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Abstract

Cross-Domain Named entity recognition is a
crucial task in natural language processing
that helps extract meaningful entities from
text when transferring across different domains.
However current cross-domain NER methods
are often limited in leverage heterogeneous in-
formation from other modalities, which limits
the ability of cross-domain knowledge discov-
ery and data mining, thereby constraining the
application potential of large-scale information
systems. To address these challenges, we pro-
pose a cross-domain NER method that utilizes
image-aware contexts, consisting of Domain-
specific Dynamic Image Captioning(DDC) and
Cross-domain Reasoning Chain(CRC). DDC
generates contextualized image captions by
aligning the semantics of text and captions con-
ditioned on textual domain cues. Then CRC
identifies potential entities and classifies them
using captions generated by DDC and chain-of-
thought. Experimental results demonstrate that
our method achieves a remarkable 6.23% aver-
age F1 improvement across all tested domains.
Particularly notable are the performance gains
in the political and scientific domains, where
our approach surpasses the best baseline model
with F1-score increases of 8.22% and 9.58%.

1 Introduction

Named Entity Recognition (NER) is a core task in
information extraction and knowledge discovery
(Li et al., 2023b)(Esmaail et al., 2024)(Bhowmick
et al., 2023)(Li et al., 2023a)(Wang et al., 2024),
which is widely applied in various scenarios, in-
cluding question-answering systems (Molla et al.,
2006)(He and Golub, 2016), automatic summariza-
tion (Chen et al., 2004)(Etzioni et al., 2008)(Aone
et al., 1999)(Aramaki et al., 2009), and infor-
mation retrieval (Sun et al., 2020)(Zeng et al.,
2023)(Simonyan and Zisserman, 2015)(Guo et al.,
2009)(Petkova and Croft, 2007). In recent years,
increasing attention has been focused on cross-
domain NER, aiming to address the challenges

posed by textual data from diverse domains which,
as data sources and channels expand, are particu-
larly evident in the scarcity of high-quality anno-
tated data (Li et al., 2023b)(Bhowmick et al., 2023).
For example, in domain-specific texts like scientific
literature or political reports, entity annotations for
specialized terms are scarce. Annotating unlabeled
data often requires significant time and human re-
sources. Therefore, efficiently acquiring entities
in these low-resource settings has become a focal
point of research (Bhowmick et al., 2023)(Arora
and Park, 2023)(Zhao et al., 2022). Some stud-
ies have alleviated domain differences through la-
bel alignment and domain adaptation approaches
(Golde et al., 2024)(Li et al., 2020). For instance,
LAR proposed a strategy that involves aligning la-
bels between the source and target domains and
reallocating them to enhance cross-domain capabil-
ities.(Zhang et al., 2023). In social media streams,
(Bhowmick et al., 2023) used a global context em-
bedding aggregation strategy to enhance the coher-
ence and accuracy of entity recognition, demon-
strating high adaptability in data-scarce environ-
ments. (Li et al., 2020) explored meta-learning
approaches to improve NER adaptability and per-
formance in few-shot learning scenarios. By sepa-
rating task-irrelevant and task-specific components,
the model can quickly adapt to different few-shot
tasks and reduce the risk of overfitting. While these
cross-domain NER methods have attempted to ad-
dress these challenges, they tend to focus primar-
ily on text and lack the ability to effectively in-
corporate other modalities, such as images, which
could provide valuable contextual information and
enhance entity recognition. This limitation has
hindered the progress of cross-domain NER, es-
pecially in real-world applications where multi-
modal data is abundant but underutilized. Recog-
nizing this untapped potential, multimodal NER
has emerged as a promising direction that syner-
gistically combines text with visual/audio modal-
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Figure 1: This figure illustrates the strengths and lim-
itations of cross-domain NER and multimodal NER
approaches. Our method enhances cross-domain NER
through image captions and chain-of-thought.

ities to enhance entity recognition. Approaches
like VisualBERT (Li et al., 2019b) improve entity
recognition by using image captions as auxiliary
information. However, these multimodal methods
were not originally designed for cross-domain tasks
(Li et al., 2019b)(Wang et al., 2022a)(Wang et al.,
2022b). When directly applied to cross-domain
NER, they often face significant limitations, such
as the use of image captions that do not adapt to
domain-specific contexts. Consequently, they fail
to fully capture the nuances of domain-specific enti-
ties and struggle to generalize to different domains
effectively. Figure 1 illustrates the challenges of
cross-domain and multimodal NER.

