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Abstract

In this paper, we present a novel conservative001
completion approach for Knowledge Graphs002
(KGs), designed to address the shortcomings003
of current knowledge completion methods, par-004
ticularly their failure to guarantee the accuracy005
of completion results. Our method uniquely006
utilizes semantically enriched information in-007
herent in KGs to construct a reasoner based on008
description logic. By integrating this reasoner009
with Link Prediction (LP) models, we ensure010
the correctness of the knowledge completion.011
Experimental findings show that a substantial012
proportion of predictions from diverse LP mod-013
els can undergo conservative completion. Ad-014
ditionally, the volume of conservatively com-015
pletable results escalates with the increase in016
semantically enriched information in the KGs.017

1 Introduction018

In the field of AI, KGs serve as structured frame-019

works for representing real-world information. In020

these graphs, nodes represent entities such as in-021

dividuals, locations, and concepts, while edges022

represent the relationships between pairs of en-023

tities. These relationships are further character-024

ized by labels that specify their nature. Despite025

the heterogeneous nature of large-scale KGs like026

DBPedia (Lehmann et al., 2015), Freebase (Bol-027

lacker et al., 2008), WordNet (Miller, 1995),028

YAGO (Suchanek et al., 2008), Wikidata (Vran-029

decic and Krötzsch, 2014), and Google KG and030

Microsoft Satori (Noy et al., 2019), a common031

issue of data incompleteness persists (Min et al.,032

2013; Dong et al., 2014; Galárraga et al., 2017).033

Studies highlight significant gaps in these datasets.034

For example, in FreeBase, over 70% of person en-035

tities lack recorded birthplaces, and over 99% have036

no known ethnicity. In Wikidata, the coverage of037

relational data was notably sparse, with records038

of paternal links for only 2% of all individuals in039

the knowledge base (KB) — a stark contrast to the040

universal reality of parentage. Similarly, DBpedia 041

stores merely 6 recipients of the prestigious Dijk- 042

stra Prize, whereas the actual count stands at 35. 043

This trend of underrepresentation extends to other 044

dimensions as well, as evidenced by YAGO’s data 045

suggesting an implausibly low average number of 046

children per person at 0.02. A broader examination 047

reveals a pervasive pattern across popular KBs: be- 048

tween 69% and 99% of instances in these KBs are 049

missing at least one common attribute within their 050

category (Suchanek et al., 2011). 051

As pointed by (Peng et al., 2023), the incom- 052

pleteness of KGs introduces a multifaceted set of 053

challenges that significantly impede their effective- 054

ness and reliability. For instance, such incomplete- 055

ness not only undermines the accuracy of query re- 056

sults, leading to potential misinformation (Pflueger 057

et al., 2022) and misguided decision-making (Yu 058

et al., 2023) but also presents obstacles in natu- 059

ral language processing tasks, impairing the sys- 060

tem’s ability to understand context and provide 061

accurate responses (Zhang et al., 2023; Li et al., 062

2019). In recommendation systems, this leads to 063

poor personalization, failing to accurately reflect 064

user preferences (Cao et al., 2019). User trust di- 065

minishes when encountering consistent data gaps, 066

affecting the adoption and efficacy of KG-driven 067

systems. Moreover, the challenge of integrating 068

incomplete KGs with other data systems compli- 069

cates data alignment, while the ongoing efforts re- 070

quired for data curation and validation increase 071

maintenance costs (Huang et al., 2022b). These 072

limitations underscore the necessity for rigorous 073

approaches to address and mitigate the impact of in- 074

completeness in KGs, ensuring their full potential 075

is harnessed in AI and other technical domains. 076

The pursuit of enhancing KGs has driven re- 077

searchers to develop a wide range of techniques for 078

augmenting these graphs with absent information, a 079

task referred to as KG Completion (KGC) (Bordes 080

et al., 2013; Paulheim, 2017; Schlichtkrull et al., 081
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2018; Sun et al., 2019). KGC is essentially a learn-082

