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Abstract

In this paper, we present a novel conservative
completion approach for Knowledge Graphs
(KGs), designed to address the shortcomings
of current knowledge completion methods, par-
ticularly their failure to guarantee the accuracy
of completion results. Our method uniquely
utilizes semantically enriched information in-
herent in KGs to construct a reasoner based on
description logic. By integrating this reasoner
with Link Prediction (LP) models, we ensure
the correctness of the knowledge completion.
Experimental findings show that a substantial
proportion of predictions from diverse LP mod-
els can undergo conservative completion. Ad-
ditionally, the volume of conservatively com-
pletable results escalates with the increase in
semantically enriched information in the KGs.

1 Introduction

In the field of AI, KGs serve as structured frame-
works for representing real-world information. In
these graphs, nodes represent entities such as in-
dividuals, locations, and concepts, while edges
represent the relationships between pairs of en-
tities. These relationships are further character-
ized by labels that specify their nature. Despite
the heterogeneous nature of large-scale KGs like
DBPedia (Lehmann et al., 2015), Freebase (Bol-
lacker et al., 2008), WordNet (Miller, 1995),
YAGO (Suchanek et al., 2008), Wikidata (Vran-
decic and Krotzsch, 2014), and Google KG and
Microsoft Satori (Noy et al., 2019), a common
issue of data incompleteness persists (Min et al.,
2013; Dong et al., 2014; Galarraga et al., 2017).
Studies highlight significant gaps in these datasets.
For example, in FreeBase, over 70% of person en-
tities lack recorded birthplaces, and over 99% have
no known ethnicity. In Wikidata, the coverage of
relational data was notably sparse, with records
of paternal links for only 2% of all individuals in
the knowledge base (KB) — a stark contrast to the

universal reality of parentage. Similarly, DBpedia
stores merely 6 recipients of the prestigious Dijk-
stra Prize, whereas the actual count stands at 35.
This trend of underrepresentation extends to other
dimensions as well, as evidenced by YAGO’s data
suggesting an implausibly low average number of
children per person at 0.02. A broader examination
reveals a pervasive pattern across popular KBs: be-
tween 69% and 99% of instances in these KBs are
missing at least one common attribute within their
category (Suchanek et al., 2011).

As pointed by (Peng et al., 2023), the incom-
pleteness of KGs introduces a multifaceted set of
challenges that significantly impede their effective-
ness and reliability. For instance, such incomplete-
ness not only undermines the accuracy of query re-
sults, leading to potential misinformation (Pflueger
et al., 2022) and misguided decision-making (Yu
et al., 2023) but also presents obstacles in natu-
ral language processing tasks, impairing the sys-
tem’s ability to understand context and provide
accurate responses (Zhang et al., 2023; Li et al.,
2019). In recommendation systems, this leads to
poor personalization, failing to accurately reflect
user preferences (Cao et al., 2019). User trust di-
minishes when encountering consistent data gaps,
affecting the adoption and efficacy of KG-driven
systems. Moreover, the challenge of integrating
incomplete KGs with other data systems compli-
cates data alignment, while the ongoing efforts re-
quired for data curation and validation increase
maintenance costs (Huang et al., 2022b). These
limitations underscore the necessity for rigorous
approaches to address and mitigate the impact of in-
completeness in KGs, ensuring their full potential
is harnessed in Al and other technical domains.

The pursuit of enhancing KGs has driven re-
searchers to develop a wide range of techniques for
augmenting these graphs with absent information, a
task referred to as KG Completion (KGC) (Bordes
et al., 2013; Paulheim, 2017; Schlichtkrull et al.,



2018; Sun et al., 2019). KGC is essentially a learn-
ing endeavor aimed at enriching a KG by incorpo-
rating missing triples that are likely to hold. This
expansion can be achieved either by integrating
new facts from external data sources or by inferring
the missing information from the existing struc-
ture and data composition of the KG. This paper
primarily focuses on the latter strategy, known as
Link Prediction (LP) (Liben-Nowell and Kleinberg,
2007). Specifically, LP addresses queries of the
form (h,r,7) or (?,r,t), where one entity is un-
known. In this context, the former query type aims
at tail prediction, and the latter focuses on head
prediction.

In an LP model, irrespective of whether external
knowledge is employed in training, the model as-
signs scores to all potential prediction results. Per-
formance evaluation is based on how the actual data
score ranks among these possibilities. This rank-
based method reflects, to some extent, the model’s
learning ability from the data. However, under
the open-world assumption, this method merely
indicates if the correct result ranks within the top-
k predictions, without assessing the accuracy of
each individual prediction. This leads to the inclu-
sion of uncertain predictions in the KG. To address
this issue, (Pezeshkpour et al., 2020) introduced
the YAGO3-TC dataset, an extension of YAGO3-
10(Mahdisoltani et al., 2014), incorporating both
positive and negative examples. The limitation of
YAGO3-TC is its reliance on manual completion
methods, which hampers its wider applicability.

