,M with the problem of enforcing symmetry conditions in110

tensor fields ξ, ζ, which is comparatively easier but comes at the expense of underdetermining the111

problem. In GNODE, enforcement of these symmetries is handled by a generic learnable 3-tensor112

ξ̃ ∈ (Rn)
⊗3 along with learnable matrices D ∈ Symr(R) and Λs ∈ Skewn(R) for 1 ≤ s ≤ r ≤ n,113

leading to the final parameterizations ξαβγ = 1
3!

(
ξ̃αβγ − ξ̃αγβ + ξ̃βγα − ξ̃βαγ + ξ̃γαβ − ξ̃γβα

)
and114

ζαµ,βν =
∑

s,t Λ
s
αµDstΛ

t
βν . Along with learnable energy and entropy functions E,S parameterized115

by multi-layer perceptrons (MLPs), the data L,M learned by GNODE guarantees metriplectic116

structure in the surrogate model and leads to successful learning of metriplectic systems in some117

simple cases of interest. However, note that this is a highly redundant parameterization requiring118 (
n
3

)
+ r
(
n
2

)
+
(
r+1
2

)
+ 2 learnable scalar functions, which exhibits O(n3 + rn2) scaling in the119

problem size because of the necessity to compute and store
(
n
3

)
entries of ξ and r

(
n
2

)
entries of Λ.120

Additionally, the assumption of state-independence in the bracket generating tensors ξ, ζ is somewhat121

restrictive, limiting the class of problems to which GNODE can be applied.122

A related approach to learning metriplectic dynamics with hard constraints was seen in [18], which123

proposed a series of GFINN architectures depending on how much of the information L,M , E, S124

is assumed to be known. In the case that L,M are known, the GFINN energy and entropy are125

parameterized with scalar-valued functions f ◦ PkerA where f : Rn → R (E or S) is learnable and126

PkerA : Rn → Rn is orthogonal projection onto the kernel of the (known) operator A (L or M).127

It follows that the gradient ∇(f ◦ PkerA) = PkerA∇f(PkerA) lies in the kernel of A, so that the128

degeneracy conditions are guaranteed at the expense of constraining the model class of potential ener-129

gies/entropies. Alternatively, in the case that all of L,M , E, S are unknown, GFINNs use learnable130

scalar functions f for E,S parameterized by MLPs as well as two matrix fields QE ,QS ∈ Rr×n131

with rows given by qf
s =

(
Sf
s∇f

)⊺
for learnable skew-symmetric matrices Sf

s , 1 ≤ s ≤ r,132

f = E,S. Along with two triangular (r× r) matrix fields TL,TM , this yields the parameterizations133

L(x) = QS(x)⊺(TL(x)
⊺ − TL(x))Q

S(x) and M(x) = QE(x)⊺(TM (x)⊺TM (x))QE(x),134

which necessarily satisfy the symmetries and degeneracy conditions required for metriplectic struc-135

ture. GFINNs are shown to both increase expressivity over the GNODE method as well as decrease136

redundancy, since the need for an explicit order-3 tensor field is removed and the reversible and137

irreversible brackets are allowed to depend explicitly on the state x. However, GFINNs still exhibit138

cubic scaling through the requirement of rn(n− 1) + r2 + 2 = O
(
rn2
)

learnable functions, which139

is well above the theoretical minimum required to express a general metriplectic system and leads to140

difficulties in training the resulting models.141

3

Model reduction. Finally, it is worth mentioning the closely related line of work involving model142

reduction for metriplectic systems, which began with [19]. As remarked there, preserving metriplec-143

ticity in reduced-order models (ROMs) exhibits many challenges due to its delicate requirements on144

the kernels of the involved operators. There are also hard and soft constrained approaches: the already145

mentioned [10] aims to learn a close-to-metriplectic data-driven ROM by enforcing degeneracies by146

penalty, while [20] directly enforces metriplectic structure in projection-based ROMs using exterior147

algebraic factorizations. The parameterizations of metriplectic data presented here are related to those148

presented in [20], although NMS does not require access to nonzero components of ∇E,∇S.149

3 Formulation and Analysis150

The proposed formulation of the metriplectic bracket-generating operators L,M used by NMS is151

based on the idea of exploiting structure in the tensor fields ξ, ζ to reduce the necessary number152

of degrees of freedom. In particular, it will be shown that the degeneracy conditions L∇S =153

M∇E = 0 imply more than just symmetry constraints on these fields, and that taking these additional154

constraints into account allows for a more compact representation of metriplectic data. Following155

this, results are presented which show that the proposed formulation is universally approximating on156

nondegenerate systems (c.f. Definition 3.1) and admits a generalization error bound in time.157

3.1 Exterior algebra158

Developing these metriplectic expressions will require some basic facts from exterior algebra, of159

which more details can be found in, e.g., [21, Chapter 19]. The basic objects in the exterior algebra160 ∧
V over the vector space V are multivectors, which are formal linear combinations of totally161

antisymmetric tensors on V . More precisely, if I(V) denotes the two-sided ideal of the free tensor162

algebra T (V) generated by elements of the form v ⊗ v (v ∈ V), then the exterior algebra is the163

quotient space
∧
V ≃ T (V)/I(V) equipped with the antisymmetric wedge product operation ∧.164

This graded algebra is equipped with natural projection operators P k :
∧
V →

∧
kV which map165

between the full exterior algebra and the kth exterior power of V , denoted
∧

kV , whose elements166

are homogeneous k-vectors. More generally, given an n-manifold M with tangent bundle TM , the167

exterior algebra
∧
(TM) is the algebra of multivector fields whose fiber over x ∈ M is given by168 ∧

TxM .169

For the present purposes, it will be useful to develop a correspondence between bivectors B ∈
∧

2(Rn)170

and skew-symmetric matrices B ∈ Skewn(R), which follows directly from Riesz representation in171

terms of the usual Euclidean dot product. More precisely, supposing that e1, ..., en are the standard172

basis vectors for Rn, any bivector B ∈
∧

2TRn can be represented as B =
∑

i<j B
ijei ∧ ej where173

Bij ∈ R denote the components of B. Define a grade-lowering action of bivectors on vectors through174

right contraction (see e.g. Section 3.4 of [22]), expressed for any vector v and basis bivector ei ∧ ej175

as (ei ∧ ej) · v = (ej · v)ei − (ei · v)ej . It follows that the action of B is equivalent to176

B · v =
∑
i<j

Bij((ej · v)ei − (ei · v)ej) =
∑
i<j

Bijvjei −
∑
j<i

Bjivjei =
∑
i,j

Bijvjei = Bv,

where B⊺ = −B ∈ Rn×n is a skew-symmetric matrix representing B, and we have re-indexed177

under the second sum and applied that Bij = −Bji for all i, j. Since the kernel of this action is178

the zero bivector, it is straightforward to check that this string of equalities defines an isomorphism179

M :
∧

2Rn → Skewn(R) from the 2nd exterior power of Rn to the space of skew-symmetric180

(n×n)-matrices over R: in what follows, we will write B ≃ B rather than B = M(B) for notational181

convenience. Note that a correspondence in the more general case of bivector/matrix fields follows in182

the usual way via the fiber-wise extension of M.183

3.2 Learnable metriplectic operators184

It is now possible to explain the proposed NMS formulation. First, note the following key definition185

which prevents the consideration of unphysical examples.186

Definition 3.1. A metriplectic system on K ⊂ Rn generated by the data L,M , E, S will be called187

nondegenerate provided ∇E,∇S ̸= 0 for all x ∈ K.188

4

With this, the NMS parameterizations for metriplectic operators are predicated on an algebraic result189

proven in Appendix A.190

Lemma 3.2. Let K ⊂ Rn. For all x ∈ K, the operator L : K → Rn×n satisfies L⊺ = −L191

and L∇S = 0 for some S : K → R, ∇S ̸= 0, provided there exists a non-unique bivector field192

A : U →
∧

2Rn and equivalent matrix field A ≃ A such that193

L ≃

(
A ∧ ∇S

|∇S|2

)
· ∇S = A− 1

|∇S|2
A∇S ∧∇S.

Similarly, for all x ∈ K a positive semi-definite operator M : K → Rn×n satisfies M⊺ = M194

and M∇E = 0 for some E : K → R, ∇E ̸= 0, provided there exists a non-unique matrix-valued195

B : K → Rn×r and symmetric matrix-valued D : K → Rr×r such that r ≤ n and196

M =
∑
s,t

Dst

(
bs ∧ ∇E

|∇E|2

)
· ∇E ⊗

(
bt ∧ ∇E

|∇E|2

)
· ∇E

=
∑
s,t

Dst

(
bs − bs · ∇E

|∇E|2
∇E

)(
bt − bt · ∇E

|∇E|2
∇E

)⊺

,

where bs denotes the sth column of B. Moreover, using P⊥
f =

(
I − ∇f ∇f⊺

|∇f |2

)
to denote the197

orthogonal projector onto Span(∇f)
⊥, these parameterizations of L,M are equivalent to the198

matricized expressions L = P⊥
S AP⊥

S and M = P⊥
E BDB⊺P⊥

E .199

Remark 3.3. Observe that the projections appearing in these expressions are the minimum necessary200

for guaranteeing the symmetries and degeneracy conditions necessary for metriplectic structure. In201

particular, conjugation by P⊥
f respects symmetry and ensures that both the input and output to the202

conjugated matrix field lie in Span(∇f)⊥.203

Lemma 3.2 demonstrates specific parameterizations for L,M that hold for any nondegenerate204

metriplectic data and are core to the NMS method for learning metriplectic dynamics. While205

generally underdetermined, these expressions are in a sense maximally specific given no additional206

information, since there is nothing available in the general metriplectic formalism to determine the207

matrix fields A,BDB⊺ on Span(∇S),Span(∇E), respectively. The following Theorem, also208

proven in Appendix A, provides a rigorous correspondence between metriplectic systems and these209

particular parameterizations.210

Theorem 3.4. The data L,M , E, S form a nondegenerate metriplectic system in the state variable211

x ∈ K if and only if there exist a skew-symmetric A : K → Skewn(R), symmetric postive212

semidefinite D : K → Symr(R), and generic B : K → Rn×r such that213

ẋ = L∇E +M∇S = P⊥
S AP⊥

S ∇E + P⊥
E BDB⊺P⊥

E ∇S.

