
Under review as a conference paper at ICLR 2024

EVOLVING DEEP NEURAL NETWORK’S WEIGHTS AT
IMAGENET SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

Building upon evolutionary theory, this work proposes a deep neural network
optimization framework based on evolutionary algorithms to enhance existing
pre-trained models, usually trained by backpropagation (BP). Specifically, we
consider a pre-trained model to generate an initial population of deep neural
networks (DNNs) using BP with distinct hyper-parameters, and subsequently
simulate the evolutionary process of DNNs. Moreover, we enhance the evolutionary
process, by developing an adaptive differential evolution (DE) algorithm, SA-
SHADE-tri-ensin, which integrates the strengths of two DE algorithms, SADE
and SHADE, with trigonometric mutation and sinusoidal change of mutation rate.
Compared to existing work (e.g., ensembling, weight averaging and evolution
inspired techniques), the proposed method better enhanced existing pre-trained
deep neural network models (e.g., ResNet variants) on large-scale ImageNet. Our
analysis reveals that DE with an adaptive trigonometric mutation strategy yields
improved offspring with higher success rates and the importance of diversity in the
parent population. Hence, the underlying mechanism is worth further investigation
and has implications for developing advanced neuro-evolutionary optimizers.

1 INTRODUCTION

Deep neural networks (DNN) (Krizhevsky et al., 2009; LeCun et al., 2015) have seen remarkable
advancements, leading to exceptional performance across a broad spectrum of learning tasks and
applications, such as visual tasks (Chen et al., 2020) and natural language processing (Stiennon
et al., 2020). Artificial Neural Networks (ANNs) are modeled on the structure and function of the
interconnected neurons in the human brain. Training ANNs are equivalent to the search of network
weights that optimize a desired loss function, in which intricate network architectures determine the
high-dimensional function space. Back-propagation (BP) and its variants (e.g., ADAM (Kingma &
Ba, 2014)) have established themselves as the most widely used, thanks to their ability to explicitly
utilize the gradients of the loss function and enable the training of extremely deep neural networks.
Nonetheless, BP has several weaknesses (Gong et al., 2020). For example, it requires differentiable
loss functions and suffers from the sensitivity to hyperparameters, the problems of vanishing or
exploding gradients, slow convergence, and high computational requirements. Recently, a forward-
forward algorithm that does not require BP for training DNN has been proposed by Hinton, and
we envision the advancement of the line of research (Hinton, 2022). One of the feed-forward
approaches, for training DNN without BP, is meta-heuristic approaches, for instance, evolutionary
algorithms (EA). EAs have successfully evolved a population of solutions to a plethora of complex
optimization problems (e.g., non-convex and NP-hard problems) and real-world problems where
traditional methods fail. Utilizing EAs to evolve DNN architectures and weights is termed neuro-
evolution, which bridges DNN optimization and evolutionary theory for algorithmic development,
interpretation, and analysis. An interesting analogy between neural network architecture, dataset,
species, and environment are discussed in Sec. S1 of the Supplementary Materials (sup).

Here, we re-investigate the integration of BP-based and EA-based methods, as illustrated in Fig. 1).
The proposed work differs from other EA-based methods that train ANNs from random initialization,
which imitates the primordial soup (i.e., prior to the formation of the first species, primordial ancestor)
in Primordial soup theory (Taylor, 2005). The initialization that implements primordial soup can
be the reason for the slow convergence due to the unmet conditions for the evolutionary starting
point. Inspired by Hinton’s work of pretraining the neural network using restricted Boltzmann

1



Under review as a conference paper at ICLR 2024

Figure 1: The conceptual illustration of Darwinian evolution on DNNs. A population of pretrained
DNNs evolves their weights in the environment specified by datasets and loss function.

machines to avoid the vanishing of gradient, we use the BP-based optimizer (i.e., ADAM) for the
pretraining of DNN and EA-based methods to evolve DNN’s weights. We consider the pretrained
DNNs, obtained from the ending epochs, as the primordial ancestor (i.e., the first species), the
starting point of evolution. Subsequently, Darwinian evolution is implemented using differential
evolution (DE). BP-based algorithms allow a single neural network to accumulate knowledge and
learn representation from data, while neuro-evolution emulates the evolutionary aspects DNNs. The
proposed strategy applies to any pretrained models, facilitating the evolution of fitter offspring (i.e.,
enhanced pre-trained models). The concepts are validated using various computer vision datasets and
DNN architectures.

2 RELATED WORK

A deep learning model is parameterized by deep neural networks’ weights that regulate the strength
of the connection between neurons. Typically, the weights are adjusted to optimize a loss function
formulated for a learning task. The process of weight adjustment is called DNN training, which
can be broadly categorized into gradient descent-based (GD) methods (Kingma & Ba, 2014) and
evolution algorithm-based (EA) methods (Stanley et al., 2019), composing two essential ingredients
of brain adaptation: learning and evolution (Yao, 1999). Popular GD methods include stochastic
gradient descent (SGD) and its variants with momentum and adaptive learning rates: AdaGrad,
RMSProp, and Adam (Kingma & Ba, 2014). While GD methods are commonly used, it is known
to be local search methods that suffer from a few problems, such as gradient vanishing/exploding,
getting trapped at local optima, and over-fitting (Yang et al., 2021). To circumvent the challenges,
a few works proposed to combine, average, or ensemble multiple DNN models. Weight averaging
(WA) (Izmailov et al., 2018) and model soup (Wortsman et al., 2022) average the neural network
weights, while ensembling (Garipov et al., 2018) averages the output of the feature map. These
methods are used as the non-EA baselines in this study.

2.1 EA-BASED WEIGHT OPTIMIZATION

EA-based methods provide gradient-free ways to DNN training, where a population of neural
network topologies and weights evolves for better fitness globally (Stanley et al., 2019). Popular
EAs algorithms for optimizing DNN include genetic algorithms (Montana et al., 1989), genetic
programming (Suganuma et al., 2017), differential evolution (DE) (Pant et al., 2020), and evolution
strategies (Salimans et al., 2017). Parsimonious neural architectures have been designed through
neuro-evolution (e.g., NEAT (Stanley & Miikkulainen, 2002)) with enhanced performance. Moreover,
neuro-evolution techniques (e.g., evolution strategy (Salimans et al., 2017)) have been demonstrated
to achieve better results in reinforcement learning tasks compared to deep Q-learning, the policy
gradient algorithm A3C (Mnih et al., 2016) among others. However, EA-based methods were only
reported to work well on small datasets and small DNNs (Piotrowski, 2014). When optimizing
DNNs’ weights on large-scale datasets, EA-based methods suffer from very slow (or failure of)
convergence, given a large number of model parameters and a complex search space for obtaining the
deep representation. Piotrowski reported the stagnation issues of several variants of adaptive DE, such
as SADE, JADE, and DEGL, in optimizing network weights for regression problems (Piotrowski,
2014). Sun et al. proposed efficient gene encoding, utilizing the concepts of null spaces, for DNN on

2



Under review as a conference paper at ICLR 2024

unsupervised learning tasks at MNIST and CIFAR-10 scales (Sun et al., 2018). However, none of the
existing EA-based weight optimization methods demonstrated the scalability to ImageNet.

2.2 COMPLEMENTARITY OF EA AND GD

Several works hybridize GD and EA for DNN training for combined strengths. Lehman et al. utilized
the output gradients for safe mutations to regulate the degrees of mutation, preventing the functionality
of DNN from breaking down due to evolutionary operators (Lehman et al., 2018). Cui et al. combined
the GD and EA by alternating between SGD and EA steps for complementary strengths of them (Cui
et al., 2018). Yang et al. guided the multiobjective EA’s search direction using gradients by designing
a gradient-based simulated binary crossover (SBX) operator (Yang et al., 2021). Xue et al. developed
an ensemble of DE and ADAM to train MLPs, where the two algorithms evolved two populations of
neural network weights (Xue et al., 2022). Nonetheless, the datasets studied are small, and the max
number of DNN parameters was only 2555. The generalizability to a larger dataset and deeper DNN
was not shown.