The KG itself contains solely the information
regarding relationships between entities. However,
Yet, more comprehensive forms of information can
be superimposed on it. For example, YAGO3 incor-
porates details about the transitivity of relationships
between entities, entity types, and hierarchical re-
lationships between types. In this paper, we intro-
duce a novel Conservative KG Completion (Conser-
vative KGC) approach for KGC and LP tasks. This
approach diverges from those that convert external
knowledge into embeddings for training. Instead,
we utilize external knowledge like YAGO3-TC as
a verifier, applying entailment verification to en-
sure the accuracy of prediction results. Specifically,
each prediction is assessed as a potential fact, akin
to an ABox assertion, with the external KB acting
as the ontology (i.e., TBox axioms). We check
if these assertions lead to any inconsistencies in
the KB. Should inconsistencies arise, we exclude
high-scoring facts from the KG, regardless of their

score. In contrast, lower-scoring facts that are sup-
ported by the external KB are included because
their correctness is verified. Our method is careful
to add only verified, correct facts, assuming that
the KB represents the ground truth. This cautious
and accuracy-focused approach is why it is termed
as Conservative KGC.

This paper presents a novel approach to KG com-
pletion, focusing on the conservative completion
of KGs using LP models. Our method emphasizes
the importance of entailment checks in verifying
the correctness of predicted results, distinguishing
between conservative and non-conservative com-
pletions. We employ five LP models, including
both embedding-based (ComplEx, HAKE, MEIM,
and ConEx) and rule-based (AnyBURL) models, to
generate candidate predictions. The performance
of these models is evaluated in terms of the num-
ber of correct predictions, revealing interesting in-
sights into the relationship between standard eval-
uation metrics like Mean Reciprocal Rank (MRR)
and Hits@K, and the actual accuracy of predic-
tions. Through experimental analysis on widely
used datasets like YAGO3-10 and Radiology Lexi-
con (RadLex), both in their RDFS and OWL forms,
we demonstrate that the number of complements in-
creases with the expansion of KG information. This
paper also delves into the logical equivalence of
KGs and their conservative completions, highlight-
ing the potential inconsistencies and detrimental
effects of non-conservative completions on model
learning. Our findings suggest that while high-
performance scores in traditional metrics are valu-
able, they do not necessarily correlate with the
accuracy of KG completion. This underlines the
significance of conservative completion, which en-
sures the logical consistency and reliability of the
augmented KG.

Due to space constraints, the introduction to re-
lated LP models has been included in the Appendix.

2 Preliminaries

Existing LP models can be broadly classified into
two types: embedding-based and rule-based.
Embedding-Based Models: In these models,
each entity and relation is embedded into a vec-
tor space. Let e and r denote the embeddings of
an entity e and a relation r, respectively. These
models employ a scoring function ¢ to estimate the
probability of a fact’s validity. For any given fact
(h,r,t), ahigher ¢(h,r, t) score suggests a greater



likelihood of the fact being true. To predict missing
entities in facts represented as (h,r,?) or (?,r,t),
the model computes:

h = argmax ¢(e,r, t), (e,r,t) ¢ G

t = argmax ¢(h,r,e), (h,re) ¢ G
e

Crucially, the model is calibrated to discover un-
known facts, necessitating the filtering of these
predicted results

Rule-Based Models: These models aim to learn
specific patterns of rules from existing facts, which
can be used for prediction. For instance, given
a rule like speaks(p,l) < lives(p, c), lang(c, 1),
where p, ¢, and [ are variables representing enti-
ties, the model can infer new facts. If it knows
lives(Tom, New York) and lang(New York, English),
it would predict speaks(Tom, English). These in-
ferred facts are scored based on the confidence
level of the underlying rules. For queries such as
(hy,7,?) or (7,7,t), rule-based models offer prob-
able predictions absent in the KG, with ¢ (h,, t)
representing the rule’s confidence score:

h = argmax (e, r,t), (e,r,t) ¢ G

t = argmax(h,r,e), (h,re) ¢ G

Interestingly, despite their distinct methodologies,
these two approaches share a striking similarity
in their formal structures. If we abstract the LP
model as a black box and ignore how it scores the
predicted results, we can represent the predictions
in a unified manner by directly using the expression
of rule-based models.