Remark 3.5. Note that the proposed parameterizations for L,M are not one-to-one but properly214

contain the set of valid nondegenerate metriplectic systems in E,S, since the Jacobi identity on L215

necessary for a true Poisson manifold structure is not strictly enforced. For 1 ≤ i, j, k ≤ n, the216

Jacobi identity is given in components as
∑

ℓ Liℓ∂
ℓLjk + Ljℓ∂

ℓLki + Lkℓ∂
ℓLij = 0. However, this217

requirement is not often enforced in algorithms for learning general metriplectic (or even symplectic)218

systems, since it is considered subordinate to energy conservation and it is well known that both219

qualities cannot hold simultaneously in general [23].220

3.3 Specific parameterizations221

Now that Theorem 3.4 has provided a model class which is rich enough to express any desired222

metriplectic system, it remains to discuss what NMS actually learns. First, note that it is unlikely to223

be the case that E,S are known a priori, so it is beneficial to allow these functions to be learnable224

alongside the governing operators L,M . For simplicity, energy and entropy E,S are parameterized225

as scalar-valued MLPs with tanh activation, although any desired architecture could be chosen for226

this task. The skew-symmetric matrix field A = Atri − A⊺
tri used to build L is parameterized227

through its strictly lower-triangular part Atri using a vector-valued MLP with output dimension
(
n
2

)
,228

5

which guarantees that the mapping Atri 7→ A above is bijective. Similarly, the symmetric matrix229

field D = KcholK
⊺
chol is parameterized through its lower-triangular Cholesky factor Kchol, which230

is a vector-valued MLP with output dimension
(
r+1
2

)
. While this choice does not yield a bijective231

mapping Kchol 7→ D unless, e.g., D is assumed to be positive definite with diagonal entries of fixed232

sign, this does not hinder the method in practice. In fact, D should not be positive definite in general,233

as this is equivalent to claiming that M is positive definite on vectors tangent to the level sets of E.234

Finally, the generic matrix field B is parameterized as a vector-valued MLP with output dimension235

nr. Remarkably, the exterior algebraic expressions in Lemma 3.2 require less redundant operations236

than the corresponding matricized expressions from Theorem 3.4, and therefore the expressions from237

Lemma 3.2 are used when implementing NMS. Figure 1 summarizes this information.238

Remark 3.6. With these choices, the NMS parameterization of metriplectic systems requires only239

(1/2)
(
(n+ r)2 − (n− r)

)
+ 2 learnable scalar functions, in contrast to

(
n
3

)
+ r
(
n
2

)
+
(
r+1
2

)
+ 2 for240

the GNODE approach in [16] and rn(n− 1) + r2 + 2 for the GFINN approach in [18]. In particular,241

NMS is quadratic in both n, r with no decrease in model expressivity, in contrast to the cubic scaling242

of previous methods.243

Table 1: Properties of the metriplectic
architectures compared.

Name Physics Bias Restrictive Scale

NODE None No Linear
SPNN Soft No Quadratic

GNODE Hard Yes Cubic
GFINN Hard No Cubic
NMS Hard No Quadratic

Input/Output Learnable Calculated

Integrate

Figure 1: A visual depiction of the NMS architecture.

244

3.4 Approximation and error245

Besides offering a compact parameterization of metriplectic dynamics, the expressions used in NMS246

also exhibit desirable approximation properties which guarantee a reasonable bound on state error247

over time. To state this precisely, first note the following universal approximation result proven in248

Appendix A.249

Proposition 3.7. Let K ⊂ Rn be compact and E,S : K → R be continuous such that L∇S =250

M∇E = 0 and ∇E,∇S ̸= 0 for all x ∈ K. For any ε > 0, there exist two-layer neural network251

functions Ẽ, S̃ : K → R, L̃ : K → Skewn(R) and M̃ : K → Symn(R) such that ∇Ẽ,∇S̃ ̸= 0 on252

K, M̃ is positive semi-definite, L̃∇S̃ = M̃∇Ẽ = 0 for all x ∈ K, and each approximate function253

is ε-close to its given counterpart on K. Moreover, if L,M have k ≥ 0 continuous derivatives on K254

then so do L̃,M̃ .255

Remark 3.8. The assumption x ∈ K of the state remaining in a compact set V is not restrictive when256

at least one of E,−S : Rn → R, say E, has bounded sublevel sets. In this case, letting x0 = x(0) it257

follows from Ė ≤ 0 that E(x(t)) = E(x0) +
∫ t

0
Ė(x(τ)) dτ ≤ E(x0), so that the entire trajectory258

x(t) lies in the (closed and bounded) compact set K = {x |E(x) ≤ E(x0)} ⊂ Rn.259

Leaning on Proposition 3.7 and classical universal approximation results in [24], it is further possible260

to establish the following error estimate also proven in Appendix A which gives an idea of the error261

accumulation rate that can be expected from this method.262

Theorem 3.9. Suppose L,M , E, S are nondegenerate metriplectic data such that L,M have at263

least one continuous derivative, E,S have Lipschitz continuous gradients, and at least one of E,−S264

have bounded sublevel sets. For any ε > 0, there exist nondegenerate metriplectic data L̃,M̃ , Ẽ, S̃265

defined by two-layer neural networks such that, for all T > 0,266 (∫ T

0

|x− x̃|2 dt

) 1
2

≤ ε

∣∣∣∣ ba
∣∣∣∣√e2aT − 2eaT + T + 1,

6

where a, b ∈ R are constants depending on both sets of metriplectic data and ˙̃x = L̃(x̃)∇Ẽ(x̃) +267

M̃(x̃)∇S̃(x̃).268

Remark 3.10. Theorem 3.9 provides a bound on state error over time under the assumption that the269

approximation error in the metriplectic networks can be controlled. On the other hand, notice that270

Theorem 3.9 can also be understood as a generic error bound on any trained metriplectic networks271

L̃,M̃ , Ẽ, S̃ provided universal approximation results are not invoked in the estimation leading to εb.272

This result confirms that the error in the state x for a fixed final time T tends to zero with the273

approximation error in the networks L̃,M̃ , Ẽ, S̃, as one would hope based on the approximation274

capabilities of neural networks. More importantly, Theorem 3.9 also bounds the generalization error275

of any trained metriplectic network for an appropriate (and possibly large) ε equal to the maximum276

approximation error on K, where the learned metriplectic trajectories are confined for all time.277

With this theoretical guidance, the remaining goal of this work is to demonstrate that NMS is also278

practically effective at learning metriplectic systems from data and exhibits reasonable generalization279

to unseen timescales.280

4 Algorithm281

Similar to previous approaches in [16] and [18], the learnable parameters in NMS are calibrated282

using data along solution trajectories to a given dynamical system. This brings up an important283

question regarding how much information about the system in question is realistically present in284

the training data. While many systems have a known metriplectic form, it is not always the case285

that one will know metriplectic governing equations for a given set of training data. Therefore, two286

approaches are considered in the experiments below corresponding to whether full or partial state287

information is assumed available during NMS training. More precisely, the state x = (xo,xu) will288

be partitioned into “observable” and “unobservable” variables, where xu may be empty in the case289

that full state information is available. In a partially observable system xo typically contains positions290

and momenta while xu contains entropy or other configuration variables which are more difficult291

to observe during physical experiments. In both cases, NMS will learn a metriplectic system in x292

according to the procedure described in Algorithm 1.293

Algorithm 1 Training neural metriplectic systems
1: Input: snapshot data X ∈ Rn×ns , each column xs = x(ts,µs), target rank r ≥ 1, batch size

nb ≥ 1.
2: Initialize networks Atri,B,Kchol, E, S, and loss L = 0
3: for step in Nsteps do
4: Randomly draw batch P = {(tsk ,xsk)}

nb

k=1
5: for (t,x) in P do
6: Evaluate Atri(x),B(x),Kchol(x), E(x), S(x)
7: Automatically differentiate E,S to obtain ∇E(x),∇S(x)
8: Form A(x) = Atri(x)−Atri(x)

⊺ and D(x) = Kchol(x)Kchol(x)
⊺

9: Build L(x),M(x) according to Lemma 3.2
10: Evaluate ẋ = L(x)∇E(x) +M(x)∇S(x)
11: Randomly draw n1, ..., nl and form tj = t+ nj∆t for all j
12: x̃1, ..., x̃l = ODEsolve(ẋ, t1, ..., tl)
13: L += l−1

∑
j Loss(xj , x̃j)

14: end for
15: Rescale L = |P |−1L
16: Update Atri,B,Kchol, E, S through gradient descent on L.
17: end for

Note that the batch-wise training strategy in Algorithm 1 requires initial conditions for xu in the294

partially observed case. There are several options for this, and two specific strategies will be295

considered here. Suppose the data are drawn from the training interval [0, T] with initial state x0296

and final state xT . The first strategy sets xu
0 = 0, xu

T = 1 (where 1 is the all ones vector), and297

xu
s = 1/T , 0 < s < T , so that the unobserved states are initially assumed to lie on a straight line.298

The second strategy is more sophisticated, and involves training a diffusion model to predict the299

distribution of xu given xo. Specific details of this procedure are given in Appendix E.300

7

5 Examples301

The goal of the following experiments is to show that NMS is effective even when entropic information302

cannot be observed during training, yielding superior performance when compared to previous303

methods including GNODE, GFINN, and SPNN discussed in Section 2. The metrics considered304

for this purpose will be mean absolute error (MAE) and mean squared error (MSE) defined in the305

usual way as the average ℓ1 (resp. squared ℓ2) error between the discrete states x, x̃ ∈ Rn×ns . For306

brevity, many implementation details have been omitted here and can be found in Appendix B. An307

additional experiment showing the effectiveness of NMS in the presence of both full and partial state308

information can be found in Appendix C.309

Remark 5.1. To facilitate a more equal parameter count between the compared metriplectic meth-310

ods, the results of the experiments below were generated using the alternative parameterization311

D = KK⊺ where K : K → Rr×r′ is full and r′ ≥ r. Of course, this change does not affect312

metriplecticity since D is still positive semi-definite for each x ∈ K.313

5.1 Two gas containers314

The first test of NMS involves two ideal gas containers separated by movable wall which is removed315

at time t0, allowing for the exchange of heat and volume. In this example, the motion of the state316

x = (q p S1 S2)
⊺ is governed by the metriplectic equations:317

q̇ =
p

m
, ṗ =

2

3

(
E1(x)

q
− E2(x)

2L− q

)
,

Ṡ1 =
9N2k2Bα

4E1(x)

(
1

E1(x)
− 1

E2(x)

)
, Ṡ2 = −9N2k2Bα

4E1(x)

(
1

E1(x)
− 1

E2(x)