2.3 EVOLVING PRETRAINED MODELS

One special case of hybridizing GD-EA is using EA to enhance existing pre-trained models trained
on large-scale datasets (e.g., ImageNet). The line of research is precious, given the growing numbers
of publicly available pre-trained models and large-scale datasets. Gong et al. proposed hybrid
cooperative coevolution with BP, where BP is used as the starting point of evolution (Gong et al.,
2020). The cooperative coevolution was implemented by decomposing the tasks of adjusting DNN’s
weights into many subtasks based on the proposed neuron maturity. The decomposition reduced the
computational cost while enhancing the performance of DNNs for CIFAR-10. As this work designed
its own CNN, whether the proposed method generalizes to existing pre-trained models is unclear. Very
recently, Whitaker et al. proposed sparse mutation decompositions (SMD) and ensembles to fine-tune
existing pre-trained DNNs for ImageNet (Whitaker & Whitley, 2023). The work also studied the
impact of mutation strength and sparsity on network sensitivity and performance and claimed the
importance of subspace evolution. The authors reported small improvements (smaller than 0.5%) in
accuracy on ImageNet for all pre-trained models studied. However, the evolution was only simulated
for one generation and did not consider the benefits of incremental, evolutionary changes. Moreover,
the authors only reported the results of the ensemble. Hence, whether the ensemble or the proposed
SMD contributed to the improvement is unclear. Both works used decomposition to reduce the
dimensionality of the search space and might be more vulnerable to local optima (Yang et al., 2021).

This paper attempts to address the research gaps in the potential of EA for enhancing existing
pre-trained models by evolving existing pre-trained models in the original search space using the
proposed adaptive DE algorithm, SA-SHADE-tri-ensin. The impacts of evolution on DNN are
carefully scrutinized.

3 METHOD

The task is to learn a neural network parameterized by θ with dataset D, where each sample x ∈ D
is with multi-features and a label y. Standard method requires minimizing the loss L, formulating as
θ = argminθ L(θ;x, y). We use the cross entropy and the L2-regularization with the regularization
factor α, L =

∑
i∈D yi log (f(ŷ)i) + α∥θ∥22. Back-propagation with gradient-based methods are

almost ubiquitously for such optimization. However, the gradient-based optimizer is a point-based
local search approach, which may lead to severe sensitivity to parameter initialization and is possible
to get trapped into inferior local optima. Based on that, we provide an advanced framework by
augmenting the optimization with the evolution algorithm, where Algorithm 1 is presented to learn
such a neural network.

The first stage is the initialization with back-propagation methods. This iterative algorithm starts
with a random input and fitness evaluation. For each epoch, gradient-based quantity is calculated,
and θ can be updated until the termination condition is satisfied. This produces a set of candidate
solutions,Θ = {θi : i = 1, ...,NP}, where NP is called population size, and θi = (θi,1, θi,2, ..., θi,d),
d is the size of solution space. We pick the last consecutive NP epoch before the termination of this

3



Under review as a conference paper at ICLR 2024

stage as the initialized population of the second stage. Moreover, we also investigate other tricks on
population initialization in Section 3.3.

The second stage is to simulate the evolution of a population of DNNs, which generates new solutions
from the current candidate set. A formal DE algorithm includes two main steps: mutation and
recombination. For each generation (epoch), the mutation is performed as, θ⋆

i = θr1+F×(θr2−θr3),
where i = 1, ...,m and r1, r2, r3 are random integers less than m, different from i and other. F is
the scaling factor. The recombination is performed as,

θ⋆i,j =

{
θ⋆i,j if rand(0, 1) ≤ Cr,

θi,j otherwise.
, θi =

{
θ⋆
i L(θ⋆g

i ) < L(θg
i )

θi otherwise
, (1)

where crossover is taken place with a pre-set threshold Cr, and selection is made on the lowest loss
function by direct one-to-one comparison. In this stage, variant differential evolution algorithms are
employed, where modified mutation and recombination are depicted in Sec.(3.1) and Sec.(3.2).

Algorithm 1 EALEARNING: learning algorithm. t is the type of networks, and m is the population
size. δ1, δ2, ∆1 and ∆2 are pre-set threshold.

1: procedure EALEARNING(D,t,m)
2: θ ← RANDOMINPUT,∆f ← 1, f ← LOSS(θ,D, t) ▷ random input and evaluation
3: while f ≥ δ1 ∧∆f ≥ ∆1 do
4: ĝ ← BATCHBACKPROP(D, t) ▷ gradient calculation
5: θ ← UPDATE(θ, ĝ) ▷ updating parameters
6: f ′ ← LOSS(θ,D, t),∆f ← f − f ′, f ← f ′

7: Θ← GETS(θ,m) ▷ store recent m θ
8: end while
9: while f ≥ δ2 ∧∆f ≥ ∆2 do

10: Θ⋆ ← MUTATE(Θ),Θ← RECOMBINATION(Θ,Θ⋆) ▷ modified mutation and
recombination

11: for θi ∈ Θ do
12: f ′

i ← LOSS(θi,D, t),∆fi ← f − f ′
i

13: end for
14: (f,∆f,θ)← MIN(∆fi, fi,Θ) ▷ choose the optimal θ
15: end while
16: return θ
17: end procedure

3.1 SA-SHADE-TRI-ENSIN

The performance of DE relies on a proper selection of mutation strategy, scaling factor F , and
crossover rate Cr (See Supplementary Material Section S2.3 (sup)). It can be prohibitively expensive
to hypertune them for training DNNs, especially when training very deep DNNs on large-scale
datasets. Adaptive DE, where the strategy or the two parameters are self-adapted to the search experi-
ence, is beneficial for selecting the strategies and adjusting the parameters during the evolutionary
optimization. Two powerful variants of DE were developed, namely Self-Adaptive Differential Evo-
lution (SADE) (Qin & Suganthan, 2005) and Success-History based Adaptive DE (SHADE) (Tanabe
& Fukunaga, 2013).

SADE made three main changes to improve the performance of DE. First, SADE records operations
that produce better offspring. Second, SADE uses an adaptive crossover rate, Cr. The Cr is drawn
from the normal distribution, with the mean being the average of the previous Cr that produces better
offspring. Second, SADE uses the following four strategies S1 - S4 to perform mutation

S1 : θ∗i = θr1 + F · (θr2 − θr3)

S2 : θ∗i = θi + F · (θgbest − θi) + F · (θr2 − θr3)

S3 : θ∗i = θr1 + F · (θr2 − θr3) + F · (θr4 − θr5)

S4 : θ∗i = θi + randu(0, 1) · (θr1 − θi) + F · (θr2 − θr3) ,

where i = 1, ..., ps and r1, r2, r3, r4, r5 are random integers less than ps, different from i and other.
gbest is the index of the best individual. Each strategy S is chosen according to its probability of
generating better offspring in history PS , which is recorded with a queue of size H .

4



Under review as a conference paper at ICLR 2024

Another important DE variant is SHADE. It further enhances the performance of DE in op-
timization by updating the crossover rate and mutation rate in a more delicate manner. The
weighted Lehmer mean is computed in every iteration. Using F as an example, meanWL(F ) =∑ns

i=k wk · F 2
k /

∑ns

i=k wk · Fk, where ns is the number of successful update in the generation,
wi = ∆Li /

∑ns

k=1 ∆Lk and ∆Lk = |L (θ∗
k)− L (θk)|. The values are then saved in the history

archive with size H . In each generation, the F , Cr, and the frequency of sinusoidal function are
generated by randomly selecting among the record and picking from the normal distribution of the
randomly selected element ri with the archived value MCR/F (randn(MCR/F,ri , VCR/F ), where
VCR/F is a hyper-parameter that defines the variance of distribution). For the neural network opti-
mization, we did not use the Gaussian walk and the single strategy for a mutant generation. We use
the four strategies from SADE and the historical archive of hyperparameters for each strategy. This
cultivates a very rich variety of strategies when optimizing the neural network weight.

