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Figure 1: Overall performance on general-domain and mathematical reasoning benchmarks. By simply replacing
the rule-based verifier reward of RLVR with the proposed LLM’s intrinsic probability reward, RLPR achieves
consistent improvements in both mathematical and general domains, even outperforming strong RL methods driven
by model-based verifier reward. Average: average accuracy of five benchmarks. Verifier requirements of different

methods are listed in parentheses.

Abstract

Reinforcement Learning with Verifiable Re-
wards (RLVR) demonstrates promising poten-
tial in advancing the reasoning capabilities of
LLMs. However, its success remains largely
confined to mathematical and code domains.
This primary limitation stems from the heavy
reliance on domain-specific verifiers, which re-
sults in prohibitive complexity and limited scal-
ability. To address the challenge, our key ob-
servation is that LLM’s intrinsic probability of
generating a correct free-form answer directly
indicates its own evaluation of the reasoning
reward (i.e., how well the reasoning process
leads to the correct answer). Building on this in-
sight, we propose RLPR, a simple verifier-free
framework that extrapolates RLVR to broader
general domains. RLPR uses the LLM’s own
token probability scores for reference answers
as the reward signal and maximizes the ex-
pected reward during training. We find that
addressing the high variance of this noisy prob-
ability reward is crucial to make it work, and
propose prob-to-reward and stabilizing meth-
ods to ensure a precise and stable reward from
LLM intrinsic probabilities. Comprehensive ex-
periments in four general-domain benchmarks

and three mathematical benchmarks show that
RLPR consistently improves reasoning capa-
bilities in both areas for Gemma, Llama, and
Qwen based models. Notably, RLPR outper-
forms concurrent VeriFree by 7.6 points on
TheoremQA and 7.5 points on Minerva, and
even surpasses strong verifier-model-dependent
approaches General-Reasoner by 1.6 average
points across seven benchmarks.

1 Introduction

Reinforcement Learning with Verifiable Re-
wards (RLVR) has emerged as a promising
paradigm to advance the reasoning capabilities
of Large Language Models (LLMs) (Jaech et al.,
2024; DeepSeek-Al et al., 2025; Hu et al., 2025b).
This paradigm not only shows the power of scaling
test-time computation to address complex prob-
lems, but also sheds valuable light on paths to AGI
with incentivized exploration and evolution.
However, in contrast to the pretraining of LLMs
that can learn foundational capabilities from gen-
eral domain data, most RLVR methods are confined
to mathematics (Hu et al., 2025b; Liu et al., 2025b;
Zeng et al., 2025; Yu et al., 2025) and code gen-



eration (Luo et al., 2025a; He et al., 2025; Cui
et al., 2025a). The primary reason is that existing
RLVR methods heavily rely on domain-specific
verifiers to obtain reward, as shown in Figure 2.
The most widely adopted verifiers are handcrafted
rules (Hu et al., 2025b; Liu et al., 2025b; Zeng
et al., 2025). Extending these rule-based reward
systems to new models and domains typically re-
quires prohibitive heuristic engineering. Moreover,
for general-domain reasoning with free-form an-
swers, it is even impossible to devise rule-based
verifiers due to the high diversity and complexity of
natural language. Recent works attempt to address
this problem by training specialized LLMs as ver-
ifier models (Ma et al., 2025). However, training
LLMs for general reward evaluation requires non-
trivial and extensive data annotation, which often
leads to unsatisfactory reward quality in practice.
Involving separate verifier models also complicates
the RL training framework and introduces addi-
tional computation cost. As a result, this scalability
problem prevents existing RLVR methods from
utilizing rich general-domain data and limits the
potential of broader reasoning capabilities.

To address the problem, we propose the
RLPR framework (Reinforcement Learning with
Reference Probability Reward) that extrapolates
general-domain RLVR without external verifiers.
The basic insight is that LLM’s intrinsic probability
of generating a correct answer directly indicates
its own evaluation of the reasoning reward (i.e.,
how well the reasoning process leads to the correct
answer). It also reflects the policy by measuring
how likely the LLM is to take the correct action.
Therefore, we can directly leverage this probabil-
ity signal as a reward to incentivize reasoning for
the correct answer in general domains. Since this
probability score is a natural built-in of LLM’s
foundational capabilities, it offers good coverage
and potential for reward evaluation even without
any specialized fine-tuning. It can also better deal
with the complexity and diversity of free-form nat-
ural language answers, giving reasonable reward
even to partially correct answers.

