
RLPR: Extrapolating RLVR to general domains without verifiers

Anonymous ACL submission

MMLU-Pro
(Avg@2)

GPQA
(Avg@4)

TheoremQA
(Avg@2)

MATH-500
(Avg@2)

Minerva
(Avg@2)

Average

40

60

80

A
cc

ur
ac

y 
(%

)

56.0

37.6

55.4

78.0

56.5 56.7
54.5

34.2

47.3

75.4

49.4
52.2

54.2

36.4

53.5

76.0

54.6 54.955.4

37.4

52.1

77.0

51.7

54.7

Models
Qwen2.5-7B-Inst
RLVR
General Reasoner
RLPR

(rule-based verifier)
(model-based verifier)
(no verifier)

Models
Qwen2.5-7B-Inst
RLVR
General Reasoner
RLPR

(rule-based verifier)
(model-based verifier)
(no verifier)

Figure 1: Overall performance on general-domain and mathematical reasoning benchmarks. By simply replacing
the rule-based verifier reward of RLVR with the proposed LLM’s intrinsic probability reward, RLPR achieves
consistent improvements in both mathematical and general domains, even outperforming strong RL methods driven
by model-based verifier reward. Average: average accuracy of five benchmarks. Verifier requirements of different
methods are listed in parentheses.

Abstract001

Reinforcement Learning with Verifiable Re-002
wards (RLVR) demonstrates promising poten-003
tial in advancing the reasoning capabilities of004
LLMs. However, its success remains largely005
confined to mathematical and code domains.006
This primary limitation stems from the heavy007
reliance on domain-specific verifiers, which re-008
sults in prohibitive complexity and limited scal-009
ability. To address the challenge, our key ob-010
servation is that LLM’s intrinsic probability of011
generating a correct free-form answer directly012
indicates its own evaluation of the reasoning013
reward (i.e., how well the reasoning process014
leads to the correct answer). Building on this in-015
sight, we propose RLPR, a simple verifier-free016
framework that extrapolates RLVR to broader017
general domains. RLPR uses the LLM’s own018
token probability scores for reference answers019
as the reward signal and maximizes the ex-020
pected reward during training. We find that021
addressing the high variance of this noisy prob-022
ability reward is crucial to make it work, and023
propose prob-to-reward and stabilizing meth-024
ods to ensure a precise and stable reward from025
LLM intrinsic probabilities. Comprehensive ex-026
periments in four general-domain benchmarks027

and three mathematical benchmarks show that 028
RLPR consistently improves reasoning capa- 029
bilities in both areas for Gemma, Llama, and 030
Qwen based models. Notably, RLPR outper- 031
forms concurrent VeriFree by 7.6 points on 032
TheoremQA and 7.5 points on Minerva, and 033
even surpasses strong verifier-model-dependent 034
approaches General-Reasoner by 1.6 average 035
points across seven benchmarks. 036

1 Introduction 037

Reinforcement Learning with Verifiable Re- 038

wards (RLVR) has emerged as a promising 039

paradigm to advance the reasoning capabilities 040

of Large Language Models (LLMs) (Jaech et al., 041

2024; DeepSeek-AI et al., 2025; Hu et al., 2025b). 042

This paradigm not only shows the power of scaling 043

test-time computation to address complex prob- 044

lems, but also sheds valuable light on paths to AGI 045

with incentivized exploration and evolution. 046

However, in contrast to the pretraining of LLMs 047

that can learn foundational capabilities from gen- 048

eral domain data, most RLVR methods are confined 049

to mathematics (Hu et al., 2025b; Liu et al., 2025b; 050

Zeng et al., 2025; Yu et al., 2025) and code gen- 051
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eration (Luo et al., 2025a; He et al., 2025; Cui052

