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Abstract
Many diagnostic errors occur because clini-001
cians cannot easily access relevant information002
in patient Electronic Health Records (EHRs).003
In this work we propose a method to use LLMs004
to identify pieces of evidence in patient EHR005
data that indicate increased or decreased risk006
of specific diagnoses; our ultimate aim is to007
increase access to evidence and reduce diagnos-008
tic errors. In particular, we propose a Neural009
Additive Model to make predictions backed by010
evidence with individualized risk estimates at011
time-points where clinicians are still uncertain,012
aiming to specifically mitigate delays in diag-013
nosis and errors stemming from an incomplete014
differential. To train such a model, it is neces-015
sary to infer temporally fine-grained retrospec-016
tive labels of eventual “true” diagnoses. We do017
so with LLMs, to ensure that the input text is018
from before a confident diagnosis can be made.019
We use an LLM to retrieve an initial pool of020
evidence, but then refine this set of evidence021
according to correlations learned by the model.022
We conduct an in-depth evaluation of the use-023
fulness of our approach by simulating how it024
might be used by a clinician to decide between025
a pre-defined list of differential diagnoses.026

1 Introduction027

A major source of poor patient outcomes and un-028

necessary costs in healthcare are missed or de-029

layed diagnoses. A recent report estimated that030

diagnostic errors result in around 795,000 serious031

harms annually (Newman-Toker et al., 2023). Fur-032

thermore, many diagnostic errors result from in-033

formation transfer problems (Zwaan et al., 2010).034

This is unsurprising given “note bloat”, i.e., the035

widespread problem of information overload in036

EHR notes, often due to copied or irrelevant infor-037

mation which obfuscates relevant information. All038

of this motivates the potential of providing more ef-039

ficient mechanisms to access relevant information040

in EHRs as a means to reduce these errors.041
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Figure 1: Inherently “interpretable” approaches to
prediction. Typically, ‘interpretable’ models trade off
between the expressiveness of intermediate representa-
tions and the faithfulness of the resulting interpretability
to the models’ true mechanisms. Our approach (D) man-
ages to use very expressive intermediate representations
in the form of abstractive natural language evidence
while still maintaining true transparency during aggre-
gation of this evidence. See Table 1 for more details.

One approach to helping practitioners make use 042

of EHR is to train NLP models on free-text notes 043

to provide predictions about patient risk for various 044

illnesses (Rasmy et al., 2021; Li et al., 2021; Yang 045

et al., 2023), but these systems are often lack trans- 046

parency. Even when systems have high accuracy, 047

clinicians may still prefer simple linear models 048

as clinical decision support tools (Goldstein et al., 049

2016). Prior work has focused on developing inher- 050

ently interpretable1 models with minimal tradeoff 051

in predictive performance, e.g., in the general do- 052

main with Neural Additive Models (Agarwal et al., 053

2020) and in healthcare with GA2Ms (Caruana 054

et al., 2015). Recently, zero-shot instruction-tuned 055

LLMs have been shown capable of extracting in- 056

formation from clinical text (Agrawal et al., 2022), 057

which in turn facilitates interpretable predictions 058

(McInerney et al., 2023; Alsentzer et al., 2023). 059

1Interpretability is a famously ambiguous term; we are
focused on having explicit measure of the contribution of
individual pieces of evidence to an output.
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Figure 2: Explainable Risk Prediction and Training. An overview of our approach. Left: We retrieve evidence
snippets from past notes with an LLM for predefined queries posed by a clinician. Then we use our risk prediction
model to estimate risk of various diagnoses given each piece of evidence individually, and aggregate these scores.
Right: We automatically extract diagnosis ‘labels’ from future reports with an LLM to use to train the risk predictor.