Specifically, RLPR introduces two key innova-
tions: (1) At the reward modeling level, we pro-
pose a simple and scalable alternative to the ex-
plicit reward from external verifiers with an intrin-
sic Probability-based Reward (PR), calculated by
the average decoding probabilities of the reference
answer tokens. Compared with naive sequence
likelihood as reward (Zhou et al., 2025), the pro-

posed PR shows better robustness and higher re-
ward quality on quantitative examinations (see Fig-
ure 4). Moreover, we propose a simple debiasing
method to eliminate the reward bias from text by
optimizing the reward advantage over the same
prompt without reasoning. (2) At the training level,
we propose an adaptive curriculum learning mech-
anism to stabilize training. We adaptively remove
prompts yielding low reward standard deviation (in-
dicating prompts that are too easy or too complex),
using a dynamic threshold based on the exponential
moving average of past rewards’ standard devia-
tion. We find that this approach can well keep up
with the reward distribution shifts, and improves
both the training stability and final performance.

Comprehensive experiments on seven bench-
marks show that, without any external verifiers,
RLPR substantially enhances reasoning capa-
bilities in both mathematical and general do-
mains. Leveraging Qwen2.5-7B (Team, 2024)
as base model, RLPR achieves 56.0 on MMLU-
Pro and 55.4 on TheoremQA, even surpass-
ing the strong General Reasoner-7B (Ma et al.,
2025) that utilizes a specially trained 1.5B ver-
ifier model. Furthermore, compared with Ver-
iFree (Zhou et al., 2025), a concurrent verifier-
free approach, RLPR achieves significant im-
provement of 7.6 on TheoremQA and 7.5 on
Minerva. We also evaluate RLPR on mod-
els from Llama3.1 (Grattafiori et al., 2024) and
Gemma?2 (Team et al., 2024), achieving improve-
ments of 6.4 and 6.1 average points across seven
benchmarks respectively.

The contribution of this work can be summarized
as fourfold: (1) We present RLPR, a simple and
scalable framework that extends RLVR to general
domains without using external verifiers. (2) We
propose a novel probability reward that eliminates
the need for external verifiers and achieves better
reward quality than naive likelihood as a reward.
(3) We introduce a novel standard deviation filter-
ing strategy that effectively stabilizes training by
removing samples with low reward standard devia-
tion. (4) We conduct comprehensive experiments
to demonstrate the effectiveness of our framework
on various models from Qwen, Llama and Gemma.
All the codes, data, and model weights will be re-
leased to facilitate future research.
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Figure 2: Existing RLVR methods rely on specialized verifiers for each domain, suffering from high complexity
and limited scalability. We propose the RLPR framework, which replaces the complex verifier-based reward with
a simple probability-based reward generated by the policy model 7y. @: input question, z: generated reasoning
content before final answer, y: generated final answer, y*: reference answer. As shown in the example on the right
side, rules and verifier models wrongly label both y5 and y3 as incorrect due to their limited capability of handling

natural language complexity.
2 RLPR

In this section, we first introduce the fundamen-
tals of RLVR and describe the procedure to cal-
culate the probability reward for RLPR. Then we
introduce the debiasing method and the standard
deviation filtering approach.

2.1 Reinforcement Learning from Verifiable
Rewards

Reinforcement learning from verifiable re-
ward (RLVR) is a general post-training paradigm
in which a rule-based verifier assigns a scalar
reward score to each generated response. Specif-
ically, given a prompt x, the policy my produces
reasoning content z and the final answer y. Then
the expected verifier score is optimized:

\7(0) = Ez7y~W9(~|m) [fveriﬁer(ya y*)] ’ (1)

where fuerifier 1S @ task-specific, rule-based verifier
checking whether the generated answer y passes
the test defined by ground truth y*. Common
instantiations include symbolic verifiers (Hynek
and Greg, 2025) for mathematical problems or
sandboxed execution (Bytedance-Seed-Foundation-
Code-Team et al., 2025) for code generation. How-
ever, building rule-based verifiers is a laborious,
systematic effort that involves designing hand-
crafted rules and edge case handling. This restricts
the application of RLVR to new domains.