et al., 2025a). The primary reason is that existing053

RLVR methods heavily rely on domain-specific054

verifiers to obtain reward, as shown in Figure 2.055

The most widely adopted verifiers are handcrafted056

rules (Hu et al., 2025b; Liu et al., 2025b; Zeng057

et al., 2025). Extending these rule-based reward058

systems to new models and domains typically re-059

quires prohibitive heuristic engineering. Moreover,060

for general-domain reasoning with free-form an-061

swers, it is even impossible to devise rule-based062

verifiers due to the high diversity and complexity of063

natural language. Recent works attempt to address064

this problem by training specialized LLMs as ver-065

ifier models (Ma et al., 2025). However, training066

LLMs for general reward evaluation requires non-067

trivial and extensive data annotation, which often068

leads to unsatisfactory reward quality in practice.069

Involving separate verifier models also complicates070

the RL training framework and introduces addi-071

tional computation cost. As a result, this scalability072

problem prevents existing RLVR methods from073

utilizing rich general-domain data and limits the074

potential of broader reasoning capabilities.075

To address the problem, we propose the076

RLPR framework (Reinforcement Learning with077

Reference Probability Reward) that extrapolates078

general-domain RLVR without external verifiers.079

The basic insight is that LLM’s intrinsic probability080

of generating a correct answer directly indicates081

its own evaluation of the reasoning reward (i.e.,082

how well the reasoning process leads to the correct083

answer). It also reflects the policy by measuring084

how likely the LLM is to take the correct action.085

Therefore, we can directly leverage this probabil-086

ity signal as a reward to incentivize reasoning for087

the correct answer in general domains. Since this088

probability score is a natural built-in of LLM’s089

foundational capabilities, it offers good coverage090

and potential for reward evaluation even without091

any specialized fine-tuning. It can also better deal092

with the complexity and diversity of free-form nat-093

ural language answers, giving reasonable reward094

even to partially correct answers.095

Specifically, RLPR introduces two key innova-096

tions: (1) At the reward modeling level, we pro-097

pose a simple and scalable alternative to the ex-098

plicit reward from external verifiers with an intrin-099

sic Probability-based Reward (PR), calculated by100

the average decoding probabilities of the reference101

answer tokens. Compared with naive sequence102

likelihood as reward (Zhou et al., 2025), the pro-103

posed PR shows better robustness and higher re- 104

ward quality on quantitative examinations (see Fig- 105

ure 4). Moreover, we propose a simple debiasing 106

method to eliminate the reward bias from text by 107

optimizing the reward advantage over the same 108

prompt without reasoning. (2) At the training level, 109

we propose an adaptive curriculum learning mech- 110

anism to stabilize training. We adaptively remove 111

prompts yielding low reward standard deviation (in- 112

dicating prompts that are too easy or too complex), 113

using a dynamic threshold based on the exponential 114

moving average of past rewards’ standard devia- 115

tion. We find that this approach can well keep up 116

with the reward distribution shifts, and improves 117

both the training stability and final performance. 118

Comprehensive experiments on seven bench- 119

marks show that, without any external verifiers, 120

RLPR substantially enhances reasoning capa- 121

bilities in both mathematical and general do- 122

mains. Leveraging Qwen2.5-7B (Team, 2024) 123

as base model, RLPR achieves 56.0 on MMLU- 124

Pro and 55.4 on TheoremQA, even surpass- 125

ing the strong General Reasoner-7B (Ma et al., 126

2025) that utilizes a specially trained 1.5B ver- 127

ifier model. Furthermore, compared with Ver- 128

iFree (Zhou et al., 2025), a concurrent verifier- 129

free approach, RLPR achieves significant im- 130

provement of 7.6 on TheoremQA and 7.5 on 131

Minerva. We also evaluate RLPR on mod- 132

els from Llama3.1 (Grattafiori et al., 2024) and 133

Gemma2 (Team et al., 2024), achieving improve- 134

ments of 6.4 and 6.1 average points across seven 135

benchmarks respectively. 136

The contribution of this work can be summarized 137

as fourfold: (1) We present RLPR, a simple and 138

scalable framework that extends RLVR to general 139

domains without using external verifiers. (2) We 140

propose a novel probability reward that eliminates 141

the need for external verifiers and achieves better 142

reward quality than naive likelihood as a reward. 143

(3) We introduce a novel standard deviation filter- 144

ing strategy that effectively stabilizes training by 145

removing samples with low reward standard devia- 146

tion. (4) We conduct comprehensive experiments 147

to demonstrate the effectiveness of our framework 148

on various models from Qwen, Llama and Gemma. 149

All the codes, data, and model weights will be re- 150

leased to facilitate future research. 151
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Figure 2: Existing RLVR methods rely on specialized verifiers for each domain, suffering from high complexity
and limited scalability. We propose the RLPR framework, which replaces the complex verifier-based reward with
a simple probability-based reward generated by the policy model πθ. Q: input question, z: generated reasoning
content before final answer, y: generated final answer, y∗: reference answer. As shown in the example on the right
side, rules and verifier models wrongly label both y2 and y3 as incorrect due to their limited capability of handling
natural language complexity.

2 RLPR152

In this section, we first introduce the fundamen-153

tals of RLVR and describe the procedure to cal-154

culate the probability reward for RLPR. Then we155

introduce the debiasing method and the standard156

deviation filtering approach.157

2.1 Reinforcement Learning from Verifiable158

Rewards159

Reinforcement learning from verifiable re-160

ward (RLVR) is a general post-training paradigm161

in which a rule-based verifier assigns a scalar162

reward score to each generated response. Specif-163

ically, given a prompt x, the policy πθ produces164

reasoning content z and the final answer y. Then165

the expected verifier score is optimized:166

J (θ) = Ez,y∼πθ(·|x) [fverifier(y, y
∗)] , (1)167

where fverifier is a task-specific, rule-based verifier168

checking whether the generated answer y passes169

the test defined by ground truth y∗. Common170

instantiations include symbolic verifiers (Hynek171

and Greg, 2025) for mathematical problems or172

sandboxed execution (Bytedance-Seed-Foundation-173

Code-Team et al., 2025) for code generation. How-174

ever, building rule-based verifiers is a laborious,175

systematic effort that involves designing hand-176

crafted rules and edge case handling. This restricts177

the application of RLVR to new domains.178

2.2 Probability Reward179

Motivated by the observation that the LLM’s intrin-180

sic probability of generating a correct answer di-181

rectly indicates its internal evaluation of the reason-182

ing quality, we use per-token decoding probabilities 183

of the reference answer as the reward signal. Unlike 184

existing methods that rely on domain-specific veri- 185

fiers (Cui et al., 2025a; Luo et al., 2025a), which re- 186

quire substantial manual heuristics and engineering 187

effort for the construction of verifiers, our reward 188

computation process involves only the model itself. 189

An overview of the process is shown in Figure 2. 190

We denote each response to question Q with 191

o = (o0, · · · , oN ), where oi is a token in the re- 192

sponse. To obtain probabilities, we extract the gen- 193

erated answer y from the full response and denote 194

the remaining content as reasoning z. We then con- 195

struct a modified sequence o′ = (o′0, · · · , o′N ′) by 196

replacing the generated answer with the reference 197

from the training data. This sequence is fed to 198

the policy model to get probabilities (p0, · · · , pN ′). 199

The probability reward is computed as: 200

r = fseq({pi|o′i ∈ y∗}), (2) 201

where fseq aggregates per-token probabilities into 202

a single reward scalar for the response o. While 203

using fseq = n
√∏

(the normalized product of prob- 204

abilities, i.e., sequence likelihood) reflects the over- 205

all likelihood of the reference answer, we observe 206

that it introduces high variance and is overly sensi- 207

tive to minor variations, such as synonyms. For 208

instance, the token probability sequences (0.01, 209

0.7, 0.9) and (0.05, 0.7, 0.9) yield vastly differ- 210

ent scores under the product, despite only a small 211

difference on the first token. To address this issue, 212

we instead adopt fseq = 1
| y∗|

∑
(mean probabil- 213

ities), which yields a more robust reward signal 214

and demonstrates superior correlation with answer 215
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quality in our analyses (see Fig 4). We observe216