To overcome these challenges, we first gener-
ate domain-specific image captions by aligning the
semantics of the raw textual context, which are con-
ditioned on textual domain cues. These captions
encapsulate both entity information and domain
knowledge, enhancing the understanding of poten-
tial entities in the original text. This enables a
more seamless integration of visual and textual in-
formation. We then employ a reasoning chain to
progressively process these contextually enriched
captions and extract complex entity relationships,
facilitating cross-domain and multimodal reason-
ing. The main contributions of our work are as
follows:

* We propose Domain-specific Dynamic Im-
age Captioning (DDC): Our approach gener-
ates domain-relevant image captions based on
the specific contextual information of each
domain. This method provides rich addi-
tional semantic information through the align-
ment of text and image semantics conditioned

on textual domain cues. By deeply integrat-
ing image content with text context, DDC
extracts more contextually relevant features
from the visual modality, thereby enhancing
entity recognition in complex settings.

* We propose Cross-domain Reasoning
Chain (CRC): In collaboration with domain-
specific image captions, CRC enhances the
reasoning process by leveraging the contex-
tualized image captions. It ensures a smooth
and comprehensive reasoning chain for cross-
domain tasks by progressively guiding the
exploration of relationships between entities.
Through multi-step reasoning, CRC facilitates
the deduction of entity relationships, leading
to more accurate inference and classification.
This significantly improves the model’s ability
to understand complex cross-domain texts and
their interrelated entity relationships.

* Experimental results demonstrate that our
method not only significantly outperforms
all baseline models in cross-domain NER
tasks, but also achieves substantial improve-
ments. Specifically, in the political and sci-
entific domains, our model achieves F1 score
increases of 8.22% and 9.58%, respectively,
compared to the best baseline. Additionally,
our method sets a new state-of-the-art (SOTA)
performance in multimodal NER tasks, sur-
passing the current leading models. Ablation
experiments further validate the critical con-
tributions of the DDC and CRC modules in
enhancing performance. Furthermore, in few-
shot learning scenarios, our method demon-
strates exceptional generalization ability in
low-resource environments.

2 Related Works
2.1 Named Entity Recognition

NER primarily aims to automatically identify and
classify entities in text, such as person, organiza-
tion, location, etc. (Arora and Park, 2023)(Wang
et al., 2023a). In recent years, with the advance-
ment of deep learning, pre-trained language models
like BERT have significantly enhanced the perfor-
mance of NER (Sun et al., 2021). The NER Glob-
alizer system proposed by (Bhowmick et al., 2023)
combines local context embeddings and global con-
text information for named entity recognition. In
the local part, an attention-based model is used for



entity detection and type classification. The Resu-
Former model proposed by (Yao et al., 2023) uti-
lizes a combination of BERT and BiILSTM+CRF
structures for named entity recognition, improv-
ing model robustness and efficiency through a self-
training framework. These deep learning-based
methods improve the understanding of complex
syntactic structures by leveraging contextual infor-
mation. .

In addition, recent research has focused on few-
shot and zero-shot learning to address the data
scarcity issue in low-resource scenarios (Zhu et al.,
2024)(Xie et al., 2023). For example, MetaNER
uses meta-learning to achieve rapid generalization
in low-resource environments (Li et al., 2020). Al-
though these methods improve the model’s per-
formance in low-resource scenarios, they are still
mainly confined to a single modality of textual data
and fail to fully leverage non-textual information
(Wang et al., 2022a).

