
Published as a conference paper at ICLR 2025

EXTENDABLE AND ITERATIVE STRUCTURE LEARNING
STRATEGY FOR BAYESIAN NETWORKS

Hamid Kalantari & Russell Greiner ∗

Department of Computing Science
University of Alberta
Edmonton, Alberta T6G 2R3, Canada
{hkalant2,rgreiner}@ualberta.ca

Pouria Ramazi
Department of Mathematics & Statistics
Brock University
St. Catharines, ON L2S 3A1, Canada
pramazi@brocku.ca

ABSTRACT

Learning the structure of Bayesian networks from a dataset of instances is a funda-
mental yet computationally intensive task, especially as the number of variables
grows. Traditional algorithms require retraining from scratch when new variables
are introduced, making them impractical for dynamic or large-scale applications.
In this paper, we propose an extendable structure learning strategy that efficiently
incorporates a new variable Y into an existing (P-map) Bayesian network graph
G over variables X , resulting in an updated P-map graph Ḡ on X̄ = X ∪ {Y }.
By leveraging the information encoded in G, our method significantly reduces
computational overhead compared to learning Ḡ from scratch. Empirical evalu-
ations demonstrate runtime reductions of up to 1300× without compromising
accuracy. Building on this approach, we introduce a novel iterative paradigm for
structure learning over X . Starting with a small subset U ⊂ X , we iteratively add
the remaining variables using our extendable algorithm to construct a P-map graph
over the full set. This method achieves runtime advantages compared to common
algorithms while maintaining similar accuracy. Our contributions provide a scal-
able solution for Bayesian network structure learning, enabling efficient model
updates in real-time and high-dimensional settings.

1 INTRODUCTION

Dependency between random variables can be represented by a directed acyclic graph (DAG), where
for some directions, a link from a variable A to B signifies that A causes B. When the DAG is
coupled with the conditional probability distribution (CPD) of each variable given its parents, it
forms a Bayesian network, which enables both probabilistic and causal queries. The joint probability
distribution of the variables then factorizes according to the DAG, meaning it becomes the product of
the associated CPDs.

Estimating the DAG from observational data, known as structure learning, is typically approached
using either constraint-based or score-based algorithms (Kitson et al., 2021). Constraint-based
methods, such as PC (developed by Peter Spirtes and Clark Glymour) (Spirtes et al., 2000) and Fast
Causal Inference (FCI) (Spirtes et al., 2000), rely on detecting dependencies between variables using
conditional independence (CI) tests (Guo et al., 2020). In contrast, score-based methods search for a
DAG that maximizes a score function, such as the Bayesian Information Criterion (BIC) (Koller &
Friedman, 2009).

A notable gap exists in current approaches: no algorithm efficiently updates an existing DAG when
new variables are introduced. This issue is particularly relevant in fields such as social science
(Card, 1999), psychology (Primack et al., 2017), and financial studies (Bollen et al., 2011), where
important variables may be omitted in the initial stages of research but later recognized as critical.
For instance, in stock market prediction models, analysts might begin with historical stock prices,
trading volumes, and economic indicators, only to later discover the significant impact of social
media sentiment (Bollen et al., 2011). Incorporating such new variables would traditionally require

∗Alberta Machine Intelligence Institute

1

Published as a conference paper at ICLR 2025

re-learning the entire DAG, a process that becomes computationally prohibitive as the number of
variables grows. While existing online (Kocacoban & Cussens, 2019) and incremental (Alcobe, 2005)
structure learning algorithms address scenarios where datasets are updated over time by adding new
instances (over the original set of variables), they are not designed to efficiently incorporate a new
variable into a learned DAG, as they would, instead, simply discarding the original structure.

We propose an extendable structure learning algorithm that avoids the need to re-learn the entire
graph when a new variable is added. Specifically, we investigate the effect of adding a node Y to an
already learned correct structure G over a set of variables X . We present two algorithms to obtain the
extended structure for X ∪ {Y }. Our key findings are that adding a new variable results only in the
deletion of edges between the original variables, not the addition of new ones, and analyzing how the
added node can affect the existing edges between nodes in X .

Consequently, the search for the highest-scoring DAG is confined to a reduced space, rather than the
full space of all possible DAGs over the extended set of variables. This reduced search space informs
the development of an extendable score-based algorithm, as well as a constraint-based algorithm that
leverages the existing CI tests from the learned structure. By significantly reducing the number of CI
tests compared to re-learning the structure from scratch, we achieve a more computationally efficient
solution. The complexity of the extendable constraint-based algorithm is O(NKm2d) where N is
the cardinality of X , d represents the maximum degree of nodes in G, m is the degree of node Y in
true DAG, and m ≤ K ≤ N . This represents a substantial improvement over the PC algorithm’s
complexity of O((N + 1)M) where M = max{d,m}. Simulation results over some practical
benchmark datasets in Bayesian network demonstrate a runtime reduction of up to 1300-fold, while
also improving the accuracy of the learned structure in terms of structural Hamming distance.

Furthermore, we also develop an iterative strategy to learn the structure of Bayesian networks using
the proposed extendable algorithms. This algorithm initially learns the structure over two randomly-
selected random variables, and at each iteration, one of the remaining variables is added to the set
using the extendable algorithms. The accuracy and speed of this iterative algorithm are comparable
to, and sometimes better than, those of the PC algorithm.

