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ABSTRACT

Machine learning models are increasingly used in high-stakes decision-making
systems. In such applications, a major concern is that these models sometimes
discriminate against certain demographic groups such as individuals with certain
race, gender, or age. Another major concern in these applications is the violation of
the privacy of users. While fair learning algorithms have been developed to mitigate
discrimination issues, these algorithms can still leak sensitive information, such as
individuals’ health or financial records. Utilizing the notion of differential privacy
(DP), prior works aimed at developing learning algorithms that are both private and
fair. However, existing algorithms for DP fair learning are either not guaranteed to
converge or require full batch of data in each iteration of the algorithm to converge.
In this paper, we provide the first stochastic differentially private algorithm for fair
learning that is guaranteed to converge. Here, the term “stochastic" refers to the
fact that our proposed algorithm converges even when minibatches of data are used
at each iteration (i.e. stochastic optimization). Our framework is flexible enough
to permit different fairness notions, including demographic parity and equalized
odds. In addition, our algorithm can be applied to non-binary classification tasks
with multiple (non-binary) sensitive attributes. As a byproduct of our convergence
analysis, we provide the first utility guarantee for a DP algorithm for solving
nonconvex-strongly concave min-max problems. Our numerical experiments show
that the proposed algorithm consistently offers significant performance gains over
the state-of-the-art baselines, and can be applied to larger scale problems with
non-binary target/sensitive attributes.

1 INTRODUCTION

In recent years, machine learning algorithms have been increasingly used to inform decisions
with far-reaching consequences (e.g. whether to release someone from prison or grant them a
loan), raising concerns about their compliance with laws, regulations, societal norms, and ethical
values. Specifically, machine learning algorithms have been found to discriminate against certain
“sensitive” demographic groups (e.g. racial minorities), prompting a profusion of algorithmic fairness
research (Dwork et al., 2012; Sweeney, 2013; Datta et al., 2015; Feldman et al., 2015; Bolukbasi et al.,
2016; Angwin et al., 2016; Calmon et al., 2017; Hardt et al., 2016a; Fish et al., 2016; Woodworth
et al., 2017; Zafar et al., 2017; Bechavod & Ligett, 2017; Kearns et al., 2018; Prost et al., 2019;
Baharlouei et al., 2020; Lowy et al., 2022a). Algorithmic fairness literature aims to develop fair
machine learning algorithms that output non-discriminatory predictions.

Fair learning algorithms typically need access to the sensitive data in order to ensure that the trained
model is non-discriminatory. However, consumer privacy laws (such as the E.U. General Data
Protection Regulation) restrict the use of sensitive demographic data in algorithmic decision-making.

˚Work done as a visiting scholar at the University of Southern California, Viterbi School of Engineering.
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These two requirements–fair algorithms trained with private data–presents a quandary: how can
we train a model to be fair to a certain demographic if we don’t even know which of our training
examples belong to that group?

The works of Veale & Binns (2017); Kilbertus et al. (2018) proposed a solution to this quandary using
secure multi-party computation (MPC), which allows the learner to train a fair model without directly
accessing the sensitive attributes. Unfortunately, as Jagielski et al. (2019) observed, MPC does not
prevent the trained model from leaking sensitive data. For example, with MPC, the output of the
trained model could be used to infer the race of an individual in the training data set (Fredrikson et al.,
2015; He et al., 2019; Song et al., 2020; Carlini et al., 2021). To prevent such leaks, Jagielski et al.
(2019) argued for the use of differential privacy (Dwork et al., 2006) in fair learning. Differential
privacy (DP) provides a strong guarantee that no company (or adversary) can learn much more about
any individual than they could have learned had that individual’s data never been used.

Since Jagielski et al. (2019), several follow-up works have proposed alternate approaches to DP
fair learning (Xu et al., 2019; Ding et al., 2020; Mozannar et al., 2020; Tran et al., 2021b;a; 2022).
As shown in Fig. 1, each of these approaches suffers from at least two critical shortcomings. In
particular, none of these methods have convergence guarantees when mini-batches of data are used
in training. In training large-scale models, memory and efficiency constraints require the use of small
minibatches in each iteration of training (i.e. stochastic optimization). Thus, existing DP fair learning
methods cannot be used in such settings since they require computations on the full training data set
in every iteration. See Appendix A for a more comprehensive discussion of related work.

Our Contributions: In this work, we propose a novel algorithmic framework for DP fair learning.
Our approach builds on the non-private fair learning method of Lowy et al. (2022a). We consider
a regularized empirical risk minimization (ERM) problem where the regularizer penalizes fairness
violations, as measured by the Exponential Rényi Mutual Information. Using a result from Lowy
et al. (2022a), we reformulate this fair ERM problem as a min-max optimization problem. Then, we
use an efficient differentially private variation of stochastic gradient descent-ascent (DP-SGDA) to
solve this fair ERM min-max objective. The main features of our algorithm are:

1. Guaranteed convergence for any privacy and fairness level, even when mini-batches of data
are used in each iteration of training (i.e. stochastic optimization setting). As discussed,
stochastic optimization is essential in large-scale machine learning scenarios. Our algorithm
is the first stochastic DP fair learning method with provable convergence.

2. Flexibility to handle non-binary classification with multiple (non-binary) sensitive attributes
(e.g. race and gender) under different fairness notions such as demographic parity or
equalized odds. In each of these cases, our algorithm is guaranteed to converge.

Empirically, we show that our method outperforms the previous state-of-the-art methods in terms of
fairness vs. accuracy trade-off across all privacy levels. Moreover, our algorithm is capable of training
with mini-batch updates and can handle non-binary target and non-binary sensitive attributes. By
contrast, existing DP fairness algorithms could not converge in our stochastic/non-binary experiment.

A byproduct of our algorithmic developments and analyses is the first DP convergent algorithm for
nonconvex min-max optimization: namely, we provide an upper bound on the stationarity gap of
DP-SGDA for solving problems of the form minθ maxW F pθ,W q, where F p¨,W q is non-convex.
We expect this result to be of independent interest to the DP optimization community. Prior works
that provide convergence results for DP min-max problems have assumed that F p¨,W q is either
(strongly) convex (Boob & Guzmán, 2021; Zhang et al., 2022) or satisfies a generalization of strong
convexity known as the Polyak-Łojasiewicz (PL) condition (Yang et al., 2022).

2 PROBLEM SETTING AND PRELIMINARIES

Let Z “ tzi “ pxi, si, yiquni“1 be a data set with non-sensitive features xi P X , discrete sensitive
attributes (e.g. race, gender) si P rks fi t1, . . . , ku, and labels yi P rls. Let pyθpxq denote the model
predictions parameterized by θ, and ℓpθ, x, yq “ ℓppyθpxq, yq be a loss function (e.g. cross-entropy
loss). Our goal is to (approximately) solve the empirical risk minimization (ERM) problem

min
θ

#

pLpθq :“
1

n

n
ÿ

i“1

ℓpθ, xi, yiq

+

(1)
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in a fair manner, while maintaining the differential privacy of the sensitive data tsiu
n
i“1. We consider

two different notions of fairness in this work:1

Definition 2.1 (Fairness Notions). Let A : Z Ñ Y be a classifier.

• A satisfies demographic parity (Dwork et al., 2012) if the predictions ApZq are statistically
independent of the sensitive attributes.

• A satisfies equalized odds (Hardt et al., 2016a) if the predictions ApZq are conditionally
independent of the sensitive attributes given Y “ y for all y.

Reference Non-binary 
target?

Multiple 
fairness 
notions?

Convergence 
guarantee 

(poly. time)?

Guarantees 
with mini-
batches?

This work

Jagielski et al. 
(2019) 


(post-proc.)*
N/A

Jagielski et al. 
(2019)

(in-proc.)

Xu et al. 
(2019)

Ding et al. 
(2020)

Mozannar et 
al. (2020)

Tran et al. 
(2021a) 

Tran et al. 
(2021b)

Tran et al. 
(2022)

Figure 1: Comparison with existing works. “Guarantee”
refers to provable guarantee. N/A: the post-processing
method of Jagielski et al. (2019) is not an iterative algo-
rithm. *Method requires access to the sensitive data at
test time. The in-processing method of Jagielski et al.
(2019) is inefficient. The work of Mozannar et al. (2020)
specializes to equalized odds, but most of their analysis
seems to be extendable to other fairness notions.

Depending on the specific problem at hand, one
fairness notion may be more desirable than the
other (Dwork et al., 2012; Hardt et al., 2016a).

In practical applications, achieving exact fair-
ness, i.e. (conditional) independence of pY and
S, is unrealistic. In fact, achieving exact fair-
ness can be impossible for a differentially pri-
vate algorithm that achieves non-trivial accu-
racy (Cummings et al., 2019). Thus, we instead
aim to design an algorithm that achieves small
fairness violation on the given data set Z. Fair-
ness violation can be measured in different ways:
see e.g. Lowy et al. (2022a) for a thorough sur-
vey. For example, if demographic parity is the
desired fairness notion, then one can measure
(empirical) demographic parity violation by

max
pyPY

max
sPS

ˇ

ˇ

ˇ
p̂

pY |Sppy|sq ´ p̂
pY ppyq

ˇ

ˇ

ˇ
, (2)

where p̂ denotes an empirical probability calcu-
lated directly from pZ, tpyiu

n
i“1q.

Next, we define differential privacy (DP). Fol-
lowing the DP fair learning literature in (Jagiel-
ski et al., 2019; Tran et al., 2021b; 2022)), we
consider a relaxation of DP, in which only the
sensitive attributes require privacy. Say Z and
Z 1 are adjacent with respect to sensitive data
if Z “ tpxi, yi, siquni“1, Z 1 “ tpxi, yi, s

1
iquni“1,

and there is a unique i P rns such that si ‰ s1
i.

Definition 2.2 (Differential Privacy w.r.t. Sensitive Attributes). Let ϵ ě 0, δ P r0, 1q. A randomized
algorithm A is pϵ, δq-differentially private w.r.t. sensitive attributes S (DP) if for all pairs of data sets
Z,Z 1 that are adjacent w.r.t. sensitive attributes, we have

PpApZq P Oq ď eϵPpApZq P Oq ` δ, (3)
for all measurable O Ď Y .