ing endeavor aimed at enriching a KG by incorpo-083

rating missing triples that are likely to hold. This084

expansion can be achieved either by integrating085

new facts from external data sources or by inferring086

the missing information from the existing struc-087

ture and data composition of the KG. This paper088

primarily focuses on the latter strategy, known as089

Link Prediction (LP) (Liben-Nowell and Kleinberg,090

2007). Specifically, LP addresses queries of the091

form (h, r, ?) or (?, r, t), where one entity is un-092

known. In this context, the former query type aims093

at tail prediction, and the latter focuses on head094

prediction.095

In an LP model, irrespective of whether external096

knowledge is employed in training, the model as-097

signs scores to all potential prediction results. Per-098

formance evaluation is based on how the actual data099

score ranks among these possibilities. This rank-100

based method reflects, to some extent, the model’s101

learning ability from the data. However, under102

the open-world assumption, this method merely103

indicates if the correct result ranks within the top-104

k predictions, without assessing the accuracy of105

each individual prediction. This leads to the inclu-106

sion of uncertain predictions in the KG. To address107

this issue, (Pezeshkpour et al., 2020) introduced108

the YAGO3-TC dataset, an extension of YAGO3-109

10(Mahdisoltani et al., 2014), incorporating both110

positive and negative examples. The limitation of111

YAGO3-TC is its reliance on manual completion112

methods, which hampers its wider applicability.113

The KG itself contains solely the information114

regarding relationships between entities. However,115

Yet, more comprehensive forms of information can116

be superimposed on it. For example, YAGO3 incor-117

porates details about the transitivity of relationships118

between entities, entity types, and hierarchical re-119

lationships between types. In this paper, we intro-120

duce a novel Conservative KG Completion (Conser-121

vative KGC) approach for KGC and LP tasks. This122

approach diverges from those that convert external123

knowledge into embeddings for training. Instead,124

we utilize external knowledge like YAGO3-TC as125

a verifier, applying entailment verification to en-126

sure the accuracy of prediction results. Specifically,127

each prediction is assessed as a potential fact, akin128

to an ABox assertion, with the external KB acting129

as the ontology (i.e., TBox axioms). We check130

if these assertions lead to any inconsistencies in131

the KB. Should inconsistencies arise, we exclude132

high-scoring facts from the KG, regardless of their133

score. In contrast, lower-scoring facts that are sup- 134

ported by the external KB are included because 135

their correctness is verified. Our method is careful 136

to add only verified, correct facts, assuming that 137

the KB represents the ground truth. This cautious 138

and accuracy-focused approach is why it is termed 139

as Conservative KGC. 140

This paper presents a novel approach to KG com- 141

pletion, focusing on the conservative completion 142

of KGs using LP models. Our method emphasizes 143

the importance of entailment checks in verifying 144

the correctness of predicted results, distinguishing 145

between conservative and non-conservative com- 146

pletions. We employ five LP models, including 147

both embedding-based (ComplEx, HAKE, MEIM, 148

and ConEx) and rule-based (AnyBURL) models, to 149

generate candidate predictions. The performance 150

of these models is evaluated in terms of the num- 151

ber of correct predictions, revealing interesting in- 152

sights into the relationship between standard eval- 153

uation metrics like Mean Reciprocal Rank (MRR) 154

and Hits@K, and the actual accuracy of predic- 155

tions. Through experimental analysis on widely 156

used datasets like YAGO3-10 and Radiology Lexi- 157

con (RadLex), both in their RDFS and OWL forms, 158

we demonstrate that the number of complements in- 159

creases with the expansion of KG information. This 160

paper also delves into the logical equivalence of 161

KGs and their conservative completions, highlight- 162

ing the potential inconsistencies and detrimental 163

effects of non-conservative completions on model 164

learning. Our findings suggest that while high- 165

performance scores in traditional metrics are valu- 166

able, they do not necessarily correlate with the 167

accuracy of KG completion. This underlines the 168

significance of conservative completion, which en- 169

sures the logical consistency and reliability of the 170

augmented KG. 171

Due to space constraints, the introduction to re- 172

lated LP models has been included in the Appendix. 173

2 Preliminaries 174

Existing LP models can be broadly classified into 175

two types: embedding-based and rule-based. 176

Embedding-Based Models: In these models, 177

each entity and relation is embedded into a vec- 178

tor space. Let e and r denote the embeddings of 179

an entity e and a relation r, respectively. These 180

models employ a scoring function ϕ to estimate the 181

probability of a fact’s validity. For any given fact 182

(h, r, t), a higher ϕ(h, r, t) score suggests a greater 183
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likelihood of the fact being true. To predict missing184

entities in facts represented as (h, r, ?) or (?, r, t),185

the model computes:186

h = argmax
e

ϕ(e, r, t), (e, r, t) /∈ G187

t = argmax
e

ϕ(h, r, e), (h, r, e) /∈ G188

Crucially, the model is calibrated to discover un-189

known facts, necessitating the filtering of these190

predicted results191

Rule-Based Models: These models aim to learn192

specific patterns of rules from existing facts, which193

can be used for prediction. For instance, given194

a rule like speaks(p, l) ← lives(p, c), lang(c, l),195

where p, c, and l are variables representing enti-196

ties, the model can infer new facts. If it knows197

lives(Tom, NewYork) and lang(NewYork, English),198

it would predict speaks(Tom, English). These in-199

ferred facts are scored based on the confidence200

level of the underlying rules. For queries such as201

(h, r, ?) or (?, r, t), rule-based models offer prob-202

able predictions absent in the KG, with ψ(h, r, t)203

representing the rule’s confidence score:204

h = argmax
e

ψ(e, r, t), (e, r, t) /∈ G205

t = argmax
e

ψ(h, r, e), (h, r, e) /∈ G206

Interestingly, despite their distinct methodologies,207

these two approaches share a striking similarity208

in their formal structures. If we abstract the LP209

model as a black box and ignore how it scores the210

predicted results, we can represent the predictions211

in a unified manner by directly using the expression212

of rule-based models.213

Expanding our focus beyond the single most214

likely result to encompass the top k results, our215

expression adapts as follows:216

h1, ..., hk = argtopkeψ(e, r, t), (e, r, t) /∈ G217

t1, ..., tk = argtopkeψ(h, r, e), (h, r, e) /∈ G218

Here, argtopk entails sorting all potential predic-219

tions by their likelihood in descending order and220

extracting the top k. This is particularly relevant221

for non-functional relations, where multiple valid222

predictions may exist for a single query. For in-223

stance, in the query (Chatou, isLocatedIn, ?), both224

France and Europe are correct results.225

Due to space constraints, the introduction to De-226

scription Logic ALC has been deferred to the Ap-227

pendix.228

3 Issues in Existing KG Completion 229

Despite their strong performance in rank-based 230

metrics, LP models face practical application chal- 231

lenges. This section focuses on the correctness of 232

predictions. Our analysis reveals two key insights: 233

the top-scoring predictions are not always correct, 234

and lower-scoring predictions can also be correct. 235

3.1 Uncertainty of Highest Prediction 236

Under the open world assumption, the limited 237

knowledge available impedes definitive judgments 238

about the correctness of predicted results in LP 239

models. This necessitates a cautious approach, 240

where predicted results should not be added to the 241

existing KG without proper verification. Nonethe- 242

less, the richness of TBox knowledge in datasets 243

like YAGO3 enhances our capability to evaluate 244

predictions. YAGO3’s TBox knowledge encom- 245

passes various types, including: 246

• C ⊑ D (e.g., books as a subset of artifacts). 247

• Dom(r) (e.g., the domain of ’hasChild’ is per- 248

son). 249

• Range(r) (e.g., the range of ’hasCapital’ is 250

city). 251

• Trans(r) (e.g., isLocatedIn is transitive). 252

• C⊓D ⊑ ⊥ (e.g., person and city are mutually 253

exclusive). 254

This comprehensive KB aids in assessing the cor- 255

rectness of predictions. For instance, with the re- 256

lation isLocatedIn, we identify PermanentlyLocat- 257

edEntity as its domain and GeoEntity as its range. 258

Knowing that GeoEntity and Organization are dis- 259

joint, a prediction like (Ann_Arbor, isLocatedIn, 260

University_of_Michigan) is incorrect, as Univer- 261

sity_of_Michigan is categorized as an organization. 262

To quantify incorrect predictions, we modified 263

the YAGO3-10 test set by removing tail entities, 264

creating a prediction set. We then used three mod- 265

els to make predictions on this set, evaluating their 266

correctness. The results, presented in Table 1, re- 267

veal error occurrences in each model’s predictions. 268

269

While the number of incorrect predictions in LP 270

models may be small, specific properties of rela- 271

tions, such as the transitivity of isLocatedIn, can 272

amplify these inaccuracies. For instance, if the 273

isLocatedIn relations are established as (A, isLo- 274

catedIn, B) and (B, isLocatedIn, C), we logically 275
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Model #Incorrect Predictions

AnyBURL 1
ComplEx 35
HAKE 5

Table 1: Number of Incorrect Predictions

infer (A, isLocatedIn, C). However, if either of the276

initial relations is incorrect, this leads to a propa-277

gated error in the inferred relations, which we term278

a “hidden error”. As the volume of existing knowl-279

edge grows, so does the potential for such hidden280

errors. In the context of the YAGO3-10 dataset,281

which contains 89,524 isLocatedIn relationships,282

we propose a method to estimate the frequency of283

hidden errors. This involves sampling these rela-284

tionships and progressively increasing the sample285

size. The aim is to model the increase in hidden286

errors as the KG expands. Our approach includes287

integrating the model’s incorrect predictions into288

the sample, calculating the transitive closure, and289

then quantifying the inaccuracies within this clo-290

sure. To illustrate the effect of increasing KG size291

on the prevalence of hidden errors, we conducted292

experiments using the incorrect predictions from293

three distinct models. The findings are detailed in294

Figure 1, demonstrating the relationship between295

KG size and hidden error frequency.296
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Figure 1: Number of incorrect results with different size
of sample.