In this work, we combine the power and flex-060

ibility of zero-shot instruction-tuned LLMs with061

the transparency and modeling ability of Neural062

Additive Models (NAMs) to train a risk-prediction063

model that can also surface evidence to support pre-064

dictions. We use an LLM (FLAN-T5-XXL; Chung065

et al. 2022) to generate abstractive “evidence” from066

EHR, which is then processed by a simpler model067

(Clinical BERT; Alsentzer et al. 2019) to produce068

features for a Neural Additive Model (Figure 2).069

This provides flexibility—the model can make in-070

ferences and condense information into fluent text071

snippets—but brings risk of “hallucinations”.072

We view this approach as “interpretable” in073

that it produces “evidence” in the form of human-074

understandable intermediate variables: abstractive075

text with associated risks, providing insights into076

factors important to a given prediction. Relative to077

other approaches to inherent interpretability (Fig-078

ure 1), like those that use a relevance weights to079

weight and combine information from different sen-080

tences (B) and those that use large language model081

prompts to infer feature values (C), our approach082

permits greater flexibility in comparison to (C),083

while maintaining a more faithful interpretability084

in comparison to (B); see Table 1 for contrasts.085

One complication is that we would like fine-086

grained, accurate labels to train our predictor (see087

section 4.1); ICD codes do not meet these criteria088

(Searle et al., 2020). Instead of ICD codes, which089

are noisy and temporally coarse (observed at the090

end of an encounter with discharge summaries),091

we propose to synthetically extract diagnosis labels092

from each report using an LLM. In some cases,093

this has been shown to be more aligned with true094

diagnoses (Alsentzer et al., 2023). 095

We focus our evaluation on how this system im- 096

pacts clinical decision-making. Specifically, we 097

examine settings where risk of misdiagnosis is high 098

and the consequences severe. Our methods work 099

within the confines of data present in electronic 100

health record, which allows the model to be trained 101

on any EHR. LLMs can be run locally and are 102

only used for inference, so privacy and compute 103

resources are not an issue. 104

Our contributions are summarized as follows: 105

Interpretable Risk Prediction with LLMs. We 106

propose an approach to risk prediction that offers a 107

particular form of interpretability in that it can ex- 108

pose faithful relationships between specific pieces 109

of retrieved evidence and an output prediction. 110

Extracting Future Targets with LLMs. We 111

present a method to extract target diagnoses for 112

use in training from the unstructured text in the 113

future of a patient’s medical record that are more 114

granular than ICD codes in the time dimension, 115

and we validate with clinician annotations that the 116

extracted labels are accurate. 117

In-depth Annotation of Usefulness. We validate 118

how much evidence-wise interpretability can pos- 119

itively impact a clinician’s expert judgement in 120

high-impact settings which feature the greatest risk 121

of misdiagnosis. 122

2 Dataset 123

We use MIMIC-III (Johnson et al., 2016a,b), an 124

open-source dataset of EHRs from ICU patients. 125

The ICU is one of the hospital settings (along with, 126

e.g., the ER and Radiology) where misdiagnosis or 127
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Modeling Approach Intermediate representation(s) Aggregation Interpretability
(A) Direct Black-box Pre-
diction (e.g., zero/few-shot,
fine-tuned LLM)

None CLS or last token embed-
ding + classification or LM
head

No inherent interpretability

(B) Aggregating chunked in-
put with relevance weights

Extractive text snippets Weighted avg. of CLS em-
beddings + class. head

Positive, real-valued rele-
vance scores per query

(C) Logistic regression
with LLM-inferred features

Inferred, real-valued numbers
relating to predefined natural
language queries

Logistic regression Negative and positive real-
valued static model coeffi-
cients

(D) Log odds voting with
LLM-inferred text snippets
(ours)

Inferred/abstractive text snip-
pets relating to predefined natu-
ral language queries

Neural Additive Model
(conditioned on the
query/condition vector)

Negative and positive
real-valued dynamic impact
scores

Table 1: Types of interpretability afforded by the different modeling approaches for EHR data visualized in Figure 1.
Red and green denote negative and positive aspects of each model.

delayed diagnosis are often caused by incomplete128

information, since clinicians typically do not have129

enough time to fully examine a patient’s EHR.130

In healthcare, cancer, infunction, and vascu-131

lar dysfunction (termed the “big three”) account132

for about 75% of all mis-diagnosis-related harms133

(Newman-Toker et al., 2023). Within the ICU, the134

latter two categories mostly manifest as pneumonia,135

and pulmonary edema (which in this paper we treat136

as interchangeable with congestive heart failure).137

For this reason, we will focus on predicting the138

risk of ICU patients for cancer, pneumonia, and139

pulmonary edema. These are also conditions for140

which clinical correlation with notes from the past141

EHR is important for diagnosis. We use all patients142

in the MIMIC dataset so that we have both negative143

and positive examples of the conditions.144

3 An Interpretable Risk Prediction Model145

We propose a multi-stage approach to risk predic-146

tion, capitalizing on a modern LLM, FLAN-T5-147

XXL (Chung et al., 2022; Wei et al., 2022) in this148

case, to implement each of the following steps.149

Retrieval (Section 3.1). We generate abstractive150

evidence from free text notes by prompting an LLM151

with appropriate queries. The evidence snippets152

provide a form of interpretability, in that they can153

be inspected directly to verify predictions.154

Risk Prediction (Section 3.2). We input the ev-155

idence into the risk predictor, which models rela-156

tionships between the evidence and each of the157

potential diagnoses and outputs multi-label classifi-158

cation probabilities, i.e. the predicted risk that the159

patient will be diagnosed with each condition.160

Evidence Re-ranking (Section 3.3). The retrieved161

evidence may still be too large a pool to review162

given the time constraints of the clinician. There-163

fore, we re-rank the evidence so as to only show 164

that which promotes risk predictions that most de- 165

viate from the baseline risks of each condition. 166

To train risk prediction models we use use syn- 167

thetic labels extracted from future notes in a pa- 168

tient’s record (Section 4). Figure 2 provides an 169

overview of our model and training approach. 170

3.1 Evidence Retrieval 171

Following prior work (Ahsan et al., 2023), we use a 172

sequential prompting strategy to retrieve evidence 173

that is relevant to a queried diagnosis or a risk fac- 174

tor. Specifically, we first ask the LLM for a binary 175

response as to whether evidence for a condition 176

exists; if the answer is affirmative, we then issue a 177

second prompt tasking the LLM to generate sup- 178

porting evidence. Formally, we define the evidence 179

retrieved for report n and query qi as follows: 180

en,qi =


GetEvidence(rn, qi)