that probability reward values are highly consis-217

tent with the quality of generated answer y, where218

high rewards are gained when the predicted an-219

swer is semantically similar to the reference an-220

swer and low rewards are assigned otherwise. Note221

that the length-normalization step is redundant for222

GRPO (Shao et al., 2024) but could be crucial for223

algorithms like REINFORCE++ (Hu et al., 2025a)224

which do not include group-normalization.225

2.3 Reward Debiasing226

Although the probability-based rewards correlate227

strongly with response quality, they are also in-228

fluenced by various latent factors. We denote229

the contributors to the probability reward r as Ur,230

which decomposes into two latent factors:Ur =231

Uz + Uothers, where Uz represents the effects of232

the reasoning content, and Uothers captures the char-233

acteristics of other related factors, including the234

question and reference answer. Using r directly235

as a reward introduces bias associated with the un-236

observed factor Uother, potentially degrading the237

reward quality. To mitigate this, we introduce a238

base score r′ by computing the probability score of239

directly decoding the reference answer y∗, without240

intermediate reasoning z, using Eq 2. This gives241

Uz = Ur−Ur′ , and the debiased probability reward242

is then calculated as with r̂ = clip(0, 1, r − r′),243

where the clipping operation ensures that the re-244

ward remains within a favorable numeric range245

[0, 1]. This formulation effectively removes the po-246

tential bias from UQ and Uy∗ and models PR as247

the improvement in probability given the generated248

reasoning z. We find this debiasing step stabilizes249

training and enhances reward robustness. The final250

gradient estimator of our objective function is:251

∇JRLPR(θ) = ∇Eo∼πθ(·|x) [r̂]252

=
∑
o

r̂ πθ(o|x)∇ log πθ(o|x)253

= Eo∼πθ(·|x) [r̂∇ log πθ(o|x)] , (3)254

where we optimize the expected reward on the255

whole response o = z||y.256

2.4 Standard deviation filtering257

Existing RLVR methods employ accuracy filter-258

ing (Cui et al., 2025a) to stabilize training by ex-259

cluding too difficult and too easy prompts. Typi-260

cally, this involves filtering entirely correct or incor-261

rect prompts. However, the continuous nature of262

PR makes it challenging to directly apply accuracy 263

filtering since it is hard to set a universal threshold 264

for response correctness. 265

Through the analysis of accuracy filtering, we 266

observe that filtering prompts with low standard 267

deviation in reward values can effectively achieve 268

a similar effect. Specifically, prompts that consis- 269

tently yield all high or all low scores exhibit low 270

standard deviation due to the boundedness of PR 271

(i.e., all reward values lie within [0, 1]). Meanwhile, 272

the overall standard deviation distribution continu- 273

ously shifts during training, and a fixed threshold 274

may cause either too strict or loose filtering at dif- 275

ferent training stages. To address this, we adopt an 276

exponential moving average to dynamically update 277

the filtering threshold β using the average stan- 278

dard deviation of each training step. By filtering 279

the prompts whose reward standard deviation is 280

less than β, we introduce an adaptive curriculum 281

learning mechanism to improve both the training 282

stability and final performance. 283

3 Experiments 284

In this section, we empirically investigate the ef- 285

fectiveness of RLPR in enhancing LLM reasoning 286

capabilities. In addition to evaluating model per- 287

formance, we also analyze reward quality of our 288

proposed PR, the efficacy of different components, 289

and the potential of applying RLPR to verifiable 290

domains such as mathematics. 291

3.1 Experimental Setup 292

Models. We conduct experiments on 293

Gemma2 (Team et al., 2024), Llama3.1 (Grattafiori 294

et al., 2024) and Qwen2.5 (Team, 2024) models. 295

Unless otherwise specified, experiments are 296

conducted on Qwen2.5-7B-Base. 297

Training Data. We adopt the collection of prompts 298

released by (Ma et al., 2025), which includes high- 299

quality reasoning questions across multiple do- 300

mains. To focus on the effectiveness of RLPR in 301

general domains, we only use non-mathematics 302

prompts from the data. We ask GPT-4.1 (OpenAI, 303

2025) to filter out prompts that are too easy and 304

finally get 77k prompts for training. 305

Evaluation. We evaluate the reasoning capabil- 306

ities with multiple general reasoning and math- 307

ematical benchmarks. For math reasoning, we 308

include MATH-500 (Cobbe et al., 2021), Min- 309

erva (Lewkowycz et al., 2022), and AIME24. For 310

general domains, we adopt four benchmarks: (1) 311
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MMLU-Pro (Wang et al., 2024) is a widely used312