)
,

where (q, p) are the position and momentum of the separating wall, S1, S2 are the entropies of the318

two subsystems, and the internal energies E1, E2 are determined from the Sackur-Tetrode equation319

for ideal gases, Si/NkB = ln
(
ĉViE

3/2
i

)
, 1 ≤ i ≤ 2. Here, m denotes the mass of the wall, 2L is320

the total length of the system, and Vi is the volume of the ith container. As in [16, 25] NkB = 1 and321

α = 0.5 fix the characteristic macroscopic unit of entropy while ĉ = 102.25 ensures the argument of322

the logarithm defining Ei is dimensionless. This leads to the total entropy S(x) = S1 + S2 and the323

total energy E(x) = (1/2m)p2 +E1(x) + E2(x), which are guaranteed to be nondecreasing and324

constant, respectively.325

The primary goal here is to verify that NMS can accurately and stably predict gas container dynamics326

without the need to observe the entropic variables S1, S2. To that end, NMS has been compared to327

GNODE, SPNN, and GFINN on the task of predicting the trajectories of this metriplectic system328

over time, with results displayed in Table 2. More precisely, given an intial condition x0 and an329

interval 0 < ttrain < tvalid < ttest, each method is trained on partial state information (in the case of330

NMS) or full state information (in the case of the others) from the interval [0, ttrain] and validated on331

(ttrain, tvalid] before state errors in q, p only are calculated on the whole interval [0, ttest]. As can be332

seen from Table 2 and Figure 2, NMS is remarkably accurate over unseen timescales even in this333

unfair comparison, avoiding the unphysical behavior which often hinders soft-constrained methods334

like SPNN. The energy and instantaneous entropy plots in Figure 2 further confirm that the strong335

enforcement of metriplectic structure guaranteed by NMS leads to correct energetic and entropic336

dynamics for all time.337

5.2 Thermoelastic double pendulum338

Next, consider the thermoelastic double pendulum from [26] with 10-dimensional state variable x =339

(q1 q2 p1 p2 S1 S2)
⊺, which represents a highly challenging benchmark for metriplectic340

methods. The equations of motion in this case are given for 1 ≤ i ≤ 2 as341

q̇i =
pi

mi
, ṗi = −∂qi

(E1(x) + E2(x)), Ṡ1 = κ
(
T−1
1 T2 − 1

)
, Ṡ2 = κ

(
T1T

−1
2 − 1

)
,

where κ > 0 is a thermal conductivity constant (set to 1), mi is the mass of the ith spring (also set to342

1) and Ti = ∂Si
Ei is its absolute temperature. In this case, qi,pi ∈ R2 represent the position and343

8

(a) Hamiltonian H = p2

2m
(b) Position q

(c) Momentum p (d) Energy E = H +
∑

i Ei (e) Instantaneous Entropy Ṡ

Figure 2: The ground-truth and predicted position, momentum, instantaneous entropy, and energies
for the two gas containers example in the training (white), validation (yellow), and testing (red)
regimes.

Table 2: Prediction errors for xo measured in MSE and MAE on the interval [0, ttest] in the two gas
containers example (left) and on the test set in the thermoelastic double pendulum example (right).

NODE SPNN GNODE GFINN NMS

MSE .12 ± .04 .13 ± .10 .16 ± .10 .07 ± .03 .01 ± .02
MAE .25 ± .10 .26 ± .14 .25 ± .13 .13 ±.03 .08 ± .06

NODE SPNN GNODE GFINN NMS

MSE .41 ± .01 .42 ± .01 .42 ± .01 .40 ± .03 .38 ± .03
MAE .48 ± .04 .47 ± .03 .46 ± .04 .43 ± .07 .42 ± .07

momentum of the ith mass, while Si represents the entropy of the ith pendulum. As before, the total344

entropy S(x) = S1 + S2 is the sum of the entropies of the two springs, while defining the internal345

energies Ei(x) = (1/2)(lnλi)
2
+ lnλi+ eSi−lnλi − 1, λ1 = |qi|, λ2 = |q2 − q1|, leads to the total346

energy E(x) = (1/2m1)|p1|2 + (1/2m2)|p2|2 + E1(x) + E2(x).347

The task in this case is prediction across initial conditions. As in [18], 100 trajectories are drawn from348

the ranges in Appendix B and integrated over the interval [0, 40] with ∆t = 0.1, with an 80/10/10349

split for training/validation/testing. Here all compared models are trained using full state information.350

As seen in Table 2, NMS is again the most performant, although all models struggle to approximate351

the dynamics over the entire training interval. It is also notable that the training time of NMS is greatly352

decreased relative to GNODE and GFINN due to its improved quadratic scaling; a representative353

study to this effect is given in Appendix D.354

6 Conclusion355

Neural metriplectic systems (NMS) have been considered for learning finite-dimensional metriplectic356

dynamics from data. Making use of novel non-redundant parameterizations for metriplectic operators,357

NMS provably approximates arbitrary nondegenerate metriplectic systems with generalization error358

bounded in terms of the operator approximation quality. Benchmark examples have shown that359

NMS is both more scalable and more accurate than previous methods, including when only partial360

state information is observed. Future work will consider extensions of NMS to infinite-dimensional361

metriplectic systems with the aim of addressing its main limitation: the difficulty of scaling NMS362

(among all present methods for metriplectic learning) to realistic, 3-D problems of the size that would363

be considered in practice. A promising direction is to consider the use of NMS in model reduction,364

where sparse, large-scale systems are converted to small, dense systems through a clever choice of365

encoding/decoding.366

9

References367

[1] Philip J. Morrison. A paradigm for joined hamiltonian and dissipative systems. Physica D: Nonlinear368

Phenomena, 18(1):410–419, 1986.369

[2] Miroslav Grmela and Hans Christian Öttinger. Dynamics and thermodynamics of complex fluids. i.370

development of a general formalism. Phys. Rev. E, 56:6620–6632, Dec 1997.371

[3] P. J. Morrison. Some observations regarding brackets and dissipation. Technical Report PAM-228, Center372

for Pure and Applied Mathematics, University of California, Berkeley, 1984.373

[4] PJ Morrison. Thoughts on brackets and dissipation: old and new. In Journal of Physics: Conference Series,374

volume 169, page 012006. IOP Publishing, 2009.375

[5] Allan N. Kaufman and Philip J. Morrison. Algebraic structure of the plasma quasilinear equations. Physics376

Letters A, 88(8):405–406, 1982.377

[6] Emmanuele Materassi, M.; Tassi. Metriplectic framework for dissipative magneto-hydrodynamics. Physica378

D: Nonlinear Phenomena, 2012.379

[7] Allan N. Kaufman. Dissipative hamiltonian systems: A unifying principle. Physics Letters A, 100(8):419–380

422, 1984.381

[8] Darryl D Holm, Vakhtang Putkaradze, and Cesare Tronci. Kinetic models of oriented self-assembly.382

Journal of Physics A: Mathematical and Theoretical, 41(34):344010, aug 2008.383

[9] Quercus Hernández, Alberto Badías, David González, Francisco Chinesta, and Elías Cueto. Structure-384

preserving neural networks. Journal of Computational Physics, 426:109950, 2021.385

[10] Quercus Hernández, Alberto Badías, David González, Francisco Chinesta, and Elías Cueto. Deep learning386

of thermodynamics-aware reduced-order models from data. Computer Methods in Applied Mechanics and387

Engineering, 379:113763, 2021.388

[11] David González, Francisco Chinesta, and Elías Cueto. Thermodynamically consistent data-driven compu-389

tational mechanics. Continuum Mechanics and Thermodynamics, 31(1):239–253, 2019.390

[12] D. Ruiz, D. Portillo, and I. Romero. A data-driven method for dissipative thermomechanics. IFAC-391

PapersOnLine, 54(19):315–320, 2021.392

[13] Baige Xu, Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Learning generic systems using neural393

symplectic forms. In International Symposium on Nonlinear Theory and Its Applications, number A2L-D-394

03 in IEICE Proceeding Series, pages 29–32. The Institute of Electronics, Information, and Communication395

Engineers (IEICE), 2022.396

[14] Baige Xu, Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Equivalence class learning for397

GENERIC systems. In ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems,398

2023.399

[15] Anthony Gruber, Kookjin Lee, and Nathaniel Trask. Reversible and irreversible bracket-based dynamics400

for deep graph neural networks. In Thirty-seventh Conference on Neural Information Processing Systems,401

2023.402

[16] Kookjin Lee, Nathaniel Trask, and Panos Stinis. Machine learning structure preserving brackets for403

forecasting irreversible processes. Advances in Neural Information Processing Systems, 34:5696–5707,404

2021.405

[17] Hans Christian Öttinger. Irreversible dynamics, onsager-casimir symmetry, and an application to turbulence.406

Phys. Rev. E, 90:042121, Oct 2014.407

[18] Zhen Zhang, Yeonjong Shin, and George Em Karniadakis. Gfinns: Generic formalism informed neural408

networks for deterministic and stochastic dynamical systems. Philosophical Transactions of the Royal409

Society A: Mathematical, Physical and Engineering Sciences, 380(2229):20210207, 2022.410

[19] Hans Christian Öttinger. Preservation of thermodynamic structure in model reduction. Phys. Rev. E,411

91:032147, Mar 2015.412

[20] Anthony Gruber, Max Gunzburger, Lili Ju, and Zhu Wang. Energetically consistent model reduction for413

metriplectic systems. Computer Methods in Applied Mechanics and Engineering, 404:115709, 2023.414

10

[21] Loring W. Tu. Differential Geometry: Connections, Curvature, and Characteristic Classes. Springer415

International Publishing, 2017.416

[22] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science: An Object-417

oriented Approach to Geometry. Morgan Kaufmann, Amsterdam, 2007.418

[23] Ge Zhong and Jerrold E. Marsden. Lie-poisson hamilton-jacobi theory and lie-poisson integrators. Physics419

Letters A, 133(3):134–139, 1988.420

[24] Xin Li. Simultaneous approximations of multivariate functions and their derivatives by neural networks421

with one hidden layer. Neurocomputing, 12(4):327–343, 1996.422

[25] Kookjin Lee, Nathaniel Trask, and Panos Stinis. Structure-preserving sparse identification of nonlinear423

dynamics for data-driven modeling. In Mathematical and Scientific Machine Learning, pages 65–80.424

PMLR, 2022.425

[26] Ignacio Romero. Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical426

systems. International Journal for Numerical Methods in Engineering, 79(6):706–732, 2023/05/14 2009.427