2.2 Cross-domain Named Entity Recognition

Cross-domain NER aims to address the perfor-
mance degradation encountered when a model
trained on one domain is applied to another. Some
approaches focus on the data itself, improving
cross-domain performance through data augmen-
tation. For instance, (Golde et al., 2024) expanded
the entity types and guided the model to learn and
understand natural language descriptions of labels.
(Yang et al., 2022) proposed semi-factual genera-
tion by randomly replacing non-entity words and
counterfactual generation by randomly replacing
entity words. By combining these two methods to
generate augmented instances, the model’s general-
ization ability can be enhanced. In contrast, (Chen
et al., 2021) employed cross-domain data augmen-
tation to teach the model patterns across different
domains, transforming high-resource domain data
into low-resource domain data.

Other methods are based on domain adaptation,
aiming to reduce the distributional discrepancies
between domains through techniques such as adver-
sarial training and feature alignment. (Wang et al.,
2023b) enhanced cross-domain generalization by
extracting domain-relevant features and generating
corresponding prompts. (Li et al., 2019a) utilized
a pointer network to perform entity boundary tag-
ging, integrating adversarial transfer learning to in-
troduce domain-invariant representations into end-
to-end sequence labeling models. (Li et al., 2023a)
proposed FEWNER, a meta-learning-based cross-

domain few-shot NER approach, which effectively
adapts to new tasks and reduces overfitting by di-
viding the network into task-independent and task-
specific components, facilitating efficient learning
on cross-domain few-shot tasks. (Chen et al., 2023)
incorporated logical rules and posterior regulariza-
tion into deep learning, effectively improving the
generalization ability of NER models. With the ad-
vent of large language models (LLMs), the underly-
ing reasoning capabilities of LLMs have also been
leveraged to help address the challenges posed by
cross-domain NER and few-shot learning. (Ashok
and Lipton, 2023) exploited the reasoning power
of LLMs, guiding the model to predict entities in
natural language by adding entity definitions be-
yond the standard few-shot examples. This allows
large language models to generate potential entity
lists and corresponding explanations. (Wang et al.,
2023a) proposed a method that transforms the NER
task into a text generation problem, enhancing per-
formance in low-resource NER scenarios through
labeling and self-verification strategies. (Xie et al.,
2023) employed a decomposition strategy, convert-
ing the NER task into a series of sub-tasks and
proposed a two-stage majority voting strategy to
improve zero-shot NER performance. Similarly,
(Arora and Park, 2023) utilized a decomposition
approach, splitting the task into span detection and
span classification steps. Additionally, some re-
searchers have proposed prompt templates to fur-
ther enhance cross-domain performance. For ex-
ample, (Zhu et al., 2024) introduced an innovative
prompt template and label injection instructions,
enabling large models to output entities and thereby
improving few-shot NER performance.

3 Method

We propose a novel cross-domain NER method
that introduces two key innovations: Domain-
specific Dynamic Image Captioning (DDC) and
Cross-domain Reasoning Chain (CRC). Firstly, our
DDC generates domain-relevant image captions
that align with the textual context. Unlike tra-
ditional methods that rely on predefined, static
descriptions, DDC generates captions for each
image based on the current domain context, ef-
fectively utilizing visual and textual information.
This approach goes beyond simply concatenating
images as supplementary input, instead convert-
ing visual content into semantically rich support,
tightly aligned with the textual context. As a result,



DDC significantly enhances entity recognition per-
formance, particularly in scenarios where context
plays a crucial role. Secondly, CRC enables multi-
step reasoning that adapts to specific input texts and
task requirements. CRC generates reasoning chains
that guide entity identification and provide logical
steps for entity classification, allowing for a deeper
understanding of complex relationships within the
text. By leveraging the complementary strengths
of DDC and CRC, our approach incorporates both
textual and visual information, enhancing entity
recognition capabilities in complex, cross-domain,
and low-resource environments.