multitask language understanding benchmark. We313

randomly sample 1000 prompts from the bench-314

mark to strike a balance between efficiency and315

variance. (2) GPQA (Rein et al., 2023) includes316

graduate-level questions from multiple disciplines.317

We use the highest-quality GPQA-diamond sub-318

set. (3) TheoremQA (Chen et al., 2023) assesses a319

model’s ability to apply theorems to solve complex320

science problems. We remove the 53 multimodal321

instructions. (4) WebInstruct. We hold out a vali-322

dation split from (Ma et al., 2025) as a more acces-323

sible benchmark for medium-sized models. Unlike324

the aforementioned benchmarks, this benchmark is325

designed to be less challenging while still assessing326

multidisciplinary reasoning. We randomly held-out327

1k prompts from the training set and remove po-328

tential data contamination by applying 10-gram329

deduplication, resulting in 638 distinct questions.330

Baselines. We compare against the following es-331

tablished and contemporaneous methods: (1) Base332

models. We include the Qwen2.5 (Team, 2024)333

model family for comparison, reporting results for334

both Qwen2.5-7B. We also compare with Gemma2-335

2B-it and Llama3.1-8B-Inst. (2) TTRL (Zuo et al.,336

2025) eliminates the reliance on labeled reference337

answers and instead uses majority voting to assign338

pseudo-labels to sampled responses. We report the339

result of the model trained on MATH-500 (Zuo340

et al., 2025) prompts. (3) SimpleRL-Zoo (Zeng341

et al., 2025) trains the model using rule-based re-342

wards. (4) General Reasoner (Ma et al., 2025)343

conducts RLVR in multiple domains by introduc-344

ing an additional verifier model, which is distilled345

from Gemini 2.0 (Google DeepMind, 2024) to ver-346

ify general-domain responses. (5) VeriFree (Zhou347

et al., 2025) is a concurrent work that uses the like-348

lihood of reference answers (for those shorter than349

7-tokens) as the reward signal and incorporates an350

auxiliary fine-tuning loss. As results were only re-351

leased for the Qwen3 (Team, 2025a) model series,352

we reproduce their method on Qwen2.5-7B using353

the official repository. For fair comparison, we eval-354

uate both their provided prompt and our training355

prompt, finding that the original prompt yields bet-356

ter results. Therefore, we adopt this configuration357

for this baseline.358

Implementation Details. We adopt the359

verl (Sheng et al., 2024) framework for efficient360

training. In each rollout step, we sample eight re-361

sponses per prompt for a batch of 768 prompts362

using a temperature of 1, and subsequently per-363

form 4 policy updates on the collected responses. 364

The clip range is (0.8, 1.27) to prevent entropy 365

collapse (Yu et al., 2025; Cui et al., 2025b), and 366

filtering uses β = 0.5. For evaluation, we set 367

temperature to 1 and report Avg@k over multi- 368

ple runs to reduce the evaluation variance. The 369

max generation length for training and evaluation 370

is 3072, with minimal truncation observed. Base- 371

line evaluations follow original papers or default to 372

our setup if the original paper uses greedy decod- 373

ing. For reliable answer extraction, we adopt the 374

“<think></think><answer></answer>” template of 375

R1 (Liu et al., 2025b) during training and use the 376

striped content inside answer tags as the generated 377

answer. For Gemma/Llama, we change the training 378

and evaluation temperature to 0.6 and remove the 379

<think> part in templates to avoid generation degra- 380

dation. We observe that rule-based scoring scripts 381

introduce errors in benchmarks containing question 382

formats beyond multiple-choice. To address this, 383

we deploy a Qwen2.5-7B-Inst model server for 384

evaluation, and additionally leverage GPT-4.1 for 385

more complex benchmarks, such as TheoremQA. 386

3.2 Main Results 387

The main experimental results are reported in Ta- 388

ble 1, from which we observe that: (1) RLPR sig- 389

nificantly improves general-domain reasoning per- 390

formance. Without any external verifier, our 391

method improves the average performance on four 392

general-domain reasoning benchmarks by 24.9% 393

on Qwen2.5-7B. (2) RLPR exceeds the RLVR 394

baseline on Qwen, Llama and Gemma. Specifically, 395

we achieve larger general reasoning performance 396

improvement over RLVR for 1.4, 3.9 and 1.4 av- 397

erage points on Gemma, Llama and Qwen respec- 398

tively. (3) RLPR exhibits even better performance 399

compared with methods that require trained verifier 400

models, surpassing General Reasoner, which uses 401

a trained 1.5B-parameter verifier model to judge 402

each sampled response, by 1.6 on average across all 403

seven reasoning benchmarks. (4) RLPR achieves a 404

significant performance advantage compared with 405

concurrent verifier-free methods, with improve- 406

ment of 7.6 points on TheoremQA and 7.5 points 407

on Minerva over VeriFree (Zhou et al., 2025). 408

3.3 Probability-based Reward Analysis 409

We first illustrate a token-level probability example 410

in Figure 3, where response sequence o2 receives a 411

substantially lower score on the “HO” token, pre- 412

cisely reflecting the error made by response se- 413
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Model Base Verifier MMLU-Pro GPQA TheoremQA WebInst. MATH-500 Minerva AIME 24 General All
Avg@2 Avg@4 Avg@2 Avg@2 Avg@2 Avg@2 Avg@16 - -

Gemma Models

Gemma2-2B-it Base – 27.9 19.3 16.4 33.5 26.6 15.9 0.0 24.3 19.9
RLVR Inst Rule 31.6 25.8 20.1 52.3 30.7 16.5 0.2 32.4 25.3
RLPR Inst ✗ 33.5 28.5 21.2 52.0 30.4 17.1 0.2 33.8 26.0

Llama Models

Llama3.1-8B-Inst Base – 46.4 31.6 31.3 54.7 50.1 32.7 4.2 40.5 35.6
RLVR Inst Rule 49.3 36.0 32.0 60.2 51.9 35.2 4.6 44.4 38.5
RLPR Inst ✗ 53.6 36.5 35.5 68.5 54.1 39.0 8.8 48.5 42.3

Qwen Models

Qwen2.5-7B – – 45.3 32.4 41.4 60.4 63.0 37.6 6.5 44.9 40.9
TTRL Base Rule 51.1 34.1 48.8 68.0 82.1 52.8 15.8 50.5 50.4
SimpleRL-Zoo Base Rule 54.1 36.2 49.5 70.7 76.3 49.2 14.8 52.6 50.1
RLVR Base Rule 55.1 36.2 52.2 75.3 76.5 54.9 17.7 54.7 52.6
General Reasoner Base Model 55.4 37.4 52.1 74.5 77.0 51.7 16.0 54.8 52.0
VeriFree Base ✗ 53.8 36.7 47.6 72.5 73.5 49.0 12.5 52.6 49.4
RLPR Base ✗ 56.0 37.6 55.4 75.5 78.0 56.5 16.3 56.1 53.6

Table 1: Overall performance of Gemma, Llama, Qwen series models on seven reasoning benchmarks. WebInst.:
held-out evaluation set from WebInstruct. General: Average of MMLU-Pro, GPQA, TheoremQA and WebInst.