if EvidenceExists(rn, qi) = “yes”
null otherwise

(1) 181

where “GetEvidence” and “EvidenceExists” rep- 182

resent the corresponding prompt functions. 183

This approach does have limitations. For ex- 184

ample, it cannot produce more than one snippet 185

of evidence per report/query pair. Retrieved evi- 186

dence may also be abstractive rather than extrac- 187

tive, which introduces the risk of model “halluci- 188

nations”, but permits flexibility and interpretability 189

(Ahsan et al., 2023). It also significantly reduces 190

the amount of text (therefore requiring a relatively 191

small context window) by going from all reports 192

to sentence-length snippets for some reports. The 193

resulting “summarization” in the form of evidence 194

snippets is also controllable through the querying 195

process and works zero-shot, i.e., it requires no 196
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specialized or in-domain training. Queries, written197

by a clinician co-author, are in appendix Figure 9.198

3.2 Risk Prediction199

Because a patient can have more than one diagno-200

sis, we treat risk prediction as a multi-label clas-201

sification problem where each label corresponds202

to a diagnosis. To realize interpretability, we use203

a Neural Additive Model (Agarwal et al., 2020).204

Specifically, we do not model interactions between205

evidence snippets. Instead, we predict scores indi-206

vidually for each piece of evidence, and average207

these2 to obtain a logit for risk prediction:208

p(ŷi = 1|e1:E) = σ(bi+wi · (
1

E

E∑
j=1

fBERT
θ (ej)))

(2)209

where wi ∈ Rd is the embedding of diagnosis i,210

e1:E is the flattened list of evidence snippets with211

null evidence omitted, fBERT
θ is the ClinicalBERT212

(Alsentzer et al., 2019) [CLS] embedding function213

(which yields a d-dimensional vector), and bi ∈ R214

is the bias for diagnosis i. The prior over conditions215

can be defined as the same equation excluding the216

evidence term: p(ŷi) = σ(bi), and the relative risk217

follows as p(ŷi|e1:E)/p(ŷi).218

While the bias could be learned, we instead sim-219

ply set it to the inverse sigmoid of the observed220

prevalence of the disease in the training sample dis-221

tribution: bi = σ−1(prevalencetraini ). This means222

that if we wanted to transfer the model to a new223

population, where the prevalence differed but the224

contributions of different evidence were assumed225

to remain, we could simply update the bi term.226

Excluding interactions between evidence snip-227

pets is a sacrifice in model complexity, but it also228

allows us to compute an interpretable “vote” for229

any individual piece of evidence as230

p(ŷi|ej) = σ(bi + wi · fBERT
θ (ej)) (3)231

and compute an individualized relative risk for each232

piece of evidence using this value.233

Conveniently, forcing the bias term to be the234

inverse sigmoid of the training prevalence, by def-235

inition, also means we can interpret the evidence236

term in Equations 2 and 3 as the log odds ratio,237

i.e., the difference between the logits when condi-238

tioning vs. not conditioning on the evidence. The239

2Neural Additive Models typically use a sum instead of an
average, but we found that given varying amount of evidence
retrieved, it worked better to use an average.

model is effectively estimating this log odds ratio 240

directly. This variable’s expected value does not 241

change if we sample conditions for training with a 242

frequency different from the the natural prevalence 243

of the conditions (Simon, 2001). Because of this, 244

we can estimate the likelihood and the relative risk 245

during inference on a differently sampled popula- 246

tion by simply changing the bias term in the prior 247

and in equations 2 and 3 to reflect the estimate of 248

the natural prevalence of the conditions (Zhang and 249

Kai, 1998), which we can get from the training set 250

before sampling: b′i = σ−1(prevalencetraini ). 251

3.3 Evidence Re-ranking 252

Because of the simplicity of the risk prediction, we 253

can use the internal variables it exposes to re-rank 254

evidence. The intuition behind the re-ranking is 255

that the most important evidence will be that which 256

most changes our risk assessment from the prior 257

over the diagnoses, and we would like the chosen 258

metric to capture this across all of the potential 259

diagnoses. We use Mean Squared Error (MSE) of 260

the predicted logits with the logits of the prior p(y). 261

This makes the formulation of the MSE metric sim- 262

ple as the mean (over Q conditions) of the squares 263

of the log odds ratio for a piece of evidence: 264

MSE(σ−1p(ŷ|ej), σ−1p(ŷ)) =

1

Q

Q∑
i=1

(wi · fBERT
θ (ej))

2.
(4) 265

It is necessary to use the log odds ratio term in 266

this score function because we care not only about 267

increasing but also about decreasing the probability 268

of a condition, so it makes most sense to compare 269

and sum these two different effects in log space. 270

The reason to choose MSE over other scores (e.g. 271

the absolute distance) comes from the intuition that 272

it is more important to see the evidence that is “very 273

opinionated” about one condition rather than to see 274

evidence that is “slightly opinionated” about many. 275

Therefore, it is necessary to square this log odds 276

ratio before averaging across conditions to reflect 277

this idea when sorting evidence. 278

4 Certain Diagnosis Extraction 279

We make an assumption about the EHR of patients 280

that eventually receive a diagnosis that there is 281

some period of time in the record where a diagnosis 282

is “uncertain” before it becomes “certain”, and the 283

eventual “certain” diagnosis is correct. Of course 284
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just because a diagnosis is definitive as noted by285