[27] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of computational428

and applied mathematics, 6(1):19–26, 1980.429

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint430

arXiv:1412.6980, 2014.431

[29] Xiaocheng Shang and Hans Christian Öttinger. Structure-preserving integrators for dissipative systems432

based on reversible–irreversible splitting. Proceedings of the Royal Society A, 476(2234):20190446, 2020.433

[30] Haksoo Lim, Minjung Kim, Sewon Park, and Noseong Park. Regular time-series generation using sgm.434

arXiv preprint arXiv:2301.08518, 2023.435

[31] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Computation,436

23(7):1661–1674, 2011.437

[32] Simo Särkkä and Arno Solin, editors. Applied stochastic differential equations, volume 10. Cambridge438

University Press, 2019.439

[33] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.440

Score-based generative modeling through stochastic differential equations. CoRR, abs/2011.13456, 2020.441

11

A Proof of Theoretical Results442

This Appendix provides proof of the analytical results in Section 3 of the body. First, the parameteri-443

zations of L,M in terms of exterior algebra are established.444

Proof of Lemma 3.2. First, it is necessary to check that the operators L,M parameterized this way445

satisfy the symmetries and degeneracy conditions claimed in the statement. To that end, recall that446

a∧ b ≃ ab⊺ − ba⊺, meaning that (ab⊺ − ba⊺)
⊺ ≃ b∧a = −a∧ b. It follows that A⊺ ≃ Ã = −A447

where Ã denotes the reversion of A, i.e., Ã =
∑

i<j A
ijej ∧ ei. Therefore, we may write448

L⊺ ≃ Ã− 1

|∇S|2
A∇S ∧∇S
:

= −A+
1

|∇S|2
A∇S ∧∇S ≃ −L,

showing that L⊺ = −L. Moreover, using that449

(b ∧ c) · a = −a · (b ∧ c) = (a · c)b− (a · b)c,
it follows that450

L∇S = A · ∇S − 1

|∇S|2
(A∇S ∧∇S) · ∇S = A∇S −A∇S = 0,

since ∇S ·A∇S = −∇S ·A∇S = 0. Moving to the case of M , notice that M = Dstv
s ⊗ vt for451

a particular choice of v, meaning that452

M⊺ =
∑
s,t

Dst

(
vs ⊗ vt

)⊺
=
∑
s,t

Dstv
t ⊗ vs =

∑
t,s

Dtsv
s ⊗ vt =

∑
s,t

Dstv
s ⊗ vt = M ,

since D is a symmetric matrix. Additionally, it is straightforward to check that, for any 1 ≤ s ≤ r,453

vs · ∇E =

(
bs − bs · ∇E

|∇E|2
∇E

)
· ∇E = bs · ∇E − bs · ∇E = 0.

So, it follows immediately that454

M∇E =
∑
s,t

Dst

(
vs ⊗ vt

)
· ∇E =

∑
s,t

Dst

(
vt · ∇E

)
vs = 0.

Now, observe that455

L = A− 1

|∇S|2
(A∇S(∇S)

⊺ −∇S(A∇S)
⊺
)

= A− 1

|∇S|2
(A∇S(∇S⊺) +∇S(∇S)

⊺
A)

=

(
I − ∇S(∇S)

⊺

|∇S|2

)
A

(
I − ∇S(∇S)

⊺

|∇S|2

)
= P⊥

S AP⊥
S ,

since A⊺ = −A and hence v⊺Av = 0 for all v ∈ Rn. Similarly, it follows that for every 1 ≤ s ≤ r,456

P⊥
E bs = bs − bs · ∇E

|∇E|2
∇E,

and therefore M is expressible as457

M =
∑
s,t

Dst

(
P⊥

E bs
)(
P⊥

E bt
)⊺

= P⊥
E BDB⊺P⊥

E .

With Lemma 3.2 established, the proof of Theorem 3.4 is straightforward.458

Proof of Theorem 3.4. The “if” direction follows immediately from Lemma 3.2. Now, suppose that459

L and M define a metriplectic system, meaning that the mentioned symmetries and degeneracy460

conditions hold. Then, it follows from L∇S = 0 that the projection P⊥
S LP⊥

S = L leaves L461

invariant, so that choosing A = L yields P⊥
S AP⊥

S = L. Similarly, from positive semi-definiteness462

and M∇E = 0 it follows that M = UΛU⊺ = P⊥
E UΛU⊺P⊥

E for some column-orthonormal463

U ∈ RN×r and positive diagonal Λ ∈ Rr×r. Therefore, choosing B = U and D = Λ yields464

M = P⊥
E BDB⊺P⊥, as desired.465

12

Looking toward the proof of Proposition 3.7, we also need to establish the following Lemmata which466

give control over the orthogonal projectors P⊥
Ẽ
,P⊥

S̃
. First, we recall how control over the L∞ norm467

|·|∞ of a matrix field gives control over its spectral norm |·|.468

Lemma A.1. Let A : K → Rn×n be a matrix field defined on the compact set K ⊂ Rn with m469

continuous derivatives. Then, for any ε > 0 there exists a two-layer neural network Ã : K → Rn×n470

such that supx∈K

∣∣∣A− Ã
∣∣∣ < ε and supx∈K

∣∣∣∇kA−∇kÃ
∣∣∣
∞

< ε for 1 ≤ k ≤ m where ∇k is the471

(total) derivative operator of order k.472

Proof. This will be a direct consequence of Corollary 2.2 in [24] provided we show that |A| ≤ c|A|∞473

for some c > 0. To that end, if σ1 ≥ ... ≥ σr > 0 (r ≤ n) denote the nonzero singular values of474

A− Ã, it follows that for each x ∈ K,475 ∣∣∣A− Ã
∣∣∣ = σ1 ≤

√
σ2
1 + ...+ σ2

r =

√∑
i,j

∣∣∣Aij − Ãij

∣∣∣2 =
∣∣∣A− Ã

∣∣∣
F
.

On the other hand, it also follows that476 ∣∣∣A− Ã
∣∣∣
F
=

√∑
i,j

∣∣∣Aij − Ãij

∣∣∣2 ≤
√∑

i,j

max
i,j

∣∣∣Aij − Ãij

∣∣∣ = n

√
max
i,j

∣∣∣Aij − Ãij

∣∣∣ = n
∣∣∣A− Ã

∣∣∣
∞
,

and therefore the desired inequality holds with c = n. Now, for any ε > 0 it follows from [24] that477

there exists a two layer network Ã with m continuous derivatives such that supx∈K

∣∣∣A− Ã
∣∣∣
∞

< ε/n478

and supx∈K

∣∣∣∇kA−∇kÃ
∣∣∣
∞

< ε/n < ε for all 1 ≤ k ≤ m. Therefore, it follows that479

sup
x∈K

∣∣∣A− Ã
∣∣∣ ≤ n sup

x∈K

∣∣∣A− Ã
∣∣∣
∞

< n
ε

n
= ε,

completing the argument.480

Next, we bound the deviation in the orthogonal projectors P⊥
Ẽ
,P⊥

S̃
.481

Lemma A.2. Let f : Rn → R be such that ∇f ̸= 0 on the compact set K ⊂ Rn. For any ε > 0,482

there exists a two-layer neural network f̃ : K → R such that ∇f̃ ̸= 0 on K, supx∈K

∣∣∣f − f̃
∣∣∣ <483

ε, supx∈K

∣∣∣∇f −∇f̃
∣∣∣ < ε, and supx∈K

∣∣∣P⊥
f − P⊥

f̃

∣∣∣ < ε.484

Proof. Denote ∇f = v and consider any ṽ : K → R. Since |v| ≤ |ṽ|+ |v − ṽ|, it follows for all485

x ∈ K that whenever |v − ṽ| < (1/2) infx∈K |v|,486

|ṽ| ≥ |v| − |v − ṽ| > |v| − 1

2
inf
x∈K

|v| > 0,

so that ṽ ̸= 0 in K, and since the square function is monotonic,487

inf
x∈K

|ṽ|2 ≥ inf
x∈K

(
|v| − 1

2
inf
x∈K

|v|
)2

=
1

4
inf
x∈K

|v|2.

On the other hand, we also have |ṽ| ≤ |v|+ |ṽ − v| < |v|+ (1/2) infx∈K |v|, so that, adding and488

subtracting ṽv⊺ and applying Cauchy-Schwarz, it follows that for all x ∈ K,489

|vv⊺ − ṽṽ⊺| ≤ |v − ṽ||v|+ |ṽ||v − ṽ| ≤ 2max{|v|, |ṽ|}|v − ṽ| <
(
2|v|+ inf

x∈K
|v|
)
|v − ṽ|.

Now, by Corollary 2.2 in [24], for any ε > 0 there exists a two-layer neural network f̃ : K → R such490

that491

sup
x∈K

∣∣∣v −∇f̃
∣∣∣ < min

{
1

2
inf
x∈K

|v|, infx∈K |v|2

2 supx∈K |v|+ infx∈K |v|
ε

4
, ε

}
≤ ε,

13

and also supx∈K

∣∣∣f − f̃
∣∣∣ < ε. Letting ṽ = ∇f̃ , it follows that for all x ∈ K,492 ∣∣∣P⊥

f − P⊥
f̃

∣∣∣ = ∣∣∣∣∣vv⊺

|v|2
− ṽṽ⊺

|ṽ|2

∣∣∣∣∣ ≤ |vv⊺ − ṽṽ⊺|

min
{
|v|2, |ṽ|2

} ≤ 2|v|+ infx∈K |v|

min
{
|v|2, |ṽ|2

} |v − ṽ|,

and therefore, taking the supremum of both sides and applying the previous work yields the desired493

estimate,494

sup
x∈K

∣∣∣P⊥
f − P⊥

f̃

∣∣∣ ≤ 4
2 supx∈K |v|+ infx∈K |v|

infx∈K |v|2
sup
x∈K

|v − ṽ| < ε.