3.2 TRICKS ON MUTATION OPERATION

We also adopt additional tricks to enhance the exploration and exploration capability of the optimizer
by the trigonometric mutation (Fan & Lampinen, 2003) and the sinusoidal mutation rate (Awad et al.,
2016). The trigonometric mutation operation, which has a strong local search capability, is performed
according to, STrigo: θ∗i = (θr1 + θr2 + θr3) /3 + (p2 − p1) (θr1 − θr2) + (p3 − p2) (θr2 − θr3) +
(p1 − p3) (θr3 − θr1), where pi = |L (θri)| /p′ and p′ = |L (θr1)|+ |L (θr2)|+ | L (θr3)) |.
The sinusoidal mutation rate provides a variety of scaling factors F for exploration and exploitation.
At the first half of the iterations in each batch (stage 1 s1), where gs1 ∈

[
1, Gmax

2

]
, two different

sinusoidal configurations are used, the first one is Non-Adaptive Sinusoidal Decreasing Adjustment
in the left equation, and the second one is Adaptive Sinusoidal Increasing Adjustment in the right
equation:
Fi,gs1

=
1

2

(
sin (2π ν gs1 + π)

Gmax − gs1
Gmax

+ 1

)
, Fi,gs1

=
1

2

(
sin (2πνi,k ∗ gs1)

gs1
Gmax

+ 1

)
,

where ν is the non-adaptive frequency, and νi,k is the adaptive frequency for strategy k and individual
index i.

3.3 TRICKS ON POPULATION INITIALIZATION

Population initialization strategies determine the quality of the primordial soup before evolution.
Besides the initialization using ending BP epochs, we also incorporate two other tricks in ending BP
epochs, such as different random seeds (Init-RS), data augmentation techniques, and distinct hyperpa-
rameter (Init-HP) settings using TIMM (Wightman, 2019), which include simple and data-agnostic
data augmentation routine, mixup, introduced by (Huang et al., 2017). For the hyperparameters, we
adjusted the learning rate and weight decay. Additionally, we applied the smoothed loss function
(Berrada et al., 2018) on the training process. The smoothed loss function is a regularization technique
that aims to make the training process more stable by reducing the sensitivity of the model to outliers
or noisy data points.

The overarching aim of these tricks was to increase the diversity among individual models and assess
how these variations affect the model’s overall performance. By introducing ’mixup’ and ’smooth-
ing’ alongside hyperparameter adjustments, we aimed to comprehensively explore the potential
enhancements in model performance across various settings.

In this paper, we hybridize the SADE and SHADE, with trigonometric mutation and the sinusoidal
mutation rate. The proposed method is called SA-SHADE-tri-ensin. The method adapts its F , and
Cr, and mutation strategies (S1, S2, S3, S4, STrigo) with probability of selection (PS1

, PS2
, PS3

,
PS4

, PSTrigo
) similar to Section 3.1, while evolving DNNs.

4 EXPERIMENT

4.1 IMPLEMENTATION

We utilize the CUDA/PyTorch framework to train a deep neural network using an evolutionary
algorithm across 8 NVIDIA RTX A6000 GPUs. In comparison to BP with identical batch size and

5



Under review as a conference paper at ICLR 2024

network architecture, our empirical findings indicate a nearly halved GPU memory consumption, as
gradients need not be recorded. Consequently, this affords us the ability to employ a larger batch size
while maintaining the same graphical memory usage.

4.2 DATASETS AND PRE-TRAINED MODELS

Prior to the start of evolution, we used models with publicly available pre-trained weights for
ImageNet (i.e., ResNet-18, ResNet-34, ResNet-50, and ResNet-101). The pretrained model is a
vanilla version provided by the PyTorch torchvision library. We ensured consistency with the original
method in terms of data, training strategies, and other aspects during the optimization process in
DE. In other words, we did not employ any additional tricks such as auto data augmentation, label
smoothing, dropout, etc during the evolutionary process. Additional experiments on smaller datasets
and models are provided Section S2 in the supplementary (sup).

We optimized the pretrained models for ps partial epochs using BP to initialize the population of
DNNs for our proposed SA-SHADE-tri-ensin. The proposed SA-SHADE-tri-ensin evolves ResNet
variants on ImageNet using the hyperparameters provided in Table S3 in the supplementary (sup).
Each batch of data is used to evolve DNNs over ten generations. During the evolution, we exempted
the fully connected layers from the evolutionary update to facilitate efficient training (Hinton et al.,
2015). For the batch normalization (BN) layer, we exempted the update of running mean and variance
but allowed them to learn the distribution during the forward feeding process.

4.3 MAIN RESULTS

4.3.1 IMPROVED PERFORMANCE OF DNNS

In Fig. 2, it is evident that all four variants of ResNets demonstrate performance improvements
when employing the evolution framework with our developed SA-SHADE-tri-ensin algorithm. Our
findings indicate that the framework exhibits robustness across a wide range of network depths,
from ResNet-18 with 11.7 million parameters to ResNet-101 with 44.5 million parameters. Notably,
in comparison to a recent related work that does not utilize gradient details (Whitaker & Whitley,
2023), our approach outperforms their method in ResNet-18, achieving an accuracy of 70.042% as
opposed to their 69.93% (as shown in Table 1). Our approach does not involve ensemble methods,
problem decomposition, or introducing batch-wise evolution during training. To further benchmark
the performance, we pick a few other well-known techniques, Weight Averaging (WA) (Izmailov et al.,
2018), Fast Geometric Ensembling (Ensemble) (Garipov et al., 2018), and Model soups (Wortsman
et al., 2022) as our baseline methods. The highest accuracy is typically achieved within the first ten
batches, corresponding to approximately 100 generations evolved, across all four ResNet variations.
Validation is conducted at the end of each batch. The convergence of loss and accuracy generally
occurs within approximately 20 batches, beyond which no significant improvements are observed.
The mean Euclidean distance is also shown to converge as shown in Fig. 3. However, it should be
noted that our results could potentially improve with extended training duration, as our experiments
were limited to only 20 batches, roughly equating to 40,000 images, in contrast to the vast amount of
data present in the ImageNet dataset.

4.3.2 IMPACT OF POPULATION INITIALIZATION TRICKS

The upper part of Table 2 summarizes the impacts of population initialization strategies on different
methods trained on ImageNet with ResNet-50. It is generally observed that the populations created
by Init-RS and Init-HP have average accuracy and the best accuracy higher than the pre-trained model
provided by PyTorch. Moreover, the initial population generated by Init-RS is superior to Init-HP.

The initial population of DNNs is then combined, merged, or evolved using different methods
summarized in the lower part of Table 2. It is found that Init-HP is generally better than Init-
RS, except for model soups and DE. SA-SHADE-tri-ensin with Init-HP obtained the best Top-1
accuracy. The accuracy curve of SA-SHADE-tri-ensin is provided in Figure 4, demonstrating even
10 generations of SA-SHADE-tri-ensin are sufficient for superior performance.

6



Under review as a conference paper at ICLR 2024

Table 1: Test accuracy of ResNets on lmageNet. Comparative analysis between pre-trained models
by PyTorch, sparse mutation decomposition (SMD), weight averaging (WA), Ensemble, and ours,
which does not utilize population initialization tricks.

Top1@ Top5@

Pytorch1SMD34WA15Ensemble9 Ours Pytorch1SMD34WA15Ensemble9 Ours Params
ResNet-18 69.76 69.93 70.00 70.02 70.04 89.08 na 89.31 89.32 89.35 21.8M
ResNet-34 73.31 na 73.47 73.49 73.51 91.42 na 91.51 91.53 91.57 21.8M
ResNet-50 76.13 na 76.56 76.63 76.64 92.86 na 93.19 93.23 93.23 25.6M
ResNet-101 77.37 na 77.62 77.63 77.70 93.55 na 93.71 93.71 93.76 44.5M

ResNet-18

A
cc

u
ra

cy

Lo
ss

A
cc

u
ra

cy

ResNet-34

Eu
cl

id
ea

n
 D

is
ta

n
ce

SGD Accuracy/Loss DE Accuracy/Loss Change optimizer

ResNet-50

A
cc

u
ra

cy

Generation Generation

A
cc

u
ra

cy

ResNet-101

Lo
ss

Eu
cl

id
ea

n
 D

is
ta

n
ce

Figure 2: Evolving ResNet Variants on ImageNet. The test losses
and accuracies for ResNet-18, ResNet-34, ResNet-50 and ResNet-
101.