clinician in the record does not necessarily mean286

that it is correct—sometimes clinicians are wrong.287

However, it is hard to detect such cases, so here288

we focus on reducing delayed diagnosis errors289

where we assume some evidence in the medical290

record from that “uncertain” period could have in-291

fluenced a clinician to make a diagnosis or order a292

certain kind of test sooner than they did, or keep293

a diagnosis in the running list of differentials for294

longer. If notes are incorporated into the input295

where the diagnosis is already certain, the predic-296

tion problem becomes too easy, which is why a297

time-wise fine-grained label is necessary—such a298

label could more accurately weed out all of this ob-299

vious evidence. To extract these certain diagnoses300

with an LLM, we use three sequential prompts and301

a normalization step.302

4.1 3-Stage Extraction with LLMs303

In this section we describe the prompts for certain304

diagnosis extraction, which are shown in full in the305

appendix (Section B). Following prior work (Ahsan306

et al., 2023), we first prompt the LLM with a binary307

question asking if there exists a confident diagnosis308

for a patient. If the answer is “yes”, we then ask the309

model for the diagnoses. Unfortunately, creating310

a list of diagnosis terms from the answer to this311

prompt is not just a matter of parsing because we312

found that the model will often return extended313

phrases that are not easily mapped to diagnoses.314

Therefore, we issue one more prompt that only315

takes in the output of the previous prompt to create316

a structured list of diagnostic terms. We then parse317

this final output of the LLM into a list of strings.318

4.2 Normalization319

To normalize produced diagnostic terms, we take320

a two-step apporach. First we use string matching321

heuristics to handle easy cases. Then we embed322

sentences with SentenceTransformers (Wang323

et al. 2020; Reimers and Gurevych 2019; specif-324

ically, all-MiniLM-L6-v2) and calculate cosine325

similarities, matching a term in the parsed list to326

the most similar term (with similarity >.85) in the327

predefined set (“cancer”, “pneumonia”, and “pul-328

monary edema”). We ignore terms with no match.329

5 Evaluation330

Because our targets are synthetically generated us-331

ing an LM, we first evaluate how well our labels332

align with the “ground truth” (Section 5.1). Next, 333

we aim to evaluate how well the model can real- 334

istically help with risk prediction. Though it is 335

straightforward to assess the accuracy of the risk 336

prediction itself—we use the standard metrics of 337

precision, recall, F1 and AUROC scores to com- 338

pare to various uninterpretable baselines—it is not 339

as easy to assess what we really care about: How 340

helpful is the interpretability offered by the pro- 341

posed model to clinicians (section 5.2)? For this 342

we resort to manual evaluation by our clinical co- 343

authors and develop bespoke interfaces to facilitate 344

annotation. 345

5.1 Future Target Extraction 346

To evaluate how well the LLM extracts targets in 347

the form of “confident” diagnoses, we enlist our 348

clinical collaborators to annotate the precision with 349

which the LLM infers “confident” diagnoses. In 350

particular, for every report where one of the three 351

diagnoses—cancer, pneumonia, and pulmonary 352

edema—was automatically extracted, an ICU clini- 353

cian is first tasked with answering the question “Is 354

[diagnosis] a confident diagnosis of the patient ac- 355

cording to the report?”. If the answer is “yes”, they 356

are asked: “Is it likely that this confident diagnosis 357

could be identified in earlier reports?”. 358

5.2 Risk Prediction Interpretability 359

To assess the viability of clinicians using this model 360

in practice, we collect in-depth annotations in- 361

tended to simulate the real-world use of this tech- 362

nology. We evaluate a number of baseline models 363

and model ablations to assess the relative benefits 364

of different model components. 365

Interface and Annotations To conduct annota- 366

tions, we develop an interface that simulates as 367

closely as possible the envisioned use case: A clin- 368

ician is seeing an ICU patient’s chart for the first 369

time and trying diagnose the patient or determine 370

what they are at risk of. The clinician may not 371

have much time to spend with the patient’s chart, 372

so we ask clinician annotators to work quickly— 373

specifically, to try and keep annotation time to a 374

few minutes—and we record the amount of time 375

they take to review the patient’s record. When they 376

are done, the annotation process starts, and though 377

they are allowed to access the patient’s notes, they 378

are encouraged not to. 379

We first ask if a diagnosis is noted explicitly in 380

the patient’s record. Given that we are aiming to 381
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evaluated records where the diagnosis is not yet382