2 BACKGROUND

A Bayesian network is a probabilistic graphical model that represents a joint probability distribution
over a set of random variables X = {X1, X2, . . . , XN}. In general, the joint distribution P (X) can
be factorized using the chain rule as ΠN

i=1P (Xi | X1, . . . , Xi−1). Given a network structure, this
factorization can be simplified by exploiting conditional independencies among the variables.

Each such factorization corresponds to a Directed Acyclic Graph (DAG) G, where the nodes represent
the random variables in X , and edges indicate direct dependencies. Specifically, for each conditional
term P (Xi | PaXi

), where PaXi
⊆ {X1, . . . , Xi−1} are the parents of Xi, G includes a edge

from each parent of Xi to Xi in G. The concept of d-separation in a DAG formalizes the notion of
conditional independence among variables. A trail (or path) between two nodes X and Y in G is a
sequence of nodes (X = X0, X1, . . . , Xn = Y) such that each pair (Xi, Xi+1) is connected by an
edge (regardless of direction).The length of a trail is defined as the number of edges it contains, and
the distance between two nodes is the minimum length among all trails connecting them. A node Z
on a trail is called a collider if the edges on the trail meet at Z as Xi−1 → Z ← Xi+1.

Definition 1 (d-separation) (Koller & Friedman, 2009) Consider the DAG G with node set X . A
trail T between two nodes X and Y in X is active relative to a set of nodes Z if, (i) every non-collider
on T is not a member of Z , and (ii) every collider on T is an ancestor of some member of Z . The
node subsets X and Y are d-separated given the subset Z , if there is no active trail between any node
X ∈ X and any node Y ∈ Y given Z .

If X and Y are d-separated given Z , denoted d-sepG(X ,Y | Z), we say that the paths between X
and Y are blocked by Z . Define I(G) as the set of all d-separations in DAG G. Let I(P) denote the
set of all conditional independencies implied by the distribution P . The Markov condition imposes
that I(G) ⊆ I(P) and the distribution P is said to be faithful to the DAG G if I(P) ⊆ I(G). If
I(G) = I(P), as implied by the two assumptions, then G is called a P-map (perfect-map) for P . It
has been proven that almost all distributions P admit some P-map G (Koller & Friedman, 2009). A

2

Published as a conference paper at ICLR 2025

P-map learner is an algorithm, such as PC, that (given a set of instances of the random variables X ,
drawn from a distribution P) attempts to outputs a P-map for that P . Should the distribution P not
admit a P-map, then the output will be a DAG G, that either violates the faithfulness or Markovness
assumption. Two following Lemmas indicate a relation between I(G) and I(P).

Lemma 1 (Based on (Spirtes et al., 2000)) Consider random variables X with joint distribution P
that admits a P-map G. Vertices X and Y are not adjacent in G if and only if X ⊥ Y | U for some
(possibly empty) U ⊆ X .

Lemma 2 [Lemma 3.2 in (Koller & Friedman, 2009)] Consider random variables X with joint
distribution P that admits a P-map G. Vertices X and Y are not adjacent in G if and only if
X ⊥ Y | PaX or X ⊥ Y | PaY .

3 EXTENDABLE LEARNING

Let X = {X1, · · · , XN} be the set of random variables with the joint probability distribution P ′,
and G be an output of a P-map learner algorithm over X . Now, suppose a new variable Y is added,
expanding the variable set to X̄ = X ∪ {Y } whose joint distribution is denoted by P . We refer to
X̄ (resp., P) as the extended variable set (resp., distribution). Following the common practice in
the literature, we assume that there is a P-map for the joint distribution P of the extended variables
X̄ , but that is not necessarily the case with the joint distribution P ′ of the original variables X as
explained below. The goal is to efficiently learn a P-map Ḡ for X̄ , leveraging the information already
encoded in G.

Problem 1 Consider a set of random variables X and let G be the output of a P-map learner applied
toX . Consider random variable Y and the extended variable set X̄ = X ∪{Y } with joint distribution
P . Find a P-map Ḡ for P .

A challenge arises because adding Y may alter the dependencies among the variables in X . Specif-
ically, P ′(X) is the marginal distribution of P (X̄) over X . However, since Y was unobserved
when G was learned, G may not accurately capture the dependencies in P ′(X). In particular, G
may not be a P-map for P ′(X) due to hidden confounding introduced by Y . For example, when Y
is a confounding variable (hidden common cause) between two collider nodes in G over X , DAG
G cannot represent all independencies in P ′, violating the faithfulness assumption (Spirtes, 1995).
Consider X = {X1, X2, X3, X4} and Ḡ as X1 → X2 ← Y → X3 ← X4. Marginalization over Y
results in two adjacent collider nodes X2 and X3 leading to two immoralities X1 → X2 ← X3 and
X2 → X3 ← X4 in G. Since a valid DAG cannot contain adjacent collider nodes forming multiple
immoralities, G fails to satisfy the P-map condition.

We investigate how adding Y affects the dependencies among the variables in X . Consider two
variables X1 and X2 in X . Three possible scenarios can occur when Y is added:

1. Non-adjacent variables remain non-adjacent: If X1 and X2 are not adjacent in G, they
remain non-adjacent in Ḡ. by faithfulness, the absence of an edge implies a conditional
independence given some subset U ⊆ X \ {X1, X2} (Lemma 1), which remains valid even
after the inclusion of Y .