3.1 Domain-specific Dynamic Image
Captioning

3.1.1 Formulation

Traditional Named Entity Recognition tasks primar-
ily rely on pure text input. Even in multimodal set-
tings, existing methods often treat images merely
as supplementary information, using image cap-
tions that do not adapt to task context, leading to
a disconnect between image information and tex-
tual content. In contrast, our method introduces
DDC, which generates image captions based on
the specific context of each domain. This approach
ensures that image information is fully integrated
with text and directly contributes to the entity recog-
nition process. Rather than simply concatenating
image captions with the text, DDC treats the gener-
ated captions as a key element in the NER task, en-
hancing semantic understanding and demonstrating
strong generalization across domains and in low-
resource settings. Specifically, assume we have a
text T = {¢1,¢2, ..., t, } and a corresponding image
I. The domain-specific image caption is generated
through the Visual Language Model (VLM) using
BLIP-2 in our method, denoted as C, and its gener-
ation process is defined as follows:

C = Fvim(T,I) (D

where Fy1,:m represents the function of the VLM
model. The dynamic caption C is adjusted based
on the domain and context, ensuring that the im-
age caption is not merely an additional piece of
information but serves as an effective semantic ex-
tension of the text.

3.1.2 Domain-related Caption Generation

In the process of generating C within the DDC
module, the Visual Language Model (VLM) first

projects the text 7' and the image I into a high-
dimensional embedding space to capture semantic
features. These features are then combined into a
domain-relevant caption.

For example, given an image of a literary award
ceremony, the VLM generates a description that de-
tails the award recipient and the award scene. This
domain-specific description not only provides rich
additional semantic information but also closely in-
tegrates with the original textual information, sup-
porting multimodal understanding.

3.1.3 Deep Text-Image Fusion

We project the text embedding and image cap-
tion embedding into a shared feature space, align-
ing their dimensions using a linear transformation.
This transformation maps the text and image cap-
tion features into a shared feature space to enable
further semantic fusion.

Next, the text feature generates a selective
weighting coefficient based on the image caption
feature, while the image caption feature generates
its selective weighting coefficient based on the text
feature. These coefficients represent the selective
weights for the image caption in the text feature
space and for the text in the image caption feature
space, respectively.

Finally, we generate the final cross-modal fusion
representation through a bidirectional weighted
sum. This fused feature captures the bidirectional
interaction between the text and image caption at
the semantic level, thereby enhancing semantic rea-
soning capabilities. This fusion approach enables
the image caption to supplement implicit informa-
tion in the text and to help infer potential entities
through bidirectional interaction.

3.2 Cross-domain Reasoning Chain

3.2.1 Context-Based Generation

The CRC utilizes multimodal information h and
textual context 7' to construct a multi-step reason-
ing chain {R(¥)}/  , where each step is guided to
adaptively select different components of the fusion
based on the context. The formula is as follows:

R® = Fope (Cw),T(k)) k=12 K
2

where f; denotes the generation function at step

i, h(") represents the fused feature selection at step
i, and T() represents the semantic information of
the text at the given step. This multi-step reasoning



chain design enables the model to capture entities
embedded within complex textual contexts by adap-
tively extracting relevant entities. It improves the
precision of identifying complex and nested enti-
ties.

3.2.2 Collaborative Reasoning with
Multimodal Information

The CRC works in conjunction with the DDC to
enhance the reasoning capabilities through the mul-
timodal fused representation h generated by DDC.
The image captions complement the textual entity
information and provide CRC with richer contex-
tual support. In the reasoning chain of CRC, the
image caption acts as part of the reasoning process,
helping to reveal implicit relationships between
images and text. For example, when describing a
scientific experiment, the image caption generated
by DDC of experimental equipment can assist CRC
in deducing possible research methods.

The collaborative reasoning process in CRC with
multimodal information is expressed as follows:

P(T,h) = fi(g(h®, D), 7®) (3

where ¢ represents the selective feature of the
image caption generated by DDC at step 7. This
formula demonstrates the multimodal collaborative
reasoning process, where at each reasoning step
F;, a key feature in the image caption is selected
from the fused representation & to help identify
implicit relationships within the text. We then con-
catenates the original text T = {t1, to, ..., ty } with
the obtained {RW}K | as Z = [T, {RMW}E .
The transformer-based encoder integrates infor-
mation from the Cross-domain Reasoning Chain
{RM™}E | into the token representations Z =
{z1,+-+, zpm} by leveraging its attention mecha-
nism. This allows each token representation to
encode contextually relevant signals from both the
input sentence T and the auxiliary information. In
our research, the sequence Z = {z1,--- ,zp} is
passed through a CRF layer to model the depen-
dency structure of the label sequence y. The con-
ditional probability of i given T and {R"™}X_ is
expressed as:

M

P(Y|ITARPYL ) o [[v(wir, wilZ) @)
=1

Here, v(yi—1,9i,2i) and ¢ (y;_4,y,, z;) denote
the potential functions capturing the relationships

between labels and token representations. The
model’s parameters are optimized by minimizing
the negative log-likelihood, formulated as:

Lnir, = —log P(YIT,{ROYE ) (5)

4 Experiments and Results

4.1 Experiment Settings

4.1.1 Dataset

To evaluate our method, we selected four datasets:
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003), CrossNER (Liu et al., 2021), Twitter 2015
(Zhang et al., 2018), and Twitter 2017 (Lu et al.,
2018), with detailed dataset statistics shown in
Table3. We first conducted pre-training on the
CoNLL2003 dataset to enable the model to capture
basic entity recognition capabilities. Subsequently,
we performed experiments on the CrossNER, Twit-
ter 2015, and Twitter 2017 datasets.

4.1.2 Implementation Details

We conducted our experiments on an NVIDIA
3090 GPU using the Pytorch framework for train-
ing and evaluation. The backbone of our model is
bert-large-cased. We used the Adam optimizer with
a linear warmup learning rate schedule, where 10%
of the training steps were allocated for warmup.
The learning rate was set to 2e-05 during the pre-
training phase and le-05 during the fine-tuning
phase. To prevent overfitting, we applied a weight
decay of 0.01 for regularization, and the maximum
gradient norm was set to 1.0 to avoid gradient ex-
plosion. The model was trained for 200 epochs,
with a batch size of 2 due to hardware constraints.
Model performance was evaluated using the F1
score, and we monitored the model by evaluating
on the validation set every 10 epochs. In addi-
tion, the images corresponding to the sentences in
the CrossNER dataset are obtained through web
search.

4.1.3 Baselines

To verify the effectiveness of our method, we com-
pared it with several competitive models. First, we
selected several multimodal NER models for com-
parison, including: a. UMT(Yu et al., 2020): In-
teracts multimodal features to create image-aware
word representations and word-aware visual rep-
resentations, and uses text-based entity span de-
tection as an auxiliary module to reduce visual



Table 1: F1 scores of different models on CrossNER dataset across five domains.

Model | Politics Science Music Literature Al Avg.
PromptNER 73.61 71.23 64.61 60.09 57.79 66.47
UniNER-7B 66.90 70.80 70.60 64.90 62.90 67.40
LST-NER 68.51 66.48 72.04 66.73 60.69 67.07
o 8.22 1 9.58 1 3271 5721 4.65 1 6.23 1
urs 76.73 76.06 75.24 72.45 6534  73.63

Table 2: F1 scores of different models on Twitter 2015
and Twitter 2017 datasets.

Model | Twitter 2015 Twitter 2017
UMT 73.41 85.31
VisualPT-MoE 75.63 87.42
VEC-MNER 74.89 84.51
DPE-MNER 77.56 87.90
241 3.64 1
Ours ‘ 79.96 91.54

Table 3: The statistics of the dataset.

‘ Type Num ‘ Sentence Num

Dataset

‘ ‘ Train Dev Test
CoNLL2003 4 14987 3466 3684
Politics 9 200 541 651
Science 17 200 450 543
Music 13 100 380 456
Literature 12 100 400 416
Al 14 100 350 431
Twitter2015 4 3999 999 3256
Twitter2017 4 3373 723 723

bias for improved MNER performance. b. VEC-
MNER(Wei et al., 2024): enhances text repre-
sentations with visual features, adopting a fusion
strategy between visual scene graphs and text
features. c. VisualPT-MoE(Xu et al., 2023):
leverages a mixture of experts (MoE) structure
to integrate multiple image representations. d.
DPE-MNER(Zheng et al., 2024): fuses visual
and textual information at different granularities
through incremental multimodal representation. e.
UniNER-7B(Zhou et al., 2024): distills a large lan-
guage model to produce a compact cross-domain
NER model. f. LST-NER(Zheng et al., 2022):

uses a graph matching algorithm to transfer label
information between source and target domains. g.
PromptNER(Shen et al., 2023): unifies entity lo-
calization and typing through a dual-slot prompt
template, treating them as a single prompt-learning
task.