The data in the figure clearly indicates an in-297

crease in hidden errors as the volume of knowledge298

grows. Furthermore, note that this analysis is re-299

stricted to knowledge pertaining to the isLocatedIn300

relation. Broadening the scope to include other301

relations, especially given the comprehensive na-302

ture of TBox knowledge, would likely reveal a 303

further increase in hidden errors. Additionally, the 304

inferential capability of these models allows us to 305

determine the correctness of predictions more ef- 306

fectively. For example, from the relationships (A, 307

isLocatedIn, B) and (B, isLocatedIn, C), we de- 308

duce (A, isLocatedIn, C). This deduction process 309

enables us to assess the correctness of the model’s 310

predictions more rigorously. The results of this 311

assessment are detailed in Table 2. 312

Model #Correct Predictions

AnyBURL 272
ComplEx 116
HAKE 113

Table 2: Number of truly Correct Predictions by Differ-
ent Models.

3.2 Validity of Non-Highest Prediction 313

In the preceding subsection, we examined the accu- 314

racy of the highest-probability, top-ranked predic- 315

tions from various models. However, it is crucial 316

to recognize that lower-probability predictions can 317

also be correct. 318

To explore the accuracy among the top k pre- 319

dictions for different models, we conducted ex- 320

periments with varying k values, focusing exclu- 321

sively on knowledge associated with the isLocate- 322

dIn relation. We utilized the YAGO3-10 dataset, 323

computing the transitive closure of its 89,524 is- 324

LocatedIn-related knowledge statements. This clo- 325

sure encompassed all relevant YAGO3-10 knowl- 326

edge statements about isLocatedIn, based on ex- 327

isting information. For each model, we assessed 328

whether the top k predictions fell within this tran- 329

sitive closure. Predictions included in the closure 330

were deemed correct. Notably, this analysis ex- 331

cluded the highest probability prediction, already 332

discussed previously. 333

Figure 2 illustrates the number of correct predic- 334

tions for various models when k is set at 10 and 100. 335

The data reveal a significant count of correct predic- 336

tions among the top k results, excluding the highest 337

probability prediction. Furthermore, increasing k 338

from 10 to 100 markedly enhances the number of 339

correct predictions. 340

Note that this analysis is limited to the isLocate- 341

dIn relation. Including additional knowledge would 342

likely yield an even higher number of accurate pre- 343

dictions among the top results. 344

4



AnyBURL ComplEx KGE-HAKE
Models

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f I
nf

er
re

d 
re

su
lts

Top 10
Top 100

Figure 2: Number of truly correct top k results with
different models

4 Conservative Completion with LP345

model346

In this section, we elaborate on the application of347

LP model for conservative KGC.348

Definition 1 (Conservative KG Completion). Con-349

sider a KB K = (T ,A), where E represents the350

set of entities and R the set of relations in K. For351

a predicted result (h, r, t), either in the form of352

(h, r, ?) or (?, r, t) with h, t ∈ E and r ∈ R, if K353

entails (h, r, t) and this triple is not already present354

in K, then the union of K and (h, r, t) is defined355

as a conservative completion of K, and (h, r, t) is356

termed a complement.357

The essence of conservative completion is to aug-358

ment the KG exclusively with predictions that are359

verifiably accurate within the existing framework360

of K. In principle, for a missing fact (h, r, ?), one361

could iterate over all potential results (h, r, t), veri-362

fying whether each (h, r, t) is entailed byK but not363

already inK. However, the task of checkingK’s en-364

tailment for (h, r, t) is PSPACE-complete (Donini365

and Massacci, 2000). Given the potentially vast366

number of entities in K, this iterative process is367

impractically time-consuming.368

A more feasible approach involves initially us-369

ing an LP model to generate a top-k candidate set370

of predicted results. Subsequently, these candi-371

dates undergo individual verification to accomplish372

conservative KGC. Specifically, for a missing fact373

(h, r, ?), the LP model first predicts the top-k tail374

entities. For each candidate tail entity ti, we check375

if (h, r, ti) is both entailed by K and not present in 376

K. If these conditions are satisfied, we incorporate 377

(h, r, ti) into K. The procedure for this approach is 378

detailed in Algorithm 1. 379

Algorithm 1 Conservative Completion
Input: A KB K; To predict missing facts Q; An
LP model M
Parameter: k
Output: Conservative completion of K

1: for missing fact q ∈ Q do
2: R be the top-k predictions of model M on

q.
3: for result r ∈ R do
4: if r /∈ K and K |= r then
5: K = K ∪ r
6: end if
7: end for
8: end for
9: return K

The algorithm illustrates that the number of com- 380

plements generated is influenced by both the ca- 381

pabilities of the LP model and the content of the 382

KB K. We now demonstrate that an increase in 383

the knowledge encompassed by K correlates with 384

a rise in the number of complements. 385

Theorem 1. Given two KBs, K1 and K2, with 386

K1 ⊆ K2, any axiom α of the form C ⊑ D, r ⊑ s, 387

a : C, or (a, b) : r that is entailed by K1 is also 388

entailed by K2. 389

Corollary 1. Enriching K with additional knowl- 390

edge leads to an increase in the number of comple- 391

ments generated by LP models. 392

5 Experiments and Analysis 393

5.1 Experimental Settings 394

5.1.1 Datasets 395

To effectively use LP models, we require KG 396

datasets with extensive TBox information. Among 397

commonly used KGs, YAGO3-10 fits this crite- 398

rion. To enhance the diversity of our experimental 399

data, we also incorporate the Radiology Lexicon 400

(RadLex) dataset. YAGO3-10’s knowledge aligns 401

entirely with the RDFS framework, while RadLex 402

contains elements that extend beyond RDFS. To 403

illustrate how additional knowledge aids in the con- 404

servative completion of more complements, we 405

processed RadLex to isolate knowledge compati- 406

ble with RDFS (McBride, 2004), creating a subset 407
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termed RadLex_rdfs. The full RadLex dataset, in-408