<think> ...weakest to strongest is: C), B), A), D) </think>
<answer> HCN < HOCl < HNO2 < HI </answer>

<think> ...weakest to strongest are: C), A), B),D) </think>
<answer> HCN < HOCl < HNO2 < HI </answer>

𝑦∗ HCN < HOCl < HNO2 < HI

𝑜 ′2

𝑜 ′1

Figure 3: Token-level probability visualization, where
deeper colors represent higher values. The underlined
part highlights that probabilities precisely reflect that
response sequence o2 incorrectly place option B after A,
resulting lower scores at the corresponding positions in
the reference answer. The question is shown in Figure 2.

quence o2 (i.e., placing option A before option B).414

For quantitative analysis of the Probability-based415

Reward (PR) quality, we sample eight responses for416

each prompt from the WebInstruct (Ma et al., 2025)417

and DeepScale (Luo et al., 2025b) datasets. To en-418

sure a fair evaluation, we use the publicly released419

model from (Hu et al., 2025b). Human annotators420

then evaluate the correctness of each response. To421

maintain robustness and control labeling costs, we422

randomly keep 50 prompts from each dataset that423

contain both correct and incorrect responses.424

PR discriminates correct responses better than425

the rule-based verifier on general data. To eval-426

uate the ability of different reward to distinguish427

between correct and incorrect responses (i.e., as-428

sign higher rewards to correct responses), we rank429

responses for each prompt according to the respec-430

tive rewards and compute the ROC-AUC (Bradley,431

1997) metric using human annotations as ground432

truth. Higher AUC values indicate stronger dis-433

crimination capability. As shown in Figure 4, while434

Rule General
Verifier

Likelihood
+Qwn0.5B

PR
+Qwn0.5B

PR
+Qwn7B
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+Qwn72B
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Figure 4: Reward quality comparison. We report the
AUC on both math and general data, and highlight the
average score with the dashed line. Qwn: Qwen2.5.

the rule-based verifier achieves reasonable perfor- 435

mance on mathematical prompts, it struggles on 436

general-domain prompts, achieving an AUC of 437

only 0.61. The primary flaw of the rule-based veri- 438

fier in general domains is that it overlooks correct 439

responses due to its limited capability of processing 440

natural language complexity. We show an example 441

in Figure 2 to illustrate the phenomenon. In con- 442

trast, PR consistently delivers high-quality rewards 443

across both mathematical and general domains. 444

PR outperforms verifier models across both 445

mathematical and general domains. While the 446

General-Verifier achieves improvement over rule- 447

based reward on general data (0.61→0.69), its 448

performance declines on mathematical prompts 449

(0.95→0.92) as shown in Figure 4. We attribute 450

this limitation to the finetuning-based paradigm, 451

which requires extensive task-specific data and 452

struggles to generalize across domains. In con- 453
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Data Verifier
TheoremQA Minerva

Avg@2 Avg@2

DAPO Rule 50.3 50.6

WebInstruct
Rule 52.2 54.9

✗ 55.4 56.5

Table 2: Effect of different RLVR training data and
reward mechanisms.

trast, our proposed PR achieves improvements of at454

least 2% on mathematical data and 20% on general-455

domain data compared with the verifier model.456

Upon analyzing the General-Verifier’s judgments,457

we find that its main errors stem from limited com-458

prehension of complex responses and challenges in459

output parsing. By leveraging the intrinsic capabil-460

ities of LLMs, PR directly produces high-quality461

reward scores in a single forward pass, also elimi-462

nating the need for any text post-processing.463

PR is effective with even small-scale models. We464

compare the quality of PR using models of vary-465

ing sizes. As shown in Figure 4, even the smallest466

Qwen2.5-0.5B outperforms the specifically trained467

General-Verifier on both mathematical and general468

data. While increasing the model size further im-469

proves the performance on general-domain data,470

gains on mathematical data are marginal due to the471

already high absolute scores.472

PR is robust over entropy and length distribu-473

tion. We also analyze the robustness of PR by474

analyzing the correlation between PR values and475

factors, including length and decoding entropy of476

generated responses. For each prompt, we calculate477

the Spearman correlation coefficient and p-value.478

We observe that only 8% prompts get a p-value479

smaller than 0.05, and the average coefficient is480

-0.060 for length and 0.059 for entropy. These re-481

sults indicate that the probability reward values482

show negligible correlation with both entropy and483

length. This indicates that our proposed reward484

serves as a robust reward mechanism.485

PR is essential for utilizing general-domain data.486

We compare the performance of models trained ex-487

clusively on mathematical prompts (Yu et al., 2025)488

versus those trained on general-domain prompts,489

as shown in Table 2. The results demonstrate that490

general-domain data enhances the performance on491

both benchmarks (+1.9 on TheoremQA, +4.3 on492

Minerva). However, general-domain data also in-493

cludes additional challenges for rule-based verifiers.494

Consequently, directly adopting existing rule-based495

verifiers gives obvious diminished performance.496

Method TheoremQA Minerva

RLPR 55.4 56.5
w/o debiasing 52.7-2.7 54.1-2.4

w/o std-filtering 52.5-2.9 55.1-1.4

w/o token prob. 33.5-21.9 34.2-22.3

Table 3: Ablation experimental results. Token prob.:
token probability average. Avg@2 results are reported.

3.4 Ablation Study 497

To investigate the contribution of different design 498

choices in RLPR, we perform an ablation study. 499

Effect of per-token probability as reward. We 500

compare our per-token probability-based reward 501

with naive sequence likelihood as the reward signal. 502

In the calculation of likelihood, low-probability to- 503

kens can dramatically affect the final reward. For 504

instance, probabilities of 1e−4 versus 1e−5 can lead 505

to a tenfold difference in reward, despite their small 506

absolute difference. This issue becomes more pro- 507

nounced for longer answers, which are more likely 508

to contain at least one low-probability token. (Zhou 509

et al., 2025) addresses this instability by filtering 510

out prompts whose reference answers exceed seven 511

tokens. However, this also significantly limits the 512

data diversity. In contrast, using the mean per-token 513

probability is much more robust and yields better 514

performance, as shown in Table 3. We compare the 515

quality of the likelihood reward and our proposed 516

PR in Figure 4, where PR consistently achieves 517

better results on both domains. 518

Effect of reward debiasing and standard devi- 519

ation filtering. We compare our final debiased 520

reward r̂ with directly using the reward in Eq 2. 521

Results in Table 3 shows that the performance on 522

both benchmarks is worse with original reward, 523

demonstrating the effectiveness of the debiasing 524

operation. To quantify the effectiveness of the stan- 525

dard deviation filtering approach, we also train a 526

model without any filtering mechanism. The re- 527

sults in Table 3 show that the filtering strategy is 528

important for the final performance of models by re- 529

moving prompts that do not get diverse responses. 530

3.5 Robustness Analysis 531

Compared with rule-based rewards, the distribution 532

of our proposed probability-based reward (PR) may 533

be influenced by variations in training prompt tem- 534

plates. To evaluate the robustness of RLPR with 535

different templates, we consider three prompt set- 536

tings: p1 from VeriFree (Zhou et al., 2025), p2 used 537

in DeepSeek-R1 (DeepSeek-AI et al., 2025) and 538
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Figure 5: Robustness across different training prompt templates. RLPR yields consistently higher performance
compared with VeriFree. Left: average performance on seven benchmarks. Middle: response length. Right:
response entropy during training.