Expanding our focus beyond the single most
likely result to encompass the top k results, our
expression adapts as follows:

hi, ..., hy, = argtopk ¢ (e, r,t), (e,7,t) ¢ G
t1,...,ty, = argtopk ¢ (h,r e), (h,r,e) ¢ G

Here, argtopk entails sorting all potential predic-
tions by their likelihood in descending order and
extracting the top k. This is particularly relevant
for non-functional relations, where multiple valid
predictions may exist for a single query. For in-
stance, in the query (Chatou, isLocatedlIn, ?), both
France and Europe are correct results.

Due to space constraints, the introduction to De-
scription Logic ALC has been deferred to the Ap-
pendix.

3 Issues in Existing KG Completion

Despite their strong performance in rank-based
metrics, LP models face practical application chal-
lenges. This section focuses on the correctness of
predictions. Our analysis reveals two key insights:
the top-scoring predictions are not always correct,
and lower-scoring predictions can also be correct.

3.1 Uncertainty of Highest Prediction

Under the open world assumption, the limited
knowledge available impedes definitive judgments
about the correctness of predicted results in LP
models. This necessitates a cautious approach,
where predicted results should not be added to the
existing KG without proper verification. Nonethe-
less, the richness of TBox knowledge in datasets
like YAGO3 enhances our capability to evaluate
predictions. YAGO3’s TBox knowledge encom-
passes various types, including:

* C C D (e.g., books as a subset of artifacts).

* Dom(r) (e.g., the domain of "hasChild’ is per-
son).

 Range(r) (e.g., the range of "hasCapital’ is
city).

* Trans(r) (e.g., isLocatedIn is transitive).

CmMD C 1 (e.g., person and city are mutually
exclusive).

This comprehensive KB aids in assessing the cor-
rectness of predictions. For instance, with the re-
lation isLocatedIn, we identify PermanentlyLocat-
edEntity as its domain and GeoEntity as its range.
Knowing that GeoEntity and Organization are dis-
joint, a prediction like (Ann_Arbor, isLocatedlIn,
University_of _Michigan) is incorrect, as Univer-
sity_of_Michigan is categorized as an organization.

To quantify incorrect predictions, we modified
the YAGO3-10 test set by removing tail entities,
creating a prediction set. We then used three mod-
els to make predictions on this set, evaluating their
correctness. The results, presented in Table 1, re-
veal error occurrences in each model’s predictions.

While the number of incorrect predictions in LP
models may be small, specific properties of rela-
tions, such as the transitivity of isLocatedIn, can
amplify these inaccuracies. For instance, if the
isLocatedlIn relations are established as (A, isLo-
catedIn, B) and (B, isLocatedIn, C), we logically



Model #Incorrect Predictions
AnyBURL 1
ComplEx 35
HAKE 5

Table 1: Number of Incorrect Predictions

infer (A, isLocatedlIn, C). However, if either of the
initial relations is incorrect, this leads to a propa-
gated error in the inferred relations, which we term
a “hidden error”. As the volume of existing knowl-
edge grows, so does the potential for such hidden
errors. In the context of the YAGO3-10 dataset,
which contains 89,524 isLocatedlIn relationships,
we propose a method to estimate the frequency of
hidden errors. This involves sampling these rela-
tionships and progressively increasing the sample
size. The aim is to model the increase in hidden
errors as the KG expands. Our approach includes
integrating the model’s incorrect predictions into
the sample, calculating the transitive closure, and
then quantifying the inaccuracies within this clo-
sure. To illustrate the effect of increasing KG size
on the prevalence of hidden errors, we conducted
experiments using the incorrect predictions from
three distinct models. The findings are detailed in
Figure 1, demonstrating the relationship between
KG size and hidden error frequency.
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Figure 1: Number of incorrect results with different size
of sample.

The data in the figure clearly indicates an in-
crease in hidden errors as the volume of knowledge
grows. Furthermore, note that this analysis is re-
stricted to knowledge pertaining to the isLocatedIn
relation. Broadening the scope to include other
relations, especially given the comprehensive na-

ture of TBox knowledge, would likely reveal a
further increase in hidden errors. Additionally, the
inferential capability of these models allows us to
determine the correctness of predictions more ef-
fectively. For example, from the relationships (A,
isLocatedIn, B) and (B, isLocatedIn, C), we de-
duce (A, isLocatedIn, C). This deduction process
enables us to assess the correctness of the model’s
predictions more rigorously. The results of this
assessment are detailed in Table 2.

Model #Correct Predictions
AnyBURL 272
ComplEx 116
HAKE 113

Table 2: Number of truly Correct Predictions by Differ-
ent Models.