cluding its OWL components (Bechhofer, 2018),409

is denoted as RadLex_owl.410

For model training and evaluation, datasets must411

be divided into training, validation, and test sets.412

YAGO3-10, being a well-established dataset, is413

already pre-partitioned, eliminating the need for414

further division. For RadLex, we adhere to a rule415

ensuring that all entities and relations in the valida-416

tion and test sets have prior appearances in the train-417

ing set. This partitioning strategy ensures model418

robustness and reliability. The specifics of these419

datasets, including their partitioning, are detailed420

in Table 3.421

5.1.2 LP Models422

For generating candidate predictions, we evaluated423

five LP models: ComplEx, HAKE, MEIM, and424

ConEx, which are embedding-based models, and425

AnyBURL, a rule-based model. All models oper-426

ate under the “Filtered” setting, which disregards427

existing valid triples in the prediction process.428

5.1.3 Predict Sets429

To assess LP models’ performance, we created a430

prediction dataset consisting of incomplete triples431

(h, r, ?) and (?, r, t). For each (h, r, ?), models432

predict k possible tail entities, and for (?, r, t), they433

predict k possible head entities.434

Given a KG with n entities andm relations, there435

are n ∗ m potential (h, r, ?) and (?, r, t) triples.436

However, not all combinations are meaningful. For437

example, a triple like (Chatou, playsFor, ?) in438

YAGO3-10 is illogical as Chatou is a city and can-439

not have a playsFor relationship. To ensure practi-440

cal relevance in predictions, we utilized the test set441

to generate the prediction dataset. This involved442

masking the head and tail entities in each test data443

to create corresponding prediction data.444

5.1.4 Model Pre-Warming445

Before predictions, each LP model must be well-446

trained on the training set to ensure prediction ac-447

curacy. This training is followed by an evaluation448

on the test set, using metrics like Mean Reciprocal449

Rank (MRR) and Hits at K (H@K). The goal here450

is not to maximize these metrics, but to ensure they451

are reasonably high. Post-training, the evaluation452

metrics of various LP models on the test set are453

summarized in Table 4.454

5.1.5 Reasoner 455

For entailment checking, a capable reasoner is es- 456

sential to check whether K |= r is valid. Her- 457

miT (Glimm et al., 2014) fits this requirement. It 458

stands out as the first publicly-available OWL rea- 459

soner that utilizes an efficient hypertableau calcu- 460

lus. 461

5.2 Results and Analysis 462

5.2.1 Conservative Completion on YAGO3-10 463

Using the pre-warmed model, we generated predic- 464

tions for each entry in the predict sets, focusing on 465

the top 10 and top 100 results. These predictions 466

were subjected to entailment checks using HermiT 467

applied to the corresponding ontology, to identify 468

if they qualify as complements. The conservative 469

completion results on the YAGO3-10 dataset are 470

presented in Table 5. The table reveals that a sub- 471

stantial number of predictions from all models qual- 472

ify as complements, with the count of complements 473

significantly increasing as we expand our consider- 474

ation from the top 10 to the top 100 results. 475

5.2.2 Correlation Experiment 476

It is important to note the lack of a strong correla- 477

tion between the number of complements and stan- 478

dard evaluation metrics like MRR (Mean Recipro- 479

cal Rank) and Hits@K. Notably, the model with the 480

highest Hits@10 score, MEIM, does not yield the 481

most complements in tail prediction. Conversely, 482

AnyBURL, which has the lowest Hits@10 score, 483

produces the highest number of complements for 484

tail prediction. To delve deeper into the relation- 485

ship between the number of complements and the 486

Hits@K metric, we propose modifying the learning 487

conditions of the models. For AnyBURL, this in- 488

volves adjusting its rule learning duration, and for 489

ComplEx, altering the number of training epochs. 490

We assess both head and tail prediction results un- 491

der these revised learning conditions. The evalu- 492

ation will track Hits@10 for the model’s learning 493

performance and utilize the top 10 predictions to 494

evaluate the number of complements. 495

Figure 3 shows the results of AnyBURL and 496

ComplEx. The graph shows that both AnyBURL 497

and ComplEx exhibit an upward trend in the 498

Hits@10 metric with increasing time or training 499

epochs. However, this rise in Hits@10 does not 500

consistently correspond to an increase in the num- 501

ber of complements. Specifically, while AnyBURL 502

shows an increase in head prediction complements 503

6



dataset #Entity #Relation #TBox #TR #VA #TE

YAGO3-10 123,182 37 475,961 1,079,040 5,000 5,000
RadLex_rdfs 24,029 43 46,877 31,199 8,410 5,604
RadLex_owl 24,029 43 128,998 31,199 8,410 5,604

Table 3: Dataset Statistics. Here, #Entity denotes the total count of entities, and #Relation denotes the number
of relations. #TBox denotes the number of axioms within the TBox. #TR, #VA, and #TE denote the sizes of the
training, validation, and test sets, respectively.

YAGO3-10 RadLex

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
AnyBURL .544 .485 .583 .673 .582 .536 .615 .671
ComplEx .576 .501 .621 .710 .571 .523 .602 .658
HAKE .545 .461 .599 .694 .569 .497 .611 .700
MEIM .584 .512 .626 .712 .566 .524 .587 .647
ConEx .554 .477 .602 .692 .540 .487 .569 .640

Table 4: Evaluation metrics of various models after pre-warming.

YAGO3-10

head prediction tail prediction
top 10 top 100 top 10 top 100

AnyBURL 579 3386 1106 2278
ComplEx 890 4709 515 1583
HAKE 579 3114 594 1855
MEIM 749 4289 514 1657
ConEx 622 3099 381 1115

Table 5: Number of complements across different mod-
els on the YAGO3-10 dataset. Top 10 (Top 100) in-
dicates the evaluation based on the 10 (100) highest-
probability predictions.

with higher Hits@10, its tail prediction comple-504

ments decrease. In contrast, ComplEx displays505

fluctuating trends in both head and tail prediction506

complements as Hits@10 increases, suggesting a507

lack of a direct linear correlation between the num-508

ber of complements and the Hits@K metric.509

5.2.3 Conservative Completion on RadLex510

Experiments were also carried out for conserva-511

tive completion on RadLex_rdfs and RadLex_owl.512

Table 6 details the number of complements ob-513

tained under various experimental settings for both514

RadLex_rdfs and RadLex_owl. Similar to the515

YAGO3-10 results, many predictions are identi-516

fied as complements under different settings. Ad-517

ditionally, there is an observable increase in the518

number of complements as the focus shifts from519

the top 10 to the top 100 predictions. Furthermore, 520

given the larger TBox in RadLex_owl compared 521

to RadLex_rdfs, a comparison of the number of 522

complements under identical experimental condi- 523

tions is possible. This comparison, as shown in Ta- 524

ble 6, indicates that under all settings, RadLex_owl 525

consistently achieves equal or higher numbers of 526

complements than RadLex_rdfs. This trend is evi- 527

dent in all cases except for the top 10 results in tail 528

prediction, affirming the conclusion of Corollary 1. 529

5.2.4 Conservative vs. Non-conservative 530

We define completions lacking entailment checks 531

as non-conservative completions. Our analysis 532

compares these with conservative completions 533

from both KB and KG perspectives. 534

When a KB K and its conservative completion 535

K1 are logically equivalent, this means that K |= α 536

if and only if K1 |= α for any axiom α. In contrast, 537

K and its non-conservative completion K2 do not 538

exhibit logical equivalence, andK2 may potentially 539

become inconsistent, thereby compromising the 540

reliability of any reasoning derived from it. 541

From a KG Perspective, where the focus is on 542

relationships between entities, the distinction be- 543

tween conservative and non-conservative comple- 544

tions essentially boils down to a set difference. 545

However, their impact can be compared by exam- 546

ining the variations in the learning behavior of LP 547

models under both completion types. 548

We evaluate this by using ComplEx’s completion 549

results on YAGO3-10. Here, non-conservative com- 550
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Figure 3: Correlation between Hits@10 and the number of complements on AnyBURL and ComplEx. The two
figures in (a) represent the results on AnyBURL, while the two figures in (b) represent the results on ComplEx. The
left figures in both (a) and (b) represent the results of head prediction, while the right graphs represent the results of
tail prediction. The blue line represents the variation of the Hits@10 metric with the model learning time, while the
red line represents the change in the number of complements.