As discussed in Section 1, Theorem 2.2 is useful if a company wants to train a fair model, but is unable
to use the sensitive attributes (which are needed to train a fair model) due to privacy concerns and
laws (e.g., the E.U. GDPR). Theorem 2.2 enables the company to privately use the sensitive attributes
to train a fair model, while satisfying legal and ethical constraints. That being said, Theorem 2.2 still
may not prevent leakage of non-sensitive data. Thus, if the company is concerned with privacy of
user data beyond the sensitive demographic attributes, then it should impose DP for all the features.
Our algorithm and analysis readily extends to DP for all features: see Section 3.

Throughout the paper, we shall restrict attention to data sets that contain at least ρ-fraction of every
sensitive attribute for some ρ P p0, 1q: i.e. 1

|Z|

ř|Z|

i“1 1tsi“ru ě ρ for all r P rks. This is a reasonable

1Our method can also handle any other fairness notion that can be defined in terms of statistical (conditional)
independence, such as equal opportunity. However, our method cannot handle all fairness notions: for example,
false discovery rate and calibration error are not covered by our framework.
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assumption in practice: for example, if sex is the sensitive attribute and a data set contains all men,
then training a model that is fair with respect to sex and has a non-trivial performance (better than
random) seems almost impossible. Understanding what performance is (im-)possible for DP fair
learning in the absence of sample diversity is an important direction for future work.

3 PRIVATE FAIR ERM VIA EXPONENTIAL RÉNYI MUTUAL INFORMATION

A standard in-processing strategy in the literature for enforcing fairness is to add a regularization
term to the empirical objective that penalizes fairness violations (Zhang et al., 2018; Donini et al.,
2018; Mary et al., 2019; Baharlouei et al., 2020; Cho et al., 2020b; Lowy et al., 2022a). We can then
jointly optimize for fairness and accuracy by solving

min
θ

!

pLpθq ` λDppY , S, Y q

)

,

where D is some measure of statistical (conditional) dependence between the sensitive attributes and
the predictions (given Y ), and λ ě 0 is a scalar balancing fairness and accuracy considerations. The
choice of D is crucial and can lead to different fairness-accuracy profiles. Inspired by the strong
empirical performance and amenability to stochastic optimization of Lowy et al. (2022a), we choose
D to be the Exponential Rényi Mutual Information (ERMI):
Definition 3.1 (ERMI – Exponential Rényi Mutual Information). We define the exponential Rényi
mutual information between random variables pY and S with empirical joint distribution p̂

pY ,S and
marginals p̂

pY , p̂S by:

pDRp pY , Sq :“ E

#

p̂
pY ,Sp pY , Sq

p̂
pY p pY qp̂SpSq

+

´ 1 “
ÿ

jPrls

ÿ

rPrks

p̂
pY ,Spj, rq

2

p̂
pY pjqp̂Sprq

´ 1 (ERMI)

Theorem 3.1 is what we would use if demographic parity were the desired fairness notion. If instead
one wanted to encourage equalized odds, then Theorem 3.1 can be readily adapted to these fairness
notions by substituting appropriate conditional probabilities for p̂

pY ,S , p̂ pY , and p̂S in (ERMI): see
Appendix B for details.2 It can be shown that ERMI ě 0, and is zero if and only if demographic
parity (or equalized odds, for the conditional version of ERMI) is satisfied (Lowy et al., 2022a).
Further, ERMI provides an upper bound on other commonly used measures of fairness violation: e.g.)
(2), Shannon mutual information (Cho et al., 2020a), Rényi correlation (Baharlouei et al., 2020), Lq

fairness violation (Kearns et al., 2018; Hardt et al., 2016a) (Lowy et al., 2022a). This implies that any
algorithm that makes ERMI small will also have small fairness violation with respect to these other
notions. Lastly, (Lowy et al., 2022a, Proposition 2) shows that empirical ERMI (Theorem 3.1) is an
asymptotically unbiased estimator of “population ERMI”–which can be defined as in Theorem 3.1,
except that empirical distributions are replaced by their population counterparts.

Our approach to enforcing fairness is to augment (1) with an ERMI regularizer and privately solve:

min
θ

!

FERMIpθq :“ pLpθq ` λ pDRppYθpXq, Sq

)

. (FERMI obj.)

Since empirical ERMI is an asymptotically unbiased estimator of population ERMI, a solution
to (FERMI obj.) is likely to generalize to the corresponding fair population risk minimization
problem (Lowy et al., 2022a). There are numerous ways to privately solve (FERMI obj.). For
example, one could use the exponential mechanism (McSherry & Talwar, 2007), or run noisy gradient
descent (GD) (Bassily et al., 2014). The problem with these approaches is that they are inefficient or
require computing n gradients at every iteration, which is prohibitive for large-scale problems, as
discussed earlier. Notice that we could not run noisy stochastic GD (SGD) on (FERMI obj.) because
we do not (yet) have a statistically unbiased estimate of ∇θ

pDRppYθpXq, Sq.

Our next goal is to derive a stochastic, differentially private fair learning algorithm. For feature
input x, let the predicted class labels be given by pypx, θq “ j P rls with probability Fjpx, θq,
where Fpx, θq is differentiable in θ, has range r0, 1sl, and

řl
j“1 Fjpx, θq “ 1. For instance,

2To simplify the presentation, we will assume that demographic parity is the fairness notion of interest in the
remainder of this section. However, we consider both fairness notions in our numerical experiments.
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Fpx, θq “ pF1px, θq, . . . ,Flpx, θqq could represent the output of a neural net after softmax layer or
the probability label assigned by a logistic regression model. Then we have the following min-max
re-formulation of (FERMI obj.):

Theorem 3.2 (Lowy et al. (2022a)). There are differentiable functions pψi such that (FERMI obj.) is
equivalent to

min
θ

max
WPRkˆl

#

pF pθ,W q :“ pLpθq ` λ
1

n

n
ÿ

i“1

pψipθ,W q

+

. (4)

Further, pψipθ, ¨q is strongly concave for all θ.

The functions pψi are given explicitly in Appendix C. Theorem 3.2 is useful because it permits us
to use stochastic optimization to solve (FERMI obj.): for any batch size m P rns, the gradients
(with respect to θ and W ) of 1

m

ř

iPB ℓpxi, yi; θq ` λ pψipθ,W q are statistically unbiased estimators
of the gradients of pF pθ,W q, if B is drawn uniformly from Z. However, when differential privacy
of the sensitive attributes is also desired, the formulation (4) presents some challenges, due to the
non-convexity of pF p¨,W q. Indeed, there is no known DP algorithm for solving non-convex min-max
problems that is proven to converge. Next, we provide the first such convergence guarantee.

3.1 NOISY DP-FERMI FOR STOCHASTIC PRIVATE FAIR ERM

Our proposed stochastic DP algorithm for solving (FERMI obj.), is given in Algorithm 1. It is a noisy
DP variation of two-timescale stochastic gradient descent ascent (SGDA) Lin et al. (2020).

Algorithm 1 DP-FERMI Algorithm for Private Fair ERM

1: Input: θ0 P Rdθ , W0 “ 0 P Rkˆl, step-sizes pηθ, ηwq, fairness parameter λ ě 0, iteration
number T , minibatch size |Bt| “ m P rns, set W Ă Rkˆl, noise parameters σ2

w, σ
2
θ .

2: Compute pP
´1{2
S .

3: for t “ 0, 1, . . . , T do
4: Draw a mini-batch Bt of data points tpxi, si, yiquiPBt

5: Set θt`1 Ð θt ´
ηθ

|Bt|

ř

iPBt
r∇θℓpxi, yi; θ

tq ` λp∇θ
pψipθt,Wtq ` utqs, where ut „

N p0, σ2
θIdθ

q.
6: Set Wt`1 Ð ΠW

´

Wt ` ηw
”

λ
|Bt|

ř

iPBt
∇w

pψipθt,Wtq ` Vt
ı¯

, where Vt is a k ˆ l matrix
with independent random Gaussian entries pVtqr,j „ N p0, σ2

wq.
7: end for
8: Pick t̂ uniformly at random from t1, . . . , T u.

9: Return: θ̂T :“ θt̂.

Explicit formulae for ∇θ
pψipθt,Wtq and ∇w

pψipθt,Wtq are given in Theorem D.1 (Appendix D). We
provide the privacy guarantee of Algorithm 1 in Theorem 3.3:

Theorem 3.3. Let ϵ ď 2 lnp1{δq, δ P p0, 1q, and T ě

´

n
?
ϵ

2m

¯2

. Assume Fpx, ¨q is Lθ-Lipschitz

for all x, and |pWtqr,j | ď D for all t P rT s, r P rks, j P rls. Then, for σ2
w ě

16T lnp1{δq

ϵ2n2ρ and

σ2
θ ě

16L2
θD

2 lnp1{δqT
ϵ2n2ρ , Algorithm 1 is pϵ, δq-DP with respect to the sensitive attributes for all data

sets containing at least ρ-fraction of minority attributes. Further, if σ2
w ě

32T lnp1{δq

ϵ2n2

´

1
ρ `D2

¯

and

σ2
θ ě

64L2
θD

2 lnp1{δqT
ϵ2n2ρ `

32D4L2
θl

2T lnp1{δq

ϵ2n2 , then Algorithm 1 is pϵ, δq-DP (with respect to all features)
for all data sets containing at least ρ-fraction of minority attributes.

See Appendix D for the proof. Next, we give a convergence guarantee for Algorithm 1:

Theorem 3.4. Assume the loss function ℓp¨, x, yq and Fpx, ¨q are Lipschitz continuous with Lip-
schitz gradient for all px, yq, and pPSprq ě ρ ą 0 @ r P rks. In Algorithm 1, choose W to be
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a sufficiently large ball that contains W˚pθq :“ argmaxW pF pθ,W q for every θ in some neigh-
borhood of θ˚ P argminθ maxW pF pθ,W q. Then there exist algorithmic parameters such that the
pϵ, δq-DP Algorithm 1 returns θ̂T with

E}∇FERMIpθ̂T q}2 “ O

˜

a

maxpdθ, klq lnp1{δq

ϵn

¸

,

treating D “ diameterpWq, λ, ρ, l, and the Lipschitz and smoothness parameters of ℓ and F as
constants.