A
cc

u
ra

cy

Eu
cl

id
ea

n
 D

is
ta

n
ce

Generation

Eu
cl

id
ea

n
 D

is
ta

n
ce ResNet-101

ResNet-18

Figure 3: Diversity and conver-
gence. Euclidean distance be-
tween DNNs.

Population Initialization Init-RS Init-HP

Top1 Top5 Top1 Top5

Pre-trained by PyTorch 1 76.13 92.86 76.13 92.86
Initial Population (average) 76.60 93.20 76.32 92.95

Initial Population (best) 76.62 93.22 76.48 93.00

Weight Averaging 15 76.63 93.19 76.54 93.06
Ensemble 9 76.61 93.19 76.65 93.14

Model Soups 37 76.61 93.19 76.56 93.07
DE 76.63 93.21 76.58 93.09

SA-SHADE-tri-ensin 76.67 93.23 76.71 93.14

Table 2: Impact of population initializa-
tion. Comparative analysis of two population
initialization tricks, Init-RS and Init-HP, on
different methods, such as weight averaging,
Ensemble, model soups, and ours trained on
ImageNet with ResNet-50.

0 10 20 30 40
Generation

76.1
76.2
76.3
76.4
76.5
76.6
76.7

Ac
cu

ra
cy Ensemble

Weight Averaging
Pre-trained by PyTorch
DE
Model Soups
Initial Population(average)
SA-SHADE-tri-ensin

Figure 4: Accuracy curve of SA-SHADE-
tri-ensin. Comparative analysis of SA-
SHADE-tri-ensin trained on ImageNet with
ResNet-50 with various methods, detailed in
Table 2.

4.4 ABLATION STUDIES

4.4.1 IMPACT OF DIFFERENT SA-SHADE-TRI-ENSIN COMPONENTS

The proposed SA-SHADE-tri-ensin algorithm integrates various components from the state-of-the-art
DE algorithms by hybridizing adaptive learning (i.e., SADE, SHADE) of mutation & recombination,
trigonometric mutation, and sinusoidal change of mutation rate (Sin-F ). We conducted experiments
to verify the functionality of specific combinations of components by evolving ResNet-50 on Ima-
geNet. The results are provided in Table. 3. According to the results, SA-SHADE-tri-ensin, which
combined all components with Init-HP, performed the best.

7



Under review as a conference paper at ICLR 2024

Table 3: Ablation study on different SA-SHADE-tri-ensin components. The accuracy on Ima-
geNet, when ResNet-50 is optimized using various combinations of SA-SHADE-tri-ensin components.
Prior to evolving ResNet-50, the pre-trained models obtained a top-1 accuracy of 76.13%.

DE SADE SHADE Trigonometric Sin-F Init-RS Init-HP Top-1 (%)
76.421
76.463
76.506
76.547
76.522
76.568
76.664
76.712

Sc
al

in
g

Fa
ct

o
r

C
ro

ss
o

ve
r

P
ro

b
ab

ili
ty

Generation Generation

S1 S3 S4S2

ResNet-101ResNet-18

Figure 5: The adaptation of F and Cr. Dif-
ferent F and Cr were selected to produce fitter
offspring at different phases of the evolution for
different strategies (colored lines) when evolv-
ing ResNet-18 and ResNet-101 on ImageNet.

S4

STrigo

S3

S2

S1

ResNet-18

St
ra

te
gy

 S
el

ec
ti

o
n

 

Generation

Ps1
P s2

Ps3
Ps4

PsTrigo

ResNet-101

Generation

>

Successful Rate

Figure 6: Evolution dynamics. Visualization of
the competition and collaboration between mu-
tation strategies when evolving ResNet-18 and
ResNet-101 on ImageNet. (Upper) The prob-
ability of selecting the strategy. (Lower) The
successful rate of the strategy.

4.4.2 IMPACT OF MUTATION AND CROSSOVER

Natural selection drives the evolutionary process by specifying the advantageous traits required
for survival. Hence, species with better evolutionary operators (i.e., mutation and recombination)
have competitive advantages in producing fitter offspring. We show in the Supplementary Material
Section S2.3 (sup) that the enhanced performance only occurs when the mutation and recombination
are appropriately chosen, enabling the inheritance of advantageous traits from the parents while
maintaining diversity in the population; this supports the need for the adaptive feature in our proposed
algorithm SA-SHADE-tri-ensin. We show in Fig. 5 the mean of the archived values for both the F
and Cr, which successfully produce better offspring. The mean of the archived value varies with
generations depending on the update strategy. Generally, the scaling factor fluctuates slightly around
0.1, while the crossover rate increases throughout the generations. We note that both hyperparameters
of the strategy S4 merely have no change. Hence, it is not an inefficient mutation strategy for DNNs.

4.4.3 DIFFERENT DATASET AND DNNS

To examine the generalization capabilities of the proposed framework, the evolutionary processes
of different DNNs on different datasets, mentioned in Sec. 4.2, were analyzed. Based on the results
(detailed in Sec. S2 of the Supplementary Materials (sup)), the experiment showed that the proposed
method leads to decreases in validation loss and increases in validation accuracy over generations.
Compared to BP-based methods, the proposed framework shows enhanced classification performance;
no overfitting problem is observed in the EA training, demonstrating advantageous effects similar to
regularization; low time complexity (refer to Sec. S4 of the Supplementary Materials (sup)), which
make it highly practical to be incorporated into the recent framework of DNN training.

8



Under review as a conference paper at ICLR 2024

4.4.4 HYPERPARAMETERS OF SA-SHADE-TRI-ENSIN

The impacts of hyperparameters and initialization method were analyzed in Sec. S3 of the Supple-
mentary Materials (sup). It is observed that when the batch size of the proposed DE is larger than the
batch size used by SGD, there will be a mismatch of values in the BN layer and cause deteriorated
performance. Population size was observed to affect the converging behavior. Moreover, proper
population initialization was found to be crucial to evolve DNNs in the original search space rather
than the decomposed search space (Gong et al., 2020; Whitaker & Whitley, 2023).

4.4.5 THE ADAPTION OF MUTATION STRATEGIES

Fig. 5 and 6 show the adaptive behavior of the proposed SA-SHADE-tri-ensin, where mutation
strategies, scaling factor, and crossover rate collaborate and compete to produce fitter offspring. In
Fig. 5, it is observed that different F and Cr are selected to produce better offspring at different
phases of evolution. In Fig. 6, the lower panel shows the success rate of the strategy with deeper
color for a higher rate. The numbers in small boxes are the number of trials for certain strategies in
the recent 50 generations. The strategies S1, S3, and STrigo are observed to have a higher probability
of being selected and produce better offspring with higher success rates than strategies S2, S4. The
strategy STrigo, the only mutation strategy that utilizes the information of the loss function, turned
out to be the dominant strategy, especially in the first 50 generations. As evolution progress, the loss
function saturates, no matter which evolutionary operators are used.

4.5 DIVERSITY AND CONVERGENCE OF THE POPULATION

Darwin’s principle of divergence proposed that species diversity might increase the productivity of
ecosystems because of the division of labor among species. Hence, it is intriguing to analyze how
DNNs’ diversity manifests differently at various stages of the evolutionary process, which can be
observed by comparing Figs. 2 and 3. As the evolution begins, a higher diversity is observed, together
with stronger search capabilities, where better solutions are found over early generations. However, as
evolution progresses, it is observed that diversity declines rapidly and stabilizes after approximately
50 generations. The development of a new strategy for further convergence is worth investigating.

5 CONCLUSIONS

Biological adaptation has historically emerged as a consequence of learning and evolution. In this
study, we examine the effects of evolution on a population of DNNs derived from the ending epochs
of BP with distinct hyper-parameters, drawing inspiration from Hinton’s pretraining concepts (Hinton,
2022; Hinton & Salakhutdinov, 2006). To address the challenges associated with training deep neural
networks and handling large-scale datasets such as ImageNet, we propose an adaptive DE algorithm,
referred to as SA-SHADE-tri-ensin, which integrates state-of-the-art DE algorithms, namely SADE
and SHADE, with trigonometric mutation and sinusoidal modulation of the mutation rate. Our
proposed approach successfully improves the performance of all four ResNet variants. In comparison
to other non-EA baselines and existing works (Whitaker & Whitley, 2023) that evolve DNNs without
leveraging gradient details, our method achieves superior enhancement of pre-trained deep neural
network models on the ImageNet dataset.