RadLex_rdfs RadLex_owl

head prediction tail prediction head prediction tail prediction
top 10 top 100 top 10 top 100 top 10 top 100 top 10 top 100

AnyBURL 127 128 537 591 133 136 537 594
ComplEx 125 129 496 576 133 137 496 579
HAKE 130 135 539 593 137 146 539 598
MEIM 122 129 482 569 131 138 483 572
ConEx 119 130 519 565 124 139 519 572

Table 6: Number of complements with different models on the RadLex_rdfs and RadLex_owl dataset.

head prediction tail prediction
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Base .432 .341 .489 .604 .719 .664 .753 .816
Non-conservative completion .350 .231 .413 .586 .705 .636 .752 .814
Conservative completion .430 .342 .475 .603 .720 .664 .754 .815

Table 7: Evaluation metrics on non-conservative completion and conservative completion.

pletion is derived from the top 1 tail prediction re-551

sult, whereas conservative completion comes from552

the top 10 tail prediction results that pass entail-553

ment checks. Both completions are learned using554

ComplEx under identical parameters; their perfor-555

mance is evaluated using metrics on YAGO3-10’s556

validation set.557

Table 7 presents the learning performance of558

ComplEx with non-conservative and conservative559

completions. It indicates a decline in metrics for560

non-conservative completion compared to when no561

completion is used, whereas conservative comple-562

tion shows partial improvement. This highlights the563

negative impact of incorporating unverified facts564

on the model’s learning efficiency.565

6 Conclusion and Future Work 566

This paper introduces a conservative completion ap- 567

proach for KGs, employing an LP model and lever- 568

aging rich KG information for correctness checks. 569

Experimental results show many model predictions 570

can be validated through these checks. As KG in- 571

formation is enhanced, the number of valid comple- 572

tions is expected to rise. The comparative analysis 573

between conservative and non-conservative com- 574

pletions from KB and KG perspectives suggests 575

that adding unverified completions to KGs detri- 576

mentally affects model learning. 577

The immediate next step for future research is to 578

find methods to directly use KG’s rich information 579

for KGC, avoiding reliance on post-filtering for 580

prediction validation. 581
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Ralph Abboud, İsmail İlkan Ceylan, Thomas583
Lukasiewicz, and Tommaso Salvatori. 2020. Boxe:584
A box embedding model for knowledge base585
completion. In Proc. NeurIPS’20.586

Naser Ahmadi, Viet-Phi Huynh, Venkata Vamsikrishna587
Meduri, Stefano Ortona, and Paolo Papotti. 2020.588
Mining expressive rules in knowledge graphs. ACM589
J. Data Inf. Qual., 12(2):8:1–8:27.590

Franz Baader, Ian Horrocks, and Ulrike Sattler. 2008.591
Description logics. Foundations of Artificial Intelli-592
gence, 3:135–179.593

Trapit Bansal, Da-Cheng Juan, Sujith Ravi, and Andrew594
McCallum. 2019. A2N: Attending to neighbors for595
knowledge graph inference. In Proc. ACL’19, pages596
4387–4392. Association for Computational Linguis-597
tics.598

Sean Bechhofer. 2018. OWL: web ontology language.599
In Encyclopedia of Database Systems, Second Edi-600
tion. Springer.601

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,602
Tim Sturge, and Jamie Taylor. 2008. Freebase: a603
collaboratively created graph database for structuring604
human knowledge. In Proc. SIGMOD’08, pages605
1247–1250. ACM.606

Antoine Bordes, Nicolas Usunier, Alberto García-607
Durán, Jason Weston, and Oksana Yakhnenko.608
2013. Translating embeddings for modeling multi-609
relational data. In Proc. NIPS’13, pages 2787–2795.610

Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and611
Tat-Seng Chua. 2019. Unifying knowledge graph612
learning and recommendation: Towards a better un-613
derstanding of user preferences. In Proc. WWW’19,614
pages 151–161. ACM.615

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun616
Cao, and Qingming Huang. 2021. Dual quaternion617
knowledge graph embeddings. In Proc. AAAI’21,618
pages 6894–6902. AAAI Press.619

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun620
Cao, and Qingming Huang. 2022a. Geometry interac-621
tion knowledge graph embeddings. In Proc. AAAI’22,622
pages 5521–5529. AAAI Press.623

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, and Qing-624
ming Huang. 2022b. ER: equivariance regularizer625
for knowledge graph completion. In Proc. AAAI’22,626
pages 5512–5520. AAAI Press.627

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christo-628
pher Meek. 2014. Typed tensor decomposition of629
knowledge bases for relation extraction. In Proc.630
EMNLP’14, pages 1568–1579. ACL.631

Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu.632
2021. Pairre: Knowledge graph embeddings via633
paired relation vectors. In Proc. ACL/IJCNLP’21,634
pages 4360–4369. Association for Computational635
Linguistics.636

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, 637
and Sebastian Riedel. 2018. Convolutional 2d knowl- 638
edge graph embeddings. In Proc. AAAI’18, pages 639
1811–1818. AAAI Press. 640

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko 641
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, 642
Shaohua Sun, and Wei Zhang. 2014. Knowledge 643
vault: A web-scale approach to probabilistic knowl- 644
edge fusion. In Proceedings of the 20th ACM 645
SIGKDD international conference on Knowledge dis- 646
covery and data mining, pages 601–610. 647

Francesco M. Donini and Fabio Massacci. 2000. EX- 648
PTIME tableaux for ALC. Artif. Intell., 124(1):87– 649
138. 650

Takuma Ebisu and Ryutaro Ichise. 2018. Toruse: 651
Knowledge graph embedding on a lie group. In Proc. 652
AAAI’18, pages 1819–1826. AAAI Press. 653

Bahare Fatemi, Siamak Ravanbakhsh, and David Poole. 654
2019. Improved knowledge graph embedding us- 655
ing background taxonomic information. In Proc. 656
AAAI’19, pages 3526–3533. AAAI Press. 657

Luis Galárraga, Simon Razniewski, Antoine Amarilli, 658
and Fabian M. Suchanek. 2017. Predicting complete- 659
ness in knowledge bases. In Proc. WSDM’17, pages 660
375–383. ACM. 661

Luis Galárraga, Christina Teflioudi, Katja Hose, and 662
Fabian M. Suchanek. 2015. Fast rule mining in on- 663
tological knowledge bases with AMIE+. VLDB J., 664
24(6):707–730. 665

Zhiqiang Geng, Zhongkun Li, and Yongming Han. 2018. 666
A novel asymmetric embedding model for knowledge 667
graph completion. In Proc. ICPR’18, pages 290–295. 668
IEEE Computer Society. 669

Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoi- 670
los, and Zhe Wang. 2014. Hermit: an owl 2 reasoner. 671
Journal of automated reasoning, 53:245–269. 672

Lingbing Guo, Zequn Sun, and Wei Hu. 2019. Learn- 673
ing to exploit long-term relational dependencies in 674
knowledge graphs. In Proc. ICML’19, volume 97 of 675
Proceedings of Machine Learning Research, pages 676
2505–2514. PMLR. 677

Shu Guo, Quan Wang, Bin Wang, Lihong Wang, and 678
Li Guo. 2015. Semantically smooth knowledge 679
graph embedding. In Proc. ACL’15, pages 84–94. 680
The Association for Computer Linguistics. 681

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao, 682
and Eric P. Xing. 2015. Entity hierarchy embedding. 683
In Proc. ACL’15, pages 1292–1300. The Association 684
for Computer Linguistics. 685

Jiacheng Huang, Yao Zhao, Wei Hu, Zhen Ning, Qi- 686
jin Chen, Xiaoxia Qiu, Chengfu Huo, and Weijun 687
Ren. 2022a. Trustworthy knowledge graph comple- 688
tion based on multi-sourced noisy data. In Proc. 689
WWW’22, pages 956–965. ACM. 690