3.2 Validity of Non-Highest Prediction

In the preceding subsection, we examined the accu-
racy of the highest-probability, top-ranked predic-
tions from various models. However, it is crucial
to recognize that lower-probability predictions can
also be correct.

To explore the accuracy among the top k pre-
dictions for different models, we conducted ex-
periments with varying k values, focusing exclu-
sively on knowledge associated with the isLocate-
dIn relation. We utilized the YAGO3-10 dataset,
computing the transitive closure of its 89,524 is-
LocatedlIn-related knowledge statements. This clo-
sure encompassed all relevant YAGO3-10 knowl-
edge statements about isLocatedlIn, based on ex-
isting information. For each model, we assessed
whether the top k predictions fell within this tran-
sitive closure. Predictions included in the closure
were deemed correct. Notably, this analysis ex-
cluded the highest probability prediction, already
discussed previously.

Figure 2 illustrates the number of correct predic-
tions for various models when k is set at 10 and 100.
The data reveal a significant count of correct predic-
tions among the top k results, excluding the highest
probability prediction. Furthermore, increasing k
from 10 to 100 markedly enhances the number of
correct predictions.

Note that this analysis is limited to the isLocate-
dIn relation. Including additional knowledge would
likely yield an even higher number of accurate pre-
dictions among the top results.
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4 Conservative Completion with LP
model

In this section, we elaborate on the application of
LP model for conservative KGC.

Definition 1 (Conservative KG Completion). Con-
sider a KB K = (T,.A), where E represents the
set of entities and R the set of relations in K. For
a predicted result (h,r,t), either in the form of
(hyr,?) or (?,7,t) with h,t € Eandr € R, if K
entails (h,r,t) and this triple is not already present
in IC, then the union of K and (h,r,t) is defined
as a conservative completion of I, and (h,r,t) is
termed a complement.

The essence of conservative completion is to aug-
ment the KG exclusively with predictions that are
verifiably accurate within the existing framework
of K. In principle, for a missing fact (h,r,?), one
could iterate over all potential results (h, r,t), veri-
fying whether each (h, r, t) is entailed by & but not
already in . However, the task of checking K’s en-
tailment for (h, r,t) is PSPACE-complete (Donini
and Massacci, 2000). Given the potentially vast
number of entities in K, this iterative process is
impractically time-consuming.

A more feasible approach involves initially us-
ing an LP model to generate a top-k candidate set
of predicted results. Subsequently, these candi-
dates undergo individual verification to accomplish
conservative KGC. Specifically, for a missing fact
(h,r,7), the LP model first predicts the top-k tail
entities. For each candidate tail entity ¢;, we check

if (h,r,t;) is both entailed by K and not present in
K. If these conditions are satisfied, we incorporate
(h,r,t;) into K. The procedure for this approach is
detailed in Algorithm 1.

Algorithm 1 Conservative Completion

Input: A KB K; To predict missing facts (); An
LP model M

Parameter: k

Output: Conservative completion of X

1: for missing fact ¢ € @ do
2: R be the top-k predictions of model M on
q.

3:  forresultr € Rdo

4: if r ¢ K and K |= r then
5: K=Kur

6: end if

7:  end for

8: end for

9: return /C

The algorithm illustrates that the number of com-
plements generated is influenced by both the ca-
pabilities of the LP model and the content of the
KB K. We now demonstrate that an increase in
the knowledge encompassed by K correlates with
a rise in the number of complements.

Theorem 1. Given two KBs, K1 and Ko, with
K1 C Ko, any axiom « of the form C T D, r C s,
a: C, or (a,b) : r that is entailed by K is also
entailed by ICs.

Corollary 1. Enriching K with additional knowl-
edge leads to an increase in the number of comple-
ments generated by LP models.

S Experiments and Analysis

5.1 Experimental Settings
5.1.1 Datasets

To effectively use LP models, we require KG
datasets with extensive TBox information. Among
commonly used KGs, YAGO3-10 fits this crite-
rion. To enhance the diversity of our experimental
data, we also incorporate the Radiology Lexicon
(RadLex) dataset. YAGO3-10’s knowledge aligns
entirely with the RDFS framework, while RadLex
contains elements that extend beyond RDFS. To
illustrate how additional knowledge aids in the con-
servative completion of more complements, we
processed RadLex to isolate knowledge compati-
ble with RDFS (McBride, 2004), creating a subset



termed RadLex_rdfs. The full RadLex dataset, in-
cluding its OWL components (Bechhofer, 2018),
is denoted as RadLex_owl.