clear, we skip the rest of the annotations on the383

instance if a diagnosis is explicit. If not, we ask for384

estimates of the likelihood (“unlikely”, “somewhat385

likely”, or “very likely”) of each of the possible386

conditions. Note that we explicitly do not show387

any model predictions until after this question, to388

avoid bias. Then, we show the annotator the model389

predictions and ask if the predicted risk for the390

conditions aligns with intuition.391

Moving onto the evidence (appendix Figure 13),392

we allow the annotator to look at the sorted evi-393

dence one snippet at a time along with the individ-394

ualized risk prediction only based on that snippet.395

The annotator notes the usefulness of the evidence396

with respect to each condition. If the evidence is397

useful, they are asked whether or not the impact of398

this evidence on the risk scoring (for the particular399

condition) aligns with intuition, and whether the400

annotator remembers seeing this piece of evidence401

during their initial review of the patient’s notes. Af-402

ter two pieces of evidence, if the annotator feels403

like more evidence is needed to form a reasonable404

opinion of the patient’s risk, they can request more405

evidence snippets (up to a maximum of 10), an-406

notating each as they go. Finally, the annotator is407

asked if any of the evidence presented impacted408

their original assessment of likelihood.409

Ablations While the task of risk prediction is410

standard, there is less work on the the task of sur-411

facing relevant evidence (abstracted or extracted)412

to support such predictions. Consequently, there is413

not a large set of baselines to serve as natural com-414

parators to our approach. Therefore, in our anal-415

ysis we focus on showing the importance of each416

component of our model through ablations. We417

can decompose our approach into two evidence re-418

trieval components, generating the evidence, which419

we refer to as “LLM Evidence” and reranking it,420

which we refer to as “Log Odds Sorting”. The421

following ablations show the importance of both of422

these components in identifying useful evidence.423

We use prior work (Ahsan et al., 2023) as a start-424

ing point for generating the evidence, so it is nat-425

ural to ask what that component can do by itself426

without re-ranking using the risk prediction scores427

for each piece of evidence. A natural comparison428

is to present the same evidence retrieved but in a429

random or reverse chronological order (as recency430

is probably important). But we can also use the431

model certainty in evidence, given that this has432

0 20 40 60 80 100
Evidence Percent

LLM Evidence
+Log Odds Sorting
(n=53)

All EHR
+Log Odds Sorting
(n=56)

LLM Evidence
+Confidence Sorting
(n=55)

Very Useful
Useful

Weak Correlation
Not Relevant

Figure 3: Evidence Usefulness (the maximum score
across conditions) for our approach and two ablations.
“LLM Evidence+Confidence Sorting” uses model evi-
dence, but sorts by (length-normalized) log probability
instead of the log odds. “All EHR+Log Odds Sorting”
does not use LLM evidence and instead takes the last
1000 sentences in the record as evidence.

been shown to correlate with the utility of snippets 433

(Ahsan et al., 2023). We adopt this approach for 434

comparison and call it “Confidence Sorting”. 435

It is also natural to question the importance of 436

using the language model to abstractively generate 437

evidence at all. We might instead simply use every 438

sentence in the report as evidence and train our 439

prediction model with this retrieved evidence, re- 440

ranking it in the normal way (“Log Odds Sorting”) 441

with the prediction model’s scores. We call this the 442

“All EHR” model. 443

6 Results and Discussion 444

The majority of our results are based on annotations 445

from 4 annotators on 24 instances and 3 models. 446

Each instance has a maximum of 3 annotators, each 447

annotating different models (assigned randomly). 448

Table 2 reports detailed statistics. 449

Our main goal is to understand if our approach 450

can retrieve better evidence. To this end, we plot 451

the percentage of evidence annotated in each cat- 452

egory of usefulness for each model in Figure 3. 453

Though we record usefulness for each condition 454

individually, here we combine these annotations by 455

taking the maximum score across the conditions for 456

each piece of evidence. The results highlight the ne- 457

cessity of both the “LLM Evidence” retrieval com- 458

ponent and the “Log Odds Sorting” method, as 459

both other variants retrieve significantly less “Use- 460

ful” and “Very Useful” evidence and more “Weakly 461

Correlated” and “Not Relevant” evidence. 462

How much of the relevant retrieved evidence is 463
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LLM Evidence+Confidence Sorting All EHR+Log Odds Sorting LLM Evidence+Log Odds Sorting
Annotator Inst. Evid. Rep. Percent Useful Inst. Evid. Rep. Percent Useful Inst. Evid. Rep. Percent Useful

1 8 20 195 5.0 5 14 81 7.1 6 13 154 30.8
2 2 6 26 50.0 2 5 72 40.0 5 14 162 50.0
3 4 13 105 23.1 6 17 224 35.3 5 14 119 50.0
4 5 16 132 18.8 6 20 127 20.0 4 12 85 41.7

Aggregated 19 55 458 24.2 19 56 504 25.6 20 53 520 43.1

Table 2: Annotations. We report the statistics for the number instances annotated, the amount of evidence snippets
annotated, the total number of reports in the annotated instances, and the percent of evidence annotated as “Useful”
and “Very Useful”. Aggregated statistics are computed by summing over the annotators except in the case of
“Percent Useful”, where scores are macro-averaged over annotators. (This is slightly different from Figure 3 where
percentages are macro-averaged, i.e., we combine all annotated evidence).
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Figure 4: Seen vs. unseen evidence counts for all
evidence that at least weakly correlates with a condition.