9



Zijie Huang, Zheng Li, Haoming Jiang, Tianyu Cao,691
Hanqing Lu, Bing Yin, Karthik Subbian, Yizhou692
Sun, and Wei Wang. 2022b. Multilingual knowl-693
edge graph completion with self-supervised adaptive694
graph alignment. In Proc. ACL’22, pages 474–485.695
Association for Computational Linguistics.696

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. 2016.697
Knowledge graph completion with adaptive sparse698
transfer matrix. In Proc. AAAI’16, pages 985–991.699
AAAI Press.700

Xiaotian Jiang, Quan Wang, and Bin Wang. 2019. Adap-701
tive convolution for multi-relational learning. In702
Proc. NAACL-HLT’19, pages 978–987. Association703
for Computational Linguistics.704

Seyed Mehran Kazemi and David Poole. 2018. Simple705
embedding for link prediction in knowledge graphs.706
In Proc. NeurIPS’18, pages 4289–4300.707

Denis Krompaß, Stephan Baier, and Volker Tresp. 2015.708
Type-constrained representation learning in knowl-709
edge graphs. In Proc. ISWC’15, pages 640–655.710
Springer.711

Ni Lao and William W. Cohen. 2010. Relational re-712
trieval using a combination of path-constrained ran-713
dom walks. Mach. Learn., 81(1):53–67.714

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,715
Dimitris Kontokostas, Pablo N. Mendes, Sebastian716
Hellmann, Mohamed Morsey, Patrick van Kleef,717
Sören Auer, and Christian Bizer. 2015. Dbpedia -718
A large-scale, multilingual knowledge base extracted719
from wikipedia. Semantic Web, 6(2):167–195.720

Qianyu Li, Xiaoli Tang, Tengyun Wang, Haizhi Yang,721
and Hengjie Song. 2019. Unifying task-oriented722
knowledge graph learning and recommendation.723
IEEE Access, 7:115816–115828.724

David Liben-Nowell and Jon M. Kleinberg. 2007. The725
link-prediction problem for social networks. J. Assoc.726
Inf. Sci. Technol., 58(7):1019–1031.727

Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017. Ana-728
logical inference for multi-relational embeddings. In729
Proc. ICML’17, volume 70 of Proceedings of Ma-730
chine Learning Research, pages 2168–2178. PMLR.731

Farzaneh Mahdisoltani, Joanna Biega, and Fabian732
Suchanek. 2014. Yago3: A knowledge base from733
multilingual wikipedias. In Proceedings 7th bien-734
nial conference on innovative data systems research.735
CIDR Conference.736

Brian McBride. 2004. The resource description frame-737
work (RDF) and its vocabulary description language738
RDFS. In Handbook on Ontologies, International739
Handbooks on Information Systems, pages 51–66.740
Springer.741

Christian Meilicke, Melisachew Wudage Chekol, Daniel742
Ruffinelli, and Heiner Stuckenschmidt. 2019. Any-743
time bottom-up rule learning for knowledge graph744

completion. In Proc. IJCAI’19, pages 3137–3143. 745
ijcai.org. 746

Johannes Messner, Ralph Abboud, and İsmail İlkan 747
Ceylan. 2022. Temporal knowledge graph comple- 748
tion using box embeddings. In Proc. AAAI’22, pages 749
7779–7787. AAAI Press. 750

George A. Miller. 1995. Wordnet: A lexical database 751
for english. Commun. ACM, 38(11):39–41. 752

Bonan Min, Ralph Grishman, Li Wan, Chang Wang, 753
and David Gondek. 2013. Distant supervision for 754
relation extraction with an incomplete knowledge 755
base. In Proc. HLT-NAACL’13, pages 777–782. The 756
Association for Computational Linguistics. 757

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, 758
and Dinh Q. Phung. 2018. A novel embedding model 759
for knowledge base completion based on convolu- 760
tional neural network. In Proc. NAACL-HLT’18, 761
pages 327–333. Association for Computational Lin- 762
guistics. 763

Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, 764
Dat Quoc Nguyen, and Dinh Q. Phung. 2019. A 765
capsule network-based embedding model for knowl- 766
edge graph completion and search personalization. 767
In Proc. NAACL-HLT’19, pages 2180–2189. Associ- 768
ation for Computational Linguistics. 769

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark 770
Johnson. 2016. Stranse: a novel embedding model 771
of entities and relationships in knowledge bases. In 772
Proc. NAACL-HLT’16, pages 460–466. The Associa- 773
tion for Computational Linguistics. 774

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. 775
Poggio. 2016. Holographic embeddings of knowl- 776
edge graphs. In Proc. AAAI’16, pages 1955–1961. 777
AAAI Press. 778

Maximilian Nickel, Volker Tresp, and Hans-Peter 779
Kriegel. 2011. A three-way model for collective 780
learning on multi-relational data. In Proc. ICML’11, 781
pages 809–816. Omnipress. 782

Guanglin Niu, Bo Li, Yongfei Zhang, and Shiliang Pu. 783
2022. CAKE: A scalable commonsense-aware frame- 784
work for multi-view knowledge graph completion. 785
In Proc. ACL’22, pages 2867–2877. Association for 786
Computational Linguistics. 787

Guanglin Niu, Yang Li, Chengguang Tang, Ruiying 788
Geng, Jian Dai, Qiao Liu, Hao Wang, Jian Sun, Fei 789
Huang, and Luo Si. 2021. Relational learning with 790
gated and attentive neighbor aggregator for few-shot 791
knowledge graph completion. In Proc. SIGIR’21, 792
pages 213–222. ACM. 793

Natalya Fridman Noy, Yuqing Gao, Anshu Jain, Anant 794
Narayanan, Alan Patterson, and Jamie Taylor. 2019. 795
Industry-scale knowledge graphs: lessons and chal- 796
lenges. Commun. ACM, 62(8):36–43. 797

10



Simon Ott, Patrick Betz, Daria Stepanova, Mohamed H.798
Gad-Elrab, Christian Meilicke, and Heiner Stucken-799
schmidt. 2023. Rule-based knowledge graph com-800
pletion with canonical models. In Proc. CIKM’23,801
pages 1971–1981. ACM.802

Heiko Paulheim. 2017. Knowledge graph refinement:803
A survey of approaches and evaluation methods. Se-804
mantic Web, 8(3):489–508.805

Ciyuan Peng, Feng Xia, Mehdi Naseriparsa, and806
Francesco Osborne. 2023. Knowledge graphs:807
Opportunities and challenges. Artif. Intell. Rev.,808
56(11):13071–13102.809

Pouya Pezeshkpour, Yifan Tian, and Sameer Singh.810
2020. Revisiting evaluation of knowledge base com-811
pletion models. Automated Knowledge Base Con-812
struction (AKBC).813

Maximilian Pflueger, David J. Tena Cucala, and Egor V.814
Kostylev. 2022. GNNQ: A neuro-symbolic ap-815
proach to query answering over incomplete knowl-816
edge graphs. In Proc. ISWC’22, pages 481–497.817
Springer.818