With these intermediate results established, the proof of the approximation result Proposition 3.7495

proceeds as follows.496

Proof of Proposition 3.7. Recall from Theorem 3.4 that we can write L = P⊥
S (Atri −A⊺

tri)P
⊥
S497

and similarly for L̃. Notice that, by adding and subtracting P⊥
S̃
AtriP

⊥
S and P⊥

S̃
ÃtriP

⊥
S , it follows498

that for all x ∈ K,499 ∣∣∣P⊥
S AtriP

⊥
S − P⊥

S̃
ÃtriP

⊥
S̃

∣∣∣
=

∣∣∣∣(P⊥
S − P⊥

S̃

)
AtriP

⊥
S + P⊥

S̃

(
Atri − Ãtri

)
P⊥

S + P⊥
S̃
Ãtri

(
P⊥

S − P⊥
S̃

)∣∣∣∣
≤
∣∣P⊥

S − P⊥
S̃

∣∣|Atri|+
∣∣∣Atri − Ãtri

∣∣∣+ ∣∣∣Ãtri

∣∣∣∣∣P⊥
S − P⊥

S̃

∣∣
≤ 2max

{
|Atri|,

∣∣∣Ãtri

∣∣∣}∣∣P⊥
S − P⊥

S̃

∣∣+ ∣∣∣Atri − Ãtri

∣∣∣
where we have used that P⊥

S ,P⊥
S̃

have unit spectral norm. By Lemma A.1, for any ε > 0 there exists500

a two layer neural network Ãtri such that supx∈K

∣∣∣Atri − Ãtri

∣∣∣ < ε
4 , and by Lemma A.2 there exists501

a two-layer network S̃ with ∇S̃ ̸= 0 on K such that502

sup
x∈K

∣∣P⊥
S − P⊥

S̃

∣∣ < min

{
ε,max

{
sup
x∈K

|Atri|, sup
x∈K

∣∣∣Ãtri

∣∣∣}−1
ε

8

}
.

It follows that S̃,∇S̃ are ε-close to S,∇S on K and503

sup
x∈K

(
2max

{
|Atri|,

∣∣∣Ãtri

∣∣∣}∣∣P⊥
S − P⊥

S̃

∣∣) <
ε

4
.

Therefore, the estimate504

sup
x∈K

∣∣∣L− L̃
∣∣∣ ≤ 2 sup

x∈K

∣∣∣P⊥
S AtriP

⊥
S − P⊥

S̃
ÃtriP

⊥
S̃

∣∣∣ < 2
(ε
4
+

ε

4

)
= ε,

implies that L̃ is ε-close to L on K as well.505

Moving to the case of M , we see that for all x ∈ K, by writing M = UΛU⊺ = KcholK
⊺
chol for506

Kchol = UΛ1/2 and repeating the first calculation with Kchol in place of Atri and P⊥
E in place of507

P⊥
S ,508 ∣∣∣P⊥

E KcholK
⊺
cholP

⊥
E − P⊥

Ẽ
K̃cholK̃

⊺
cholP

⊥
Ẽ

∣∣∣
≤ 2max

{
|Kchol|,

∣∣∣K̃chol

∣∣∣}∣∣P⊥
E − P⊥

Ẽ

∣∣+ ∣∣∣KcholK
⊺
chol − K̃cholK̃

⊺
chol

∣∣∣.
Moreover, if

∣∣∣Kchol − K̃chol

∣∣∣ < (1/2) infx∈K |Kchol| for all x ∈ K then similar arguments as used509

in the proof of Lemma A.2 yield the following estimate for all x ∈ K,510 ∣∣∣KcholK
⊺
chol − K̃cholK̃

⊺
chol

∣∣∣ ≤ 2max
{
|Kchol|,

∣∣∣K̃chol

∣∣∣}∣∣∣Kchol − K̃chol

∣∣∣
≤
(
2|Kchol|+ inf

x∈K
|Kchol|

)∣∣∣Kchol − K̃chol

∣∣∣.
14

As before, we now invoke Lemma A.1 to construct a two-layer lower-triangular network K̃chol such511

that512

sup
x∈K

∣∣∣Kchol − K̃chol

∣∣∣ < min

{
1

2
inf
x∈K

|Kchol|,
(
2 sup
x∈K

|Kchol|+ inf
x∈K

|Kchol|
)−1

ε

2

}
,

as well as (using Lemma A.2) a network Ẽ satisfying ∇Ẽ ̸= 0 on K and513

sup
x∈K

∣∣P⊥
E − P⊥

Ẽ

∣∣ < min

{
ε,max

{
sup
x∈K

|Kchol|, sup
x∈K

∣∣∣K̃chol

∣∣∣}−1
ε

4

}
.

Again, it follows that Ẽ,∇Ẽ are ε-close to E,∇E on K, and by the work above we conclude514

sup
x∈K

∣∣∣M − M̃
∣∣∣ = sup

x∈K

∣∣∣P⊥
E KcholK

⊺
cholP

⊥
E − P⊥

Ẽ
K̃cholK̃

⊺
cholP

⊥
Ẽ

∣∣∣ < ε

2
+

ε

2
= ε,

as desired.515

It is now possible to give a proof of the error bound in Theorem 3.9. Recall the L2([0, T]) error516

metric ∥x∥ and Lipschitz constant Lf , defined for all x,y ∈ Rn and Lipschitz continuous functions517

f as518

∥x∥2 =

∫ T

0

|x|2 dt, |f(x)− f(y)| ≤ Lf |x− y|.

Proof of Theorem 3.9. First, note that the assumption that one of E,−S (without loss of generality,519

say E) has bounded sublevel sets implies bounded trajectories for the state x as in Remark 3.8,520

so we may assume x ∈ K for some compact K ⊂ Rn. Moreover, for any ε > 0 it follows521

from Proposition 3.7 that there are approximate networks Ẽ, S̃ which are ε-close to E,S on K.522

Additionally, it follows that Ẽ, S̃ have nonzero gradients ∇Ẽ,∇S̃ which are also ε-close to the true523

gradients ∇E,∇S on K. This implies that for each x ∈ K, E = Ẽ + (E − Ẽ) ≤ Ẽ + ε, so it524

follows that the sublevel sets {x | Ẽ(x) ≤ m} ⊆ {x |E(x) ≤ m+ ε} are also bounded. Therefore,525

we may assume (by potentially enlarging K) that both x, x̃ ∈ K lie in the compact set K for all time.526

Now, let y = x− x̃. The next goal is to bound the following quantity:527

|ẏ| =
∣∣∣∣L(x)∇E(x) +M(x)∇S(x)− L̃(x̃)∇Ẽ(x̃)− M̃(x̃)∇S̃(x̃)

∣∣∣∣
=

∣∣∣∣(L(x)∇E(x)− L̃(x̃)∇E(x̃)
)
+
(
M(x)∇S(x)− M̃(x̃)∇S(x̃)

)∣∣∣∣ =: |ẏE + ẏS |.

To that end, notice that by adding and subtracting L(x)∇E(x̃), L̃(x)∇E(x̃), L̃(x̃)∇E(x̃), it fol-528

lows that529

ẏE = L(x)(∇E(x)−∇E(x̃)) +
(
L(x)− L̃(x)

)
∇E(x̃)

+
(
L̃(x)− L̃(x̃)

)
∇E(x̃) + L̃(x̃)

(
∇E(x̃)−∇Ẽ(x̃)

)
.

By Proposition 3.7 there exists a two-layer neural network L̃ with one continuous derivative such530

that supx∈K

∣∣∣L− L̃
∣∣∣ < ε, which implies that L̃ is Lipschitz continuous with (uniformly well-531

approximated) Lipschitz constant. Using this fact along with the assumed Lipschitz continuity of532

∇E and the approximation properties of the network Ẽ already constructed then yields533

|ẏE | ≤
(
L∇E sup

x∈K
|L|+ LL̃ sup

x∈K
|∇E|

)
|y|+ ε

(
sup
x∈K

∣∣∣L̃∣∣∣+ sup
x∈K

|∇E|
)

=: aE |y|+ ε bE .

Similarly, by adding and subtracting M(x)∇S(x̃),M̃(x)∇S(x̃),M̃(x̃)∇S(x̃), it follows that534

ẏS = M(x)(∇S(x)−∇S(x̃)) +
(
M(x)− M̃(x)

)
∇S(x̃)

+
(
M̃(x)− M̃(x̃)

)
∇S(x̃) + M̃(x̃)

(
∇S(x̃)−∇S̃(x̃)

)
.

15

By Proposition 3.7, there exists a two-layer network M̃ with one continuous derivative such that535

supx∈K

∣∣∣M − M̃
∣∣∣ < ε, with M̃ Lipschitz continuous for the same reason as before. It follows from536

this and supx∈K

∣∣∣∇S −∇S̃
∣∣∣ < ε that537

|ẏS | ≤
(
L∇S sup

x∈K
|M |+ LM̃ sup

x∈K
|∇S|

)
|y|+ ε

(
sup
x∈K

∣∣∣M̃ ∣∣∣+ sup
x∈K

|∇S|
)

=: aS |y|+ ε bS .

Now, recall that ∂t|y| = |y|−1
(ẏ · y) ≤ |ẏ| by Cauchy-Schwarz, and therefore the time derivative of538

|y| is bounded by539

∂t|y| ≤ |ẏE |+ |ẏS | = (aE + aS)|y|+ ε(bE + bS) =: a|y|+ b.

This implies that ∂t|y| − a|y| ≤ b, so multiplying by the integrating factor e−at and integrating in540

time yields541

|y(t)| ≤ εb

∫ t

0

ea(t−τ) dτ = ε
b

a

(
eat − 1

)
,

where we used that y(0) = 0 since the initial condition of the trajectories is shared. Therefore, the542

L2 error in time can be approximated by543

∥y∥2 =

∫ T

0

|y|2 dt ≤ ε2
b2

a2
(
e2aT − 2eaT + T + 1

)
,

establishing the conclusion.544

B Experimental and Implementation Details545

This Appendix records additional details related to the numerical experiments in Section 5. For each546

benchmark problem, a set of trajectories is manufactured given initial conditions by simulating ODEs547

with known metriplectic structure. For the experiments in Table 2, only the observable variables548

are used to construct datasets, since entropic information is assumed to be unknown. Algorithm 2549

summarizes the training of the dynamics models used for comparison with NMS.550

Algorithm 2 Training dynamics models
1: Input: snapshot data X ∈ Rn×ns , each column xs = x(ts,µs), target rank r ≥ 1
2: Initialize loss L = 0 and networks with parameters Θ
3: for step in Nsteps do
4: Randomly draw an initial condition (t0k ,x0k) where k ∈ ns

5: x̃1, ..., x̃l = ODEsolve(x0k , ẋ, t1, ..., tl)
6: Compute the loss L((xo

1, . . . ,x
o
l), (x̃

o
0, . . . , x̃

o
l))

7: Update the model parameters Θ via SGD
8: end for

For each compared method, integrating the ODEs is done via the Dormand–Prince method (do-551

pri5) [27] with relative tolerance 10−7 and absolute tolerance 10−9. The loss is evaluated by552

measuring the discrepancy between the ground truth observable states xo and the approximate observ-553

able states x̃o in the mean absolute error (MAE) metric. The model parameters Θ (i.e., the weights554

and biases) are updated by using Adamax [28] with an initial learning rate of 0.01. The number of555

training steps is set as 30,000, and the model parameters resulting in the best performance for the556

validation set are chosen for testing. Specific information related to the experiments in Section 5 is557

given in the subsections below.558

For generating the results reported in Table 2, we implemented the proposed algorithm in Python559