Our analysis reveals that the strategy of trigonometric mutation yields improved offspring with higher
success rates and the important of diversity in parent population, particularly during the early stages
of optimization. Remind that the "No Free Lunch theorem" (Wolpert & Macready, 1997) posits
that there exists no universally superior optimization algorithm capable of outperforming others
across all possible problems. Currently, neural network optimization remains in a black box state
due to the extremely high dimensionality (Bai et al., 2021). This encourages the invention of novel
strategies for further enhancements in neural network performance. While our adaptive DE algorithm
effectively enhances existing deep ResNet variants on the ImageNet dataset, additional investigations
are necessary to assess its performance in other DNN architectures and alternative learning tasks,
such as image segmentation and image synthesis. We have also conducted a preliminary exploration
of another significant evolutionary algorithm paradigm, particle swarm optimization (Kennedy &
Eberhart, 1995), which demonstrates promising indications of performance improvement in the
MNIST study (Refer to Sec. S5 of the Supplementary Materials (sup)).

9



Under review as a conference paper at ICLR 2024

REFERENCES

Pytorch torchvision models. https://pytorch.org/vision/stable/models.html.
Accessed on August 9, 2023.

See Supplemental Material at [URL] for the details.

Noor H Awad, Mostafa Z Ali, Ponnuthurai N Suganthan, and Robert G Reynolds. An ensemble sinu-
soidal parameter adaptation incorporated with l-shade for solving cec2014 benchmark problems.
In 2016 IEEE congress on evolutionary computation (CEC), pp. 2958–2965. IEEE, 2016.

Xiao Bai, Xiang Wang, Xianglong Liu, Qiang Liu, Jingkuan Song, Nicu Sebe, and Been Kim. Explain-
able deep learning for efficient and robust pattern recognition: A survey of recent developments.
Pattern Recognition, 120:108102, 2021.

Leonard Berrada, Andrew Zisserman, and M. Pawan Kumar. Smooth loss functions for deep top-k
classification, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Xiaodong Cui, Wei Zhang, Zoltán Tüske, and Michael Picheny. Evolutionary stochastic gradient
descent for optimization of deep neural networks. Advances in neural information processing
systems, 31, 2018.

Hui-Yuan Fan and Jouni Lampinen. A trigonometric mutation operation to differential evolution.
Journal of global optimization, 27:105–129, 2003.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Maoguo Gong, Jia Liu, A Kai Qin, Kun Zhao, and Kay Chen Tan. Evolving deep neural networks
via cooperative coevolution with backpropagation. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):420–434, 2020.

G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, July 2006.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: Train 1, get m for free, 2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

J Kennedy and R Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - International
Conference on Neural Networks, volume 4, pp. 1942–1948 vol.4, November 1995. doi: 10.1109/
ICNN.1995.488968.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, and Others. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

10

https://pytorch.org/vision/stable/models.html


Under review as a conference paper at ICLR 2024

Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O Stanley. Safe mutations for deep and recurrent
neural networks through output gradients. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 117–124, 2018.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

David J Montana, Lawrence Davis, et al. Training feedforward neural networks using genetic
algorithms. In IJCAI, volume 89, pp. 762–767, 1989.

Millie Pant, Hira Zaheer, Laura Garcia-Hernandez, Ajith Abraham, et al. Differential evolution: A
review of more than two decades of research. Engineering Applications of Artificial Intelligence,
90:103479, 2020.

Adam P Piotrowski. Differential evolution algorithms applied to neural network training suffer from
stagnation. Applied Soft Computing, 21:382–406, 2014.

A Kai Qin and Ponnuthurai N Suganthan. Self-adaptive differential evolution algorithm for numerical
optimization. In 2005 IEEE congress on evolutionary computation, volume 2, pp. 1785–1791.
IEEE, 2005.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic programming approach
to designing convolutional neural network architectures. In Proceedings of the genetic and
evolutionary computation conference, pp. 497–504, 2017.

Yanan Sun, Gary G Yen, and Zhang Yi. Evolving unsupervised deep neural networks for learning
meaningful representations. IEEE Transactions on Evolutionary Computation, 23(1):89–103,
2018.

Ryoji Tanabe and Alex Fukunaga. Success-history based parameter adaptation for differential
evolution. In 2013 IEEE congress on evolutionary computation, pp. 71–78. IEEE, 2013.

William R Taylor. Stirring the primordial soup. Nature, 434(7034):705–705, 2005.

Tim Whitaker and Darrell Whitley. Sparse mutation decompositions: Fine tuning deep neural
networks with subspace evolution. arXiv preprint arXiv:2302.05832, 2023.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

D H Wolpert and W G Macready. No free lunch theorems for optimization. IEEE Trans. Evol.
Comput., 1(1):67–82, April 1997. ISSN 1941-0026. doi: 10.1109/4235.585893.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

Yu Xue, Yiling Tong, and Ferrante Neri. An ensemble of differential evolution and adam for training
feed-forward neural networks. Information Sciences, 608:453–471, 2022.

11

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Under review as a conference paper at ICLR 2024

Shangshang Yang, Ye Tian, Cheng He, Xingyi Zhang, Kay Chen Tan, and Yaochu Jin. A gradient-
guided evolutionary approach to training deep neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 33(9):4861–4875, 2021.

Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

12



Under review as a conference paper at ICLR 2024

SUPPLEMENTAL MATERIAL FOR "EVOLVING DEEP
NEURAL NETWORK’S WEIGHTS AT IMAGENET SCALE"

Anonymous authors
Paper under double-blind review

S1 CORRESPONDENCE BETWEEN DARWINIAN EVOLUTION AND NEURAL
NETWORK OPTIMIZATION USING DIFFERENTIAL EVOLUTION

Bull ?
Yes
No

Input Layer 

Hidden Layer 

Output Layer 

Recurrent Layer 

Output Layer 

Hidden Layer Input Layer 

(CNN)

(MLP) (RNN)

Environment

Species

(MNIST)

(CIFAR)

(IMAGENET)

Within Species

Between Species

Nature Selection
The Di�erence
Vector:

The Newly created
donor vector:

The Scaled
Di�erence Vector:

corresponding to

target vector

Figure S1: Conceptual illustration of our proposed Darwinian evolution on neural networks
using DE. (Left) In analogy to Darwinian evolution, the dataset provides the environment where
different types of neural networks strike to survive. (Middle) The evolution (natural selection and
inheritance) applies to different network architectures and trainable weights in the same architect.
Pretrained neural networks are the primordial ancestors for the DE to evolve and to select the ’elite’
solution. (Right) An illustration of DE mutation.

The theory of evolution (Smith, 1993), supported by evidence from genetics, paleontology, and geol-
ogy, describes how living beings originate from primordial soup, make up the first species (primordial
ancestor, also known as last universal common ancestor (LUCA)), survive under environmental
pressure, and evolve in nature over long periods. Since Charles Darwin’s book "On the Origin of
Species" was published in 1859 (Darwin, 2004), the theory has been expanding to describe the
necessary conditions, ingredients, and mechanisms before the start of and the transition to evolution.
In Fig. S1, we illustrate Darwinian Evolution’s analogy to the neural network optimization problem
using differential evolution (DE). The neural network architecture and the dataset play the role of the
species and environment, respectively. Different architectures specialize in different functions, for
example, convolutional neural networks (e.g., ResNet (He et al., 2015), MobileNet (Howard et al.,
2017)) and recurrent neural networks (e.g., LSTM (Hochreiter & Schmidhuber, 1997), GRU (Chung
et al., 2014)) capture translation invariances and temporal dependencies underlie the data by im-
plementing the inner workings of the visual cortex and memory. The trainable parameters can be
interpreted as the genetic traits within the architect framework that affects survival and breeding. On
the other side, the complexity of the dataset can be interpreted as the complexity of the environment,
scaling from simple MNIST(LeCun et al., 1998) to big data ImageNet(Deng et al., 2009). Survival
fitness can be defined as the loss function of the learning tasks. This work focuses on ANN training
by considering the evolution of a population of trainable parameters in the pre-defined architecture
(i.e., single organism) rather than evolving a population of different architectures (Real et al., 2017;
Lu et al., 2020).