Theorem 3.4 shows that Algorithm 1 finds an approximate stationary point of (FERMI obj.). Finding
approximate stationary points is generally the best one can hope to do in polynomial time for non-
convex optimization (Murty & Kabadi, 1985). The stationarity gap in Theorem 3.4 depends on the
number of samples n and model parameters dθ, the desired level of privacy pϵ, δq, and the number
of labels l and sensitive attributes k. For large-scale models (e.g. deep neural nets), we typically
have dθ " 1 and k, l “ Op1q, so that the convergence rate of Algorithm 1 is essentially immune
to the number of labels and sensitive attributes. In contrast, no existing works with convergence
guarantees are able to handle non-binary classification (l ą 2), even with full batches and a single
binary sensitive attribute.

A few more remarks are in order. First, the utility bound in Theorem 3.4 corresponds to DP for
all of the features. If DP is only required for the sensitive attributes, then using the smaller σ2

θ , σ
2
w

in Theorem 3.3 would improve the dependence on constants D, l, Lθ in the utility bound. Second,
the choice of W in Theorem 3.4 implies that (4) is equivalent to minθ maxWPW pF pθ,W q, which is
what our algorithm directly solves (c.f. (7)). Lastly, note that while we return a uniformly random
iterate in Algorithm 1 for our theoretical convergence analysis, we recommend returning the last
iterate θT in practice: our numerical experiments show strong performance of the last iterate.

In Theorem E.1 of Appendix E, we prove a result which is more general than Theorem 3.4. Theo-
rem E.1 shows that noisy DP-SGDA converges to an approximate stationary point of any smooth
nonconvex-strongly concave min-max optimization problem (not just (4)). We expect Theorem E.1 to
be of general interest to the DP optimization community beyond its applications to DP fair learning,
since it is the first DP convergence guarantee for nonconvex min-max optimization. We also give a
bound on the iteration complexity T in Appendix E.

The proof of Theorem E.1 involves a careful analysis of how the Gaussian noises propagate through
the optimization trajectories of θt and wt. Compared with DP non-convex minimization analyses
(e.g. Wang et al. (2019); Hu et al. (2021); Ding et al. (2021b); Lowy et al. (2022b)), the two noises
required to privatize the solution of the min-max problem we consider complicates the analysis and
requires careful tuning of ηθ and ηW . Compared to existing analyses of DP min-max games in Boob
& Guzmán (2021); Yang et al. (2022); Zhang et al. (2022), which assume that fp¨, wq is convex or
PL, dealing with non-convexity is a challenge that requires different optimization techniques.

4 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed approach (DP-FERMI) in terms of
the fairness violation vs. test error for different privacy levels. We present our results in two parts:
In Section 4.1, we assess the performance of our method in training logistic regression models
on several benchmark tabular datasets. Since this is a standard setup that existing DP fairness
algorithms can handle, we are able to compare our method against the state-of-the-art baselines. We
carefully tuned the hyperparameters of all baselines for fair comparison. We find that DP-FERMI
consistently outperforms all state-of-the-art baselines across all data sets and all privacy levels.
These observations hold for both demographic parity and equalized odds fairness notions. To quantify
the improvement of our results over the state-of-the-art baselines, we calculated the performance gain
with respect to fairness violation (for fixed accuracy level) that our model yields over all the datasets.
We obtained a performance gain of demographic parity that was 79.648 % better than Tran et al.
(2021b) on average, and 65.89% better on median. The average performance gain of equalized odds
was 96.65% while median percentage gain was 90.02%. In Section 4.2, we showcase the scalability
of DP-FERMI by using it to train a deep convolutional neural network for classification on a large
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image dataset. In Appendix F, we give detailed descriptions of the data sets, experimental setups and
training procedure, along with additional results.

4.1 STANDARD BENCHMARK EXPERIMENTS: LOGISTIC REGRESSION ON TABULAR
DATASETS

In the first set of experiments we train a logistic regression model using DP-FERMI (Algorithm 1) for
demographic parity and a modified version of DP-FERMI (described in Appendix F) for equalized
odds. We compare DP-FERMI against all applicable publicly available baselines in each expeiment.

4.1.1 DEMOGRAPHIC PARITY

We use four benchmark tabular datasets: Adult Income, Retired Adult, Parkinsons, and Credit-Card
dataset from the UCI machine learning repository (Dua & Graff (2017)). The predicted variables and
sensitive attributes are both binary in these datasets. We analyze fairness-accuracy trade-offs with four
different values of ϵ P t0.5, 1, 3, 9u for each dataset. We compare against state-of-the-art algorithms
proposed in Tran et al. (2021a) and (the demographic parity objective of) Tran et al. (2021b). The
results displayed are averages over 15 trials (random seeds) for each value of ϵ.

For the Adult dataset, the task is to predict whether the income is greater than $50K or not keeping
gender as the sensitive attribute. The Retired Adult dataset is the same as the Adult dataset, but
with updated data. We use the same output and sensitive attributes for both experiments. The results
for Adult and Retired Adult are shown in Figs. 2 and 6 (in Appendix F.2). Compared to Tran et al.
(2021a;b), DP-FERMI offers superior fairness-accuracy tradeoffs at every privacy (ϵ) level.

(a) ϵ “ 0.5 (b) ϵ “ 1

(c) ϵ “ 3 (d) ϵ “ 9
Figure 2: Private, Fair (Demographic Parity) logistic regression on Adult Dataset.

In the Parkinsons dataset, the task is to predict whether the total UPDRS score of the patient is
greater than the median or not keeping gender as the sensitive attribute. Results for ϵ P t1, 3u are
shown in Fig. 3. See Fig. 8 in Appendix F for ϵ P t0.5, 9u. Our algorithm again outperforms the
baselines Tran et al. (2021a;b) for all tested privacy levels.

In the Credit Card dataset , the task is to predict whether the user will default payment the next month
keeping gender as the sensitive attribute. Results are shown in Fig. 7 in Appendix F.2. Once again,
DP-FERMI provides the most favorable privacy-fairness-accuracy profile.
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(a) ϵ “ 1 (b) ϵ “ 3

Figure 3: Private, Fair (Demogrpahic Parity) logistic regression on Parkinsons Dataset

4.1.2 EQUALIZED ODDS

Next, we consider the slightly modified version of Algorithm 1, which is designed to minimize the
Equalized Odds violation by replacing the absolute probabilities in the objective with class conditional
probabilities: see Appendix F.2.4 for details.

We considered the Credit Card and Adult datasets for these experiments, using the same sensitive
attributes as mentioned above. Results for Credit Card are shown in Fig. 4. Adult results are given
in Fig. 9 in Appendix F.2.4. Compared to Jagielski et al. (2019) and the equalized odds objective
in Tran et al. (2021b), our equalized odds variant of DP-FERMI outperforms these state-of-the-art
baselines at every privacy level.

(a) ϵ “ 0.5 (b) ϵ “ 1 (c) ϵ “ 3

Figure 4: Private, Fair (Equalized Odds) logistic regression on Credit Card Dataset

4.2 LARGE-SCALE EXPERIMENT: DEEP CONVOLUTIONAL NEURAL NETWORK ON IMAGE
DATASET

In our second set of experiments, we train a deep 9-layer VGG-like classifier (Simonyan & Zisserman,
2015) with d « 1.6 million parameters on the UTK-Face dataset (Zhang et al., 2017) using Algo-
rithm 1. We classify the facial images into 9 age groups similar to the setup in Tran et al. (2022),
while keeping race (containing 5 classes) as the sensitive attribute. See Appendix F.3 for more
details.We analyze consider with four different privacy levels ϵ P t10, 25, 50, 100u. Compared to the
tabular datasets, larger ϵ is needed to obtain stable results in the large-scale setting since the number
of parameters d is much larger and the cost of privacy increases with d (see Theorem 3.4). Larger
values of ϵ ą 100 were used in the baseline Jagielski et al. (2019) for smaller scale experiments.

The results in Fig. 5 empirically verify our main theoretical result: DP-FERMI converges even for
non-binary classification with small batch size and non-binary sensitive attributes. We took Tran
et al. (2021a;b) as our baselines and attempted to adapt them to this non-binary large-scale task. We
observed that the baselines were very unstable while training and mostly gave degenerate results
(predicting a single output irrespective of the input). By contrast, our method was able to obtain
stable and meaningful tradeoff curves. Also, while Tran et al. (2022) reported results on UTK-Face,
their code is not publicly available and we were unable to reproduce their results.
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(a) ϵ “ 10 (b) ϵ “ 25

(c) ϵ “ 50 (d) ϵ “ 100

Figure 5: DP-FERMI on a Deep CNN for Image Classification on UTK-Face

5 CONCLUDING REMARKS

Motivated by pressing legal, ethical, and social considerations, we studied the challenging problem
of learning fair models with differentially private demographic data. We observed that existing
works suffer from a few crucial limitations that render their approaches impractical for large-scale
problems. Specifically, existing approaches require full batches of data in each iteration (and/or
exponential runtime) in order to provide convergence/accuracy guarantees. We addressed these
limitations by deriving a DP stochastic optimization algorithm for fair learning, and rigorously proved
the convergence of the proposed method. Our convergence guarantee holds even for non-binary
classification (with any hypothesis class, even infinite VC dimension, c.f. Jagielski et al. (2019)) with
multiple sensitive attributes and access to random minibatches of data in each iteration. Finally, we
evaluated our method in extensive numerical experiments and found that it significantly outperforms
the previous state-of-the-art models, in terms of fairness-accuracy tradeoff. The potential societal
impacts of our work are discussed in Appendix G.
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APPENDIX

A ADDITIONAL DISCUSSION OF RELATED WORK

The study of differentially private fair learning algorithms was initiated by Jagielski et al. (2019).
Jagielski et al. (2019) considered equalized odds and proposed two DP algorithms: 1) an ϵ-DP
post-processing approach derived from Hardt et al. (2016a); and 2) an pϵ, δq-DP in-processing
approach based on Agarwal et al. (2018). The major drawback of their post-processing approach
is the unrealistic requirement that the algorithm have access to the sensitive attributes at test time,
which Jagielski et al. (2019) admits “isn’t feasible (or legal) in certain applications.” Additionally,
post-processing approaches are known to suffer from inferior fairness-accuracy tradeoffs compared
with in-processing methods. While the in-processing method of Jagielski et al. (2019) does not
require access to sensitive attributes at test time, it comes with a different set of disadvantages: 1)
it is limited to binary classification; 2) its theoretical performance guarantees require the use of the
computationally inefficient (i.e. exponential-time) exponential mechanism (McSherry & Talwar,
2007); 3) its theoretical performance guarantees require computations on the full training set and
do not permit mini-batch implementations; 4) it requires the hypothesis class H to have finite VC
dimension. In this work, we propose the first algorithm that overcomes all of these pitfalls: our
algorithm is amenable to multi-way classification with multiple sensitive attributes, computationally
efficient, and comes with convergence guarantees that hold even when mini-batches of m ă n
samples are used in each iteration of training, and even when VCpHq “ 8. Furthermore, our
framework is flexible enough to accommodate many notions of group fairness besides equalized odds
(e.g. demographic parity, accuracy parity).