For model training and evaluation, datasets must
be divided into training, validation, and test sets.
YAGO3-10, being a well-established dataset, is
already pre-partitioned, eliminating the need for
further division. For RadLex, we adhere to a rule
ensuring that all entities and relations in the valida-
tion and test sets have prior appearances in the train-
ing set. This partitioning strategy ensures model
robustness and reliability. The specifics of these
datasets, including their partitioning, are detailed
in Table 3.

5.1.2 LP Models

For generating candidate predictions, we evaluated
five LP models: ComplEx, HAKE, MEIM, and
ConEXx, which are embedding-based models, and
AnyBURL, a rule-based model. All models oper-
ate under the “Filtered” setting, which disregards
existing valid triples in the prediction process.

5.1.3 Predict Sets

To assess LP models’ performance, we created a
prediction dataset consisting of incomplete triples
(h,7,?) and (?,r,t). For each (h,r,?7), models
predict k possible tail entities, and for (7, r,t), they
predict k possible head entities.

Given a KG with n entities and m relations, there
are n * m potential (h,r,7) and (7,r,t) triples.
However, not all combinations are meaningful. For
example, a triple like (Chatou, playsFor, ?) in
YAGO3-10 is illogical as Chatou is a city and can-
not have a playsFor relationship. To ensure practi-
cal relevance in predictions, we utilized the test set
to generate the prediction dataset. This involved
masking the head and tail entities in each test data
to create corresponding prediction data.

5.1.4 Model Pre-Warming

Before predictions, each LP model must be well-
trained on the training set to ensure prediction ac-
curacy. This training is followed by an evaluation
on the test set, using metrics like Mean Reciprocal
Rank (MRR) and Hits at K (H@K). The goal here
is not to maximize these metrics, but to ensure they
are reasonably high. Post-training, the evaluation
metrics of various LP models on the test set are
summarized in Table 4.

5.1.5 Reasoner

For entailment checking, a capable reasoner is es-
sential to check whether £ |= r is valid. Her-
miT (Glimm et al., 2014) fits this requirement. It
stands out as the first publicly-available OWL rea-
soner that utilizes an efficient hypertableau calcu-
lus.

5.2 Results and Analysis
5.2.1 Conservative Completion on YAGO3-10

Using the pre-warmed model, we generated predic-
tions for each entry in the predict sets, focusing on
the top 10 and top 100 results. These predictions
were subjected to entailment checks using HermiT
applied to the corresponding ontology, to identify
if they qualify as complements. The conservative
completion results on the YAGO3-10 dataset are
presented in Table 5. The table reveals that a sub-
stantial number of predictions from all models qual-
ify as complements, with the count of complements
significantly increasing as we expand our consider-
ation from the top 10 to the top 100 results.

5.2.2 Correlation Experiment

It is important to note the lack of a strong correla-
tion between the number of complements and stan-
dard evaluation metrics like MRR (Mean Recipro-
cal Rank) and Hits@K. Notably, the model with the
highest Hits@ 10 score, MEIM, does not yield the
most complements in tail prediction. Conversely,
AnyBURL, which has the lowest Hits@10 score,
produces the highest number of complements for
tail prediction. To delve deeper into the relation-
ship between the number of complements and the
Hits @K metric, we propose modifying the learning
conditions of the models. For AnyBURL, this in-
volves adjusting its rule learning duration, and for
ComplEXx, altering the number of training epochs.
We assess both head and tail prediction results un-
der these revised learning conditions. The evalu-
ation will track Hits@ 10 for the model’s learning
performance and utilize the top 10 predictions to
evaluate the number of complements.

Figure 3 shows the results of AnyBURL and
ComplEx. The graph shows that both AnyBURL
and ComplEx exhibit an upward trend in the
Hits@ 10 metric with increasing time or training
epochs. However, this rise in Hits@10 does not
consistently correspond to an increase in the num-
ber of complements. Specifically, while AnyBURL
shows an increase in head prediction complements



dataset #Entity #Relation  #TBox #TR  #VA  #TE
YAGO3-10 123,182 37 475961 1,079,040 5,000 5,000
RadLex_rdfs 24,029 43 46,877 31,199 8,410 5,604
RadLex_owl 24,029 43 128,998 31,199 8,410 5,604

Table 3: Dataset Statistics. Here, #Entity denotes the total count of entities, and #Relation denotes the number
of relations. #TBox denotes the number of axioms within the TBox. #TR, #VA, and #TE denote the sizes of the

training, validation, and test sets, respectively.