2.2 Probability Reward

Motivated by the observation that the LLM’s intrin-
sic probability of generating a correct answer di-
rectly indicates its internal evaluation of the reason-

ing quality, we use per-token decoding probabilities
of the reference answer as the reward signal. Unlike
existing methods that rely on domain-specific veri-
fiers (Cui et al., 2025a; Luo et al., 2025a), which re-
quire substantial manual heuristics and engineering
effort for the construction of verifiers, our reward
computation process involves only the model itself.
An overview of the process is shown in Figure 2.

We denote each response to question ) with
o = (0o, ,0N), Where o; is a token in the re-
sponse. To obtain probabilities, we extract the gen-
erated answer y from the full response and denote
the remaining content as reasoning z. We then con-
struct a modified sequence o = (oy, - - - , 0y,) by
replacing the generated answer with the reference
from the training data. This sequence is fed to
the policy model to get probabilities (pg, - - - , pN7).
The probability reward is computed as:

r= fseq({p’i|0; € y*})7 2

where f.q aggregates per-token probabilities into
a single reward scalar for the response o. While
using feeq = ’\’/ﬁ (the normalized product of prob-
abilities, i.e., sequence likelihood) reflects the over-
all likelihood of the reference answer, we observe
that it introduces high variance and is overly sensi-
tive to minor variations, such as synonyms. For
instance, the token probability sequences (0.01,
0.7, 0.9) and (0.05, 0.7, 0.9) yield vastly differ-
ent scores under the product, despite only a small
difference on the first token. To address this issue,
we instead adopt feeq = ﬁ > (mean probabil-
ities), which yields a more robust reward signal
and demonstrates superior correlation with answer



quality in our analyses (see Fig 4). We observe
that probability reward values are highly consis-
tent with the quality of generated answer y, where
high rewards are gained when the predicted an-
swer is semantically similar to the reference an-
swer and low rewards are assigned otherwise. Note
that the length-normalization step is redundant for
GRPO (Shao et al., 2024) but could be crucial for
algorithms like REINFORCE++ (Hu et al., 2025a)
which do not include group-normalization.

2.3 Reward Debiasing

Although the probability-based rewards correlate
strongly with response quality, they are also in-
fluenced by various latent factors. We denote
the contributors to the probability reward r as U,.,
which decomposes into two latent factors:U, =
U, + Usthers, Where U, represents the effects of
the reasoning content, and Uqypers captures the char-
acteristics of other related factors, including the
question and reference answer. Using r directly
as a reward introduces bias associated with the un-
observed factor Uyer, potentially degrading the
reward quality. To mitigate this, we introduce a
base score r’ by computing the probability score of
directly decoding the reference answer y*, without
intermediate reasoning z, using Eq 2. This gives
U, = U,—U,, and the debiased probability reward
is then calculated as with # = clip(0,1,r — /),
where the clipping operation ensures that the re-
ward remains within a favorable numeric range
[0, 1]. This formulation effectively removes the po-
tential bias from Ug and Uy~ and models PR as
the improvement in probability given the generated
reasoning z. We find this debiasing step stabilizes
training and enhances reward robustness. The final
gradient estimator of our objective function is:

= Eowm;(-kv) [fv log 7T9(0|.%')] , 3)

where we optimize the expected reward on the
whole response 0 = z|y.

2.4 Standard deviation filtering

Existing RLVR methods employ accuracy filter-
ing (Cui et al., 2025a) to stabilize training by ex-
cluding too difficult and too easy prompts. Typi-
cally, this involves filtering entirely correct or incor-
rect prompts. However, the continuous nature of

PR makes it challenging to directly apply accuracy
filtering since it is hard to set a universal threshold
for response correctness.