redundant with the information already uncovered464

during the annotator’s initial review of the patient?465

We plot evidence counts separately for seen vs un-466

seen evidence in Figure 4 and find that there is a467

significant amount of unseen evidence that is useful468

and very useful in all models.469

The rated usefulness of evidence does not nec-470

essarily matter if it does not affect the clinician’s471

decision. An example of how these models might472

work in practice is when our LLM Evidence model473

with Confidence Sorting surfaced the following:474

“Atrial fibrillation with rapid ventricular response.475

Compared to the previous tracing atrial fibrillation476

is seen. Other findings are similar. The patient477

is at risk of pulmonary edema.” In this case the478

annotator changed their estimate of the likelihood479

of pulmonary edema from unlikely to somewhat480

likely, and it turns out that pulmonary edema did481

appear in a future report.482

We show all 7 instances where annotators483

changed their mind after viewing evidence in Ap-484

pendix Table 5. Of these we find 2 instances (in-485

cluding the example above) where annotators’ in-486

creased their likelihood of conditions that were487

extracted from future records, and 5 where con-488

dition(s) other than the synthetically labeled con-489

dition(s) were affected (mostly by increasing the490

0 20 40 60 80 100
percent

Pulmonary Edema
(n=29)

Pneumonia
(n=19)

Cancer
(n=14)

Correct and On Time
Correct but Late

Incorrect

Figure 5: Synthetic label precision. For each confi-
dent diagnosis label extracted by the system, annotators
check whether the diagnosis actually appears in the re-
port (and is definitive), and subsequently if subjectively
they believe that report is likely the first time the diag-
nosis was definitive based on the report language.

annotators’ risk assessments). Though more data 491

should be collected, this indicates the model might 492

improve annotator recall (though at some cost in 493

precision); recall is arguably more important here. 494

Given that we are using synthetic labels of future 495

diagnoses for both training and evaluation for risk 496

prediction (discussed next), it is important to eval- 497

uate how well our labels align with ground truth. 498

Given that ICD codes are not fine-grained enough 499

and are not always accurate, we turn to manual an- 500

notations of precision for this evaluation. In Figure 501

5, we report the precision of these labels for being 502

correct or for being “correct and on time”. This 503

second category is a stronger correctness in which 504

the annotator also noted that the note where the 505

label was detected subjectively seems to be the first 506

note where that label should have been given as 507

judged using the phrasing in the note.3 508

We see reasonable precision when using auto- 509

matic labeling with the LLM pipeline (about 80 510

percent and above for all conditions). We also 511

3It would be time-consuming to annotate this directly be-
cuase it involves looking at a lot of prior notes.
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Figure 6: Intuitiveness of predictions macro-averaged
across annotators.

compute inter-annotator agreement for these an-512

notations of precision across the 4 annotators by513

enforcing that 8 annotated predictions overlap for514

all the annotators. The Fleiss’ Kappa score for515

these synthetic label annotations was .68 for the516

3-category classification shown in Figure 5 and .86517

for the 2-category classification obtained by simpli-518

fying the labels into just “Correct” or “Incorrect”.519

We would also like to assess how well our mod-520

els’ risk estimates aligns with the intuitions of clin-521

icians with respect to the aggregated and individual522

predictions. Though for the aggregated prediction523

for an instance, we ask annotators to take the magni-524

tude of the risk, not just the direction (i.e. increased525

compared to baseline or decreased compared to526

baseline) into account, for evidence-level predic-527

tions, we ask annotators to take the magnitude with528

a grain of salt and mostly judge based on the direc-529

tion. This is because the magnitudes appeared to530

be somewhat artificially inflated potentially either531

due to the strong evidence trying to “componsate”532

for the evidence that does not actively contribute533

to the log odds (see Figure 12) or because of the534

sorting method.4 Figure 6 shows that both models535

do reasonably well with respect to the aggregated536

prediction and the evidence-wise predictions, and537

both do slightly better on evidence-wise predictions538

than aggregated predictions.539

Finally, it is important to evaluate the actual pre-540

diction performance of our models on our synthetic541

labels. Here we also compare against baseline mod-542

els that are not interpretable: BERT and Long-543

former. These black-box models are trained on544

both the All EHR and the concatenated retrieved545

LLM evidence. Figure 7 shows that including all546

evidence usually helps prediction performance, but547

4Future work might investigate how to bring make this
magnitude more interpretable.

BERT

Longformer

Interpretable
0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C

All EHR

BERT

Interpretable

LLM Evidence

Figure 7: Risk Prediction Performance evaluated on
synthetic labels and averaged over 5 random seeds for
choosing the which time-point in the EHR to use prior
to the diagnosis label. Error bars represent standard
deviation of the random seeds. Here, BERT and Long-
former refer to Clinical BERT and Clinical Longformer.

using the blackbox vs interpretable models on the 548

same input does not effect performance. 549

7 Conclusions 550

Clinicians should have access to all the pertinent in- 551

formation to make well-grounded decisions for di- 552

agnosing a patient, but currently they are inundated 553

with (unstructured) information from the EHR. 554

This is exacerbated by the time constraints faced 555

by practitioners. We have proposed an approach 556

that aims to facilitate efficient access to potentially 557

important data within EHR; our method capitalizes 558

on the capabilities of LLMs to produce digestable, 559

abstractively generated text evidence, which is then 560

consumed by a Neural Additive Model (NAM) to 561

yield a prediction. 562

We find that using NAMs does not sacrifice pre- 563

dictive quality, but does enable models to surface 564

useful evidence to clinicians. Using the LLM to 565

create the starting set of evidence to feed into the 566

NAM does sacrifice some performance, but it also 567

significantly increases the usefulness of the evi- 568

dence in comparison with using the raw sentences 569

from EHR notes as evidence. 570

Further, we find that in some cases the surfaced 571

evidence is able to change a clinician’s mind, in- 572

creasing the clinician’s recall though decreasing 573

precision, which warrants future work to improve 574

on this system. One major concern is that this 575

type of system could increase clinician’s workload 576

rather than decrease it. Future work should assess 577

exactly how and when it might be beneficial to 578

show snippets to clinicians. 579
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8 Limitations580