A detailed description of DE is provided in the Method section of the main text. In Fig. S1, an
illustration of the DE’s mutation strategy S1 in 2D search space is shown, with the contour lines
indicating fitness functions in the search space. The figure shows how DE simulates mutation using
any three candidate solutions in the population. Various improvements have been on the ordinary DE
by adding adaptive learning (i.e., SADE, SHADE) of mutation & recombination, trigonometric and
sinusoidal mutations (Sin-F ) for scaling factor F .

1



Under review as a conference paper at ICLR 2024

S1.1 CONCEPT OF PRIMORDIAL SOUP AND ANCESTOR

Primordial soup theory (Taylor, 2005), the Miller-Urey experiment (Miller, 1953), and others (Kasting,
1993) studied and simulated the conditions of early Earth for the first life, which arose from non-living
matters, give rise to other species through evolution. This work examined neuro-evolution that begins
with the primordial ancestor, ADAM-trained neural networks as the first species. Neuro-evolution
that starts from the primordial ancestor is found to be empirically superior to the primordial soup,
randomly initialized neural networks, as shown in Fig. S2. Hence, the results align with the Primordial
soup theory, showing the importance of forming a species before neuro-evolution takes place.

Epoch Epoch Epoch

Lo
ss

A
cc

u
ra

cy

A
cc

u
ra

cy

A
cc

u
ra

cy

ADAM as Primordial Ancestor 
(With Regularization)

ADAM as Primordial Ancestor 
(Without Regularization)

Primordial Soup 
(Normal Initialization)

Figure S2: The starting point of neuro-evolution: primordial ancestor v.s. primordial soup. The
left and middle figures illustrate how the losses and accuracies change over the epoch for DNNs
trained by Adam (blue curves) and DE (red markers) using Adam as the primordial ancestor, with
and without regularization. It is observed that Adam requires regularization to handle overfitting,
while DE does not require. The right figure evolves a neural network from the primordial soup using
random initialization, which has difficulty in convergence.

S2 SMALL DATASET AND LENETS

We carried out experiments in small datasets, MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100,
and we trained models (i.e., LeNet1, LeNet5, MLP, RNN) from scratch using BP with early stopping
and used the DNNs from the ending epochs (the last ps epochs) as the initial population for ordinary
DE. The hyperparameters of DE being examined are summarized in Table S2. The ordinary DE with
strategy S1 and crossover are used to evolve DNNs. The moderate size of datasets and DNNs allows
us to examine different configurations of evolving DNNs in a controllable way.

In Fig.S3, LeNet1 and LeNet5 architectures are evolved in the environment (dataset) with different
complexities, which provide different amounts of training data generated using data augmentation.
The evolution of DE is observed to have positive impacts on the ADAM-trained neural network.
Moreover, datasets and models with higher complexity are observed to achieve better performance.
Both the LeNet1 and LeNet5 evolved using the proposed Darwinian evolution framework are found
to be better than the LeNet5 trained using BP by LeCun et al. in 1998 (Lecun et al., 1998). The
result is summarized in Table S1, with the error curve shown in Figure S4. The middle panel of
Fig. S3 shows the degrees of improvement on top of the BP-based approach under different degrees
of L2 regularization. It is observed that the best results are achieved with a regularization of 0.0001
compared to no regularization at all, and all regularization parameters lead to increased model
accuracy. The use of regularization reduces the impact of over-fitting in BP-based optimizers. During
the Darwinian evolution, it is observed that the trait of preventing over-fitting is inherited without an
explicit L2 regularization in the fitness function. To assess the out-of-distribution robustness of the
neural network trained using the proposed framework, two datasets with common corruptions are
used, namely MNIST-C and CIFAR-10-C. The types of corruption are summarized at the right panel
of Fig. S3.

2



Under review as a conference paper at ICLR 2024

m
CE

(%
)

m
CE

(%
)

Physical 
Modification

Perturbation 
to camera

Environmental 
factors

(Survival Criteria)
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 + 	𝛼	𝐿2

Information about 
the environment

(Data Augmentation)
Ac

cu
ra

cy

Pe
rc

en
ta

ge
 (%

)

Accuracy Improvement 

𝛼Log		(𝑁	𝑥	𝑁!)

Complexity of Dataset & Model

MNIST-C

CIFAR-10-C

(a)

(b)

(c)

(d)

Figure S3: The impact of environment (dataset and loss function) on the DNNs. The left
figure shows the relationships between the accuracy and the complexity of the dataset (MNIST
with data augmentation) and model (LeNets). The middle bottom figure illustrates the influence of
regularization. The two figures at the right show the performance of ADAM and DE on the corrupted
MNIST-C and CIFAR-10-C.

Table S1: Test accuracy of LeNets on MNIST and CIFAR. (M) MNIST, (F.M) Fashion MNIST,
(C) CIFAR

LeCun’s (Lecun et al., 1998) Adam DE Params
Acc Acc Acc

LeNet1(M) 98.30 98.78 99.03 3,246
LeNet5(M) 99.05 98.95 99.20 62,006

LeNet5(F.M) na 89.27 89.43 62,006
LeNet5(C-10) na 60.16 61.36 62,006

LeNet5(C-100) na 24.47 26.73 62,006

Figure S4: Average classification error with standard errors across epochs during the training
process. LeNet-1 model consistently converges across 10 runs on MNIST.

S2.1 DARWINIAN EVOLUTION DOES NOT OVERFIT

In nature, species evolve for better fit but not overfit (e.g., giraffes can reach higher leaves with the
evolved long necks, but not over-long necks (Wang et al., 2022)). In this work, we studied whether

3



Under review as a conference paper at ICLR 2024

evolving neural networks using DE will lead to overfitting that gradient descent methods suffer.
Generally, DE is found to have no overfitting issue, as shown in Fig. S2. Comparing the primordial
ancestor trained with and without regularization, it is also observed that the quality of the primordial
ancestor has a significant impact on DNNs, demonstrating the effect of descent in the same lineage.
In the same lineage, offspring receive the genetic traits from parents through inheritance with slight
variation and modification. In Fig. S2, the lineage trained using BP with regularization performs
better, as the use of regularization reduces the impact of over-fitting in BP-based optimizers. During
the Darwinian evolution, it is observed that the trait of preventing over-fitting is inherited without an
explicit L2 regularization in the fitness function.

S2.2 PERFORMANCE ON DIFFERENT DATASETS AND MODELS
A

cc
u

ra
cy

A
cc

u
ra

cy

A
cc

u
ra

cy

MNIST

RNN LeNet5

MLP

ADAM Accuracy/Loss DE Accuracy/Loss Switch optimizer

Lo
ss

Lo
ss

A
cc

u
ra

cy

LeNet1

MNIST Fashion MNIST

MNIST

Epoch

LeNet5

A
cc

u
ra

cy
CIFAR-10

Epoch

A
cc

u
ra

cy

Epoch

CIFAR-100

LeNet5

A
cc

u
ra

cy

A
cc

u
ra

cy

A
cc

u
ra

cy

Figure S5: Generalization of DE on different datasets and deep learning models. Datasets include
MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100, while models include: LeNet1, LeNet5, MLP,
and RNN. The blue lines represent Adam optimizer, and the red points represent the DE optimizer.

S2.3 IMPACT OF SCALING FACTOR AND CROSSOVER RATE

Our comprehensive analysis has revealed the crucial significance of selecting appropriate parameters,
namely F and Cr, shown in Figs. S6 and S7. Hence, an adaptive approach is employed to enhance
the performance of the DE optimizer to evolve DNN on ImageNet.

F = 0.01 & CR = 0.05 F = 0.1 & CR = 0.05 F = 1 & CR = 0.05 F = 2 & CR = 0.05

Tr
ai

n
 A

cc
u

ra
cy

Tr
ai

n
 L

o
ss

V
al

id
 A

cc
u

ra
cy

V
al

id
 L

o
ss

Epoch Epoch Epoch Epoch

Figure S6: The impact of the mutation factor
F . Comparison between DE (blue curves) and
Adam (red marker) for RNN models, with fixed
crossover rate and different F.