3.9.12 and PyTorch 2.0.0. Other required information is provided with the accompanying code. All560

experiments are conducted on Apple M2 Max chips with 96 GB memory. To provide the mean561

and the standard deviation, experiments are repeated three times with varying random seeds for all562

considered methods.563

16

B.1 Two gas containers564

As mentioned in the body, the two gas container (TGC) problem tests models’ predictive capability565

(i.e., extrapolation in time). To this end, one simulated trajectory is obtained by solving an IVP with566

a known TGC system and an initial condition, and the trajectory of the observable variables is split567

into three subsequences, [0, ttrain], (ttrain, tval], and (tval, ttest] for training, validation, and test with568

0 < ttrain < tval < ttest.569

In the experiment, a sequence of 100,000 timesteps is generated using the Runge–Kutta 4th-570

order (RK4) time integrator with a step size 0.001. The initial condition is given as x =571

(1, 2, 103.2874, 103.2874) following [29]. The training/validation/test split is defined by ttrain = 20,572

tval = 30, and ttest = 100. For a fair comparison, all considered models are set to have a similar573

number of model parameters, ∼2,000. The specifications of the network architectures are:574

• NMS: The total number of model parameters is 1959. The functions Atri,B,Kchol, E, S575

are parameterized as MLPs with the Tanh nonlinear activation function. The MLPs pa-576

rameterizing Atri,B,Kchol, E are specified as 1 hidden layer with 10 neurons, and the on577

parameterizing S is specified as 3 hidden layers with 25 neurons.578

• NODE: The total number of model parameters is 2179. The black-box NODE is param-579

eterized as an MLP with the Tanh nonlinear activation function, 4 hidden layers and 25580

neurons.581

• SPNN: The total number of model parameters is 1954. The functions E and S are parame-582

terized as MLPs with the Tanh nonlinear activation function; each MLP is specified as 3583

hidden layers and 20 neurons. The two 2-tensors defining L and M are defined as learnable584

3× 3 matrices.585

• GNODE: The total number of model parameters is 2343. The functions E and S are586

parameterized as MLPs with the Tanh nonlinear activaton function; each MLP is specified587

as 2 hidden layers and 30 neurons. The matrices and 3-tensors required to learn L and M588

are defined as learnable 3× 3 matrices and 3× 3× 3 tensor.589

• GFINN: The total number of model parameters is 2065. The functions E and S are590

parameterized as MLPs with Tanh nonlinear activation function; each MLP is specified as 2591

hidden layers and 20 neurons. The matrices to required to learn L and M are defined as K592

learnable 3× 3 matrices, where K is set to 2.593

B.2 Thermoelastic double pendulum594

The equations of motion in this case are given for 1 ≤ i ≤ 2 as595

q̇i =
pi

mi
, ṗi = −∂qi

(E1(x) + E2(x)), Ṡ1 = κ
(
T−1
1 T2 − 1

)
, Ṡ2 = κ

(
T1T

−1
2 − 1

)
,

where κ > 0 is a thermal conductivity constant (set to 1), mi is the mass of the ith spring (also set to596

1) and Ti = ∂Si
Ei is its absolute temperature. In this case, qi,pi ∈ R2 represent the position and597

momentum of the ith mass, while Si represents the entropy of the ith pendulum. As before, the total598

entropy S(x) = S1 + S2 is the sum of the entropies of the two springs, while defining the internal599

energies600

Ei(x) =
1

2
(lnλi)

2
+ lnλi + eSi−lnλi − 1, λ1 = |qi|, λ2 = |q2 − q1|,

leads to the total energy E(x) = (1/2m1)|p1|2 + (1/2m2)|p2|2 + E1(x) + E2(x).601

The thermoelastic double pendulum experiment tests model prediction across initial conditions. In602

this case, 100 trajectories are generated by varying initial conditions that are randomly sampled from603

[0.1,1.1] × [-0.1,0.1] × [2.1, 2.3] × [-0.1,0.1] × [-1.9,2.1] × [0.9,1.1] × [-0.1, 0.1] × [0.9,1.1] ×604

[0.1,0.3] ⊂ R10. Each trajectory is obtained from the numerical integration of the ODEs using an605

RK4 time integrator with step size 0.02 and the final time T = 40, resulting in the trajectories of606

length 2,000. The resulting 100 trajectories are split into 80/10/10 for training/validation/test sets. For607

a fair comparison, all considered models are again set to have similar number of model parameters,608

∼2,000. The specifications of the network architectures are:609

17

• NMS: The total number of model parameters is 2201. The functions A,B,K, E, S are pa-610

rameterized as MLPs with the Tanh nonlinear activation function. The MLPs parameterizing611

are specified as 1 hidden layer with 15 neurons.612

• NODE: The total number of model parameters is 2005. The black-box NODE is param-613

eterized as an MLP with the Tanh nonlinear activation function, 2 hidden layers and 35614

neurons.615

• SPNN: The total number of model parameters is 2362. The functions E and S are parame-616

terized as MLPs with the Tanh nonlinear activation function; each MLP is specified as 3617

hidden layers and 20 neurons. The two 2-tensors defining L and M are defined as learnable618

3× 3 matrices.619

• GNODE: The total number of model parameters is 2151. The functions E and S are620

parameterized as MLPs with the Tanh nonlinear activaton function; each MLP is specified621

as 2 hidden layers and 15 neurons. The matrices and 3-tensors required to learn L and M622

are defined as learnable 3× 3 matrices and 3× 3× 3 tensor.623

• GFINN: The total number of model parameters is 2180. The functions E and S are624

parameterized as MLPs with Tanh nonlinear activation function; each MLP is specified as 2625

hidden layers and 15 neurons. The matrices to required to learn L and M are defined as K626

learnable 3× 3 matrices, where K is set to 2.627

C Additional experiment: Damped nonlinear oscillator628

Consider a damped nonlinear oscillator of variable dimension with state x = (q p S)
⊺, whose629

motion is governed by the metriplectic system630

q̇ =
p

m
, ṗ = k sin q − γp, Ṡ =

γ|q|2

mT
.

Here q,p ∈ Rn denote the position and momentum of the oscillator, S is the entropy of a surround-631

ing thermal bath, and the constant parameters m, γ, T are the mass, damping rate, and (constant)632

temperature. This leads to the total energy E(x) = (1/2m)|p|2 − k cos q + TS, which is readily633

seen to be constant along solutions x(t).634

It is now verified that NMS can accurately and stably predict the dynamics of a nonlinear oscillator635

x = (q p S)
⊺ in the case that n = 1, 2, both when the entropy S is observable as well as when it636

is not. As before, the task considered is prediction in time, although all compared methods NODE,637

GNODE, and NMSknown are now trained on full state information from the training interval, and test638

errors are computed over the full state x on the extrapolation interval (tvalid, ttest], which is 150%639

longer than the training interval. In addition, another NMS model, NMSdiff , was trained using only640

the partial state information xo = (q,p)
⊺and tested under the same conditions, with the initial guess641

for xu generated as in Appendix E. As can be seen in Table 3, NMS is more accurate than GNODE642

or NODE in both the 1-D and 2-D nonlinear oscillator experiments, improving on previous results by643

up to two orders of magnitude. Remarkably, NMS produces more accurate entropic dynamics even644

in the case where the entropic variable S is unobserved during NMS training and observed during645

the training of other methods. This illustrates another advantage of the NMS approach: because of646

the reasonable initial data for S produced by the diffusion model, the learned metriplectic system647

produced by NMS remains performant even when metriplectic governing equations are unknown and648

only partial state information is observed.649

To describe the experimental setup precisely, data is collected from a single trajectory with initial650

condition as x = (2,0, 0) following [16]. The path is calculated at 180,000 steps with a time interval651

of 0.001, and is then split into training/validation/test sets as before using ttrain = 60, tval = 90 and652

ttest = 180. Specifications of the networks used for the experiments in Table 3 are:653

• NMS: The total number of parameters is 154. The number of layers for Atri,B,Kchol, E, S654

is selected from {1,2,3} and the number of neurons per layer from {5,10,15}. The best655

hyperparameters are 1 hidden layer with 5 neurons for each network function.656

• GNODE: The total number of model parameters is 203. The number of layers and num-657

ber of neurons for each network is chosen from the same ranges as for NMS. The best658

hyperparameters are 1 layer with 10 neurons for each network function.659

18

Table 3: Experimental results for the benchmark problems with respect to MSE and MAE. The best
scores are in boldface.

1-D D.N.O. T.G.C. 2-D D.N.O.
MSE MAE MSE MAE MSE MAE

NMSdiff .0170 .1132 .0045 .0548 .0275 .1456
NMSknown .0239 .1011 .0012 .0276 .0018 .0357

NODE .0631 .2236 .0860 .2551 .0661 .2096
GNODE .0607 .1976 .0071 .0732 .2272 .4267

• NODE: The total number of model paramters is 3003. The NODE architecture is formed by660

stacking MLPs with Tanh activation functions. The number of blocks is chosen from {3,4,5}661

and the number of neurons of each MLP from {30,40,50}. The best hyperparameters are 4662

and 30 for the number of blocks and number of neurons, respectively.663

D Scaling study664

To compare the scalability of the proposed NMS architecture design with existing architectures, dif-665

ferent realizations of GNODE, GFINN, and NMS are generated by varying the dimension of the state666

variables, n = {1, 5, 10, 15, 20, 30, 50}. The specifications of these models (i.e., hyperparameters)667

are set so that the number of model parameters is kept similar between each method for smaller values668

of n. For example, for n = 1, 5 the number of model parameters is ∼20,000 for each architecture.669

The results in Figure 3(a) confirm that GNODE scales cubically in n while both GFINN and NMS670

scale quadratically. Note that only a constant scaling advantage of NMS over GFINN can be seen671

from this plot, since r is fixed during this study.672

It is also worthwhile to investigate the computational timings of these three models. Consider-673

ing the same realizations of the models listed above, i.e., the model instances for varying n =674

{1, 5, 10, 15, 20, 30, 50}, 1,000 random samples of states {x(i)}1,000i=1 are generated. These samples675

are then fed to the dynamics function L(x(i))∇E(x(i)) +M(x(i))∇S(x(i)) for i = 1, . . . , 1000,676

and the computational wall time of the function evaluation via PyTorch’s profiler API is measured.677

The results of this procedure are displayed in Figure 3(b). Again, it is seen that the proposed NMSs678

require less computational resources than GNODEs and GFINNs.679

(a) State dimension n versus number
of model parameters

(b) Model parameters versus wall
time in microseconds

Figure 3: A study of the scaling behavior of GNODE, GFINN, and NMS.