Though the proposed approach of combining ab-581

stractive LLM evidence with Neural Additive Mod-582

els shows promise, there are still many concerns583

that need to be addressed in future work. One of584

the biggest concerns is about the use of abstractive585

“evidence” produced by LLMs. Hallucinations in586

this evidence could at best negatively impact trust587

of clinicians in the system and at worst mislead588

clinicians and negatively affect patient outcomes.589

Our work does not directly study this given the sub-590

stantial extra annotator time needed to check for591

hallucinations. We also did not experiment much592

with different prompts or models for producing593

this evidence given that our main focus was on594

validating the system-level approach rather than595

individual components.596

Another limitation concerns the lack of a signifi-597

cant number of baseline models. Though not many598

baselines exist for a task that involves retrieving599

evidence supporting predictions in EHR, there are600

still potential baselines that use relevance weights601

or cosine similarity with clinical BERT that we602

could have included. However, due to the extensive603

amount of time needed for just one annotation on604

one model, we chose to focus on ablating over the605

LLM evidence retrieval and sorting method com-606

ponents of the model.607

Finally, our analysis mostly relies on a relatively608

small amount of annotations from one dataset. This609

again stems from the time cost of annotations. Each610

annotator must first look through a whole patient’s611

record to get a sense of the patient before even612

getting to any annotations. On average, this took613

almost 3 minutes, which is all before annotators614

even see any of the questions. Then, because the615

study focuses on just the top evidence presented616

for each instance, each annotator only annotates617

3.2 evidence snippets on average per instance. This618

time-consuming process did limit the number of619

annotations we could obtain.620
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A Description of terms.744

Table 3 shows all of the terms used to describe745

different models and settings.746

B Certain Diagnosis Extraction Prompts747

Prompt 1:748

Read the following report:749

<input>750

Question: Is there a confident diagnosis751

of the patient’s condition? Choice: -Yes752

-No753

Answer:754

Prompt 2:755

Read the following report:756

<input>757

Answer step by step: What is the correct758

diagnosis of the patient’s condition?759

Answer:760

We use Chain of Thought (CoT) prompting here761

because—similar to the evidence retrieval step—762

we want the model first to extract the parts of the763

report that refer to a diagnosis, as this seems to764

work better than going straight to the list of diag-765

noses. In initial experiments, using the CoT prompt766

appeared to more easily elicit these verbose extrac-767

tions.768

Prompt 3:769

Here is a diagnosis of a patient:770

<confident diagnosis>771

Question: Provide a list of diagnostic772

terms or write none.773

Answer:774

C Prompting Problems775

In our 3-stage prompting process, we initially had776

some problems with false positives in scenarios777

where pneumonia was negated (Figure 8). We dis-778

covered that this was because our 3nd prompt was779

originally:780

Here is a diagnosis of a patient:781

<confident diagnosis>782

Question: Based on this diagnosis, pro-783

vide a list of diagnostic terms.784

Answer:785

0 20 40 60 80 100
percent

Pulmonary Edema
(n=3.0)

Pneumonia
(n=6.0)

Cancer
(n=4.0)

Correct and On Time
Correct but Late

Incorrect

Figure 8: Synthetic labels on validation examples before
correcting the prompting problem.

This particular prompt sometimes produced posi- 786

tive synthetic labels for pneumonia when pneumo- 787

nia was actually negated in the confident diagnosis 788

generated by the previous prompt. We realized this 789

when starting to annotate validation examples, so 790

we changed our prompt (see section 4.1). All of 791

the test annotations reported in the main paper do 792

not include or overlap patients with these annotated 793

validation examples. 794

D Experiments 795

We use Clinical BERT for the NAM prediction 796

model. For all models, we train for up to 10 797

epochs on one Quadro RTX 8000 GPU and pick 798

the best checkpoint (where checkpoints occur ev- 799

ery 5 percent of an epoch). For the LLM for both 800

evidence retrieval and synthetic label extraction we 801

use FLAN-T5-XXL (Chung et al., 2022; Wei et al., 802

2022). In the case of All EHR used as input to 803

the NAM, we split sentences with NLTK. We will 804

make code open-source on acceptance. 805

E Usefulness of Queries 806

Unlike (Ahsan et al., 2023), we do not directly 807

evaluate how relevant the retrieved evidence is to 808

the query used to retrieve it; we instead focus on 809

how relevant the evidence is to the risk predictions. 810

However, we would like to examine which queries 811

produce useful evidence. Figure 9 shows counts of 812

evidence in each category separated across which 813

query was used to retrieve that evidence. It seems 814

as though the most useful evidence came from the 815

three queries that directly ask about the condition 816

for which we are predicting risk (the three left-most 817

queries), but a few additional queries sometimes 818

did prove useful. 819
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LLM Evidence Models that use the evidence retrieved with an LLM.
All EHR Models that use the all of the text in the EHR. For Interpretable Neural Additive Model, this text

is split at the sentence level.
BERT or Longformer Blackbox models that take either All EHR or LLM Evidence (concatenated) as input. BERT

refers to Clinical BERT (Alsentzer et al., 2019) and Longformer refers to Clinical-Longformer
(Li et al., 2023).