Following Jagielski et al. (2019), several works have proposed other DP fair learning algorithms.
None of these works have managed to simultaneously address all the shortcomings of the method
of Jagielski et al. (2019). The work of Xu et al. (2019) proposed DP and fair binary logistic regression,
but did not provide any theoretical convergence/performance guarantees. The work of Mozannar
et al. (2020) combined aspects of both Hardt et al. (2016a) and Agarwal et al. (2018) in a two-step
locally differentially private fairness algorithm. Their approach is limited to binary classification.
Moreover, their algorithm requires n{2 samples in each iteration (of their in-processing step), making
it impractical for large-scale problems. More recently, Tran et al. (2021b) devised another DP
in-processing method based on lagrange duality, which covers non-binary classification problems.
In a subsequent work, Tran et al. (2021a) studied the effect of DP on accuracy parity in ERM,
and proposed using a regularizer to promote fairness. Finally, Tran et al. (2022) provided a semi-
supervised fair “Private Aggregation of Teacher Ensembles” framework. A shortcoming of each of
these three most recent works is their lack of theoretical convergence or accuracy guarantees. In
another vein, some works have observed the disparate impact of privacy constraints on demographic
subgroups (Bagdasaryan et al., 2019; Tran et al., 2021c).

B EQUALIZED ODDS VERSION OF ERMI

If equalized odds (Hardt et al., 2016b) is the desired fairness notion, then one should use the following
variation of ERMI as a regularizer Lowy et al. (2022a):

pDRppY ;S|Y q :“ E

#

p̂
pY ,S|Y ppY , S|Y q

p̂
pY |Y ppY |Y qp̂S|Y pS|Y q

+

´ 1

“

l
ÿ

y“1

l
ÿ

j“1

k
ÿ

r“1

p̂
pY ,S|Y pj, r|yq2

p̂
pY |Y pj|yqp̂S|Y pr|yq

p̂Y pyq ´ 1. (5)

Here p̂
pY ,S|Y denotes the empirical joint distribution of the predictions and sensitive attributes ppY , Sq

conditional on the true labels Y . In particular, if DRppY ;S|Y q “ 0, then pY and S are conditionally
independent given Y (i.e. equalized odds is satisfied).
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C COMPLETE VERSION OF THEOREM 3.2

Let pypxi; θq P t0, 1ul and si P t0, 1uk be the one-hot encodings of pypxi, θq and si, respec-
tively: i.e., pyjpxi; θq “ 1tpypxi,θq“ju and si,r “ 1tsi“ru for j P rls, r P rks. Also, denote
pPs “ diagpppSp1q, . . . , ppSpkqq, where ppSprq :“ 1

n

řn
i“1 1tsi“ru ě ρ ą 0 is the empirical prob-

ability of attribute r (r P rks). Then we have the following re-formulation of (FERMI obj.) as a
min-max problem:
Theorem C.1 (Lowy et al. (2022a)). (FERMI obj.) is equivalent to

min
θ

max
WPRkˆl

#

pF pθ,W q :“ pLpθq ` λ
1

n

n
ÿ

i“1

pψipθ,W q

+

, (6)

where

pψipθ,W q :“ ´TrpWErpypxi, θqpypxi, θqT |xisW
T q

` 2TrpWErpypxi; θqsTi |xi, sis pP´1{2
s q ´ 1,

Erpypxi; θqpypxi; θqT |xis “ diagpF1pxi, θq, . . . ,Flpxi, θqq, and Erpypxi; θqsTi |xi, sis is a kˆl matrix
with Erpypxi; θqsTi |xi, sisr,j “ si,rFjpxi, θq.

Strong concavity of pψi is shown in Lowy et al. (2022a).

D DP-FERMI ALGORITHM: PRIVACY

We begin with a routine calculation of the derivatives of pψi, which follows by elementary matrix
calculus:

Lemma D.1. Let pψipθ,W q “ ´TrpWErpypxi, θqpypxi, θqT |xisW
T q `

2TrpWErpypxi; θqsTi |xi, sis pP
´1{2
s q ´ 1, where Erpypxi; θqpypxi; θqT |xis “

diagpF1pxi, θq, . . . ,Flpxi, θqq and Erpypxi; θqsTi |xi, sis is a k ˆ l matrix with
Erpypxi; θqsTi |xi, sisr,j “ si,rFjpxi, θq. Then,

∇θ
pψipθ,W q “ ´∇θ vecpErpypxi, θqpypxi, θqT |xisq

T vecpWTW q ` 2∇θ vecpErsipypxi, θqT |xi, sisq vec

ˆ

WT
´

pPS

¯´1{2
˙

and
∇w

pψipθ,W q “ ´2WErpypxi, θqpypxi, θqT |xis ` 2 pP
´1{2
S Ersipypxi, θqT |xi, sis.

Using Theorem D.1, we can prove that Algorithm 1 is DP:

Theorem D.2 (Re-statement of Theorem 3.3). Let ϵ ď 2 lnp1{δq, δ P p0, 1q, and T ě

´

n
?
ϵ

2m

¯2

.

Assume Fp¨, xq is Lθ-Lipschitz for all x, and |pWtqr,j | ď D for all t P rT s, r P rks, j P rls.

Then, for σ2
w ě

16T lnp1{δq

ϵ2n2ρ and σ2
θ ě

16L2
θD

2 lnp1{δqT
ϵ2n2ρ , Algorithm 1 is pϵ, δq-DP with respect to the

sensitive attributes for all data sets containing at least ρ-fraction of minority attributes. Further,
if σ2

w ě
32T lnp1{δq

ϵ2n2

´

1
ρ `D2

¯

and σ2
θ ě

64L2
θD

2 lnp1{δqT
ϵ2n2ρ `

32D4L2
θl

2T lnp1{δq

ϵ2n2 , then Algorithm 1 is

pϵ, δq-DP (with respect to all features) for all data sets containing at least ρ-fraction of minority
attributes.

Proof. First consider the case in which only the sensitive attributes are private. By the moments
accountant Theorem 1 in Abadi et al. (2016), it suffices to bound the sensitivity of the gradient
updates by ∆2

θ ď
8D2L2

θ

m2ρ and ∆2
w ď 8

m2ρ . Here

∆2
θ “ sup

Z„Z1,θ,W

›

›

›

›

›

1

m

ÿ

iPBt

”

∇θ
pψpθ,W ; ziq ´ ∇θ

pψpθ,W ; z1
iq

ı

›

›

›

›

›

2
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and Z „ Z 1 means that Z and Z 1 are two data sets (both with ρ-fraction of minority attributes) that
differ in exactly one person’s sensitive attributes: i.e. si ‰ s1

i for some unique i P rns, but zj “ z1
j

for all j ‰ i and pxi, yiq “ px1
i, y

1
iq. Likewise,

∆2
w “ sup

Z„Z1,θ,W

›

›

›

›

›

1

m

ÿ

iPBt

”

∇w
pψpθ,W ; ziq ´ ∇w

pψpθ,W ; z1
iq

ı

›

›

›

›

›

2

.

Now, by Theorem D.1,

∇θ
pψipθ,W q “ ´∇θ vecpErpypxi, θqpypxi, θqT |xisq

T vecpWTW q

` 2∇θ vecpErsipypxi, θqT |xi, sisq vec

ˆ

WT
´

pPS

¯´1{2
˙

,

and notice that only the second term depends on S. Therefore, we can bound the ℓ2-sensitivity of the
θ-gradient updates by:

∆2
θ “ sup

Z„Z1,W,θ

›

›

›

›

›

1

m

m
ÿ

i“1

2∇θ vecpErsipypxi, θqT |xi, sisq vec

ˆ

WT
´

pPS

¯´1{2
˙

´ 2∇θ vecpErs1
ipypxi, θqT |xi, s

1
isq vec

ˆ

WT
´

pPS1

¯´1{2
˙

›

›

›

›

›

2

ď
4

m2
sup

x,si,s1
i,W,θ

»

—

–

k
ÿ

r“1

l
ÿ

j“1

}∇θFjpθ, xq}2W 2
r,j

¨

˝

si,r
b

pPSprq

´
s1
i,r

b

pPS1 prq

˛

‚

2
fi

ffi

fl

ď
8

ρm2
sup
x,W,θ

˜

l
ÿ

j“1

}∇θFjpθ, xq}2W 2
r,j

¸

ď
8D2L2

θ

ρm2
,

using Lipschitz continuity of Fp¨, xq, the assumption that W has diameter bounded by D, the
assumption that the data sets have at least ρ-fraction of sensitive attribute r for all r P rks. Similarly,
for the W -gradients, we have

∇w
pψipθ,W q “ ´2WErpypxi, θqpypxi, θqT |xis ` 2 pP

´1{2
S Ersipypxi, θqT |xi, sis

by Theorem D.1. Hence

∆2
W “ sup

θ,W,si,s1
i

4

m2

›

›

›

›

›

´WdiagpF1pθ, xiq, . . . ,Flpθ, xiqq ` pP
´1{2
S Ersipyipxi; θtq

T |xi, sis

`WdiagpF1pθ, xiq, . . . ,Flpθ, xiqq ´ pP
´1{2
S1 Ers1

ipyipxi; θtq
T |xi, s

1
is

›

›

›

›

›

2

ď
4

m2
sup

θ,W,si,s1
i

l
ÿ

j“1

Fjpθ, xiq
2

k
ÿ

r“1

¨

˝

si,r
b

pPSprq

´
s1
i,r

b

pPS1 prq

˛

‚

2

ď
8

m2ρ
,

since
řl

j“1 Fjpθ, xiq
2 ď

řl
j“1 Fjpθ, xiq “ 1. This establishes the desired privacy guarantee with

respect to sensitive attributes for Algorithm 1.