2. Spurious adjacencies may be removed: If X1 and X2 are adjacent in G but become
conditionally independent given Y and some subset U ⊆ X \ {X1, X2}, the edge between
them may be removed in Ḡ.

3. True adjacencies remain: If X1 and X2 are adjacent in G and remain dependent given Y
and any subset U ⊆ X \ {X1, X2}, the edge between them is preserved in Ḡ.

According to the first scenario, we show that following Proposition 1 follows from Lemma 1.

Proposition 1 Consider Ḡ is a P-map over X̄ and G is a graph over X . If Xj is adjacent to Xi in Ḡ,
then Xj is an adjacent of Xi in G.

Proof. If Xj and Xi are not adjacent in G, Lemma 1 proves there is a subset U ⊆ X \ {Xi, Xj} such
that Xi ⊥ Xj | U . Because Ḡ is a P-map then the faithfulness assumption means Xi and Xj are
d-separated by U in Ḡ. Thus there can be no edge between Xi and Xj in Ḡ. □

3

Published as a conference paper at ICLR 2025

Figure 1: Structures where not observing Y can lead to a spurious edge between X1 and X2. The
dashed edge represents the possible direction of the spurious edge when the structure is learned by
a P-map learner algorithm and Y is an unobserved node. In (a) either X1 → X2 or X1 ← X2 can
occur, and in the other structures, only one direction can occur.

An important result from Proposition 1 is that adding Y does not introduce new edges between
variables in X that were not already connected in G. Therefore, we only need to examine existing
edges in G and consider potential new edges between Y and the variables in X . We now present
our main theoretical results, which characterize how the addition of Y affects the structure of the
structure G.

Lemma 3 Consider variables X̄ whose joint distribution admits P-map Ḡ. Let Y ∈ X̄ and DAG G
be the output of a P-map learner applied to X̄ \ {Y }. Then every pair of non-adjacent nodes X1 and
X2 in Ḡ are adjacent in G only if

1. Y is a common cause or mediator of X1 and X2 in Ḡ; or

2. X1 is linked to some node W which in turn is linked to X2, and Y is linked to both W and
X2 (or the same statement but when X1 and X2 are exchanged).

Proof. X1 and X2 being adjacent in G implies that they remain dependent conditioned on any subset
of X , i.e.,

∀ U ′ ⊆ X X1 ̸⊥ X2 | U ′. (1)

On the other hand, X1 and X2 being non-adjacent in Ḡ implies the existence of a subset of X that
together with Y drive X1 and X2 independent, i.e.,

∃ U ⊆ X X1 ⊥ X2 | U ∪ {Y }. (2)

In view of equation 1, equation 2, and Ḡ being a P-map for X̄ , it follows that there exists a path T
connecting X1 and X2 in Ḡ that is active if Y is not observed, and every path connecting X1 and X2

becomes inactive if Y and U are observed. The distance of Y to X1 does not exceed two. Otherwise,
for every path Ti connecting Y to X1, let Wi be the neighbor of X1 on Ti and Vi be the neighbor of
Wi on Ti. If Y is not a parent for X2, considering Lemma 2, Y cannot impact the existence of an
edge between X1 and X2. If Y is a parent of X2, then two cases must be checked. (1) There is no
collider node Vj between X1 and X2 by observing Wi or Vi the path will be inactive and the other
paths are blocked by parent nodes of X1 or X2. (2) There is a collider node Vj between X1 and X2,
with children Wi and Vi. In this case, either Vi is a collider on the path between Y and X1, or there
is a collider between Vi and Y that blocks the path; otherwise, a cycle would be formed in the graph.
Therefore, two conditions are possible. (i) Y must be an adjacent of both X1 and X2 such that Y is
not a collider between them, or (ii) Y must be adjacent of one of them and has a trail with length two
to the other. (i) is the same as case (1). For (ii), if there are other structures except what is indicated
in Fig.1(d,e) would be led to X1 ⊥ X2 | U ′ for a U ′ ⊂ X , which is contrary to (1). □

Considering Lemma 3, only three cases exist where observing Y in Ḡ can remove the edge between
X1 and X2: When Y is a confounding (Fig. 1 (a)) or mediator variable between them (Fig. 1 (b,c))
or Y is adjacent to X1 and forms a collider with X2 and W while W is a mediator node between X1

and X2 (Fig. 1 (d,e)). Only in these cases is there an active path between X1 and X2 when Y is not
observed and where that path is blocked by observing Y in Ḡ.

Lemma 4 Let Ḡ be a P-map for P . If X1 ⊥ X2|U for U ⊂ X \ {X1, X2}, then Y cannot be a
mediator or common cause variable between them in Ḡ.

4

Published as a conference paper at ICLR 2025

Figure 2: Three structures that show the effect of the unobserved node Y on an immorality

Proof. Consider Y as a mediator or common cause variable between X1 and X2. Then the path
X1 ⇌ Y ⇌ X2 is active when Y is a hidden variable and X1 ̸⊥ X2|U for all U ⊂ X \{X1, X2}. □

Lemma 5 Let Ḡ be a P-map of P over X̄ = X ∪ {Y } and G is the output of a P-map learner
algorithm. If X ∈ X is a collider node in G, then it is a collider node in Ḡ.