4.2 Results and Discussions

4.2.1 Main Results

The results are presented in Table 1 and Table 2.
In our experiments, we assessed the entity recog-
nition ability of the model in different domains
and compared it with several baseline models. The
metric used in the table is the F1 score, which mea-
sures the model’s performance in cross-domain
NER tasks supported by image semantics.

The results show that our method achieves an
overall F1 score of 73.63 across all domains, out-
performing our baseline models. This improve-
ment highlights the effectiveness of our DDC and
CRC in enhancing text-image fusion and contex-
tual reasoning. Notably, in the politics and sci-
ence domains, our method outperforms baseline
models with improvements of 8.22% and 9.58%,
respectively. The image captions generated by
DDC enrich the textual context, allowing the model
to better distinguish between complex entities in
multimodal settings. And the CRC module sig-
nificantly improves the model’s ability to handle
implicit relationships in complex domain-specific
contexts. However, our method faces some chal-
lenges in the Al domain, where image captions pro-
vide limited contextual support for abstract entities.
In this domain, textual reasoning is more promi-
nent for entity recognition, which might explain
the slightly lower performance (F1 score of 65.34).
When compared with multimodal baselines, our
method achieves state-of-the-art performance. On
the Twitter 2017 dataset, our model attains an F1
score of 91.54, surpassing the best baseline model,



Table 4: Ablation study results on the impact of DDC and CRC modules.

Model | Politics Science Music Literature AI  Avg. | Twitter 2015 Twitter 2017
w/o DDC+CRC | 73.61 7123  64.61 60.09 57.79 6647 76.52 88.19
w/o DDC 76.02 75.41 72.95 64.64 63.35 71.24 77.43 88.94
w/o CRC 74.47 73.09 67.34 64.08 60.52 68.73 76.47 88.57
Table 5: Performance comparison across domains with different K values.
Samples | K =20 | K =50
Domain | Pol. Sci. Mus. Lit. Al | Pol.  Sci. Mus. Lit. Al
BiLSTM-CRF(Lample et al., 2016) 41.75 4254 3796 35778 37.59 | 53.46 43.65 41.54 4473 56.13
Coach(Liu et al., 2020) 46.15 48.71 4337 41.64 41.55 | 6097 51.56 48.73 51.15 56.09
Multi-Cell LSTM(Jia and Zhang, 2020) | 59.58 60.55 67.12 63.92 55.39 | 68.21 70.47 66.85 58.67 58.48
BERT-tagger(Devlin et al., 2019) 61.01 6034 64.73 61.79 53.78 | 66.13 68.41 63.44 5893 58.16
NNShot(Yang and Katiyar, 2020) 60.93 60.67 6421 61.64 5427 | 66.33 6794 63.19 59.17 57.34
StructShot(Yang and Katiyar, 2020) 63.31 6295 67.27 63.48 55.16 | 67.16 70.21 6533 59.73 58.74
templateNER(Cui et al., 2021) 63.39 62.64 62.00 61.84 56.34 | 5839 6523 6457 6449 56.58
LST-NER(Zheng et al., 2022) 64.06 64.03 68.83 6494 57.78 | 6851 72.04 66.73 60.69 61.25
Ours | 67.26 70.68 68.85 65.77 57.67 | 75.75 73.57 74.82 67.08 62.36

DPE-MNER, by 3.64%. Similarly, on the Twitter
2015 dataset, our model achieves an F1 score of
79.96, outperforming other multimodal models and
setting a new SOTA in multimodal NER tasks.

4.2.2 Ablation Study

To validate the effectiveness of the DDC and CRC
modules, we conducted an ablation study. In this
study, we progressively removed the DDC and
CRC modules and evaluated their impact on the
model’s performance. The results are shown in
Table 4:

Impact of Removing Both DDC and CRC.
When both DDC and CRC modules are removed,
the model’s average F1 score drops to 66.47, in-
dicating that the synergy of these two modules is
crucial to the model’s overall performance. In par-
ticular, in the science (71.23) and music (64.61)
domains, the model’s performance declines signif-
icantly without the image caption and reasoning
chain, suggesting that these domains have a strong
dependency on multimodal information.