Now consider the case in which all features are private. We aim to bound the sensitivities of the
gradient updates to changes in a single sample zi “ psi, xi, yiq. Denote these new sensitivities by

∆̃θ “ sup
Z„Z1,θ,W

›

›

›

›

›

1

m

ÿ

iPBt

”

∇θ
pψpθ,W ; ziq ´ ∇θ

pψpθ,W ; z1
iq

ı

›

›

›

›

›

,
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where we now write Z „ Z 1 to mean that Z and Z 1 are two data sets (both with ρ-fraction of minority
attributes) that differ in exactly one person’s (sensitive and non-sensitive) data: i.e. zi ‰ z1

i for some
unique i P rns. Likewise,

∆̃W “ sup
Z„Z1,θ,W

›

›

›

›

›

1

m

ÿ

iPBt

”

∇w
pψpθ,W ; ziq ´ ∇w

pψpθ,W ; z1
iq

ı

›

›

›

›

›

.

Then

∆̃θ “
1

m
sup

zi,z1
i,θ,W,S„S1

›

›

›

›

›

´ ∇θ vecpErpypxi, θqpypxi, θqT |xisq
T vecpWTW q ` 2∇θ vecpErsipypxi, θqT |xi, sisq

vec

ˆ

WT
´

pPS

¯´1{2
˙

` ∇θ vecpErpypx1
i, θqpypx1

i, θqT |x1
isq

T vecpWTW q

´ 2∇θ vecpErs1
ipypx1

i, θqT |x1
i, s

1
isq vec

ˆ

WT
´

pPS1

¯´1{2
˙

›

›

›

›

›

ď
2LθlD

m
` ∆θ.

Thus, ∆̃2
θ ď

4L2
θl

2D2

m2 ` 2∆2
θ. Therefore, by the moments accountant, the collection of all θt updates

in Algorithm 1 is pϵ, δq-DP if σ2
θ ě

32D2L2
θT lnp1{δq

ρϵ2n2 `
8D2L2

θl
2T lnp1{δq

ϵ2n2 “
8L2

θD
2T lnp1{δq

ϵ2n2

´

4
ρ ` l2

¯

.

Next, we bound the sensitivity ∆̃W of the W -gradient updates. We have

∆̃2
W “ sup

θ,W,zi,z1
i

4

m2

›

›

›

›

›

´WdiagpF1pθ, xiq, . . . ,Flpθ, xiqq ` pP
´1{2
S Ersipyipxi; θtq

T |xi, sis

`WdiagpF1pθ, x1
iq, . . . ,Flpθ, x

1
iqq ´ pP

´1{2
S1 Ers1

ipy
T
i px1

i; θtq|x1
i, s

1
is

›

›

›

›

›

2

ď 2∆2
W `

8

m2
sup

θ,W,xi,x1
i

›

›

›

›

›

WdiagpF1pθ, xiq ´ F1pθ, x1
iq, . . . ,Flpθ, xiq ´ Flpθ, x

1
iqq

›

›

›

›

›

2

ď 2∆2
W `

16D2

m2
sup
θ,xi

l
ÿ

j“1

Fjpθ, xiq
2

ď 2∆2
W `

16D2

m2
.

Therefore, by the moments accountant, the collection of all Wt updates in Algorithm 1 is pϵ, δq-DP if
σ2
w ě

32T lnp1{δq

ϵ2n2

´

1
ρ `D2

¯

. This completes the proof.

E DP-FERMI ALGORITHM: UTILITY

To prove Theorem 3.4, we will first derive a more general result. Namely, in Appendix E.1, we will
provide a precise upper bound on the stationarity gap of noisy DP stochastic gradient descent ascent
(DP-SGDA).

E.1 NOISY DP-SGDA FOR NONCONVEX-STRONGLY CONCAVE MIN-MAX PROBLEMS

Consider a generic (smooth) nonconvex-strongly concave min-max ERM problem:

min
θPRdθ

max
wPW

#

F pθ, wq :“
1

n

n
ÿ

i“1

fpθ, w; ziq

+

, (7)

where fpθ, ¨; zq is µ-strongly concave3 for all θ, z but fp¨, w; zq is potentially non-convex. We
3We say a differentiable function g is µ-strongly concave if gpαq ` x∇gpαq, α1

´αy ´
µ
2

}α´α1
}
2

ě gpα1
q

for all α, α1.
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Algorithm 2 Noisy Differentially Private Stochastic Gradient Descent-Ascent (DP-SGDA)

1: Input: data Z, θ0 P Rdθ , w0 P W , step-sizes pηθ, ηwq, privacy noise parameters σθ, σw, batch
size m, iteration number T ě 1.

2: for t “ 0, 1, . . . , T ´ 1 do
3: Draw a batch of data points tziu

m
i“1 uniformly at random from Z.

4: Update θt`1 Ð θt ´ ηθ
`

1
m

řm
i“1 ∇θfpθt, wt; ziq ` ut

˘

, where ut „ N p0, σ2
θIdθ

q and
wt`1 Ð ΠW

“

wt ` ηw
`

1
m

řm
i“1 ∇wfpθt, wt; ziq ` vt

˘‰

, where vt „ N p0, σ2
wIdwq.

5: end for
6: Draw θ̂T uniformly at random from tθtu

T
t“1.

7: Return: θ̂T

propose Noisy DP-SGDA4 (Algorithm 2) for privately solving (7), which is a noisy DP variation of
two-timescale SGDA (Lin et al., 2020). Now, we provide the first theoretical convergence guarantee
for DP non-convex min-max optimization:
Theorem E.1 (Privacy and Utility of Algorithm 2, Informal Version). Let ϵ ď 2 lnp1{δq, δ P p0, 1q.
Assume: fp¨, w; zq is Lθ-Lipschitz5 and fpθ, ¨; zq is Lw-Lipschitz for all θ, w, z; and W Ă Rdw

is a convex, compact set. Denote Φpθq “ maxwPW F pθ, wq. Choose σ2
w “

8TL2
w lnp1{δq

ϵ2n2 , σ2
θ “

8TL2
θ lnp1{δq

ϵ2n2 , and T ě

´

n
?
ϵ

2m

¯2

. Then, Algorithm 2 is pϵ, δq-DP. Further, if fp¨, ¨; zq has Lipschitz

gradients and fpθ, ¨; zq is strongly concave, then D T, ηθ, ηw such that

E}∇Φpθ̂T q}
2

“ O

˜

a

d lnp1{δq

ϵn

¸

,

where d “ maxpdθ, dwq. (The expectation is solely over the algorithm.)

In our DP fair learning application, fpθ,W ; ziq “ ℓpθ, xi, yiq ` λ pψipθ,W q and the strong concavity
assumption on f in Theorem E.1 is automatically satisfied, by Lowy et al. (2022a). The Lipschitz
and smoothness assumptions on f are standard in optimization literature and are satisfied for loss
functions that are typically used in pracdtice. In our application to DP-FERMI, these assumptions
hold as long as the loss function ℓ and F are Lipschitz continuous with Lipschitz gradients. Our next
goal is to prove (the precise, scale-invariant version of) Theorem E.1. To that end, we require the
following notation.

Notation and Assumptions: Let f : Rdθ ˆ Rdw ˆ Z Ñ R, and F pθ, wq “ 1
n

řn
i“1 fpθ, w; ziq

for fixed training data Z “ pz1, ¨ ¨ ¨ , znq P Zn. Let W Ă Rdw be a convex, compact set. For
any θ P Rdθ , denote w˚pθq P argmaxwPW F pθ, wq and pΦpθq “ maxwPW F pθ, wq. Let ∆Φ “

pΦpθ0q ´ infθ pΦZpθq. Recall that a function h is β-smooth if its derivative ∇h is β-Lipschitz. We
write a À b if there is an absolute constant C ą 0 such that a ď Cb.
Assumption E.2. 1. fp¨, w; zq is Lθ-Lipschitz and βθ-smooth for all w P W, z P Z .

2. fpθ, ¨; zq is Lw-Lipschitz, βw-smooth, and µ-strongly concave on W for all θ P Rdθ , z P Z .

3. }∇wfpθ, w; zq ´ ∇wfpθ1, w; zq} ď βθw}θ ´ θ1} and }∇θfpθ, w; zq ´ ∇θfpθ, w1; zq} ď

βθw}w ´ w1} for all θ, θ1, w, w1, z.

4. W has ℓ2 diameter bounded by D ě 0.

5. ∇wF pθ, w˚pθqq “ 0 for all θ, where w˚pθq denotes the unconstrained global minimizer of
F pθ, ¨q.

The first four assumptions are standard in (DP and min-max) optimization. The fifth assumption
means that W contains the unconstrained global minimizer w˚pθq of F pθ, ¨q for all θ. Hence (7) is
equivalent to

min
θPRdθ

max
wPRdw

F pθ, wq.

4DP-SGDA was also used in Yang et al. (2022) for convex and PL min-max problems.
5We say function g is L-Lipschitz if }gpαq ´ gpα1

q} ď L}α´ α1
} for all α, α1.
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This assumption is not actually necessary for our convergence result to hold, but we will need it when
we apply our results to the DP fairness problem. Moreover, it simplifies the proof of our convergence
result. We refer to problems of the form (7) that satisfy Theorem E.2 as “(smooth) nonconvex-strongly
concave min-max.” We denote κw :“ βw

µ and κθw :“ βθw

µ .

We can now provide the complete, precise version of Theorem E.1:
Theorem E.3 (Privacy and Utility of Algorithm 2, Formal Version). Let ϵ ď 2 lnp1{δq, δ P p0, 1q.

Grant Theorem E.2. Choose σ2
w “

8TL2
w lnp1{δq

ϵ2n2 , σ2
θ “

8TL2
θ lnp1{δq

ϵ2n2 , and T ě

´

n
?
ϵ

2m

¯2

.