Proof. Consider an immorality X1 → X2 ← X3 in G. There is a U ⊂ X \ {X1, X3} so that
X2 ̸∈ U and X1 ⊥ X3|U . Also, for all U ⊆ X \ {X1, X3} we have X1 ̸⊥ X3|X2,U . Then
X1 ̸⊥ X3|X2,U , Y . If X1, X2 and X2, X3 are adjacent in Ḡ, then they form an immorality in Ḡ
and X1 → X2 ← X3 appears in Ḡ. Now, consider the edge X2 ← X3 is removed by observing
Y . Therefore, X2, X3, and Y may form one of the structures shown in Fig. 1. Of course, because
X1 ̸⊥ X3|X2, we cannot have a direct path as X2 → Y → X3. As a result, three types of structures
might occur. If Y is a confounding variable for X2 and X3 (Fig. 2 (a)) Lemma 4 means there is
no edge between Y and X1 and we have X1 ̸⊥ X3|X2 which in turn means X2 must be a collider
node between Y and X1 and the edge between X1, X2 orients as X1 → X2 in Ḡ. In the second case,
if we have X3 → Y → X2 (Fig. 2 (b)), similar to the previous case, we have X1 → X2. Also, if
X1 and Y are adjacent, the edge between them orients as X1 → Y due to Lemma 4. In third case
(Fig. 2 (c)), if X1 ← X2 then we have a direct path X3 → W → X2 → X1 that can be blocked
by observing X2 or X3 ⊥ X1|X2 which is a contradiction and similar to two first cases we have
X1 → X2. Since we have X3 ̸⊥ X1|X2,U it is impossible to have a structure with X3 adjacent
to Y and W a mediator node between X2 and X3 as X2 → W → X3. If we have an immorality
X1 → X2 ← X3 but the edges between X1, X2 and X3, X2 are removed by observing Y , so there
are direct paths X3 → Y → X2 or X3 → W → X2, and X1 → Y → X2 or X1 → V → X2 in Ḡ
for some W,V ∈ X . Therefore, the direction between X1, X2 or X3, X2 does not change when Y is
added to variables. As a result, the orientations of immoralities in G will be unchanged in Ḡ, and so
all orientations in Ḡ between nodes in X are similar to the orientations in G. □

3.1 CONSTRAINT-BASED APPROACH

Checking CI tests to detect independencies is the main idea in constraint-based algorithms. Two steps
are required to add the new variable Y to the previous structure. The first step is checking the relation
between Y and other nodes in X , and the second step is investigating the effect of Y on the edges in
the previous structure.

The PC algorithm is one of the most popular constraint-based algorithms to learn such structures.
Algorithm 1 is an extendable version of the PC algorithm. According to the PC algorithm, the quantity
of CI tests required to verify the existence of an edge between two nodes is directly proportional to
the number of adjacent nodes in the true DAG. Hence, to identify the existence of an edge between Y
and X ∈ X , it is necessary to perform CI tests between Y and X while conditioning on all subsets
of both adjacents of X and Y in Ĝ, which are indicated by Adj(Ĝ, X) and Adj(Ḡ, Y), respectively.
Moreover, based on the PC algorithm, by adding the node of Y into the graph Ĝ, all nodes in X must
be connected to Y , forming an initial graph Ḡ. Subsequently, the process involves refining the graph
by eliminating any surplus or spurious edges. The count of adjacent nodes to Y is | Adj(Ḡ, Y) |= N ,
whereas | Adj(Ḡ,X) |≤ N for any X ∈ X . Consequently, to determine the existence of edges
between Y and each X ∈ X , it is appropriate to initially conduct CI tests on U ⊂ Adj(Ḡ,X) and
subsequently on U ⊂ Adj(Ḡ, Y). Once the true edges between Y and all X ∈ X are detected, we
can then identify the spurious edges between X,Z ∈ X .

5

Published as a conference paper at ICLR 2025

If d represents the maximum degree of nodes in Ĝ, and m is the degree of node Y in true DAG,
employing the PC algorithm for all nodes in X̄ = X ∪ {Y } imposes a bound on the number of CI
tests, which is (N + 1)M+1 where M = max{d,m}. This bound is established because the PC
algorithm does not leverage information from the prior graph. However, applying the Extendable PC
algorithm when adding a new variable to the variable set can mitigate the number of required CI tests.
Table 1 illustrates the count of CI tests at each step in the Extendable PC algorithm. N2d (resp.,md2d

) constrain the number of CI tests in steps 2 (resp. 4), and step 3 may require up to Km CI tests,
where K ∈ {m,m+ 1, · · · , N} denotes the number of adjacents of Y after step 2. Nevertheless, in
step 2, certain edges between Y and other nodes may be eliminated. If the number of nodes adjacent
to Y decreases, the number of conditional independence tests will accordingly decrease in step 3. As
a result, we have proved that the number of CI tests for the Extendable PC algorithm is always fewer
than the PC one; see Proposition 2. In addition, Theorem 1 proves the output of Algorithm 1 is a P-map.

Algorithm 1: The Extendable PC Algorithm

Input: A new variable Y and graph Ĝ obtained from the PC algorithm over X ;
Output: New graph Ḡ over the set of variables X̄ = X ∪ {Y };

1 Connect Y to all nodes in Ĝ and construct the graph Ḡ;
2 Adj(Ḡ, Y) = X ; // Step 1: Initializing Ḡ and the adjacent sets

3 Adj(Ḡ, X) = Adj(Ĝ, X) ∪ {Y }, for all X ∈ X ; Sepset(X,Y) = ∅ for X ∈ X ;
4 m = 0

5 while maximum degree of nodes X in Ḡ is greater than m do
// Step 2: Checking edges between the new variable and other
nodes by conditioning on the neighbors of nodes in X.