YAGO3-10 RadLex
MRR H@l H@3 H@l0 | MRR H@l H@3 H@I10
AnyBURL | .544 485 .583 673 | 582 536 .615 .671
ComplEx S76 501 .621 100 571 523 .602 .658
HAKE 545 461 599 694 | 569 497 611 .700
MEIM 584 512 .626 J12 | 566  .524 587 .647
ConEx 554 477 602 692 | 540 487  .569 .640

Table 4: Evaluation metrics of various models after pre-warming.

YAGO3-10

head prediction tail prediction

top 10 top 100 | top 10 top 100
AnyBURL 579 3386 | 1106 2278
ComplEx 890 4709 515 1583
HAKE 579 3114 594 1855
MEIM 749 4289 514 1657
ConEx 622 3099 381 1115

Table 5: Number of complements across different mod-
els on the YAGO3-10 dataset. Top 10 (Top 100) in-
dicates the evaluation based on the 10 (100) highest-
probability predictions.

with higher Hits@10, its tail prediction comple-
ments decrease. In contrast, ComplEx displays
fluctuating trends in both head and tail prediction
complements as Hits@ 10 increases, suggesting a
lack of a direct linear correlation between the num-
ber of complements and the Hits@K metric.

5.2.3 Conservative Completion on RadLex

Experiments were also carried out for conserva-
tive completion on RadLex_rdfs and RadLex_owl.
Table 6 details the number of complements ob-
tained under various experimental settings for both
RadLex_rdfs and RadLex_owl. Similar to the
YAGO?3-10 results, many predictions are identi-
fied as complements under different settings. Ad-
ditionally, there is an observable increase in the
number of complements as the focus shifts from

the top 10 to the top 100 predictions. Furthermore,
given the larger TBox in RadLex_owl compared
to RadLex_rdfs, a comparison of the number of
complements under identical experimental condi-
tions is possible. This comparison, as shown in Ta-
ble 6, indicates that under all settings, RadLex_owl
consistently achieves equal or higher numbers of
complements than RadLex_rdfs. This trend is evi-
dent in all cases except for the top 10 results in tail
prediction, affirming the conclusion of Corollary 1.

5.2.4 Conservative vs. Non-conservative

We define completions lacking entailment checks
as non-conservative completions. Our analysis
compares these with conservative completions
from both KB and KG perspectives.

When a KB K and its conservative completion
KC; are logically equivalent, this means that = «
if and only if /C; |= « for any axiom «. In contrast,
KC and its non-conservative completion K2 do not
exhibit logical equivalence, and K2 may potentially
become inconsistent, thereby compromising the
reliability of any reasoning derived from it.

From a KG Perspective, where the focus is on
relationships between entities, the distinction be-
tween conservative and non-conservative comple-
tions essentially boils down to a set difference.
However, their impact can be compared by exam-
ining the variations in the learning behavior of LP
models under both completion types.

We evaluate this by using ComplEx’s completion
results on YAGO3-10. Here, non-conservative com-
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Figure 3: Correlation between Hits@ 10 and the number of complements on AnyBURL and ComplEx. The two
figures in (a) represent the results on AnyBURL, while the two figures in (b) represent the results on ComplEx. The
left figures in both (a) and (b) represent the results of head prediction, while the right graphs represent the results of
tail prediction. The blue line represents the variation of the Hits@ 10 metric with the model learning time, while the
red line represents the change in the number of complements.

| RadLex_rdfs

RadLex_owl

head prediction tail prediction head prediction tail prediction

top 10 top 100 top 10 top 100 | top 10 top 100 top 10 top 100
AnyBURL 127 128 537 591 133 136 537 594
ComplEx 125 129 496 576 133 137 496 579
HAKE 130 135 539 593 137 146 539 598
MEIM 122 129 482 569 131 138 483 572
ConEx 119 130 519 565 124 139 519 572

Table 6: Number of complements with different models on the RadLex_rdfs and RadLex_owl dataset.

head prediction tail prediction
MRR H@l H@3 H@l10 | MRR H@l H@3 H@I0
Base 432 341 489 604 | 719 .664 753 816
Non-conservative completion | .350 .231 413 586 | 705 .636 752 .814
Conservative completion 430 342 475 .603 | 720 .664 .754 815

Table 7: Evaluation metrics on non-conservative completion and conservative completion.

pletion is derived from the top 1 tail prediction re-
sult, whereas conservative completion comes from
the top 10 tail prediction results that pass entail-
ment checks. Both completions are learned using
ComplEx under identical parameters; their perfor-
mance is evaluated using metrics on YAGO3-10’s
validation set.

Table 7 presents the learning performance of
ComplEx with non-conservative and conservative
completions. It indicates a decline in metrics for
non-conservative completion compared to when no
completion is used, whereas conservative comple-
tion shows partial improvement. This highlights the
negative impact of incorporating unverified facts
on the model’s learning efficiency.