Impact of Removing DDC. When the DDC
module is removed, the model’s average F1 score
decreases to 71.24. Specifically, in the music
(72.95) and science (75.41) domains, the absence
of image captions leads to a decline in performance.
This demonstrates that the dynamic image captions
generated by DDC are essential for enriching tex-
tual context and enhancing entity recognition capa-
bilities.

Impact of Removing CRC. When only the CRC

module is removed, the F1 scores in the politics
(74.47) and literature (64.08) domains drop con-
siderably, indicating that the CRC module plays
a crucial role in handling complex textual rela-
tionships and multi-entity associations in these do-
mains. However, in other domains, such as Al
(60.52), the performance remains relatively stable,
suggesting that the contribution of CRC is more
significant for reasoning tasks involving complex
textual information.

4.2.3 Few-shot Study

To evaluate our method’s performance in low-
resource scenarios, we conducted experiments with
20-shot and 50-shot settings across five domains:
politics, science, music, literature, and Al. The ex-
perimental results are shown in Table 5. In the 20-
shot setting, our method achieves higher F1 scores
in most domains, especially in politics (67.26) and
science (70.68), where it outperforms the second-
best method by significant margins. However, it
performs slightly lower in the Al (57.67) domains.
The lower performance in Al is likely due to the
abstract nature of its entities, which makes it harder
for the model to generalize with limited data. In
the 50-shot setting, our method dominates across
most domains, with significant improvements over
other methods, especially in politics(75.75) and
music (74.82), demonstrating its robustness in low-
resource settings. The results show that as the num-
ber of training samples increases, the F1 scores
improve significantly, approaching stable levels in



Reasoning Chain:

_ Step 1. Identified entities: "Daniel Bolya," "neural networks," "International Conference on Machine Learning (ICML)," "New York,".

Step 2. Classification:

- "Daniel Bolya" is a Researcher (refers to a person conducting research).

- "neural networks" is an Algorithm (refers to a computational method).

- "International Conference on Machine Learning (ICML)" is a Conference (refers to a scientific event).

- "New York" is a Location (refers to a geographical place).

Step 3. Explanation: "Daniel Bolya" is a Researcher because the context suggests he is presenting research. "Neural networks" is an
Algorithm based on its usage in machine learning. “International Conference on Machine Learning" is a Conference, as it refers to a
known academic event. "New York" is a Location due to its geographical nature, and "2023" is a Metric because it refers to a specific time.

Georgia
G 53

Dl Bolya

Prediction: Ours —— researcher | algorithm | conference | location / PromptNER —— person | algorithm | award | country X
UniNER —— person | algorithm | award | loacation % LST-NER —— person | misc | conference | location X

Text: Mary Shelley wrote 'Frankenstein' during the summer of 1816, known as the Year Without a Summer, while staying near Lake
Geneva, a pivotal moment in Gothic literature.

Reasoning Chain:
Step 1: Identified entities: "Mary Shelley,""Frankenstein,""Year Without a Summer,"*Lake Geneva,""Percy Shelley,""Lord Byron,""Gothic
literature.”
Step 2: Classification: - "Mary Shelley" is a Writer. - "Frankenstein” is a Book.

- "Lake Geneva" is a Location. - "Gothic literature" is a Literary genre.
Step 3: Explanation: "Mary Shelley" is classified as Writers because she is historically recognized an author contributing to English
literature."Frankenstein” is classified as a Book because it refers to a specific novel written by Mary Shelley. "Year Without a Summer" is
classified as an Event, referring to a notable climatic anomaly affecting that period."Lake Geneva" is classified as a Location, as it is a
geographical reference tied to the setting where the writers stayed."Gothic literature” is classified as a Literary genre, as it describes the

- "Year Without a Summer" is a Event.

style and thematic context of the novel.