p3 which moves the format requirement to user539

prompt. To reduce training costs, we switch the540

base model to Qwen2.5-3B, decrease the batch541

size to 128, and apply a single update per train-542

ing step. For fair comparison, we adopt the origin543

dataset from VeriFree for this experiment. Fig-544

ure 5 presents the comparison of performances, re-545

sponse length, and entropy across different training546

steps. We observe that RLPR maintains consistent547

performance regardless of prompt choice, while548

VeriFree exhibits high sensitivity, with a notable549

performance drop of by 8.0 at step-400 when using550

p1. Furthermore, the response length of RLPR un-551

der all prompts converges to a similar level, and the552

entropy remains within a reasonable range with no553

signs of entropy collapse (Cui et al., 2025b).554

4 Related Works555

We introduce the most related background works556

in this section and refer readers to the Appendix557

for a more detail review of related works.558

Reinforcement Learning with Verifiable Re-559

wards. Reinforcement learning from binary veri-560

fiable rewards (Cui et al., 2025a; Yu et al., 2025;561

Luo et al., 2025c; Team, 2025b; DeepSeek-AI et al.,562

2025) recently demonstrates strong reasoning ca-563

pabilities on math and code tasks, and has emerged564

as a common practice. However, this paradigm565

is restricted to domains where robust verifiers are566

available. In this work, we propose to extend RLVR567

practices to domains without robust verifiers.568

Reasoning in General Domains. One line of569

work is generative reward models (Mahan et al.,570

2024), where a generative model judges the roll-571

outs, which was further extended to the verifiers572

based on a generative model (Ma et al., 2025; Liu573

et al., 2025a). In this work, we demonstrate that re-574

inforcement learning for general-domain reasoning575

can rely on the decoding probability of the refer-576

ence answer as a reward signal. Concurrent to our577

work, (Zhou et al., 2025) utilizes policy likelihood 578

for reference answer as rewards, while limited to 579

short answers less than 7 tokens and requires an 580

auxiliary fine-tuning-based objective. Instead, we 581

observe the robustness of per-token probability as a 582

reward signal and extend RLVR to general domains 583

without length constraints. 584

Self-Reward Optimization. The common idea 585

behind the practice of self-reward is raising the 586

probability of consistent answers (Zuo et al., 2025). 587

Recent literature (Agarwal et al., 2025; Li et al., 588

2025) shows that entropy minimization is a sugar 589

for reasoning tasks, though restricted to certain 590

model families. However, such practice might be 591

problematic for restricting exploration (Cui et al., 592

2025b; Hochlehnert et al., 2025). In contrast to self- 593

rewarding methods that remove diversity to exploit 594

existing reasoning ability, our approach builds the 595

reward based on the reference answer, yielding 596

reasoning performance with healthy token entropy 597

from the clip-high trick (Yu et al., 2025). 598

5 Conclusion 599

In this work, we present RLPR , a novel frame- 600

work that extends this paradigm to broader general 601

domains. Comprehensive experimental results on 602

Gemma, Llama and Qwen show that our method 603

achieves significant improvement on both general 604

and mathematical reasoning tasks without using 605

external verifiers. We propose a novel probability 606

reward (PR) and reward debiasing strategy to en- 607

hance its quality further. By replacing rule-based 608

reward with PR, we eliminate the need for exter- 609

nal verifiers and achieve better performance than 610

using naive likelihood as a reward or using verifier 611

models. Moreover, we propose a simple standard 612

deviation filtering strategy that stabilizes training 613

by removing samples with low reward standard de- 614

viation. In the future, we will extend RLPR to 615

multimodal domain and larger models. 616
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6 Limitations617

Though RLPR extrapolate RLVR to generate do-618

mains, it still requires reference answers to provide619

supervision. Further investigation is required for620

scenarios where reference answers are hard to ac-621

quire, such as scientific research problems.622

References623

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han,624
and Hao Peng. 2025. The unreasonable effectiveness625
of entropy minimization in llm reasoning. arXiv626
preprint arXiv:2505.15134.627

Andrew P. Bradley. 1997. The use of the area under628
the roc curve in the evaluation of machine learning629
algorithms. Pattern Recognition, 30(7):1145–1159.630

Bytedance-Seed-Foundation-Code-Team, Yao Cheng,631
Jianfeng Chen, Jie Chen, Li Chen, Liyu Chen, Wen-632
tao Chen, Zhengyu Chen, Shijie Geng, Aoyan Li,633
Bo Li, Bowen Li, Linyi Li, Boyi Liu, Jiaheng Liu,634
Kaibo Liu, Qi Liu, Shukai Liu, Siyao Liu, and 36635
others. 2025. Fullstack bench: Evaluating llms as636
full stack coders. Preprint, arXiv:2412.00535.637

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,638
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony639
Xia. 2023. Theoremqa: A theorem-driven question640
answering dataset. Preprint, arXiv:2305.12524.641

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng642
Qian, Yu Wang, Hongru Wang, Yu Zhang, Denghui643
Zhang, Tong Zhang, and 1 others. 2025. Rm-r1:644
Reward modeling as reasoning. arXiv preprint645
arXiv:2505.02387.646

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,647
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias648
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro649
Nakano, Christopher Hesse, and John Schulman.650
2021. Training verifiers to solve math word prob-651
lems. Preprint, arXiv:2110.14168.652

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,653
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,654
Qixin Xu, Weize Chen, and 1 others. 2025a. Pro-655
cess reinforcement through implicit rewards. arXiv656
preprint arXiv:2502.01456.657

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan,658
Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen Fan,659
Huayu Chen, Weize Chen, and 1 others. 2025b.660
The entropy mechanism of reinforcement learning661
for reasoning language models. arXiv preprint662
arXiv:2505.22617.663