Interpretable The proposed Interpretable Neural Additive Model, which can operate either on LLM Evidence
or All EHR inputs.

Confidence Sorting Sorting LLM Evidence by the length-normalized log-likelihood of the evidence under the LLM.
Log Odds Sorting Sorting either LLM Evidence or All EHR inputs by the mean squared error of the predicted log

odds (equation 4).

Table 3: Description of terms.

cancer

pulmonary edema
pneumonia

tiredness

a low ejection fraction

neuralogical problems

a history of sm
oking
jaundice

a compromised immune system

large neck lymph nodes
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chest pain

trouble swallowing
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Figure 9: Usefulness per Query

F Full Prediction Performance820

We report the full prediction performance in Table821

4.822

G Annotators Changing Their Minds823

Table 5 presents all the occurrences of annotators824

changing their mind.825

H Ablation over amount of evidence used826

Figure 10 shows performance if we limit to a set827

number of evidence that can be used in the Neural828

Additive Model’s final aggregated score.829

I Evidence Histograms830

Figure 11 shows a histogram of the amount of evi-831

dence per each instance, and Figure 12 shows what832

the distribution over the log odds votes looks like.833

J Annotation Interface834

Figure 13 shows a screenshot of what the part of835

the interface dedicated to annotating evidence looks836

like.837

20 40 60 80
Maximum Evidence Used

0.72

0.74

0.76

0.78

AU
RO

C

All EHR
LLM Evidence

Figure 10: Ablation over amount of evidence used to
make a risk prediction.
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AUROC Precision Recall F1
BERT (All EHR) 75.6 ± .19 65.6 ± 1.38 16.8 ± .38 26.8 ± .43
Longformer (All EHR) 79.6 ± .22 55.5 ± .32 28.8 ± .43 37.9 ± .38
Interpretable (All EHR) 79.5 ± .23 56.5 ± .57 20.5 ± .58 30.1 ± .60
BERT (LLM Evidence) 74.0 ± .27 51.6 ± 1.32 22.7 ± .27 31.5 ± .42
Interpretable (LLM Evidence) 73.3 ± .27 53.6 ± 1.09 15.0 ± .36 23.4 ± .48

Table 4: Risk Prediction Performance on the synthetic labels averaged over 5 different random seeds used for
choosing the time-point in each patient that separates the past from the future.

Annotator Model Sorting Changes Best Evidence Usefulness Synthetic La-
bel

2 LLM Evidence Confidence Sorting Pneumonia:
Unlikely →
Somewhat
likely

There is a small right pneumothorax.
There is extensive consolidation of the
right upper lobe. Consolidation in the
right lower lobe is mostly located in
the superior segment. The left lung is
grossly clear. There. Signs: There is ex-
tensive consolidation of the right upper
lobe. Consolidation in the right lower
lobe is mostly located in the superior
segment. The left lung is grossly clear.
There is no left pleural effusion. There
is

Useful for Pneumonia Pneumonia

4 LLM Evidence Confidence Sorting Pulmonary
Edema:
Unlikely →
Somewhat
likely

Atrial fibrillation with rapid ventricu-
lar response. Compared to the previous
tracing atrial fibrillation is seen. Other
findings are similar. The patient is at
risk of pulmonary edema.

Useful for Pulmonary
Edema

Pulmonary
Edema

3 All EHR Log Odds Sorting Cancer:
Unlikely →
Very likely

Basal cell skin ca. [**27**]. Useful for Cancer Pulmonary
Edema

4 All EHR Log Odds Sorting Cancer:
Unlikely →
Somewhat
likely

o.b.resident to see pt., pt.waiting for a
"biopsy".

Useful for Cancer Pulmonary
Edema

4 All EHR Log Odds Sorting Pulmonary
Edema:
Somewhat
likely →
Unlikely,
Pneumonia:
Somewhat
likely →
Very likely

There is increased opacity in the. retro-
cardiac left lower lobe, as well as the
right lower lobe, which could be. due to
atelectasis, aspiration, or possibly pneu-
monia.

Very Useful for Pneumo-
nia

1 LLM Evidence Log Odds Sorting Pneumonia:
Somewhat
likely →
Very likely

CXR showed L middle/lower lobe PNA,
prob asp PNA.

Very Useful for Pneumo-
nia

4 LLM Evidence Log Odds Sorting Cancer:
Unlikely →
Very likely

CLL. Signs: id: pmh of CLL Very Useful for Cancer

Table 5: Examples of the 5 instances where annotators changed their mind based on evidence shown.
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Figure 11: Histogram of the number of text snippets for
each instance.
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Figure 12: Histogram of the log odds of each individual
piece of evidence.
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Figure 13: An example part of the evidence annotation interface. The plots on the left indicate the predicted
likelihood (top) and the odds ratio (bottom).
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