6 for X ∈ X
7 for U ⊆ Adj(Ĝ, X) and | U |= m
8 if X ⊥ Y | U
9 Remove the edge X − Y from Ḡ;

10 Sepset(X,Y)← U ;
11 m = m+ 1;
12 m = 0;
13 while degree of Y in Ḡ is greater than m do

// Step 3: Checking the edges between the new node and its
neighbors by conditioning on the neighbors of the new node.

14 for X ∈ Adj(Ḡ, Y)
15 for U ⊆ Adj(Ḡ, Y) \ {X} and | U |= m
16 if Y ⊥ X | U
17 Remove the edge X − Y from Ḡ;
18 Sepset(X,Y)← U ;
19 m = m+ 1;
20 m = 0;
21 while maximum node degree in Ḡ is greater than m do

// Step 4: Checking edges between nodes in X with observing
new variable Y

22 for X ∈ Adj(Ḡ, Y)
23 for Z ∈ Adj(Ḡ, X) \ {Y }
24 if Z ∈ Adj(Ḡ, Y) or Adj(Ḡ, X) ∩Adj(Ḡ, Z) ∩Adj(Ḡ, Y) ̸= ∅
25 for U ⊆ Adj(Ḡ, X) \ {Z} and | U |= m
26 if X ⊥ Z | {Y } ∪ U
27 Remove the edge X − Z from Ḡ;
28 Sepset(X,Z)← U ;

29 m = m+ 1;
30 if X,Z ∈ Adj(Ḡ, Y), and X ̸∈ Adj(Ḡ, Z) // Step 5 : Immorality detection
31 if X ̸⊥ Z | Y and Y ̸∈ Sepset(X,Z)
32 Orient X ⇌ Y ⇌ Z as X → Y ← Z.
33 Orient the other edges by orientation rules in (Spirtes et al., 2000). // Step 6

6

Published as a conference paper at ICLR 2025

Table 1: The number of CI tests for each step of the Extendable PC Algorithm
Step 2 3 4

Number of CI tests O(N2d) O(Km) O(md2d)

Proposition 2 The number of CI tests of Algorithm 1 is fewer than the PC algorithm.

Theorem 1 The output of Algorithms 1 and 4 is a P-map.

Proof. The proof is a straightforward conclusion using Lemma 1, Lemma 3, and Lemma 4 (in
Appendix). Lemma 4 shows that adding a new variable cannot add an edge between two nodes.
Hence, according to Lemma 1, the output skeleton of the proposed extendable algorithm finds the
skeleton of the true DAG. Then, Lemma 3 shows that all collider nodes were found correctly by the
proposed algorithm. So the output PDAG for constraint-based algorithms, such as Algorithm 1, is a
P-map structure. □

In addition, we use a straightforward modification of the PC algorithm using Proposition 1. As
discussed above, adding a new variable cannot add any edge to the previous structure. Therefore, we
can use the previous skeleton G as the input graph of the PC algorithm and check the other CI tests to
obtain Ḡ. This algorithm is called the Initialized PC algorithm (IPC).

3.2 SCORE-BASED APPROACH

In the score-based approach, a score function is used to find an optimal structure over all possible
DAGs, or perhaps a sub-optimal solution over a subset of possible DAGs. Therefore, the number
of DAGs in the search space has a key role in the complexity of the structure learning algorithm.
If a DAG Ĝ was obtained by a score-based algorithm over X , the search space for learning a new
structure that includes Y could be estimated by Proposition 1 and Lemmas 3-5. This means the
number of DAGs in this search space will be lower than all possible DAGs on X̄ . Let SX̄ be a search
space on X̄ . The DAGs Ḡ in SX̄ must satisfy following conditions:

1. If Xi, Xj ∈ X are not adjacent in G, then they are not in Ḡ.

2. If Xi ∈ X is a collider node in G, then it is a collider node in Ḡ.

3. If Xi, Xj are adjacent to each other in G, if Xi, Xj and Y form a structure similar to one of
the structures in Fig. 1, then the edge between them can be deleted in Ḡ.

4. If Xi, Xj ∈ X are not adjacent to each other in G, and both of them are adjacent to Y in Ḡ,
then Y must be a collider (i.e., Xi → Y ← Xj in Ḡ).

5. If Xi, Xj ∈ X are adjacent to each other in G, and both of them are collider nodes in G,
then Y must be a confounding variable as Xi ← Y → Xj in Ḡ.

Algorithms 2 and 8 are developed for extendable score-based structure learning approach. Algorithm
2 represents a general extendable score-based algorithm that includes:(1) a search space trimming
function (T-function in Algorithm 8) that restricts the graph search space, based on the analysis from
Lemmas 3 - 5; and (2) a score-based P-map learner (for example global minimization of the BIC
score), that finds the best graph within the restricted search space.