Then Algorithm 2 is pϵ, δq-DP. Further, if we choose ηθ “ 1
16κwpβθ`βθwκθwq

, ηw “ 1
βw

, and

T «
a

κwr∆Φpβθ ` βθwκθwq ` β2
θwD

2sϵnmin
´

1
Lθ

?
dθ
, βw

βθwLw

?
κwdw

¯

, then

E}∇Φpθ̂T q}2 À

b

∆Φ pβθ ` βθwκθwqκw ` κwβ2
θwD

2q

«

Lθ

a

dθ lnp1{δq

ϵn
`

ˆ

βθw
?
κw

βw

˙

Lw

a

dw lnp1{δq

ϵn

ff

`
1tmănu

m

ˆ

L2
θ `

κwβ
2
θwL

2
w

β2
w

˙

.

In particular, ifm ě min

ˆ

ϵnLθ?
dθκwr∆Φpβθ`βθwκθwq`β2

θwD2s
,

ϵnLw
?
κw

βθwβw

?
dwκwr∆Φpβθ`βθwκθwq`β2

θwD2s

˙

,

then

E}∇Φpθ̂T q}2 À

b

κwr∆Φpβθ ` βθwκθwq ` β2
θwD

2s

˜

a

lnp1{δq

ϵn

¸

ˆ

Lθ

a

dθ `

ˆ

βθw
?
κw

βw

˙

Lw

a

dw

˙

.

The proof of Theorem E.3 will require several technical lemmas. These technical lemmas, in turn,
require some preliminary lemmas, which we present below.

We begin with a refinement of Lemma 4.3 from Lin et al. (2020):
Lemma E.4. Grant Theorem E.2. Then Φ is 2pβθ`βθwκθwq-smooth with ∇Φpθq “ ∇θF pθ, w˚pθqq,
and w˚p¨q is κw-Lipschitz.

Proof. The proof follows almost exactly as in the proof of Lemma 4.3 of Lin et al. (2020), using
Danskin’s theorem, but we carefully track the different smoothness parameters with respect to w and
θ (and their units) to obtain the more precise result.

Lemma E.5 (Lei et al. (2017)). Let talulPrns be an arbitrary collection of vectors such that
řn

l“1 al “

0. Further, let S be a uniformly random subset of rns of size m. Then,

E

›

›

›

›

›

1

m

ÿ

lPS
al

›

›

›

›

›

2

“
n´m

pn´ 1qm

1

n

n
ÿ

l“1

}al}
2 ď

1tmănu

m n

n
ÿ

l“1

}al}
2.

Lemma E.6 (Co-coercivity of the gradient). For any β-smooth and convex function g, we have

}∇gpaq ´ ∇gpbq}2 ď 2βpgpaq ´ gpbq ´ xgpbq, a´ byq,

for all a, b P domainpgq.

Having recalled the necessary preliminaries, we now provide the novel technical ingredients that
we’ll need for the proof of Theorem E.3. The next lemma quantifies the progress made in minimizing
Φ from a single step of noisy stochastic gradient descent in θ (i.e. line 4 of Algorithm 2):
Lemma E.7. For all t P rT s, the iterates of Algorithm 2 satisfy

EΦpθtq ď Φpθt´1q ´

´ηθ
2

´ 2pβθ ` βθwκθwqη2θ

¯

E}∇Φpθt´1q}2

`

´ηθ
2

` 2η2θpβθ ` βθwκθwqE}∇Φpθt´1q ´ ∇θF pθt´1, wt´1q}2
¯

` pβθβθwκθwqη2θ

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

,

conditional on θt´1, wt´1.

19



Published as a conference paper at ICLR 2023

Proof. Let us denote rg :“ 1
m

řm
i“1 ∇θfpθt´1, wt´1; ziq ` ut´1 :“ g ` ut´1, so θt “ θt´1 ´ ηθrg.

First condition on the randomness due to sampling and Gaussian noise addition. By smoothness of Φ
(see Theorem E.4), we have

Φpθtq ď Φpθt´1q ´ ηθxrg,∇Φpθt´1qy ` pβθ ` βθwκθwqη2θ}rg}2

“ Φpθt´1q ´ ηθ}∇Φpθt´1q}2 ´ ηθxrg ´ ∇Φpθt´1q,∇Φpθt´1qy ` pβθ ` βθwκθwqη2θ}rg}2.

Taking expectation (conditional on θt´1, wt´1),

ErΦpθtqs ď Φpθt´1q ´ ηθ}∇Φpθt´1q}2 ´ ηθx∇θF pθt´1, wt´1q ´ ∇Φpθt´1q,∇Φpθt´1qy

` pβθ ` βθwκθwqη2θ
“

dθσ
2
θ ` E}g ´ ∇θF pθt´1, wt´1q}2 ` }∇θF pθt´1, wt´1q}2

‰

ď Φpθt´1q ´ ηθ}∇Φpθt´1q}2 ´ ηθx∇θF pθt´1, wt´1q ´ ∇Φpθt´1q,∇Φpθt´1qy

` pβθ ` βθwκθwqη2θ

„

dθσ
2
θ `

4L2
θ

m
1tmănu ` }∇θF pθt´1, wt´1q}2

ȷ

ď Φpθt´1q ´ ηθ}∇Φpθt´1q}2 ´ ηθx∇θF pθt´1, wt´1q ´ ∇Φpθt´1q,∇Φpθt´1qy

` pβθ ` βθwκθwqη2θ

„

dθσ
2
θ `

4L2
θ

m
1tmănu ` 2}∇θF pθt´1, wt´1q ´ ∇Φpθt´1q}2 ` 2}∇Φpθt´1q}2

ȷ

ď Φpθt´1q ´ ηθ}∇Φpθt´1q}2 `
ηθ
2

“

}∇Φpθt´1q ´ ∇θF pθt´1, wt´1q}2 ` }∇Φpθt´1q}2
‰

` pβθ ` βθwκθwqη2θ

„

dθσ
2
θ `

4L2
θ

m
1tmănu ` 2}∇θF pθt´1, wt´1q ´ ∇Φpθt´1q}2 ` 2}∇Φpθt´1q}2

ȷ

ď Φpθt´1q ´

´ηθ
2

´ 2pβθ ` βθwκθwqη2θ

¯

}∇Φpθt´1q}2

`

´ηθ
2

` 2pβθ ` βθwκθwqη2θ

¯

}∇Φpθt´1q ´ ∇θF pθt´1, wt´1q}2

` pβθ ` βθwκθwqη2θ

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

.

In the first inequality, we used the fact that the Gaussian noise has mean zero and is independent
of pθt´1, wt´1, Zq, plus the fact that Eg “ ∇θF pθt´1, wt´1q. In the second inequality, we used
Theorem E.5 and Lipschitz continuity of f . In the third and fourth inequalities, we used Young’s
inequality and Cauchy-Schwartz.

For the particular ηθ prescribed in Theorem E.3, we obtain:
Lemma E.8. Grant Theorem E.2. If ηθ “ 1

16κwpβθ`βθwκθwq
, then the iterates of Algorithm 2 satisfy

(@t ě 0)

EΦpθt`1q ď E
„

Φpθtq ´
3

8
ηθ}Φpθtq}2 `

5

8
ηθ

ˆ

β2
θw}w˚pθtq ´ wt}

2 ` dθσ
2
θ `

4L2
θ

m
1tmănu

˙ȷ

.

Proof. By Theorem E.7, we have

EΦpθt`1q ď EΦpθtq ´

´ηθ
2

´ 2pβθ ` βθwκθwqη2θ

¯

E}∇Φpθtq}2

`

´ηθ
2

` 2η2θpβθ ` βθwκθwqE}∇Φpθtq ´ ∇θF pθt, wtq}2
¯

` pβθβθwκθwqη2θ

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

ď EΦpθtq ´
3

8
ηθE}∇Φpθtq}2 `

5

8
ηθ

„

E}∇Φpθtq ´ ∇θF pθt, wtq}2 ` dθσ
2
θ `

4L2
θ

m
1tmănu

ȷ

ď EΦpθtq ´
3

8
ηθE}∇Φpθtq}2 `

5

8
ηθ

„

β2
θwE}w˚pθtq ´ wt}

2 ` dθσ
2
θ `

4L2
θ

m
1tmănu

ȷ

.

In the second inequality, we simply used the definition of ηθ. In the third inequality, we used the fact
that ∇Φpθtq “ ∇θF pθt, w

˚pθtqq (see Theorem E.4) together with Theorem E.2 (part 3).

Next, we describe the progress made in the wt updates:
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Lemma E.9. Grant Theorem E.2. If ηw “ 1
βw

, then the iterates of Algorithm 2 satisfy (@t ě 0)

E}w˚pθt`1q ´ wt`1}2 ď

ˆ

1 ´
1

2κw
` 4κwκ

2
θwη

2
θβ

2
θw

˙

E}w˚pθtq ´ wt}
2 `

2

β2
w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θ

`

E}∇Φpθtq}2 ` dθσ
2
θ

˘

.

Proof. Fix any t and denote δt :“ E}w˚pθtq ´ wt}
2 :“ E}w˚ ´ wt}

2. We may assume
without loss of generality that fpθ, ¨; zq is µ-strongly convex and that wt`1 “ ΠW rwt ´
1
βw

`

1
m

řm
i“1 ∇wfpθt, wt; ziq ` vt

˘

s :“ ΠW rwt ´ 1
βw

p∇hpwtq ` vtqs :“ ΠW rwt ´ 1
βw

∇h̃pwtqs.
Now,

E}wt`1 ´ w˚}2 “ E
›

›

›

›

ΠW rwt ´
1

βw
∇h̃pwtqs ´ w˚

›

›

›

›

2

ď E
›

›

›

›

wt ´
1

βw
∇h̃pwtq ´ w˚

›

›

›

›

2

“ E}wt ´ w˚}2 `
1

β2
w

“

E}∇hpwtq}2 ` dwσ
2
w

‰

´
2

βw
E

A

wt ´ w˚,∇rhpwtq

E

ď E}wt ´ w˚}2 `
1

β2
w

“

E}∇hpwtq}2 ` dwσ
2
w

‰

´
2

βw
E

”

F pθt, wtq ´ F pθt, w
˚q `

µ

2
}wt ´ w˚}2

ı

ď δt

ˆ

1 ´
µ

βw

˙

´
2

βw
E rF pθt, wtq ´ F pθt, w

˚qs `
E}∇hpwtq}2

β2
w

`
dwσ

2
w

β2
w

.