Giuseppe Pirrò. 2020. Relatedness and tbox-driven rule819
learning in large knowledge bases. In Proc. AAAI’20,820
pages 2975–2982. AAAI Press.821

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter822
Bloem, Rianne van den Berg, Ivan Titov, and Max823
Welling. 2018. Modeling relational data with graph824
convolutional networks. In Proc. ESWC’18, volume825
10843 of Lecture Notes in Computer Science, pages826
593–607. Springer.827

Manfred Schmidt-Schauß and Gert Smolka. 1991a.828
Attributive concept descriptions with complements.829
Journal of Artificial intelligence, 48(1):1–26.830

Manfred Schmidt-Schauß and Gert Smolka. 1991b.831
Attributive concept descriptions with complements.832
Journal of Artificial intelligence, 48(1):1–26.833

Tengwei Song, Jie Luo, and Lei Huang. 2021. Rot-834
pro: Modeling transitivity by projection in knowl-835
edge graph embedding. In Proc. NeurIPS’21, pages836
24695–24706.837

Fabian M. Suchanek, David Gross-Amblard, and Serge838
Abiteboul. 2011. Watermarking for ontologies.839
In Proc. ISWC’11, volume 7031, pages 697–713.840
Springer.841

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard842
Weikum. 2008. YAGO: A large ontology from843
wikipedia and wordnet. J. Web Semant., 6(3):203–844
217.845

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian846
Tang. 2019. Rotate: Knowledge graph embedding847
by relational rotation in complex space. In Proc.848
ICLR’19. OpenReview.net.849

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric 850
Gaussier, and Guillaume Bouchard. 2016. Com- 851
plex embeddings for simple link prediction. In Proc. 852
ICML’16’, volume 48 of JMLR Workshop and Con- 853
ference Proceedings, pages 2071–2080. JMLR.org. 854

Denny Vrandecic and Markus Krötzsch. 2014. Wiki- 855
data: a free collaborative knowledgebase. Commun. 856
ACM, 57(10):78–85. 857

Huijuan Wang, Siming Dai, Weiyue Su, Hui Zhong, 858
Zeyang Fang, Zhengjie Huang, Shikun Feng, Zeyu 859
Chen, Yu Sun, and Dianhai Yu. 2022. Simple and 860
effective relation-based embedding propagation for 861
knowledge representation learning. In Proc. IJ- 862
CAI’22, pages 2755–2761. ijcai.org. 863

Hong Wu, Zhe Wang, Kewen Wang, and Yi-Dong Shen. 864
2022. Learning typed rules over knowledge graphs. 865
In Proc. KR’22. 866

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and 867
Maosong Sun. 2016a. Representation learning of 868
knowledge graphs with entity descriptions. In Proc. 869
AAAI’16, pages 2659–2665. AAAI Press. 870

Ruobing Xie, Zhiyuan Liu, Huanbo Luan, and Maosong 871
Sun. 2017. Image-embodied knowledge representa- 872
tion learning. In Proc. IJCAI’17, pages 3140–3146. 873
ijcai.org. 874

Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016b. 875
Representation learning of knowledge graphs with 876
hierarchical types. In Proc. IJCAI’16, pages 2965– 877
2971. IJCAI/AAAI Press. 878

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, 879
and Li Deng. 2015. Embedding entities and relations 880
for learning and inference in knowledge bases. In 881
Proc. ICLR’15. 882

Donghan Yu, Yu Gu, Chenyan Xiong, and Yiming Yang. 883
2023. Compleqa: Benchmarking the impacts of 884
knowledge graph completion methods on question 885
answering. In Proc. EMNLP’23, pages 12748–12755. 886
Association for Computational Linguistics. 887

Qianjin Zhang, Ronggui Wang, Juan Yang, and 888
Lixia Xue. 2022. Knowledge graph embedding 889
by reflection transformation. Knowl. Based Syst., 890
238:107861. 891

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019a. 892
Quaternion knowledge graph embeddings. In Proc. 893
NeurIPS’19’, pages 2731–2741. 894

Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bern- 895
stein, and Huajun Chen. 2019b. Interaction embed- 896
dings for prediction and explanation in knowledge 897
graphs. In Proc. WSDM’19, pages 96–104. ACM. 898

Xiaoyu Zhang, Xin Xin, Dongdong Li, Wenxuan Liu, 899
Pengjie Ren, Zhumin Chen, Jun Ma, and Zhaochun 900
Ren. 2023. Variational reasoning over incomplete 901
knowledge graphs for conversational recommenda- 902
tion. In Proc. WSDM’23, pages 231–239. ACM. 903

11



Zili Zhou, Shaowu Liu, Guandong Xu, and Wu Zhang.904
2019. On completing sparse knowledge base with905
transitive relation embedding. In Proc. AAAI’19,906
pages 3125–3132. AAAI Press.907