Algorithm 2: The Extendable Score-based Algorithm

Input: A new variable Y and a structure Ĝ over X
Output: A P-map Ḡ over X̄ = X ∪ {Y }

1 SX̄ ← T(Ĝ, Y,SX̄) // By T-function in algorithm 8
2 Ḡ ← PF(SX̄) // PF is a score-based P-map learner

7

Published as a conference paper at ICLR 2025

3.3 ITERATIVE STRUCTURE LEARNING APPROACH

We developed a new structure learning paradigm using the extendable approach, allowing standard
algorithms to be modified to reduce the run-time. This is achieved through an iterative process where
the extendable structure learning algorithm is applied at each step. As shown in Algorithm 3, starting
with two randomly selected variables from X , denoted as X1 and X2, a structure G1 is learned. Then,
a third variable X3 is selected from X \{X1, X2}, and a new structure G2 is formed by incorporating
X3 using the extendable algorithm. This process is repeated iteratively, with each new variable, such
as X4 ∈ X \ {X1, X2, X3}, being added to the current set to form the next structure. The procedure
continues until all N variables are included, resulting in a P-map graph over X . Using an iterative
approach, at each step, we leverage information about the relationships between nodes from the
previous graph to determine the current graph. Since the number of nodes impacts the number of
CI tests, fewer nodes result in fewer CI tests when applying Lemma 1, which restricts the space of
possible graphs. Also, the performance of the iterative algorithms depends on the order in which
variables are selected. According to Lemma 1 and Figure 1, if the ordering is close to topological
causal ordering the performance of the iterative will be closer to the standard algorithm. For example,
consider a naive Bayes structure with n children {X1, · · · , Xn} and a parent node Y . With ordering
like ⟨X1, · · · , Xn, Y ⟩, before dealing with Y , the iterative algorithm will first produce the complete
graph over {X1, · · · , Xn}. However, with this ordering ⟨Y,X1, · · · , Xn⟩ the number of CI tests for
Algorithm 3 will be fewer than the previous ordering.

Algorithm 3: The Iterative P-map learner Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 X̂ = {X1, X2}
2 G ← P-map learner(X̂)
3 while X \ X̂ ̸= ∅ do
4 Select X ∈ X \ X̂
5 Ḡ ← Extendable P-map learner(G, X)

6 X̂ ← X̂ ∪ {X}
7 G ← Ḡ

4 NUMERICAL RESULTS

We now compare the results of our Extendable PC algorithm with the PC, and Initialized PC
algorithms on the data sets ASIA (Lauritzen & Spiegelhalter, 1988), CANCER (Korb & Nicholson,
2010), SURVEY (Scutari & Denis, 2021), EARTHQUAKE (Korb & Nicholson, 2010), ALARM
(Beinlich et al., 1989), INSURANCE (Binder et al., 1997), CHILD (Spiegelhalter & Cowell, 1992),
WATER (Jensen et al., 1989), SACHS (Jensen & Jensen, 2013), MILDEW (Jensen & Jensen, 2013),
WIN95PTS (Jensen & Jensen, 2013), HEPAR2 (Onisko, 2003), and ANDES (Conati et al., 1997). For
each task, we first draw 10000 instances from distributions for use in structure learning algorithms.
For each data set a variable is chosen randomly and a structure is learned over the other variables
by the PC algorithm. Then the chosen variable is added to the data set, and the learned structure is
considered as the input of the Extendable PC algorithm and Initialized PC to learn the new structure.
For iterative PC, the first two variables are chosen randomly, and the iterative PC is used to estimate
the structure over the whole of variables. The number of CI tests for the PC, Initialized PC, and
Extendable PC algorithms are shown in Table 2 and the runtime in Table 3. In addition, by considering
the structural Hamming distance, we recorded the number of incorrect edges either missing or extra
compared to the true graph and divided it by the total number of edges in the true DAG (Table
4). These results suggest that the extendable approach can significantly reduce both the number of
required CI tests and the runtime, particularly in large networks. Additionally, Table 5 shows the
number of CI tests for iterative PC and PC algorithms, and Tables 6 and 7 illustrate the runtime and
error of them. The iterative approach applied to the PC algorithm demonstrates the runtime across
most datasets is less than the standard PC algorithm, and the error did not change.

8

Published as a conference paper at ICLR 2025

Table 2: Number of CI tests

DATASET EXTENDABLE PC INITIALIZED PC PC

EARTHQUAKE 15 48 57
CANCER 12 39 45
SURVEY 11 49 55
ASIA 26 87 124
CHILD 184 1242 2124
SACHS 618 682 971
ALARM 103 745 3283
MILDEW 200 670 3629
WIN95PTS 86 1975 12501
INSURANCE 147 1571 5078
WATER 71 278 1346
HEPAR2 536 5108 23202
ANDES 277 11426 68375

Table 3: Run-Time (sec)

DATASET EXTENDABLE PC INITIALIZED PC PC

EARTHQUAKE 0.033 0.116 0.283
CANCER 0.029 0.115 0.294
SURVEY 0.022 0.186 0.425
ASIA 0.071 0.244 0.744
CHILD 6.11 33.76 65.71
SACHS 15.39 15.86 34.16
ALARM 1.45 17.95 22.10
MILDEW 28.13 31.01 316
WIN95PTS 0.688 77.81 111
INSURANCE 2.36 36.9 58.28
WATER 0.289 1.38 5.77
HEPAR2 47.57 474 1832
ANDES 1.97 532 2652

Table 4: Structural Hamming Distance divided by the total number of true edges (%)