Further,

E}∇hpwtq}2 “ E
“

}∇hpwtq ´ ∇wF pθt, wtq}2 ` }∇wF pθt, wtq}2
‰

ď
4L2

w

m
1tmănu ` E}∇wF pθt, wtq}2

ď
4L2

w

m
1tmănu ` 2βwrF pθt, wtq ´ F pθt, w

˚pθtqqs,

using independence and Theorem E.5 plus Lipschitz continuity of f in the first inequality and Theo-
rem E.6 (plus Theorem E.2 part 5) in the second inequality. This implies

E}wt`1 ´ w˚}2 ď δt

ˆ

1 ´
1

κw

˙

`
1

β2
w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

. (8)

Therefore,

δt`1 “ E}wt`1 ´ w˚pθtq ` w˚pθtq ´ w˚pθt`1q}2

ď

ˆ

1 `
1

2κw ´ 1

˙

E}wt`1 ´ w˚pθtq}2 ` 2κwE}w˚pθtq ´ w˚pθt`1q}2

ď

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2
w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 2κwE}w˚pθtq ´ w˚pθt`1q}2

ď

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2
w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 2κwκ
2
θwE}θt ´ θt`1}2

ď

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2
w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 4κwκ
2
θwη

2
θ

“

E}∇θF pθt, wtq ´ ∇Φpθtq}2 ` }∇Φpθtq}2 ` dθσ
2
t

‰

“

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2
w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 4κwκ
2
θwη

2
θ

“

E}∇θF pθt, wtq ´ ∇θF pθt, w
˚pθtq}2 ` }∇Φpθtq}2 ` dθσ

2
t

‰

ď

ˆ

1 `
1

2κw ´ 1

˙ ˆ

1 ´
1

κw

˙

δt `
2

β2
w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 4κwκ
2
θwη

2
θ

“

β2
θwE}wt ´ w˚pθtq}2 ` }∇Φpθtq}2 ` dθσ

2
t

‰

,
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by Young’s inequality, (8), and Theorem E.4. Since
´

1 ` 1
2κw´1

¯ ´

1 ´ 1
κw

¯

ď 1 ´ 1
2κw

, we obtain

δt`1 ď

ˆ

1 ´
1

2κw
` 4κwκ

2
θwη

2
θβ

2
θw

˙

δt `
2

β2
w

„

dwσ
2
w `

4L2
w

m
1tmănu

ȷ

` 4κwκ
2
θwη

2
θ

“

}∇Φpθtq}2 ` dθσ
2
t

‰

,

as desired.

We are now prepared to prove Theorem E.3.

Proof of Theorem E.3. Privacy: This is an easy consequence of Theorem 1 in Abadi et al. (2016)
(with precise constants obtained from the proof therein, as in Bassily et al. (2019)) applied to both
the min (descent in θ) and max (ascent in w) updates. Unlike Abadi et al. (2016), we don’t clip the
gradients here before adding noise, but the Lipschitz continuity assumptions (Theorem E.2 parts
1 and 2) imply that the ℓ2-sensitivity of the gradient updates in lines 4 and 5 of Algorithm 2 are
nevertheless bounded by 2Lθ{m and 2Lw{m, respectively. Thus, Theorem 1 in Abadi et al. (2016)
still applies.
Convergence: Denote ζ :“ 1 ´ 1

2κw
` 4κwκ

2
θwη

2
θβ

2
θw, δt “ E}w˚pθtq ´ wt}

2, and

Ct :“
2

β2
w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θ

`

E}∇Φpθtq}2 ` dθσ
2
θ

˘

,

so that Theorem E.9 reads as
δt ď ζδt´1 ` Ct´1 (9)

for all t P rT s. Applying (9) recursively, we have

δt ď ζtδ0 `

t´1
ÿ

j“0

Ct´j´1ζ
j

ď ζtD2 ` 4κwκ
2
θwη

2
θ

t´1
ÿ

j“0

ζt´1´jE}∇Φpθjq}2

`

˜

t´1
ÿ

j“0

ζt´1´j

¸

„

2

β2
w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θdθσ

2
θ

ȷ

.

Combining this inequality with Theorem E.8, we get

EΦpθtq ď E
„

Φpθt´1q ´
3

8
ηθ}∇Φpθt´1q}2

ȷ

`
5

8
ηθ

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

`
5

8
ηθβ

2
θw

#

ζtD2 ` 4κwκ
2
θwη

2
θ

t´1
ÿ

j“0

ζt´1´jE}∇Φpθjq}2

`

˜

t´1
ÿ

j“0

ζt´1´j

¸

„

2

β2
w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θdθσ

2
θ

ȷ

+

.

Summing over all t P rT s and re-arranging terms yields

EΦpθT q ď Φpθ0q ´
3

8
ηθ

T
ÿ

t“1

E}∇Φpθt´1q}2 `
5

8
ηθT

ˆ

dθσ
2
t `

4L2
θ

m
1tmănu

˙

`
5

8
ηθβ

2
θw

˜

T
ÿ

t“1

ζt

¸

D2

` 4η3θβ
2
θwκwκ

2
θw

T
ÿ

t“1

t´1
ÿ

j“0

ζt´1´jE}∇Φpθjq}2

`
5

8

˜

T
ÿ

t“1

t´1
ÿ

j“0

ζt´1´j

¸

ηθβ
2
θw

„

2

β2
w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 4κwκ
2
θwη

2
θdθσ

2
θ

ȷ

.
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Now, ζ ď 1 ´ 1
4κw

, which implies that

T
ÿ

t“1

ζt ď 4κw and

T
ÿ

t“1

t´1
ÿ

j“0

ζt´1´j ď 4κwT.

Hence

1

T

T
ÿ

t“1

E}∇Φpθtq}2 ď
3rΦpθ0q ´ EΦpθT qs

ηθT
`

5

3

ˆ

dθσ
2
θ `

4L2
θ

m
1tmănu

˙

`
7β2

θwD
2κw

T

`
48η2θβ

2
θwκ

2
wκ

2
θw

T

˜

T
ÿ

t“1

E}∇Φpθtq}2

¸

` 8κwβ
2
θw

2

β2
w

ˆ

4L2
w

m
1tmănu ` dwσ

2
w

˙

` 32β2
θwκ

2
wκ

2
θwη

2
θdθσ

2
θ .

Since η2θβ
2
θwκ

2
wκ

2
θw ď 1

256 , we obtain

E}∇Φpθ̂T q}2 À
∆Φκw
T

pβθ ` βθwκθwq `
dθL

2
θT lnp1{δq

ϵ2n2
`

1

m
1tmănu

ˆ

L2
θ `

κwβ
2
θwL

2
w

β2
w

˙

`
κwβ

2
θwL

2
wdwT lnp1{δq

β2
wϵ

2n2

`
β2
θwD

2κw
T

.

Our choice of T then implies

E}∇Φpθ̂T q}2 À

b

∆Φ pβθ ` βθwκθwqκw ` κwβ2
θwD

2q

«

Lθ

a

dθ lnp1{δq

ϵn
`

ˆ

βθw
?
κw

βw

˙

Lw

a

dw lnp1{δq

ϵn

ff

`
1tmănu

m

ˆ

L2
θ `

κwβ
2
θwL

2
w

β2
w

˙

.

Finally, our choice of sufficiently large m yields the last claim in Theorem E.3.

E.2 PROOF OF THEOREM 3.4

Theorem 3.4 is an easy consequence of Theorem E.1, which we proved in the above subsection:
Theorem E.10 (Re-statement of Theorem 3.4). Assume the loss function ℓp¨, x, yq and Fpx, ¨q

are Lipschitz continuous with Lipschitz gradient for all px, yq, and pPSprq ě ρ ą 0 @ r P rks.
In Algorithm 1, choose W to be a sufficiently large ball that contains W˚pθq :“ argmaxW pF pθ,W q

for every θ in some neighborhood of θ˚ P argminθ maxW pF pθ,W q. Then there exist algorithmic
parameters such that the pϵ, δq-DP Algorithm 1 returns θ̂T with

E}∇FERMIpθ̂T q}2 “ O

˜

a

maxpdθ, klq lnp1{δq

ϵn

¸

,

treating D “ diameterpWq, λ, ρ, l, and the Lipschitz and smoothness parameters of ℓ and F as
constants.

Proof. By Theorem E.1, it suffices to show that fpθ,W ; ziq :“ ℓpθ, xi, yiq `λ pψipθ,W q is Lipschitz
continuous with Lipschitz gradient in both the θ and W variables for any zi “ pxi, yi, siq, and
that fpθ, ¨; ziq is strongly concave. We assumed ℓp¨, xi, yiq is Lipschitz continuous with Lipschitz
gradient. Further, the work of Lowy et al. (2022a) showed that fpθ, ¨; ziq is strongly concave. Thus,
it suffices to show that pψipθ,W q is Lipschitz continuous with Lipschitz gradient. This clearly holds
by Theorem D.1, since Fpx, ¨q is Lipschitz continuous with Lipschitz gradient and W P W is
bounded.
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F NUMERICAL EXPERIMENTS: ADDITIONAL DETAILS AND RESULTS

F.1 MEASURING DEMOGRAPHIC PARITY AND EQUALIZED ODDS VIOLATION

We used the expressions given in (10) and (11) to measure the demographic parity violation and the
equalized odds violation respectively. We denote Y to be the set of all possible output classes and S
to be the classes of the sensitive attribute. P rEs denotes the empirical probability of the occurrence
of an event E.

max
y1PY,s1,s2PS

ˇ

ˇP rpy “ y1|s “ s1s ´ P rpy “ y1|s “ s2s
ˇ

ˇ (10)

max
y1PY,s1,s2PS

maxp
ˇ

ˇP rpy “ y1|s “ s1, y “ y1s ´ P rpy “ y1|s “ s2, y “ y1s
ˇ

ˇ ,

ˇ

ˇP rpy “ y1|s “ s1, y ‰ y1s ´ P rpy “ y1|s “ s2, y ‰ y1s
ˇ

ˇq

(11)

F.2 TABULAR DATASETS

F.2.1 MODEL DESCRIPTION AND EXPERIMENTAL DETAILS

Demographic Parity: We split each dataset in a 3:1 train:test ratio. We preprocess the data
similar to Hardt et al. (2016a) and use a simple logistic regression model with a sigmoid output
O “ σpWx` bq which we treat as conditional probabilities pppy “ i|xq. The predicted variables and
sensitive attributes are both binary in this case across all the datasets. We analyze fairness-accuracy
trade-offs with four different values of ϵ P t0.5, 1, 3, 9u for each dataset. We compare against
state-of-the-art algorithms proposed in Tran et al. (2021a) and (the demographic parity objective of)
Tran et al. (2021b). The tradeoff curves for DP-FERMI were generated by sweeping across different
values for λ P r0, 2.5s. The learning rates for the descent and ascent, ηθ and ηw, remained constant
during the optimization process and were chosen from r0.005, 0.01s. Batch size was 1024. We tuned
the ℓ2 diameter of the projection set W and θ-gradient clipping threshold in r1, 5s in order to generate
stable results with high privacy (i.e. low ϵ). Each model was trained for 200 epochs. The results
displayed are averages over 15 trials (random seeds) for each value of ϵ.