A Related Work908

LP in the context of KGs has seen a variety of909

approaches over time. Traditional methods often910

rely on observable features, employing strategies911

like Rule Mining (Galárraga et al., 2015; Meilicke912

et al., 2019; Pirrò, 2020; Ahmadi et al., 2020; Wu913

et al., 2022; Ott et al., 2023) or Path Ranking Algo-914

rithm (Lao and Cohen, 2010) to uncover missing915

triples in the graph. Rule Mining, for instance, de-916

duces patterns such as “If a person lives in a city,917

then their spouse likely resides in the same city”,918

using these inferred rules to predict new informa-919

tion and identify gaps in the KB. However, these920

methods are limited to discovering facts between921

instances already present in the KB, failing to rec-922

ognize entirely missing entities.923

More recently, the advent of machine learning924

techniques has shifted focus to capturing latent fea-925

tures of graphs. This is achieved through vectorized926

representations, or embeddings, of graph elements.927

Embeddings, which are vectors of numerical val-928

ues, can represent various elements depending on929

the domain. They are learned automatically based930

on the patterns of occurrence and interaction of931

these elements in real-world datasets. One promi-932

nent approach for KGC and LP is based on KG933

embedding models, where the idea is to learn em-934

beddings for entities and relations through train-935

ing over known facts, and subsequently use the936

learned embeddings to compute plausibility scores937

for all possible facts. Embedding-based LP mod-938

els harness diverse approaches and architectures,939

each tailored to specific optimization challenges940

and techniques. Broadly, these models can be cate-941

gorized into three primary families:942

• Tensor Decomposition Models: These mod-943

els leverage mathematical techniques of ten-944

sor factorization. Representative examples945

include RESCAL (Nickel et al., 2011), Dist-946

Mult (Yang et al., 2015), ComplEx (Trouillon947

et al., 2016), Analogy (Liu et al., 2017), Sim-948

plE (Kazemi and Poole, 2018), HolE (Nickel949

et al., 2016), A2N (Bansal et al., 2019), and950

EA (Cao et al., 2022b).951

• Geometric Models: These models conceptual-952

ize entities and relations in a geometric space,953

often leveraging spatial relationships for pre- 954

diction. Representative examples include 955

TranE (Bordes et al., 2013), STarnsE (Nguyen 956

et al., 2016), CrossE (Zhang et al., 2019b), 957

TorusE (Ebisu and Ichise, 2018), RotatE (Sun 958

et al., 2019), QuatE (Zhang et al., 2019a), 959

PairRE (Chao et al., 2021), DualE (Cao et al., 960

2021), MTransH (Niu et al., 2021), Rot- 961

Pro (Song et al., 2021), BoxE (Abboud et al., 962

2020), BoxTE (Messner et al., 2022), Re- 963

flectE (Zhang et al., 2022), and GIE (Cao 964

et al., 2022a). 965

• Deep Learning Models: These models ap- 966

ply deep learning techniques, particularly 967

convolutional, recurrent, and graph neural 968

networks, to extract complex patterns from 969

graph data. Representative examples in- 970

clude ConvE (Dettmers et al., 2018), Con- 971

vKB (Nguyen et al., 2018), ConvR (Jiang 972

et al., 2019), CapsE (Nguyen et al., 2019), 973

RSN (Guo et al., 2019), REP (Wang et al., 974

2022), and TKGC (Huang et al., 2022a). 975

The models discussed above rely entirely on 976

factual data from KGs for learning. While this 977

internal KG data is valuable, relying exclusively 978

on it can introduce issues such as biases, overfit- 979

ting, limited perspectives, and difficulties in cap- 980

turing complex relationships. Embedding-based 981

models using solely internal KG data risk inac- 982

curacies in representing entity and relation vec- 983

tors, potentially leading to erroneous predictions, 984

as noted in (Niu et al., 2022). Combining in- 985

ternal data with external sources can alleviate 986

these issues. Several models exemplify this ap- 987

proach. For instance, TRESCAL (Chang et al., 988

2014), TCRL (Krompaß et al., 2015), TKRL (Xie 989

et al., 2016b), and CAKE (Niu et al., 2022) uti- 990

lize entity type information. DKRL (Xie et al., 991

2016a) incorporates textual descriptions. EHE (Hu 992

et al., 2015), SSE (Guo et al., 2015), and Sim- 993

plE+(Fatemi et al., 2019) leverage entity hierarchi- 994

cal and taxonomic information. TranSparse(Ji et al., 995

2016), AEM (Geng et al., 2018), and TRE (Zhou 996

et al., 2019) focus on relation-related information. 997

IKRL (Xie et al., 2017) employs images of entities. 998

While these models have demonstrated impressive 999

performances across various datasets, the field con- 1000

tinues to grapple with unresolved challenges. 1001
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B The Description Logic ALC1002

KGs contain information about relationships be-1003

tween entities and can encompass more enriched1004

information, such as entity types and specific1005

properties of relationships. Description Logic1006

(DL) (Baader et al., 2008) offers a unified frame-1007

work for representing both the KG and its sup-1008

plementary information. As a decidable fragment1009

of first-order logic, DL presents favorable com-1010

putational properties. For instance, the entirety1011

of the YAGO3 dataset can be expressed using the1012

ALC (Schmidt-Schauß and Smolka, 1991a) subset1013

of DL. We now delve into the syntax and seman-1014

tics of ALC and its application in representing KG1015

information.1016

Consider NI , NC , and NR as disjoint and count-1017

ably infinite sets representing individuals, concept1018

names, and role names, respectively. In this con-1019

text, “individuals” correspond to entities in the KG,1020

“concept names” correspond to entity types, and1021

“role names” correspond to the various relation-1022

ships. To represent more complex information,1023

ALC-concepts are built through inductive construc-1024

tion, adhering to the following syntactic rules:1025

C,D −→ ⊤ | ⊥ | A | ¬A | C⊓D | C⊔D | ∀r.C | ∃r.C,1026

where A ∈ NC , r ∈ NR, and C and D range over1027

concepts.1028

The semantics of ALC is defined in terms of an1029

interpretation I = (∆I , ·I), where ∆I is the do-1030

main of the interpretation (a non-empty set), and ·I1031

denotes the interpretation function, which satisfies:1032

• AI ⊆ ∆I , for all A ∈ NC1033

• rI ⊆ ∆I ×∆I , for all r ∈ NR1034

The extension mapping is extended to complex1035

ALC-concept as follows:1036

⊤I = ∆I ⊥I = ∅ (¬C)I = ∆I\CI1037

(C ⊓D)I = CI ∩DI (C ⊔D)I = CI ∪DI1038

(∀r.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ rI → y ∈ CI}1039

(∃r.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}1040

For any concept C and D, the expression C ⊑ D1041

is referred to as an ALC general concept inclu-1042

sion (GCI). An interpretation I satisfies a GCI1043

C ⊑ D if CI ⊆ DI . GCIs can be used to rep-1044

resent relationships between entity types. For in-1045

stance, the statement Teacher is Person can be rep-1046

resented as Teacher ⊑ Person, and the statement1047

Courses and people are disjoint can be represented 1048

as Course ⊓ Person ⊑ ⊥. Similarly, we can use 1049

ALC to represent information about relations. For 1050

example, r ⊑ s expresses that relation s includes 1051

relation r. If relation r is transitive, it can be rep- 1052

resented as Trans(r). Dom(r) and Range(r) are 1053

used to express the domain concept of r and range 1054

concept of r. We define TBox as a collection of 1055

GCIs, r ⊑ s, Trans(s), and other properties of 1056

relations. 1057

In addition to the information about TBox, there 1058

are various other types of information, such as en- 1059

tity types and relationships between entities, that 1060

need to be represented. We use a : C (concept 1061

assertion) to express the type to which an entity be- 1062

longs and (a, b) : r (role assertion) to express the 1063

relationship satisfied between two entities, where 1064

C is a concept, r is a role and a, b are individ- 1065

uals. For example, New York is a city can be 1066

expressed as New_York : city and New York is 1067

located in the United States can be expressed as 1068

(New_York,United_States) : is_located_in. An 1069

interpretation satisfies a concept assertion if aI ∈ 1070

CI , and it satisfies a role assertion if (aI , bI) ∈ rI . 1071

The combination of concept assertion and role as- 1072

sertion is referred to as an ABox. 1073

Let K = (T ,A) be a Knowledge Base (KB), 1074

where T represents the TBox and A represents 1075

the ABox. A model of K is an interpretation that 1076

satisfies every axiom in T ∪ A. For an axiom α 1077

of the form C ⊑ D, a : C, (a, b) : r, we say that 1078

K entails α if every model of K is also a model of 1079

α, denoted as K |= α. Entailment checking allows 1080

us to determine which information can be derived 1081

from the existing information. By using the tableau 1082

algorithm(Schmidt-Schauß and Smolka, 1991b), 1083

we can check whether an axiom can be entailed 1084

from K with a PSPACE-complete complexity. 1085

C Missing Proofs 1086

Theorem 1. Given two KBs, K1 and K2, with 1087

K1 ⊆ K2, any axiom α of the form C ⊑ D, r ⊑ s, 1088

a : C, or (a, b) : r that is entailed by K1 is also 1089

entailed by K2. 1090

Proof. Let I be a model of K2. By definition, I 1091

entails every axiom in K2. Given that K1 ⊆ K2, I 1092

must also entail every axiom in K1. Thus, I serves 1093

as a model for K1. Consequently, if K1 |= α, 1094

indicating that all models of K1 entail α, it follows 1095

that all models of K2, which include models of K1, 1096

also entail α. Hence, K2 |= α. 1097
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