DATASET EXTENDABLE PC INITIALIZED PC PC

EARTHQUAKE 0 0 0
CANCER 0 0 0
SURVEY 0 0 0
ASIA 12.5 12.5 12.5
CHILD 4 4 4
SACHS 0 0 0
ALARM 8.7 8.7 8.7
MILDEW 13 17.4 17.4
WIN95PTS 38.4 38.4 38.4
INSURANCE 30.8 30.8 30.8
WATER 57.6 59.1 59.1
HEPAR2 51.2 51.2 51.2
ANDES 19.5 19.5 19.5

5 CONCLUSION

The proposed extendable structure learning approach allows us to add new variables to the given
(correct) Bayesian network, with a significantly lower computational burden compared with learning
a new structure from scratch. The proposed approach can be applied to all constraint-based and
score-based algorithms. A key challenge is using P-map learner algorithms in the presence of a hidden
variable. In this case, the output of the algorithms is not a P-map and even in some situations the

9

Published as a conference paper at ICLR 2025

faithfulness assumption is violated. We proposed Lemmas to detect situations in which unfaithfulness
can occur while there is an unobserved variable. Then, we proposed an extendable strategy for
constructing a P-map when a new variable is added to the set of variables. We applied the extendable
approach to the PC algorithm, then shows that this algorithm could reduce the runtime up to 1300
times compared with the PC when a new variable is added to the set of variables and up to 270 times
compared with the Initialized PC algorithm. In addition, the iterative paradigm for structure learning
based on the extendable approach, and demonstrated that this approach can be used effectively for
all types of structure learning algorithms. The structure learning starts with two variables and then
incrementally adds one variable at a time, to the previous structure using the extendable approach,
until all variables are added to the graph. The iterative PC algorithm can reduce the number of CI
tests and the runtime for most datasets, while also increasing accuracy in some cases. For future
work, optimizing variable ordering to reduce the number of CI tests in the iterative approach could
enhance efficiency.

Table 5: Number of CI tests

DATASET ITERATIVE PC PC

EARTHQUAKE 31 57
CANCER 27 45
SURVEY 37 55
ASIA 66 124
CHILD 3344 2124
SACHS 1276 971
ALARM 4847 3283
MILDEW 2597 3629
WIN95PTS 10412 12501
INSURANCE 2589 5078
WATER 872 1346
HEPAR2 8371 23202
ANDES 35327 68375

Table 6: Run-Time (sec)

DATASET ITERATIVE PC PC

EARTHQUAKE 0.09 0.283
CANCER 0.06 0.294
SURVEY 0.09 0.425
ASIA 0.15 0.744
CHILD 124 65.71
SACHS 35.5 34.16
ALARM 81 22.1
MILDEW 715 316
WIN95PTS 144 111
INSURANCE 39.5 58.28
WATER 3.11 5.77
HEPAR2 597 1832
ANDES 307 2652

Table 7: Structural Hamming Distance divided by the total number of true edges (%)

DATASET ITERATIVE PC PC

EARTHQUAKE 0 0
CANCER 0 0
SURVEY 0 0
ASIA 12.5 12.5
CHILD 4 4
SACHS 0 0
ALARM 17.4 8.7
MILDEW 54.3 17.4
WIN95PTS 31.25 38.4
INSURANCE 26.9 30.8
WATER 47 59.1
HEPAR2 46.3 51.2
ANDES 23.4 19.5

REFERENCES

Juan R. Alcobe. Incremental methods for bayesian network structure learning. Artificial Intelligence
Communications, 18(1):61–62, 2005.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The alarm monitoring system: A case
study with two probabilistic inference techniques for belief networks. In Proceedings of the 2nd
European Conference on Artificial Intelligence in Medicine, pp. 247–256. Springer-Verlag, 1989.

Jeffrey Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilistic networks
with hidden variables. Machine Learning, 29(2–3):213–244, 1997.

10

Published as a conference paper at ICLR 2025

Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock market. Journal of
Computational Science, 2(1):1–8, 2011.

David Card. The causal effect of education on earnings. In Handbook of Labor Economics, volume 3,
pp. 1801–1863. 1999.

C. Conati, A. S. Gertner, K. VanLehn, and M. J. Druzdzel. On-line student modeling for coached
problem solving using bayesian networks. In Proceedings of the 6th International Conference on
User Modeling, pp. 231–242. Springer-Verlag, 1997.

Ruocheng Guo, Li Cheng, Jundong Li, Peter R. Hahn, and Huan Liu. A survey of learning causality
with data: Problems and methods. ACM Computing Surveys (CSUR), 53(4):1–37, 2020.

A.L. Jensen and F.V. Jensen. Midas-an influence diagram for management of mildew in winter wheat.
arXiv preprint arXiv:1302.3587, 2013.

Finn V. Jensen, Uffe Kjærulff, Karl G. Olesen, and Jens Pedersen. Et forprojekt til et ekspertsystem
for drift af spildevandsrensning (an expert system for control of waste water treatment - a pilot
project). Technical report, 1989. Technical Report, Judex Datasystemer A/S, Aalborg, In Danish.

N.K. Kitson, A.C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham. A survey of bayesian network
structure learning. 2021.

Damla Kocacoban and James Cussens. Online causal structure learning in the presence of latent
variables. In 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), pp. 392–395. IEEE, December 2019.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. CRC Press, 2010.

Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society: Series
B (Methodological), 50(2):157–194, 1988.