Through the analysis of accuracy filtering, we
observe that filtering prompts with low standard
deviation in reward values can effectively achieve
a similar effect. Specifically, prompts that consis-
tently yield all high or all low scores exhibit low
standard deviation due to the boundedness of PR
(i.e., all reward values lie within [0, 1]). Meanwhile,
the overall standard deviation distribution continu-
ously shifts during training, and a fixed threshold
may cause either too strict or loose filtering at dif-
ferent training stages. To address this, we adopt an
exponential moving average to dynamically update
the filtering threshold [ using the average stan-
dard deviation of each training step. By filtering
the prompts whose reward standard deviation is
less than 3, we introduce an adaptive curriculum
learning mechanism to improve both the training
stability and final performance.

3 Experiments

In this section, we empirically investigate the ef-
fectiveness of RLPR in enhancing LLM reasoning
capabilities. In addition to evaluating model per-
formance, we also analyze reward quality of our
proposed PR, the efficacy of different components,
and the potential of applying RLPR to verifiable
domains such as mathematics.

3.1 Experimental Setup

Models. We conduct experiments on
Gemma?2 (Team et al., 2024), Llama3.1 (Grattafiori
et al., 2024) and Qwen2.5 (Team, 2024) models.
Unless otherwise specified, experiments are
conducted on Qwen2.5-7B-Base.

Training Data. We adopt the collection of prompts
released by (Ma et al., 2025), which includes high-
quality reasoning questions across multiple do-
mains. To focus on the effectiveness of RLPR in
general domains, we only use non-mathematics
prompts from the data. We ask GPT-4.1 (OpenAl,
2025) to filter out prompts that are too easy and
finally get 77k prompts for training.

Evaluation. We evaluate the reasoning capabil-
ities with multiple general reasoning and math-
ematical benchmarks. For math reasoning, we
include MATH-500 (Cobbe et al., 2021), Min-
erva (Lewkowycz et al., 2022), and AIME24. For
general domains, we adopt four benchmarks: (1)



MMLU-Pro (Wang et al., 2024) is a widely used
multitask language understanding benchmark. We
randomly sample 1000 prompts from the bench-
mark to strike a balance between efficiency and
variance. (2) GPQA (Rein et al., 2023) includes
graduate-level questions from multiple disciplines.
We use the highest-quality GPQA-diamond sub-
set. (3) TheoremQA (Chen et al., 2023) assesses a
model’s ability to apply theorems to solve complex
science problems. We remove the 53 multimodal
instructions. (4) Weblnstruct. We hold out a vali-
dation split from (Ma et al., 2025) as a more acces-
sible benchmark for medium-sized models. Unlike
the aforementioned benchmarks, this benchmark is
designed to be less challenging while still assessing
multidisciplinary reasoning. We randomly held-out
1k prompts from the training set and remove po-
tential data contamination by applying 10-gram
deduplication, resulting in 638 distinct questions.
Baselines. We compare against the following es-
tablished and contemporaneous methods: (1) Base
models. We include the Qwen2.5 (Team, 2024)
model family for comparison, reporting results for
both Qwen2.5-7B. We also compare with Gemma2-
2B-it and Llama3.1-8B-Inst. (2) TTRL (Zuo et al.,
2025) eliminates the reliance on labeled reference
answers and instead uses majority voting to assign
pseudo-labels to sampled responses. We report the
result of the model trained on MATH-500 (Zuo
et al., 2025) prompts. (3) SimpleRL-Zoo (Zeng
et al., 2025) trains the model using rule-based re-
wards. (4) General Reasoner (Ma et al., 2025)
conducts RLVR in multiple domains by introduc-
ing an additional verifier model, which is distilled
from Gemini 2.0 (Google DeepMind, 2024) to ver-
ify general-domain responses. (5) VeriFree (Zhou
et al., 2025) is a concurrent work that uses the like-
lihood of reference answers (for those shorter than
7-tokens) as the reward signal and incorporates an
auxiliary fine-tuning loss. As results were only re-
leased for the Qwen3 (Team, 2025a) model series,
we reproduce their method on Qwen2.5-7B using
the official repository. For fair comparison, we eval-
uate both their provided prompt and our training
prompt, finding that the original prompt yields bet-
ter results. Therefore, we adopt this configuration
for this baseline.