19

E Diffusion model for unobserved variables680

Recent work in [30] suggests the benefits of performing time-series generation using a diffusion681

model. This Appendix describes how this technology is used to generate initial conditions for the682

unobserved NMS variables in the experiments corresponding to Table 3. More precisely, we describe683

how to train a conditional diffusion model which generates values for unobserved variables xu given684

values for the observed variables xo.685

Training and sampling: Recall that diffusion models add noise with the following stochastic686

differential equation (SDE):687

dx(t) = f(t, x(t))dt+ g(t)dw, t ∈ [0, 1],

where w ∈ Rdim(x) is a multi-dimensional Brownian motion, f(t, ·) : Rdim(x) → Rdim(x) is a688

vector-valued drift term, and g : [0, 1] → R is a scalar-valued diffusion function.689

For the forward SDE, there exists a corresponding reverse SDE:690

dx(t) = [f(t, x(t))− g2(t)∇x(t)log p(x(t))]dt+ g(t)dw̄,

which produces samples from the initial distribution at t = 0. This formula suggests that if the score691

function, ∇x(t)log p(x(t)), is known, then real samples from the prior distribution p(x) ∼ N (µ, σ2)692

can be recovered, where µ, σ vary depending on the forward SDE type.693

In order for a model Mθ to learn the score function, it has to optimize the following loss:694

L(θ) = Et{λ(t)Ex(t)[
∥∥Mθ(t, x(t))−∇x(t) log p(x(t))

∥∥2
2
]},

where t is uniformly sampled over [0, 1] with an appropriate weight function λ(t) : [0, 1] → R.695

However, using the above formula is computationally prohibitive. Thanks to [31], this loss can be696

substituted with the following denoising score matching loss:697

L∗(θ) = Et{λ(t)Ex(0)Ex(t)|x(0)[
∥∥Mθ(t, x(t))−∇x(t) log p(x(t)|x(0))

∥∥2
2
]}.

Since score-based generative models use an affine drift term, the transition kernel p(x(t)|x(0)) follows698

a certain Gaussian distribution [32], and therefore the gradient term ∇x(t) log p(x(t)|x(0)) can be699

analytically calculated.700

Experimental details On the other hand, the present goal is to generate unobserved variables xu701

given values for the observed variables xo = (q,p), i.e., conditional generation. Therefore, our model702

has to learn the conditional score function, ∇xu(t) log p(x
u(t)|xo). For example, in the damped703

nonlinear oscillator case, S(t) is initialized as a perturbed t ∈ [0, 1], from which the model takes the704

concatenation of q,p, S(t) as inputs and learns conditional the score function ∇S(t) log(S(t)|q,p).705

For the experiments in Table 3, diffusion models are trained to generate xu variables on three706

benchmark problems: the damped nonlinear oscillator, two gas containers, and thermolastic double707

pendulum. On each problem, representative parameters such as mass or thermal conductivity are708

varied, with the total number of cases denoted by N . Full trajectory data of length T is then generated709

using a standard numerical integrator (e.g., dopri5), before it is evenly cut into ⌊T/L⌋ pieces of710

length L. Let V,U denote the total number of variables and the number of unobserved variables,711

respectively. It follows that the goal is to generate U unobserved variables given V − U observed712

ones, i.e., the objective is to generate data of shape (NT/L,L, U) conditioned on data of shape713

(NT/L,L, V − U). After the diffusion model has been trained for this task, the output data is714

reshaped into size (N,T, U), which is used to initialize the NMS model. Note that the NODE and715

GNODE methods compared to NMS in Table 3 use full state information for their training, i.e.,716

xu = ∅ in these cases, making it comparatively easier for these methods to learn system dynamics.717

As in other diffusion models e.g. [33], a U-net architecture is used, modifying 2-D convolutions to718

1-D ones and following the detailed hyperparameters described in [33]. Note the following probability719

flow ODE seen in [33]:720

dx(t) =
[

f(t, x(t))− 1

2
g2(t)∇x(t)log p(x(t))

]
dt,

Although models trained to mimic the probability flow ODE do not match the perofrmance of the721

forward SDE’s result in the image domain, the authors of [30] observe that the probability flow ODE722

outperforms the forward SDE in the time-series domain. Therefore, the probability flow ODE is used723

with the default hyperparameters of [33].724

20

NeurIPS Paper Checklist725

The checklist is designed to encourage best practices for responsible machine learning research,726

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove727

the checklist: The papers not including the checklist will be desk rejected. The checklist should728

follow the references and follow the (optional) supplemental material. The checklist does NOT count729

towards the page limit.730

Please read the checklist guidelines carefully for information on how to answer these questions. For731

each question in the checklist:732

• You should answer [Yes] , [No] , or [NA] .733

• [NA] means either that the question is Not Applicable for that particular paper or the734

relevant information is Not Available.735

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).736

The checklist answers are an integral part of your paper submission. They are visible to the737

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it738

(after eventual revisions) with the final version of your paper, and its final version will be published739

with the paper.740

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.741

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a742

proper justification is given (e.g., "error bars are not reported because it would be too computationally743

expensive" or "we were unable to find the license for the dataset we used"). In general, answering744

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we745

acknowledge that the true answer is often more nuanced, so please just use your best judgment and746

write a justification to elaborate. All supporting evidence can appear either in the main paper or the747

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification748

please point to the section(s) where related material for the question can be found.749

IMPORTANT, please:750

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",751

• Keep the checklist subsection headings, questions/answers and guidelines below.752

• Do not modify the questions and only use the provided macros for your answers.753

1. Claims754

Question: Do the main claims made in the abstract and introduction accurately reflect the755

paper’s contributions and scope?756

Answer: [Yes]757

Justification: The claims made in the abstract and contributions paragraph at the end of the758

introduction are justified in detail throughout the rest of the paper.759

Guidelines:760

• The answer NA means that the abstract and introduction do not include the claims761

made in the paper.762

• The abstract and/or introduction should clearly state the claims made, including the763

contributions made in the paper and important assumptions and limitations. A No or764

NA answer to this question will not be perceived well by the reviewers.765

• The claims made should match theoretical and experimental results, and reflect how766

much the results can be expected to generalize to other settings.767

• It is fine to include aspirational goals as motivation as long as it is clear that these goals768

are not attained by the paper.769

2. Limitations770

Question: Does the paper discuss the limitations of the work performed by the authors?771

Answer: [Yes]772

21

Justification: Limitations are discussed in the Conclusion section.773

Guidelines:774

• The answer NA means that the paper has no limitation while the answer No means that775

the paper has limitations, but those are not discussed in the paper.776

• The authors are encouraged to create a separate "Limitations" section in their paper.777

• The paper should point out any strong assumptions and how robust the results are to778

violations of these assumptions (e.g., independence assumptions, noiseless settings,779

model well-specification, asymptotic approximations only holding locally). The authors780

should reflect on how these assumptions might be violated in practice and what the781

implications would be.782

• The authors should reflect on the scope of the claims made, e.g., if the approach was783

only tested on a few datasets or with a few runs. In general, empirical results often784

depend on implicit assumptions, which should be articulated.785

• The authors should reflect on the factors that influence the performance of the approach.786

For example, a facial recognition algorithm may perform poorly when image resolution787

is low or images are taken in low lighting. Or a speech-to-text system might not be788

used reliably to provide closed captions for online lectures because it fails to handle789

technical jargon.790

• The authors should discuss the computational efficiency of the proposed algorithms791

and how they scale with dataset size.792

• If applicable, the authors should discuss possible limitations of their approach to793

address problems of privacy and fairness.794

• While the authors might fear that complete honesty about limitations might be used by795

reviewers as grounds for rejection, a worse outcome might be that reviewers discover796

limitations that aren’t acknowledged in the paper. The authors should use their best797

judgment and recognize that individual actions in favor of transparency play an impor-798

tant role in developing norms that preserve the integrity of the community. Reviewers799

will be specifically instructed to not penalize honesty concerning limitations.800

3. Theory Assumptions and Proofs801

Question: For each theoretical result, does the paper provide the full set of assumptions and802

a complete (and correct) proof?803

Answer: [Yes]804

Justification: All theoretical results are clearly stated along with the necessary assumptions.805

All formal arguments are complete and contained in the Appendix.806

Guidelines:807

• The answer NA means that the paper does not include theoretical results.808

• All the theorems, formulas, and proofs in the paper should be numbered and cross-809

referenced.810

• All assumptions should be clearly stated or referenced in the statement of any theorems.811

• The proofs can either appear in the main paper or the supplemental material, but if812

they appear in the supplemental material, the authors are encouraged to provide a short813

proof sketch to provide intuition.814

• Inversely, any informal proof provided in the core of the paper should be complemented815

by formal proofs provided in appendix or supplemental material.816

• Theorems and Lemmas that the proof relies upon should be properly referenced.817

4. Experimental Result Reproducibility818

Question: Does the paper fully disclose all the information needed to reproduce the main ex-819

perimental results of the paper to the extent that it affects the main claims and/or conclusions820

of the paper (regardless of whether the code and data are provided or not)?821

Answer: [Yes]822

Justification: All information necessary to implement the proposed architecture is included823

in the body of the manuscript. In addition, all relevant experimental details are included in824

the Appendix.825

22

Guidelines:826

• The answer NA means that the paper does not include experiments.827

• If the paper includes experiments, a No answer to this question will not be perceived828

well by the reviewers: Making the paper reproducible is important, regardless of829

whether the code and data are provided or not.830

• If the contribution is a dataset and/or model, the authors should describe the steps taken831

to make their results reproducible or verifiable.832

• Depending on the contribution, reproducibility can be accomplished in various ways.833