F = 0.01 & CR = 0 F = 0.01 & CR = 0.05 F = 0.01 & CR = 0.5 F = 0.01 & CR = 1

Tr
ai

n
 A

cc
u

ra
cy

Tr
ai

n
 L

o
ss

V
al

id
 A

cc
u

ra
cy

V
al

id
 L

o
ss

Epoch Epoch Epoch Epoch

Figure S7: The impact of the crossover rate
CR. Comparison between DE (blue curves) and
Adam (red marker) for RNN models, with fixed
mutation factor and different CR.

4



Under review as a conference paper at ICLR 2024

S2.4 HYPERPARAMETS USED

Table S2: Hyper-parameters for DE.
Name Symbol Value/ Range

Scaling factor F [0.01, 0.1, 1, 2]
Crossover rate Cr [0, 0.05, 0.5, 1]

Mutation strategy S S1

# of generations Gen 200-300
Batch size bs 50000

Population size ps 20
BP algorithm ADAM
Update scope whole NN
Regularization α [0, 10−4, 10−3, 10−2]

Table S3: Hyper-parameters in SHADE-tri-ensin
Name Symbol Value/ Range

Scaling factor F 0-0.2
Crossover rate Cr 0-0.3

Mutation strategies S S1 - S4, STrigo

# of generations Gen 200
Batch size bs 2048

Population size ps 10
BP algorithm SGD pretraining
Update scope exempt FC
Archive size H 5

S2.5 ROBUSTNESS AGAINST NOISE

To verify the robustness and generalization of our approach, we trained the model using MNIST data
and CIFAR-10 data and tested it on the MNIST-C and CIFAR10-C datasets, respectively. Table S4
shows the LeNet1 and LeNet5’s performance on MNIST-C. Table S5 shows the LeNet1 and LeNet5’s
performance on CIFAR10-C. Table S6 shows the ResNet performance on CIFAR10-C.

Table S4: Performance on MNIST-C. The error and mean corruption error (mCE) of ADAM and
DE for LeNet models trained on MNIST. Models that perform the best for each type of corruption is
colored blue. Overall, LeNet5 trained by DE is found to be less susceptible to corruptions.

Error mCE

Le
N

et
1_

A
da

m

Le
N

et
1_

D
E

Le
N

et
5_

A
da

m

Le
N

et
5_

D
E

Le
N

et
1_

A
da

m

Le
N

et
1_

D
E

Le
N

et
5_

A
da

m

Le
N

et
5_

D
E

Shot Noise 2.7% 2.4% 3.0% 2.1% 100% 92% 114% 79%
Impulse Noise 13.6% 14.2% 11.3% 9.6% 100% 104% 83% 70%
Glass Blur 13.1% 12.2% 8.9% 6.3% 100% 93% 68% 48%
Motion Blur 20.1% 15.6% 10.8% 8.9% 100% 78% 54% 44%
Shear 3.5% 3.1% 3.1% 2.5% 100% 89% 88% 74%
Scale 11.2% 7.9% 12.4% 8.1% 100% 71% 111% 73%
Rotate 9.6% 8.7% 9.5% 7.9% 100% 90% 99% 83%
Brightness 84.9% 84.8% 8.2% 4.2% 100% 100% 10% 5%
Translate 44.9% 43.0% 43.3% 42.0% 100% 96% 96% 94%
Stripe 32.2% 31.8% 15.1% 8.2% 100% 99% 47% 26%
Fog 81.9% 82.4% 22.0% 18.2% 100% 101% 27% 22%
Spatter 5.2% 4.9% 3.1% 2.6% 100% 95% 59% 49%
Dotted Line 4.8% 4.6% 4.0% 3.6% 100% 96% 84% 76%
Zigzag 16.0% 15.4% 13.0% 11.3% 100% 96% 81% 71%
Canny Edges 22.9% 20.1% 40.2% 37.9% 100% 88% 176% 165%
Average 24.4% 23.4% 13.9% 11.6% 100% 92% 80% 65%

Table S5: Performance on CIFAR10-C. The error and mean corruption error (mCE) of ADAM and
DE for LeNet models trained on CIFAR10. Models that perform the best for each type of corruption
is colored blue. In all corruptions, LeNet5 trained by DE is found to be less susceptible to corruptions.

Error mCE

Le
N

et
1_

A
da

m

Le
N

et
1_

D
E

Le
N

et
5_

A
da

m

Le
N

et
5_

D
E

Le
N

et
1_

A
da

m

Le
N

et
1_

D
E

Le
N

et
5_

A
da

m
Le

N
et

5_
D

E

Gaussian 52.7% 52.3% 44.4% 43.7% 100% 99% 84% 83%
Shot 51.2% 51.2% 42.5% 42.3% 100% 100% 83% 83%
Impulse 56.2% 56.1% 48.3% 47.4% 100% 100% 86% 84%
Defocus 51.3% 49.9% 44.2% 43.4% 100% 97% 86% 85%
Glass 53.3% 52.1% 48.0% 46.9% 100% 98% 90% 88%
Motion 53.2% 51.9% 49.0% 47.4% 100% 97% 92% 89%
Zoom 53.5% 52.1% 48.5% 46.9% 100% 97% 91% 88%
Snow 52.1% 52.1% 46.4% 46.0% 100% 100% 89% 88%
Frost 54.9% 55.9% 52.4% 50.2% 100% 102% 96% 92%
Fog 58.8% 57.6% 56.7% 54.7% 100% 98% 96% 93%
Brightness 50.8% 49.8% 44.4% 43.5% 100% 98% 87% 86%
Contrast 67.2% 65.5% 65.3% 64.0% 100% 97% 97% 95%
Elastic 52.7% 51.7% 45.8% 45.0% 100% 98% 87% 85%
Pixel 49.7% 49.1% 41.7% 41.1% 100% 99% 84% 83%
JPEG 49.7% 48.7% 42.0% 41.1% 100% 98% 84% 83%
Average 53.8% 53.1% 48.0% 46.9% 100% 99% 89% 87%

5



Under review as a conference paper at ICLR 2024

Table S6: Performance of deeper models on CIFAR10-C. The error and mean corruption error
(mCE) of ADAM and DE for deeper models trained on CIFAR10. Models that perform the best
for each type of corruption is colored blue. Overall, deeper models trained by DE is found to be
less susceptible to corruptions. ResNet and MobileNet are observed to be comparable, where each
manages certain corruptions better.

Error mCE

R
es

N
et

_A
da

m

R
es

N
et

_D
E

M
ob

ile
N

et
_A

da
m

M
ob

ile
N

et
_D

E

R
es

N
et

_A
da

m
R

es
N

et
_D

E

M
ob

ile
N

et
_A

da
m

M
ob

ile
N

et
_D

E

Gaussian 37.5% 30.9% 68.6% 68.1% 71% 59% 130% 129%
Shot 36.0% 28.4% 56.2% 55.6% 70% 55% 110% 109%
Impulse 39.9% 35.8% 49.2% 49.1% 71% 64% 88% 87%
Defocus 40.3% 26.9% 21.7% 21.2% 79% 52% 42% 41%
Glass 42.4% 37.8% 49.6% 48.9% 80% 71% 93% 92%
Motion 49.3% 33.8% 31.1% 30.3% 93% 64% 58% 57%
Zoom 44.0% 30.7% 28.9% 28.3% 82% 57% 54% 53%
Snow 41.1% 29.6% 22.2% 21.8% 79% 57% 43% 42%
Frost 45.4% 27.6% 28.5% 27.9% 83% 50% 52% 51%
Fog 47.4% 30.3% 17.8% 17.4% 81% 51% 30% 30%
Brightness 39.5% 21.4% 9.3% 9.2% 78% 42% 18% 18%
Contrast 61.9% 43.7% 33.1% 32.6% 92% 65% 49% 49%
Elastic 41.6% 28.0% 20.5% 20.0% 79% 53% 39% 38%
Pixel 36.7% 24.7% 26.4% 26.9% 74% 50% 53% 54%
JPEG 36.0% 23.0% 24.0% 24.0% 72% 46% 48% 48%
Average 42.6% 30.2% 32.5% 32.1% 79% 56% 61% 60%

S3 ADDITIONAL RESNETS EXPERIMENT ON IMAGENET

S3.1 IMPACT OF POPULATION SIZE AND BATCH SIZE

Our method is similar to ensemble learning, where typically a larger number of models leads to better
performance. Therefore, we increased the number of populations for analysis, as shown in Table S7.
Additionally, in evolutionary algorithms, we require a certain number of samples to calculate fitness
values for population selection. The mini-batch size of samples also has an impact on the evolution
results, as demonstrated in Table S8.