Implementation Details. We adopt the
verl (Sheng et al., 2024) framework for efficient
training. In each rollout step, we sample eight re-
sponses per prompt for a batch of 768 prompts
using a temperature of 1, and subsequently per-

form 4 policy updates on the collected responses.
The clip range is (0.8, 1.27) to prevent entropy
collapse (Yu et al., 2025; Cui et al., 2025b), and
filtering uses 8 = 0.5. For evaluation, we set
temperature to 1 and report Avg@k over multi-
ple runs to reduce the evaluation variance. The
max generation length for training and evaluation
is 3072, with minimal truncation observed. Base-
line evaluations follow original papers or default to
our setup if the original paper uses greedy decod-
ing. For reliable answer extraction, we adopt the
“<think></think><answer></answer>" template of
R1 (Liu et al., 2025b) during training and use the
striped content inside answer tags as the generated
answer. For Gemma/Llama, we change the training
and evaluation temperature to 0.6 and remove the
<think> part in templates to avoid generation degra-
dation. We observe that rule-based scoring scripts
introduce errors in benchmarks containing question
formats beyond multiple-choice. To address this,
we deploy a Qwen2.5-7B-Inst model server for
evaluation, and additionally leverage GPT-4.1 for
more complex benchmarks, such as TheoremQA.

3.2 Main Results

The main experimental results are reported in Ta-
ble 1, from which we observe that: (1) RLPR sig-
nificantly improves general-domain reasoning per-
formance. Without any external verifier, our
method improves the average performance on four
general-domain reasoning benchmarks by 24.9%
on Qwen2.5-7B. (2) RLPR exceeds the RLVR
baseline on Qwen, Llama and Gemma. Specifically,
we achieve larger general reasoning performance
improvement over RLVR for 1.4, 3.9 and 1.4 av-
erage points on Gemma, Llama and Qwen respec-
tively. (3) RLPR exhibits even better performance
compared with methods that require trained verifier
models, surpassing General Reasoner, which uses
a trained 1.5B-parameter verifier model to judge
each sampled response, by 1.6 on average across all
seven reasoning benchmarks. (4) RLPR achieves a
significant performance advantage compared with
concurrent verifier-free methods, with improve-
ment of 7.6 points on TheoremQA and 7.5 points
on Minerva over VeriFree (Zhou et al., 2025).

3.3 Probability-based Reward Analysis

We first illustrate a token-level probability example
in Figure 3, where response sequence 02 receives a
substantially lower score on the “HO” token, pre-
cisely reflecting the error made by response se-
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Model Base Verifier| © ) 1@2  Avg@4 Avg@2  Avg@2 Avg@2 Avg@2 Avg@I6| - -
Gemma Models
Gemma2-2B-it  Base  — 27.9 19.3 16.4 335 26.6 15.9 0.0 243 199
RLVR Inst Rule 31.6 25.8 20.1 52.3 30.7 16.5 0.2 324 253
RLPR Inst X 33.5 28.5 21.2 52.0 30.4 17.1 0.2 33.8 26.0
Llama Models
Llama3.1-8B-Inst Base = — 46.4 31.6 31.3 54.7 50.1 32.7 4.2 40.5 356
RLVR Inst Rule 49.3 36.0 32.0 60.2 51.9 35.2 4.6 44.4 385
RLPR Inst X 53.6 36.5 35.5 68.5 54.1 39.0 8.8 48.5 423
Qwen Models
Qwen2.5-7B - - 453 324 41.4 60.4 63.0 37.6 6.5 449 409
TTRL Base Rule 51.1 34.1 48.8 68.0 82.1 52.8 15.8 50.5 50.4
SimpleRL-Zoo  Base Rule 54.1 36.2 49.5 70.7 76.3 49.2 14.8 52.6 50.1
RLVR Base Rule 55.1 36.2 52.2 75.3 76.5 54.9 17.7 547 52.6
General Reasoner Base Model 554 374 52.1 74.5 77.0 51.7 16.0 54.8 52.0
VeriFree Base X 53.8 36.7 47.6 72.5 73.5 49.0 12.5 52.6 494
RLPR Base X 56.0 37.6 55.4 75.5 78.0 56.5 16.3 56.1 53.6

Table 1: Overall performance of Gemma, Llama, Qwen series models on seven reasoning benchmarks. Weblnst.:
held-out evaluation set from Weblnstruct. General: Average of MMLU-Pro, GPQA, TheoremQA and Weblnst.
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resulting lower scores at the corresponding positions in
the reference answer. The question is shown in Figure 2.

quence 02 (i.e., placing option A before option B).
For quantitative analysis of the Probability-based
Reward (PR) quality, we sample eight responses for
each prompt from the Weblnstruct (Ma et al., 2025)
and DeepScale (Luo et al., 2025b) datasets. To en-
sure a fair evaluation, we use the publicly released
model from (Hu et al., 2025b). Human annotators
then evaluate the correctness of each response. To
maintain robustness and control labeling costs, we
randomly keep 50 prompts from each dataset that
contain both correct and incorrect responses.