6 Conclusion and Future Work

This paper introduces a conservative completion ap-
proach for KGs, employing an LP model and lever-
aging rich KG information for correctness checks.
Experimental results show many model predictions
can be validated through these checks. As KG in-
formation is enhanced, the number of valid comple-
tions is expected to rise. The comparative analysis
between conservative and non-conservative com-
pletions from KB and KG perspectives suggests
that adding unverified completions to KGs detri-
mentally affects model learning.

The immediate next step for future research is to
find methods to directly use KG’s rich information
for KGC, avoiding reliance on post-filtering for
prediction validation.
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A Related Work

LP in the context of KGs has seen a variety of
approaches over time. Traditional methods often
rely on observable features, employing strategies
like Rule Mining (Galarraga et al., 2015; Meilicke
et al., 2019; Pirro, 2020; Ahmadi et al., 2020; Wu
et al., 2022; Ott et al., 2023) or Path Ranking Algo-
rithm (Lao and Cohen, 2010) to uncover missing
triples in the graph. Rule Mining, for instance, de-
duces patterns such as “If a person lives in a city,
then their spouse likely resides in the same city”,
using these inferred rules to predict new informa-
tion and identify gaps in the KB. However, these
methods are limited to discovering facts between
instances already present in the KB, failing to rec-
ognize entirely missing entities.

More recently, the advent of machine learning
techniques has shifted focus to capturing latent fea-
tures of graphs. This is achieved through vectorized
representations, or embeddings, of graph elements.
Embeddings, which are vectors of numerical val-
ues, can represent various elements depending on
the domain. They are learned automatically based
on the patterns of occurrence and interaction of
these elements in real-world datasets. One promi-
nent approach for KGC and LP is based on KG
embedding models, where the idea is to learn em-
beddings for entities and relations through train-
ing over known facts, and subsequently use the
learned embeddings to compute plausibility scores
for all possible facts. Embedding-based LP mod-
els harness diverse approaches and architectures,
each tailored to specific optimization challenges
and techniques. Broadly, these models can be cate-
gorized into three primary families:

* Tensor Decomposition Models: These mod-
els leverage mathematical techniques of ten-
sor factorization. Representative examples
include RESCAL (Nickel et al., 2011), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon
etal., 2016), Analogy (Liu et al., 2017), Sim-
plE (Kazemi and Poole, 2018), HolE (Nickel
et al., 2016), A2N (Bansal et al., 2019), and
EA (Cao et al., 2022b).

Geometric Models: These models conceptual-
ize entities and relations in a geometric space,
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often leveraging spatial relationships for pre-
diction. Representative examples include
TranE (Bordes et al., 2013), STarnsE (Nguyen
et al., 2016), CrossE (Zhang et al., 2019b),
TorusE (Ebisu and Ichise, 2018), RotatE (Sun
et al., 2019), QuatE (Zhang et al., 2019a),
PairRE (Chao et al., 2021), DualE (Cao et al.,
2021), MTransH (Niu et al., 2021), Rot-
Pro (Song et al., 2021), BoxE (Abboud et al.,
2020), BoxTE (Messner et al., 2022), Re-
flectE (Zhang et al., 2022), and GIE (Cao
et al., 2022a).

Deep Learning Models: These models ap-
ply deep learning techniques, particularly
convolutional, recurrent, and graph neural
networks, to extract complex patterns from
graph data. Representative examples in-
clude ConvE (Dettmers et al., 2018), Con-
vKB (Nguyen et al., 2018), ConvR (Jiang
et al., 2019), CapsE (Nguyen et al., 2019),
RSN (Guo et al., 2019), REP (Wang et al.,
2022), and TKGC (Huang et al., 2022a).

The models discussed above rely entirely on
factual data from KGs for learning. While this
internal KG data is valuable, relying exclusively
on it can introduce issues such as biases, overfit-
ting, limited perspectives, and difficulties in cap-
turing complex relationships. Embedding-based
models using solely internal KG data risk inac-
curacies in representing entity and relation vec-
tors, potentially leading to erroneous predictions,
as noted in (Niu et al., 2022). Combining in-
ternal data with external sources can alleviate
these issues. Several models exemplify this ap-
proach. For instance, TRESCAL (Chang et al.,
2014), TCRL (KrompaB et al., 2015), TKRL (Xie
et al., 2016b), and CAKE (Niu et al., 2022) uti-
lize entity type information. DKRL (Xie et al.,
2016a) incorporates textual descriptions. EHE (Hu
et al., 2015), SSE (Guo et al., 2015), and Sim-
plE+(Fatemi et al., 2019) leverage entity hierarchi-
cal and taxonomic information. TranSparse(Ji et al.,
2016), AEM (Geng et al., 2018), and TRE (Zhou
et al., 2019) focus on relation-related information.
IKRL (Xie et al., 2017) employs images of entities.
While these models have demonstrated impressive
performances across various datasets, the field con-
tinues to grapple with unresolved challenges.