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,664
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,665
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,666
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-667
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.668

2025. Deepseek-r1: Incentivizing reasoning capa- 669
bility in llms via reinforcement learning. Preprint, 670
arXiv:2501.12948. 671

Google DeepMind. 2024. Gemini 2.0: Our latest, most 672
capable ai model yet. First Gemini 2.0 Flash an- 673
nounced December 11, 2024; multimodal support for 674
text, image, audio, native tool use. 675

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 676
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 677
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 678
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 679
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 680
tra, Archie Sravankumar, Artem Korenev, Arthur 681
Hinsvark, and 542 others. 2024. The llama 3 herd of 682
models. Preprint, arXiv:2407.21783. 683

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie 684
Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang Zhang, 685
Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tian- 686
wen Wei, Cheng Cheng, Bo An, Yang Liu, and Yahui 687
Zhou. 2025. Skywork open reasoner series. Notion 688
Blog. 689

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udan- 690
darao, Samuel Albanie, Ameya Prabhu, and Matthias 691
Bethge. 2025. A sober look at progress in language 692
model reasoning: Pitfalls and paths to reproducibility. 693
arXiv preprint arXiv:2504.07086. 694

Jian Hu, Jason Klein Liu, and Wei Shen. 2025a. Re- 695
inforce++: An efficient rlhf algorithm with robust- 696
ness to both prompt and reward models. Preprint, 697
arXiv:2501.03262. 698

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, 699
Xiangyu Zhang, and Heung-Yeung Shum. 2025b. 700
Open-reasoner-zero: An open source approach to 701
scaling up reinforcement learning on the base model. 702
Preprint, arXiv:2503.24290. 703
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A Appendix835

A.1 Experimental Details836

Our experiments are conducted on Qwen2.5-837

7B (Team, 2024) if not additionally specified. Fol-838

lowing most RLVR practices, we forgo the super-839

vised fine-tuning process and directly post-train on840

the base model, and use GRPO algorithm by de-841

fault. We change the prompt template during train-842

ing and validation time in our main experiments to843

control the response structure to have extractable844

thoughts and answers. The prompt template is845

shown in Table 4. ]846

A.1.1 Parameter Settings847

Each experiment is trained on 32 NVIDIA A100848

GPUS. We use a 1e-3 entropy penalty coefficient849

and no KL penalty. The learning rate for the policy850

model is 5e-7.851

A.1.2 Training Logs852

We monitor key training metrics of our methods in853

Fig. 6. During training, the response length (Fig.854

6a) steadily increases, allowing more profound rea-855

soning behaviors and no sign of degeneration. In856

Fig. 6b, the policy model quickly learns to fol-857

low the response structure. Moreover, as shown in858

Fig. 6c, our training entropy exhibits neither col-859

lapses as a result of the clip-high trick, nor abrupt860

increases. This ensures the balance between explo-861

ration and exploitation.862

A.2 Pass@k Evaluation863

To further test the impact on the potential reason-864

ing boundary of our method, we provide pass@k865

results on various tasks in Fig. 7 following (Yue866

et al., 2025). Compared to standard RLVR and867

General Reasoner, RLPR shows comparable or868

better pass@k accuracy, indicating that our method869

is not trading reasoning potential for pass@1 im-870

provements.871

A.3 Training Data872

We adopt WebInstruct (Ma et al., 2025) as our train-873

ing dataset, excluding math-related prompts to fo-874

cus on general-domain reasoning. To ensure the875

quality and difficulty of training samples, we ap-876

ply a multi-stage filtering strategy: First, we re-877

move history-related questions and those targeting878

elementary or middle school levels to avoid com-879

monsense or overly simple content. Finally, lever-880

aging GPT-4.1-mini’s reasoning scores (1–4, see881

Table 5), we retain only highly challenging samples 882

(score ≥ 3). This process reduces the dataset from 883

231,833 to 77,687 samples, yielding a focused and 884

high-quality corpus for complex non-mathematical 885

reasoning. 886

A.4 Implementation Details 887

This section provides additional implementation de- 888

tails to supplement Section 3.1. The policy model 889

generates 8 responses per question, using a learn- 890

ing rate of 1e-6. We remove the KL divergence 891

term by setting the KL coefficient to 0. Detailed 892

configurations are presented in Table 6, where the 893

number of policy updates per step and the value 894

of β are empirically determined to be optimal for 895

their respective scenarios. 896

RLVR baselines are trained under the same set- 897

ting with corresponding RLPR results, except us- 898

ing rule-based verifiers and accuracy filtering. For 899

RLVR training on Llama and Gemma, we find 900

accuracy filtering can remove over 90% training 901

prompts and thus significantly increase the training 902

cost and find small batch size causes entropy blow 903

up. So we do not apply accuracy filtering for these 904

two experiments and conduct only one update for 905

each batch to stabilize training. 906

A.5 Detailed Related Works 907

Reinforcement Learning with Verifiable Re- 908

wards. Reinforcement learning from binary verifi- 909

able rewards (Cui et al., 2025a; Yu et al., 2025; 910

Luo et al., 2025c; Team, 2025b; DeepSeek-AI 911

et al., 2025) recently demonstrates strong rea- 912

soning capabilities on math and code tasks, and 913

has emerged as a common practice. These prac- 914

tices utilize verifiers such as Math-Verify (Hynek 915

and Greg, 2025), SandboxFusion (Bytedance-Seed- 916

Foundation-Code-Team et al., 2025), and custom 917

implemented ones (Cui et al., 2025a), which effec- 918

tively judge the correctness of model rollouts and 919

forgo the need for preference annotations. How- 920

ever, this paradigm is restricted to domains where 921

robust verifiers are available. Moreover, exist- 922

ing implementations of verifiers show inconsisten- 923

cies (He et al., 2025) since the complexity for rule- 924

based verifiers to handle edge cases is nontrivial. 925

In this work, we propose to extend RLVR practices 926

to domains without robust verifiers. 927

Reasoning in General Domains. Previous re- 928

search explores reasoning in general domains, a 929

vital part of which is how to obtain reliable re- 930

ward signals. One line of work is generative re- 931

11



RLPR training prompt

<|im_start|>system
A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer>
answer here </answer>.
<|im_end|>
<|im_start|>user
{{question}}<|im_end|>
<|im_start|>assistant