Agnieszka Onisko. Probabilistic Causal Models in Medicine: Application to Diagnosis of Liver
Disorders. PhD thesis, Institute of Biocybernetics and Biomedical Engineering, Polish Academy
of Sciences, Warsaw, Poland, 2003.

Brian A. Primack, Ariel Shensa, Jeanine E. Sidani, Emily O. Whaite, Lloyd Yi Lin, David Rosen,
Jason B. Colditz, Ana Radovic, and Elizabeth Miller. Social media use and perceived social
isolation among young adults in the us. American Journal of Preventive Medicine, 53(1):1–8,
2017.

Marco Scutari and Jean-Baptiste Denis. Bayesian Networks: With Examples in R. Chapman and
Hall/CRC, 2021.

David J. Spiegelhalter and Robert G. Cowell. Learning in probabilistic expert systems. In J.M.
Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith (eds.), Bayesian Statistics 4, pp. 447–466.
Clarendon Press, Oxford, 1992.

Peter Spirtes. Building causal graphs from statistical data in the presence of latent variables. In
Studies in Logic and the Foundations of Mathematics, volume 134, pp. 813–829. Elsevier, 1995.

Peter Spirtes, Clark N. Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT Press, 2000.

11

Published as a conference paper at ICLR 2025

A APPENDIX

Algorithm 4: The Extendable Constraint-based Algorithm

Input: A new variable Y and a structure Ĝ over X
Output: A PDAG Ḡ over X̄ = X ∪ {Y }

1 Form the Ḡ over nodes X̄ by connecting Y to all nodes Ĝ by undirected edge;
2 for X ∈ X // Step 1:
3 Check the edge between Y and X

4 for X ∈ Adj(Ḡ, Y) // Step 2
5 for Z ∈ Adj(Ḡ, X)
6 if Z ∈ Adj(Ḡ, Y) or Adj(Ḡ, X) ∩Adj(Ḡ, Z) ∩Adj(Ḡ, Y) ̸= ∅
7 Check the edge between X and Z
8 Orient the new edges using the orientation rules in (Spirtes et al., 2000). // Orientation

Algorithm 5: The Iterative PC Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 Sepset = ∅
2 X̂ = {X1, X2}
3 G,Sepset← PC(X̂)
4 while X \ X̂ ̸= ∅ do
5 X ∈ X \ X̂
6 Ḡ,Sepset← ExtendablePC(G, X,Sepset)

7 X̂ ← X̂ ∪ {X}
8 G ← Ḡ
9 Orient the edges using the orientation rules in (Spirtes et al., 2000). // Orientation

Algorithm 6: The PC Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 Form the complete undirected graph G over nodes X ;
2 Sepset(X,Y) = ∅ for all X,Y ∈ X ;
3 m = 0
4 while maximum node degree in G is greater than m do
5 for X ∈ X // CI tests
6 for Y ∈ Adj(G, X)
7 for U ⊆ Adj(G, X) \ {Y } and | U |= m
8 if X ⊥ Y | U
9 Remove the edge X − Y from G;

10 Sepset(X,Y)← U ;
11 m = m+ 1;
12 Orient the edges using the orientation rules in (Spirtes et al., 2000). // Orientation

12

Published as a conference paper at ICLR 2025

Algorithm 7: The Extendable exhaustive search structure learning algorithm

Input: A new variable Y and a structure Ĝ over X
Output: A P-map Ḡ over X̄ = X ∪ {Y }

1 Form Ḡ as the union of Ĝ and one-point graph Y
2 i = 1
3 while i < I do
4 NḠ ← DAG Finder(Ḡ)
5 NḠ ← T(Ĝ, Y,NḠ) // By T-function in algorithm 8
6 Ḡ ← argmaxG∈NḠ ScoreBIC(G)
7 i← i+ 1

Algorithm 8: T-function (search space trimming)

Input: Y , graph structure Ĝ over X , and set of initial DAGs over X̄ denoted as SX̄
Output: SX̄ for X̄ = X ∪ {Y }

1 for Ḡ ∈ SX̄
2 for Xi, Xj ∈ X
3 if Xi ̸∈ Adj(Ĝ, Xj) and Xi ∈ Adj(Ḡ, Xj)
4 Delete Ḡ from SX̄
5 if (Xi → Xj ← Xk) ∈ Ĝ and ((Xi ← Xj ← Xk) ∈ Ḡ or (Xi ← Xj → Xk) ∈ Ḡ)
6 Delete Ḡ from SX̄
7 if Xi ∈ Adj(Ĝ, Xj) and Xi ̸∈ Adj(Ḡ, Xj)
8 if Edges between Xi, Xj and Y do not form a structure similar to any of the

structures in Fig. 1
9 Delete Ḡ from SX̄

10 if Xi ̸∈ Adj(Ĝ, Xj) and Xi, Xj ∈ Adj(Ḡ, Y) and (Xi → Y ← Xj) ̸∈ Ḡ
11 Delete Ḡ from SX̄
12 if Xi ∈ Adj(Ĝ, Xj) and Xi, Xj are collider nodes in Ḡ and (Xi ← Y → Xj) ̸∈ Ḡ
13 Delete Ḡ from SX̄
14 Return SX̄

13

	Introduction
	Background
	Extendable learning
	Constraint-based approach
	Score-based approach
	Iterative structure learning approach

	Numerical Results
	Conclusion
	Appendix