Prediction: Ours

—— writer | book | event | location | literarygenre v/
UNnINER —— person | person | O | loacation | misc X

PromptNER —— person | person | O | location | O X
LST-NER —— writer | person | misc | location |O X

Figure 2: This is the figure of case study.

each domain. We also tested additional k-values
(5-shot, 10-shot, 20-shot, 50-shot). The results
are shown in Table 6. The performance improves
with more data, especially in the 50-shot setting,
where the model stabilizes. Even with 5-shot and
10-shot settings, our method maintains a reason-
able recognition ability, demonstrating adaptability
in data-scarce situations.

4.2.4 Case Study

To illustrate the effectiveness of our proposed ap-
proach, we examine specific cases as shown in
Fig.2. Baseline models rely exclusively on tex-
tual inputs and often fail to perform well in sce-
narios requiring multimodal or contextual under-
standing. Competing methods such as PromptNER
and UniNER employ static prompts or generic tem-
plates, which restrict their ability to adapt to vary-
ing domain-specific contexts. Similarly, LST-NER,
while effective in low-resource cross-domain tasks
through label transfer mechanisms, lacks the ca-
pacity to fully leverage multimodal or generated
contextual information. In contrast, our proposed
framework addresses these limitations by introduc-
ing DDC, which adaptively generate visual cap-
tions aligned with textual context, and CRC that
performs multi-step reasoning for fine-grained en-
tity classification. By integrating dynamic visual
and contextual information, our approach demon-
strates superior adaptability and accuracy in com-
plex multimodal and cross-domain NER tasks.

Table 6: Few-shot performance of our model on the
CrossNER dataset across different domains.

Domain 5-shot 10-shot 20-shot 50-shot
Politics 49.00 59.81 67.26 75.75
Science 57.56 66.44 70.68 73.57
Music 50.28 62.46 68.85 74.82
Literature  46.55 56.74 65.77 67.08
Al 41.72 45.08 57.67 62.36

5 Conclusions

We propose a cross-domain NER method that syn-
ergizes Domain-specific Dynamic Image Caption-
ing (DDC) with Cross-domain Reasoning Chain
(CRC), achieving significant performance improve-
ments across diverse domains. By employing DDC
to generate context-aware visual semantics through
text-image alignment and constructing CRC for
progressive deduction entity relationships via multi-
step contextualized reasoning, our method effec-
tively addresses the challenges of both the scarcity
of high-quality annotated data in cross-domain
settings and the limitations of incorporating mul-
timodal information, particularly demonstrating
strong generalization capabilities in low-resource
scenarios. These advancements establish new
state-of-the-art performance while preserving inter-
pretability through explicit reasoning pathways.



Limitations

Our method has limitations in certain scenarios.
First, while DDC enhances context comprehension
through text-image alignment, its performance may
be limited in domains where visual information has
little relevance, leading to a reduced impact on
tasks where textual reasoning is dominant. Ad-
ditionally, although the CRC facilitates entity re-
lationship reasoning, complex relationships may
still be missed due to the inherent challenges of
progressive deduction in dynamic, evolving data
streams. In future work, we aim to improve these
areas by exploring enhanced image-text synergy
in domain-specific contexts and refining the multi-
step reasoning process to handle more complex
entity interactions.

Risks

The datasets utilized in our research are all publicly
available, and no personal data or sensitive infor-
mation is collected or processed. The prompts used
in our method are designed to extract entities and
their relationships from these datasets, ensuring no
private or confidential information is involved. Ad-
ditionally, the method avoids the inclusion of any
harmful, discriminatory, or unethical content, re-
specting the rights of individuals and groups. Our
approach adheres to the terms of use and licens-
ing agreements associated with publicly accessible
large language models and datasets.

Ethics Statement

The datasets utilized in our research are all publicly
available, and no personal data or sensitive infor-
mation is collected or processed. The prompts used
in our method are designed to extract entities and
their relationships from these datasets, ensuring no
private or confidential information is involved. Ad-
ditionally, the method avoids the inclusion of any
harmful, discriminatory, or unethical content, re-
specting the rights of individuals and groups. Our
approach adheres to the terms of use and licens-
ing agreements associated with publicly accessible
large language models and datasets.
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