Equalized Odds: We replicated the experimental setup described above, but we took ℓ2 diameter
of W and the value of gradient clipping for θ to be in r1, 2s. Also, we only tested three values of
ϵ P t0.5, 1, 3u.

F.2.2 DESCRIPTION OF DATASETS

Adult Income Dataset: This dataset contains the census information about the individuals. The
classification task is to predict whether the person earns more than 50k every year or not. We followed
a preprocessing approach similar to Lowy et al. (2022a). After preprocessing, there were a total of
102 input features from this dataset. The sensitive attribute for this work in this dataset was taken to
be gender. This dataset consists of around 48,000 entries spanning across two CSV files, which we
combine and then we take the train-test split of 3:1.

Retired Adult Income Dataset: The Retired Adult Income Dataset proposed by Ding et al. (2021a)
is essentially a superset of the Adult Income Dataset which attempts to counter some caveats of the
Adult dataset. The input and the output attributes for this dataset is the same as that of the Adult
Dataset and the sensitive attribute considered in this work is the same as that of the Adult. This
dataset contains around 45,000 entries.

Parkinsons Dataset: In the Parkinsons dataset, we use the part of the dataset which had the UPRDS
scores along with some of the features of the recordings obtained from individuals affected and not
affected with the Parkinsons disease. The classification task was to predict from the features whether
the UPDRS score was greater than the median score or not. After preprocessing, there were a total of
19 input features from this dataset and the sensitive attribute for this dataset was taken to be gender.
This dataset contains around 5800 entries in total. We took a train-test split of 3:1.

Credit Card Dataset: This dataset contains the financial data of users in a bank in Taiwan consisting
of their gender, education level, age, marital status, previous bills, and payments. The assigned
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classification task is to predict whether the person defaults their credit card bills or not, essentially
making the task if the clients were credible or not. We followed a preprocessing approach similar to
Lowy et al. (2022a). After preprocessing, there were a total of 85 input features from this dataset.
The sensitive attribute for this dataset was taken to be gender. This dataset consists of around 30,000
entries from which we take the train-test split of 3:1.

UTK-Face Dataset: This dataset is a large scale image dataset containing with an age span from 0 to
116. The dataset consists of over 20,000 face images with details of age, gender, and ethnicity and
covers large variation in pose, facial expression, illumination, occlusion, resolution. We consider the
age classification task with 9 age groups similar to the experimental setup in Tran et al. (2022). We
consider the sensitive attribute to be the ethnicity which consists of 5 different classes.

F.2.3 DEMOGRAPHIC PARITY

Retired Adult Results: See Fig. 6 for our results on Retired Adult Dataset. The results are
qualitatively similar to the reusults reported in the main body: our algorithm (DP-FERMI) achieves
the most favorable fairness-accuracy tradeoffs across all privacy levels.

(a) ϵ “ 0.5 (b) ϵ “ 1

(c) ϵ “ 3 (d) ϵ “ 9

Figure 6: Private, fair logistic regression on the Retired Adult Dataset

Credit Card Results: See Fig. 7 for our results on Credit Card Dataset. DP-FERMI offers superior
fairness-accuracy-privacy profile compared to all applicable baselines.

Additional Results for Parkinsons Dataset: More results for Parkinsons are shown in Fig. 8.
DP-FERMI offers the best performance.

F.2.4 EQUALIZED ODDS

Equalized Odds Variation of DP-FERMI Algorithm: The (FERMI obj.) minimizes the Expo-
nential Renyi Mutual Information (ERMI) between the output and the sensitive attributes which
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(a) ϵ “ 0.5 (b) ϵ “ 1

(c) ϵ “ 3 (d) ϵ “ 9

Figure 7: Private, fair (demographic parity) logistic regression on the Credit Card Dataset

(a) ϵ “ 0.5 (b) ϵ “ 9

Figure 8: Private, Fair (Demogrpahic Parity) Logistic regression on Parkinsons Dataset

essentially leads to a reduced demographic parity violation. The equalized-odds condition is more
constrained and enforces the demographic parity condition for data grouped according to labels.
For the equalized-odds, the ERMI between the predicted and the sensitive attributes is minimized
conditional to each of the label present in the output variable of the dataset. So, the FERMI regularizer
is split into as many parts as the number of labels in the output. This enforces each part of the FERMI
regularizer to minimize the ERMI while an output label is given/constant. Each part has its own
unique W that is maximized in order to create a stochastic estimator for the ERMI with respect to
each of the output labels.
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Adult Results: Results for the equalized odds version of DP-FERMI on Adult dataset are shown
in Fig. 9. Our approach outperforms the previous state-of-the-art methods.

(a) ϵ “ 0.5 (b) ϵ “ 1 (c) ϵ “ 3

Figure 9: Results obtained for applying DP-FERMI with equalized odds violation on logistic
regression on the Adult Dataset

Retired Adult Results: (Initial) Results for the equalized odds version of DP-FERMI on the retired-
adult dataset are shown in Fig. 10. Our approach outperforms Tran et al. (2021b) and we are currently
tuning our non-private and/or non-fair versions of our models along with Jagielski et al. (2019).

(a) ϵ “ 0.5 (b) ϵ “ 1 (c) ϵ “ 3

Figure 10: Results obtained for applying DP-FERMI with equalized odds violation on logistic
regression on the Retired Adult Dataset

F.3 IMAGE DATASET (UTK-FACE)

We split the dataset in a 3:1 train:test ratio. Batch size was 64. 128 x 128 normalized images were
used as input for our model. We tuned the ℓ2 diameter of W and the value of gradient clipping
for θ to be in r1, 2s and learning rates for the descent and ascent, ηθ and ηw, remained constant
during the optimization process and were chosen as 0.001 and 0.005 respectively. We analyze the
fairness-accuracy trade-offs with five different values of ϵ P t10, 25, 50, 100, 200u. The results
displayed were averaged over observations obtained from 5 different randomly chosen seeds on each
configuration of ϵ and a dataset. Each model was trained for 150 epochs. The tradeoff curves for this
set of experiments were obtained by sweeping across different values for λ P r0, 500s.
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G SOCIETAL IMPACTS

In this paper, we considered the socially consequential problem of privately learning fair models
from sensitive data. Motivated by the lack of scalable private fair learning methods in the literature, e
developed the first differentially private (DP) fair learning algorithm that is guaranteed to converge
with small batches (stochastic optimization). We hope that our method will be used to help companies,
governments, and other organizations to responsibly use sensitive, private data. Specifically, we
hope that our DP-FERMI algorithm will be useful in reducing discrimination in algorithmic decision-
making while simultaneously preventing leakage of sensitive user data. The stochastic nature of our
algorithm might be especially appealing to companies that are using very large models and datasets.
On the other hand, there are also some important limitations of our method that need to be considered
before deployment.

One caveat of our work is that we have assumed that the given data set contains fair and accurate
labels. For example, if gender is the sensitive attribute and “likelihood of repaying a loan” is the
target, then we assume that the training data accurately describes everyone’s financial history without
discrimination. If training data is biased against a certain demographic group, then it is possible
that our algorithm could amplify (rather than mitigate) unfairness. See e.g. Kilbertus et al. (2020);
Bechavod et al. (2019) for further discussion.

Another important practical consideration is how to weigh/value the different desiderata (privacy,
fairness, and accuracy) when deploying our method. As shown in prior works (e.g., Cummings
et al. (2019)) and re-enforced in the present work, there are fundamental tradeoffs between fairness,
accuracy, and privacy: improvements in one generally come at a cost to the other two. Determining
the relative importance of each of these three desiderata is a critical question that lacks a clear
or general answer. Depending on the application, one might be seriously concerned with either
discrimination or privacy attacks, and should calibrate ϵ and λ accordingly. Or, perhaps very high
accuracy is necessary for a particular task, with privacy and/or fairness as an afterthought. In such a
case, one might want to start with very large ϵ and small λ to ensure high accuracy, and then gradually
shrink ϵ and/or increase λ to improve privacy/fairness until training accuracy dips below a critical
threshold. A thorough and rigorous exploration of these issues could be an interesting direction for
future work.

28


	Introduction
	Problem Setting and Preliminaries
	Private Fair ERM via Exponential Rényi Mutual Information
	Noisy DP-FERMI for Stochastic Private Fair ERM

	Numerical Experiments
	Standard Benchmark Experiments: Logistic Regression on Tabular Datasets
	Demographic Parity
	Equalized Odds

	Large-Scale Experiment: Deep Convolutional Neural Network on Image Dataset

	Concluding Remarks
	Additional Discussion of Related Work
	Equalized Odds Version of ERMI
	Complete Version of thm: informal Fermi as minmax
	 black DP-FERMI Algorithm: Privacy 
	DP-FERMI Algorithm: Utility
	Noisy DP-SGDA for Nonconvex-Strongly Concave Min-Max Problems
	Proof of cor: dp fermi conv

	Numerical Experiments: Additional Details and Results
	Measuring Demographic Parity and Equalized Odds Violation
	Tabular Datasets
	Model Description and Experimental Details
	Description of Datasets
	Demographic Parity
	Equalized Odds

	Image Dataset (UTK-Face)

	Societal Impacts