For example, if the contribution is a novel architecture, describing the architecture fully834

might suffice, or if the contribution is a specific model and empirical evaluation, it may835

be necessary to either make it possible for others to replicate the model with the same836

dataset, or provide access to the model. In general. releasing code and data is often837

one good way to accomplish this, but reproducibility can also be provided via detailed838

instructions for how to replicate the results, access to a hosted model (e.g., in the case839

of a large language model), releasing of a model checkpoint, or other means that are840

appropriate to the research performed.841

• While NeurIPS does not require releasing code, the conference does require all submis-842

sions to provide some reasonable avenue for reproducibility, which may depend on the843

nature of the contribution. For example844

(a) If the contribution is primarily a new algorithm, the paper should make it clear how845

to reproduce that algorithm.846

(b) If the contribution is primarily a new model architecture, the paper should describe847

the architecture clearly and fully.848

(c) If the contribution is a new model (e.g., a large language model), then there should849

either be a way to access this model for reproducing the results or a way to reproduce850

the model (e.g., with an open-source dataset or instructions for how to construct851

the dataset).852

(d) We recognize that reproducibility may be tricky in some cases, in which case853

authors are welcome to describe the particular way they provide for reproducibility.854

In the case of closed-source models, it may be that access to the model is limited in855

some way (e.g., to registered users), but it should be possible for other researchers856

to have some path to reproducing or verifying the results.857

5. Open access to data and code858

Question: Does the paper provide open access to the data and code, with sufficient instruc-859

tions to faithfully reproduce the main experimental results, as described in supplemental860

material?861

Answer: [Yes]862

Justification: Code for running the proposed algorithm is included in the supplemental863

material and will be released publicly upon publication.864

Guidelines:865

• The answer NA means that paper does not include experiments requiring code.866

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/867

public/guides/CodeSubmissionPolicy) for more details.868

• While we encourage the release of code and data, we understand that this might not be869

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not870

including code, unless this is central to the contribution (e.g., for a new open-source871

benchmark).872

• The instructions should contain the exact command and environment needed to run to873

reproduce the results. See the NeurIPS code and data submission guidelines (https:874

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.875

• The authors should provide instructions on data access and preparation, including how876

to access the raw data, preprocessed data, intermediate data, and generated data, etc.877

• The authors should provide scripts to reproduce all experimental results for the new878

proposed method and baselines. If only a subset of experiments are reproducible, they879

should state which ones are omitted from the script and why.880

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized881

versions (if applicable).882

• Providing as much information as possible in supplemental material (appended to the883

paper) is recommended, but including URLs to data and code is permitted.884

6. Experimental Setting/Details885

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-886

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the887

results?888

Answer: [Yes]889

Justification: All relevant experimental details are presented in the Appendix at an appropri-890

ate level of detail.891

Guidelines:892

• The answer NA means that the paper does not include experiments.893

• The experimental setting should be presented in the core of the paper to a level of detail894

that is necessary to appreciate the results and make sense of them.895

• The full details can be provided either with the code, in appendix, or as supplemental896

material.897

7. Experiment Statistical Significance898

Question: Does the paper report error bars suitably and correctly defined or other appropriate899

information about the statistical significance of the experiments?900

Answer: [Yes]901

Justification: All experiments in the body contain means and standard deviations as the902

initialization is varied.903

Guidelines:904

• The answer NA means that the paper does not include experiments.905

• The authors should answer "Yes" if the results are accompanied by error bars, confi-906

dence intervals, or statistical significance tests, at least for the experiments that support907

the main claims of the paper.908

• The factors of variability that the error bars are capturing should be clearly stated (for909

example, train/test split, initialization, random drawing of some parameter, or overall910

run with given experimental conditions).911

• The method for calculating the error bars should be explained (closed form formula,912

call to a library function, bootstrap, etc.)913

• The assumptions made should be given (e.g., Normally distributed errors).914

• It should be clear whether the error bar is the standard deviation or the standard error915

of the mean.916

• It is OK to report 1-sigma error bars, but one should state it. The authors should917

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis918

of Normality of errors is not verified.919

• For asymmetric distributions, the authors should be careful not to show in tables or920

figures symmetric error bars that would yield results that are out of range (e.g. negative921

error rates).922

• If error bars are reported in tables or plots, The authors should explain in the text how923

they were calculated and reference the corresponding figures or tables in the text.924

8. Experiments Compute Resources925

Question: For each experiment, does the paper provide sufficient information on the com-926

puter resources (type of compute workers, memory, time of execution) needed to reproduce927

the experiments?928

Answer: [Yes]929

Justification: All necessary information is included in the Appendix.930

Guidelines:931

24

• The answer NA means that the paper does not include experiments.932

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,933

or cloud provider, including relevant memory and storage.934

• The paper should provide the amount of compute required for each of the individual935

experimental runs as well as estimate the total compute.936

• The paper should disclose whether the full research project required more compute937

than the experiments reported in the paper (e.g., preliminary or failed experiments that938

didn’t make it into the paper).939

9. Code Of Ethics940

Question: Does the research conducted in the paper conform, in every respect, with the941

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?942

Answer: [Yes]943

Justification: This is explained in the "broader impacts" section.944

Guidelines:945

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.946

• If the authors answer No, they should explain the special circumstances that require a947

deviation from the Code of Ethics.948

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-949

eration due to laws or regulations in their jurisdiction).950

10. Broader Impacts951

Question: Does the paper discuss both potential positive societal impacts and negative952

societal impacts of the work performed?953

Answer: [Yes]954

Justification: This paper investigates a novel machine learning method tailored to physics-955

based simulations and fundamental science. While subsequent applications of this work may956

have societal impact, the research presented here is strictly foundational and only serves to957

improve the production of physically realistic dynamics from data.958

Guidelines:959

• The answer NA means that there is no societal impact of the work performed.960

• If the authors answer NA or No, they should explain why their work has no societal961

impact or why the paper does not address societal impact.962

• Examples of negative societal impacts include potential malicious or unintended uses963

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations964

(e.g., deployment of technologies that could make decisions that unfairly impact specific965

groups), privacy considerations, and security considerations.966

• The conference expects that many papers will be foundational research and not tied967

to particular applications, let alone deployments. However, if there is a direct path to968

any negative applications, the authors should point it out. For example, it is legitimate969

to point out that an improvement in the quality of generative models could be used to970

generate deepfakes for disinformation. On the other hand, it is not needed to point out971

that a generic algorithm for optimizing neural networks could enable people to train972

models that generate Deepfakes faster.973

• The authors should consider possible harms that could arise when the technology is974

being used as intended and functioning correctly, harms that could arise when the975

technology is being used as intended but gives incorrect results, and harms following976

from (intentional or unintentional) misuse of the technology.977

• If there are negative societal impacts, the authors could also discuss possible mitigation978

strategies (e.g., gated release of models, providing defenses in addition to attacks,979

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from980

feedback over time, improving the efficiency and accessibility of ML).981

11. Safeguards982

25

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible983

release of data or models that have a high risk for misuse (e.g., pretrained language models,984

image generators, or scraped datasets)?985

Answer: [NA]986

Justification: N/A987

Guidelines:988

• The answer NA means that the paper poses no such risks.989

• Released models that have a high risk for misuse or dual-use should be released with990

necessary safeguards to allow for controlled use of the model, for example by requiring991

that users adhere to usage guidelines or restrictions to access the model or implementing992

safety filters.993

• Datasets that have been scraped from the Internet could pose safety risks. The authors994

should describe how they avoided releasing unsafe images.995

• We recognize that providing effective safeguards is challenging, and many papers do996

not require this, but we encourage authors to take this into account and make a best997

faith effort.998

12. Licenses for existing assets999

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1000

the paper, properly credited and are the license and terms of use explicitly mentioned and1001

properly respected?1002

Answer: [NA]1003

Justification: N/A1004

Guidelines:1005

• The answer NA means that the paper does not use existing assets.1006

• The authors should cite the original paper that produced the code package or dataset.1007

• The authors should state which version of the asset is used and, if possible, include a1008

URL.1009

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1010

• For scraped data from a particular source (e.g., website), the copyright and terms of1011

service of that source should be provided.1012

• If assets are released, the license, copyright information, and terms of use in the1013

package should be provided. For popular datasets, paperswithcode.com/datasets1014

has curated licenses for some datasets. Their licensing guide can help determine the1015

license of a dataset.1016

• For existing datasets that are re-packaged, both the original license and the license of1017

the derived asset (if it has changed) should be provided.1018

• If this information is not available online, the authors are encouraged to reach out to1019

the asset’s creators.1020

13. New Assets1021

Question: Are new assets introduced in the paper well documented and is the documentation1022

provided alongside the assets?1023

Answer: [NA]1024

Justification: N/A1025

Guidelines:1026

• The answer NA means that the paper does not release new assets.1027

• Researchers should communicate the details of the dataset/code/model as part of their1028

submissions via structured templates. This includes details about training, license,1029

limitations, etc.1030

• The paper should discuss whether and how consent was obtained from people whose1031

asset is used.1032

• At submission time, remember to anonymize your assets (if applicable). You can either1033

create an anonymized URL or include an anonymized zip file.1034

26

paperswithcode.com/datasets

14. Crowdsourcing and Research with Human Subjects1035

Question: For crowdsourcing experiments and research with human subjects, does the paper1036

include the full text of instructions given to participants and screenshots, if applicable, as1037

well as details about compensation (if any)?1038

Answer: [NA]1039

Justification: N/A1040

Guidelines:1041

• The answer NA means that the paper does not involve crowdsourcing nor research with1042

human subjects.1043

• Including this information in the supplemental material is fine, but if the main contribu-1044

tion of the paper involves human subjects, then as much detail as possible should be1045

included in the main paper.1046

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1047

or other labor should be paid at least the minimum wage in the country of the data1048

collector.1049

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1050

Subjects1051

Question: Does the paper describe potential risks incurred by study participants, whether1052

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1053

approvals (or an equivalent approval/review based on the requirements of your country or1054

institution) were obtained?1055

Answer: [NA]1056

Justification: N/A1057

Guidelines:1058

• The answer NA means that the paper does not involve crowdsourcing nor research with1059

human subjects.1060

• Depending on the country in which research is conducted, IRB approval (or equivalent)1061

may be required for any human subjects research. If you obtained IRB approval, you1062

should clearly state this in the paper.1063

• We recognize that the procedures for this may vary significantly between institutions1064

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1065

guidelines for their institution.1066

• For initial submissions, do not include any information that would break anonymity (if1067

applicable), such as the institution conducting the review.1068

27

	Introduction
	Previous and Related Work
	Formulation and Analysis
	Exterior algebra
	Learnable metriplectic operators
	Specific parameterizations
	Approximation and error

	Algorithm
	Examples
	Two gas containers
	Thermoelastic double pendulum

	Conclusion
	Proof of Theoretical Results
	Experimental and Implementation Details
	Two gas containers
	Thermoelastic double pendulum

	Additional experiment: Damped nonlinear oscillator
	Scaling study
	Diffusion model for unobserved variables