B The Description Logic ALC

KGs contain information about relationships be-
tween entities and can encompass more enriched
information, such as entity types and specific
properties of relationships. Description Logic
(DL) (Baader et al., 2008) offers a unified frame-
work for representing both the KG and its sup-
plementary information. As a decidable fragment
of first-order logic, DL presents favorable com-
putational properties. For instance, the entirety
of the YAGO3 dataset can be expressed using the
ALC (Schmidt-Schaufl and Smolka, 1991a) subset
of DL. We now delve into the syntax and seman-
tics of ALC and its application in representing KG
information.

Consider N, N¢, and N as disjoint and count-
ably infinite sets representing individuals, concept
names, and role names, respectively. In this con-
text, “individuals” correspond to entities in the KG,
“concept names” correspond to entity types, and
“role names” correspond to the various relation-
ships. To represent more complex information,
ALC-concepts are built through inductive construc-
tion, adhering to the following syntactic rules:

Courses and people are disjoint can be represented
as Course ' Person C 1. Similarly, we can use
ALC to represent information about relations. For
example, r C s expresses that relation s includes
relation r. If relation r is transitive, it can be rep-
resented as Trans(r). Dom(r) and Range(r) are
used to express the domain concept of r and range
concept of r. We define TBox as a collection of
GCIs, r C s, Trans(s), and other properties of
relations.

In addition to the information about TBox, there
are various other types of information, such as en-
tity types and relationships between entities, that
need to be represented. We use a : C (concept
assertion) to express the type to which an entity be-
longs and (a, b) : 7 (role assertion) to express the
relationship satisfied between two entities, where
C'is a concept, 7 is a role and a, b are individ-
vals. For example, New York is a city can be
expressed as New_York : city and New York is
located in the United States can be expressed as
(New_York, United_States) : is_located_in. An
interpretation satisfies a concept assertion if a €
C7, and it satisfies a role assertion if (a”, b%) € rZ.
The combination of concept assertion and role as-

C,D—T|L|A|-A|CND|CUD |Vr.C | Jr-gertion is referred to as an ABox.

where A € N¢o,r € Ng, and C' and D range over
concepts.

The semantics of ALC is defined in terms of an
interpretation Z = (AZ,.7), where A is the do-
main of the interpretation (a non-empty set), and -*
denotes the interpretation function, which satisfies:

e AT C AT forall A€ N¢
e 1T C AT x AL forallr € Ng

The extension mapping is extended to complex
ALC-concept as follows:

TI _ AT 1Ty (~C)f = AN\CT
cnDf=ctnp* (cubD?f=ctuD?
(vr.C)E = {z € AT | Vy.(z,y) € T =y € O}
(3r.C)E = {z € AT | Jy.(z,y) e Ay € CF}

For any concept C' and D, the expression C = D
is referred to as an ALC general concept inclu-
sion (GCI). An interpretation Z satisfies a GCI
C C Dif CT C D%. GCIs can be used to rep-
resent relationships between entity types. For in-
stance, the statement Teacher is Person can be rep-
resented as Teacher C Person, and the statement
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Let K = (7T,.A) be a Knowledge Base (KB),
where 7 represents the TBox and .4 represents
the ABox. A model of K is an interpretation that
satisfies every axiom in 7 U A. For an axiom «
of the form C' C D,a : C,(a,b) : r, we say that
K entails « if every model of K is also a model of
a, denoted as KC |= a. Entailment checking allows
us to determine which information can be derived
from the existing information. By using the tableau
algorithm(Schmidt-Schaufl and Smolka, 1991b),
we can check whether an axiom can be entailed
from K with a PSPACE-complete complexity.

C Missing Proofs

Theorem 1. Given two KBs, K1 and Ko, with
K1 C Ko, any axiom « of the form C C D, r C s,
a: C, or (a,b) : 7 that is entailed by K, is also
entailed by Ks.

Proof. Let Z be a model of Ko. By definition, Z
entails every axiom in KCs. Given that X; C Ko, 7
must also entail every axiom in ;. Thus, Z serves
as a model for KC;. Consequently, if K1 E a,
indicating that all models of K1 entail ¢, it follows
that all models of /Cs, which include models of K1,
also entail «. Hence, Ky = . O
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