Table S7: Impact of population size. The performance of different population size for evolution.
Population size 6 10 20 40

Top-1 (%) 76.542 76.568 76.611 76.648

Table S8: Impact of batch size. The mini-batch samples for computing fitness value with DE
algorithms.

DE batch size 256 512 1024 64000 320000 980000

Top-1 (%) 76.542 76.568 76.553 76.551 76.561 76.563

S3.2 POPULATION INITIALIZATION

In this paper, the population initialization is obtained by fine-tuning a pre-trained model. To validate
the importance of this approach, we replaced the fine-tuning method with randomly generated
Gaussian white noise for population initialization, i.e. Ref. (Whitaker & Whitley, 2023). Specifically,
we computed the standard deviation of the initially fine-tuned population and used this standard
deviation to generate Gaussian noise, which was then added to the pre-trained model. This resulted
in a randomly initialized population. From the Table S9, it can be observed that the random noise
initialization did not provide any benefits to our method.

S4 TIME COMPLEXITY

Remarkably, if a m-layers network is employed,
∑m

i=1 li parameters are to be optimized, where
li represents number of i-th layer. Time complexity are thus O(ng ·

∏m−1
i=1 lili+1) and O(ne ·

6



Under review as a conference paper at ICLR 2024

Table S9: Comparison with randomly initialized population.
Method Pytorch Benchmark Random noise Fine-tuned parents

Top-1 (%) 76.13 76.15 76.57

∑m
i=1 li) where ng and ne are training samples for gradient-based back-propagation and evolutionary

algorithms, respectively.

Step by step, we analyze the algorithmic complexity for both gradient-based back propagation and
evolutionary algorithm to train a layered neural network.

We emphasise that our analysis is on training a m-layered neural network, where
∑m

i=1 li parameters
are to be optimized. The procedure to produce update parameters are focused.

For feed-forward pass direction, each layer has experienced such process

Zi+1 ←Mi+1,i · Zi, Zi+1 ← f(Zi+1), (S1)

where f(∗) is the activation function and Mi+1,i contains the weights going from layer i to i + 1.
Thus, time complexity is the same as feed-forward case, which in total demands O(ng

∑m−1
i=1 lili+1)

basic operations and O(ng

∑m−1
i=1 li+1) queries to the inverse activation function.

For back-propagation direction, each layer has experienced such process

Ei ← f ′(Zi −Oi), , Di,i−1 ← Ei · Zi−1, Mi,i−1 ←Mi,i−1 −Di,i−1 (S2)

where Ei−1 and Di,i−1 are the error terms and adjust matrix. Remarkably, different algorithms
are supposed to be employed here and we consider the typical case. Thus, time complexity is
O(nglili+1) operations, and O(ngli) queries to the inverse activation function. In total, feed-forward
pass algorithm demands O(ng

∑m−1
i=1 lili+1) basic operations and O(ng

∑m−1
i=1 li+1) queries to the

activation function.

For the differential evolution algorithm, as described by equations in the Method section of the main
text, demands O(ne

∑m−1
i=1 li), including both the mutation operation and the crossover operation.

S5 PARTICLE SWARM OPTIMIZER

To demonstrate that Darwinian evolutionary theory applies to a wide range of evolutionary algorithms,
and the DE algorithm is not a special case. We selected the PSO algorithm (Kennedy & Eberhart,
1995) to replace DE and tested its optimization performance. As shown in Fig. S8, we find that the
results for PSO are similar to those for DE in Fig. S2. It further proves the generalization and validity
of our theory.

Epoch Epoch Epoch

Lo
ss

A
cc

u
ra

cy

A
cc

u
ra

cy

A
cc

u
ra

cy

ADAM as Primordial Ancestor 
(With Regularization)

ADAM as Primordial Ancestor 
(Without Regularization)

Primordial Soup 
(Normal Initialization)

Figure S8: Other nature-inspired optimizer To demonstrate the generalization of our proposed
method beyond differential evolution, another population-based optimizer, PSO, is used. Similar
results in Figure 2 are observed. Hence, it further demonstrates the generalization and validity of the
positive impacts of population-based optimizers on deep neural networks.

7



Under review as a conference paper at ICLR 2024

REFERENCES

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. December 2014.

Charles Darwin. On the origin of species, 1859. Routledge, 2004.

J Deng, W Dong, R Socher, L J Li, K Li, and others. Imagenet: A large-scale hierarchical image database. 2009
IEEE conference, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. pp.
770–778, December 2015.

S Hochreiter and J Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, November 1997.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for mobile vision
applications. April 2017.

James F Kasting. Earth’s early atmosphere. Science, 259(5097):920–926, 1993.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pp. 1942–1948. IEEE, 1995.

Y Lecun, L Bottou, Y Bengio, and P Haffner. Gradient-based learning applied to document recognition. Proc.
IEEE, 86(11):2278–2324, November 1998. ISSN 1558-2256. doi: 10.1109/5.726791.

Y LeCun, L Bottou, Y Bengio, and others. Gradient-based learning applied to document recognition. Proceedings
of the, 1998.

Zhichao Lu, Ian Whalen, Yashesh Dhebar, Kalyanmoy Deb, Erik D Goodman, Wolfgang Banzhaf, and
Vishnu Naresh Boddeti. Multiobjective evolutionary design of deep convolutional neural networks for
image classification. IEEE Transactions on Evolutionary Computation, 25(2):277–291, 2020.

Stanley L Miller. A production of amino acids under possible primitive earth conditions. Science, 117(3046):
528–529, 1953.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. Large-scale evolution of image classifiers. In International Conference on Machine
Learning, pp. 2902–2911. PMLR, 2017.

John Maynard Smith. The theory of evolution. Cambridge University Press, 1993.

William R Taylor. Stirring the primordial soup. Nature, 434(7034):705–705, 2005.

Shi-Qi Wang, Jie Ye, Jin Meng, Chunxiao Li, Loïc Costeur, Bastien Mennecart, Chi Zhang, Ji Zhang, Manuela
Aiglstorfer, Yang Wang, et al. Sexual selection promotes giraffoid head-neck evolution and ecological
adaptation. Science, 376(6597):eabl8316, 2022.

Tim Whitaker and Darrell Whitley. Sparse mutation decompositions: Fine tuning deep neural networks with
subspace evolution. arXiv preprint arXiv:2302.05832, 2023.

8


	Introduction
	Related Work
	EA-based Weight Optimization
	Complementarity of EA and GD
	Evolving Pretrained Models

	Method
	SA-SHADE-tri-ensin
	Tricks on mutation operation
	Tricks on Population Initialization

	Experiment
	Implementation
	Datasets and Pre-trained Models
	Main Results
	Improved performance of DNNs
	Impact of Population Initialization Tricks

	Ablation Studies
	Impact of different SA-SHADE-tri-ensin components
	Impact of mutation and crossover
	Different dataset and DNNs
	Hyperparameters of SA-SHADE-tri-ensin
	The adaption of mutation strategies

	Diversity and Convergence of the population

	Conclusions
	Evolving_Deep_Neural_Network_s_Weights_at_ImageNet_Scale_ICLR_Draft (4).pdf
	Correspondence between Darwinian Evolution and Neural Network Optimization Using Differential Evolution
	Concept of Primordial soup and ancestor

	Small dataset and LeNets
	Darwinian evolution does not overfit
	Performance on Different Datasets and Models
	Impact of Scaling Factor and Crossover Rate
	Hyperparamets Used
	Robustness against Noise

	Additional ResNets Experiment on ImageNet
	Impact of population size and batch size
	Population Initialization

	Time complexity
	Particle Swarm Optimizer