Table 4: We adopt the training prompt of R1 (DeepSeek-AI et al., 2025) for RLPR.
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Figure 6: Training dynamics of RLPR on Qwen2.5-7B

ward models (Mahan et al., 2024), where a gen-932

erative model judges the rollouts. This concept933

has been extended to the implementation of veri-934

fiers based on a generative model (Ma et al., 2025;935

Liu et al., 2025a) and enhancements of the judge936

model itself as a reasoner (Chen et al., 2025). In937

this work, we demonstrate that reinforcement learn-938

ing for general-domain reasoning can rely on the939

decoding probability of the reference answer as940

a reward signal. Concurrent to our work, (Zhou941

et al., 2025) utilizes policy likelihood for reference942

answer as rewards, while limited to short answers943

less than 7 tokens and requires an auxiliary fine-944

tuning-based objective. Instead, we observe the945

robustness of per-token probability as a reward sig-946

nal and extend RLVR to general domains without947

length constraints.948

Self-Reward Optimization. Unsupervised re-949

inforcement learning on language models us-950

ing the policy model itself as a reward has re-951

cently emerged as an embarrassingly effective ap-952

proach (Zuo et al., 2025; Zhao et al., 2025). The953

common idea behind the practice of self-reward is954

raising the probability of consistent answers (Zuo955

et al., 2025), intuitively from the observation that956

concentrating on the majority brings free improve-957

ments (Wang et al., 2022). Recent literature (Agar-958

wal et al., 2025; Li et al., 2025) shows that entropy 959

minimization, which naively degrades generation 960

diversity, is a sugar for reasoning tasks, though re- 961

stricted to certain model families. However, such 962

practice might be problematic for restricting ex- 963

ploration (Cui et al., 2025b; Hochlehnert et al., 964

2025; Yu et al., 2025). In contrast to self-rewarding 965

methods that remove diversity to exploit existing 966

reasoning ability, our approach builds the reward 967

based on the reference answer, yielding reasoning 968

performance with healthy token entropy from the 969

clip-high trick (Yu et al., 2025). 970

12
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Figure 7: Pass@k curves for RLPR and baselines.
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Prompt for GPT-4.1 to assess reasoning complexity

# Description
You are asked to evaluate the reasoning level requirement of problems. Problems are scored from 1 to 4, with higher
scores indicating greater reasoning demands. You should make your decision based on the following detail instructions.

## 1 Point: No reasoning requirements.
Problems requiring direct recall of specific facts and commonsense knowledge.
Examples:
- What is Fermat’s Last Theorem. (Requires only recalling facts)
- What are the five quantitative forecasting models? (Requires only recalling facts)
- What is the capital of China? (Requires only recalling commonsense knowledge)
- When was Mark Twain born? (Requires only recalling commonsense knowledge)

## 2 Points: No reasoning skill requirements.
Problems that do not require reasoning skills. Either because (1) it is too simply and reasoning skills don’t help, or (2)
it is too hard to clearly rank different answers since the question is too open-ended and reasoning skills also do not
help.

Examples:
- Solve x + 1 = 10, what is the value of x. (Too simple)
- What would you do if you have four legs. (Too open-ended to determine response quality)

## 3 Points: Moderate level reasoning skills and knowledge are enough.
Problems requiring moderate level reasoning skills and knowledge. Such as problems that are mostly likely to be
solved by any random undergraduate student regardless of their majors.

Examples:
- Solve a quadratic equation: x² - 5x + 6 = 0.
- Find all solutions to [

√
x+ 2

√
x2 + 7x+

√
x+ 7 = 35− 2x]. Enter all the solutions, separated by commas.

- Summarize the main causes of World War I. (Requires recalling and organizing established historical factors).
- Describe the importance of empathy in storytelling to someone unfamiliar with the concept, using no more than 4
sentences, and ensure all text is in lowercase. Include a quote from a famous author at the end.

## 4 Points: Long-time analysis and deep understanding of relevant knowledge are required.
Problems requiring long-time to analyze and solve, and depend on deep understanding of relevant knowledge. Such as
designing a complex system, developing a comprehensive strategy or providing detail and easy-to-understand solution
for realworld problems.

Examples:
- Design a scalable and secure REST API for a large e-commerce platform, considering microservices architecture,
data consistency, fault tolerance, and evolving business needs.
- Develop a comprehensive urban planning strategy for sustainable development in a rapidly growing city, integrating
environmental, social, economic, and infrastructural considerations.
- Conduct a thorough root cause analysis for a major systemic failure (e.g., a financial crisis or a large-scale
environmental disaster) and propose multi-level preventative and corrective policy measures.
- The polynomial P (x) = (1 + x + x2 + . . . + x17)2 − x17 has 34 complex zeros of the form
zk = rk [cos(2παk) + i sin(2παk)], k = 1, 2, 3, . . . , 34, with 0 < α1 ≤ α2 ≤ α3 ≤ · · · ≤ α34 < 1
and rk > 0. Find α1 + α2 + α3 + α4 + α5.

Please score the following question: Q: {question}
You should first explain your reasoning briefly, then give the final score in following format:
Reasoning score: [1-4]

Table 5: Prompt for GPT-4.1 to assess reasoning complexity.
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Experiment name Table / Figure Batch Size Update per Step Clip Threshold β Temperature

Main experiment

Figures 1, 6, 7 768 4 (0.8, 1.27) 0.5 1.0
Qwen in Table 1 768 4 (0.8, 1.27) 0.5 1.0
Llama in Table 1 256 4 (0.8, 1.27) 0.9 0.6
Gemma in Table 1 256 4 (0.8, 1.27) 1.0 0.6

RLPR vs. RLVR Table 2 768 4 (0.8, 1.27) 0.5 1.0
Ablation study Table 3 768 4 (0.8, 1.27) 0.5 1.0

Robustness analysis Figure 5 128 1 (0.8, 1.27) 0.5 1.0

Table 6: Implementation setup for each experiment. Default settings align with Sections 3.1 and A.4.
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