PR discriminates correct responses better than
the rule-based verifier on general data. To eval-
uate the ability of different reward to distinguish
between correct and incorrect responses (i.e., as-
sign higher rewards to correct responses), we rank
responses for each prompt according to the respec-
tive rewards and compute the ROC-AUC (Bradley,
1997) metric using human annotations as ground
truth. Higher AUC values indicate stronger dis-
crimination capability. As shown in Figure 4, while

Rule General Likelihood PR PR PR

Verifier +Qwn0.5B +Qwn0.5B +Qwn7B +Qwn72B

Figure 4: Reward quality comparison. We report the
AUC on both math and general data, and highlight the
average score with the dashed line. Qwn: Qwen2.5.

the rule-based verifier achieves reasonable perfor-
mance on mathematical prompts, it struggles on
general-domain prompts, achieving an AUC of
only 0.61. The primary flaw of the rule-based veri-
fier in general domains is that it overlooks correct
responses due to its limited capability of processing
natural language complexity. We show an example
in Figure 2 to illustrate the phenomenon. In con-
trast, PR consistently delivers high-quality rewards
across both mathematical and general domains.

PR outperforms verifier models across both
mathematical and general domains. While the
General-Verifier achieves improvement over rule-
based reward on general data (0.61—0.69), its
performance declines on mathematical prompts
(0.95—0.92) as shown in Figure 4. We attribute
this limitation to the finetuning-based paradigm,
which requires extensive task-specific data and
struggles to generalize across domains. In con-



. TheoremQA  Minerva

Data Verifier Avg@2 Avg@2
DAPO Rule | 503 50.6
Rule 52.2 549
Weblnstruct X 55.4 56.5

Table 2: Effect of different RLVR training data and
reward mechanisms.

trast, our proposed PR achieves improvements of at
least 2% on mathematical data and 20% on general-
domain data compared with the verifier model.
Upon analyzing the General-Verifier’s judgments,
we find that its main errors stem from limited com-
prehension of complex responses and challenges in
output parsing. By leveraging the intrinsic capabil-
ities of LL.Ms, PR directly produces high-quality
reward scores in a single forward pass, also elimi-
nating the need for any text post-processing.

PR is effective with even small-scale models. We
compare the quality of PR using models of vary-
ing sizes. As shown in Figure 4, even the smallest
Qwen2.5-0.5B outperforms the specifically trained
General-Verifier on both mathematical and general
data. While increasing the model size further im-
proves the performance on general-domain data,
gains on mathematical data are marginal due to the
already high absolute scores.

PR is robust over entropy and length distribu-
tion. We also analyze the robustness of PR by
analyzing the correlation between PR values and
factors, including length and decoding entropy of
generated responses. For each prompt, we calculate
the Spearman correlation coefficient and p-value.
We observe that only 8% prompts get a p-value
smaller than 0.05, and the average coefficient is
-0.060 for length and 0.059 for entropy. These re-
sults indicate that the probability reward values
show negligible correlation with both entropy and
length. This indicates that our proposed reward
serves as a robust reward mechanism.

PR is essential for utilizing general-domain data.
We compare the performance of models trained ex-
clusively on mathematical prompts (Yu et al., 2025)
versus those trained on general-domain prompts,
as shown in Table 2. The results demonstrate that
general-domain data enhances the performance on
both benchmarks (+1.9 on TheoremQA, +4.3 on
Minerva). However, general-domain data also in-
cludes additional challenges for rule-based verifiers.
Consequently, directly adopting existing rule-based
verifiers gives obvious diminished performance.

Method TheoremQA  Minerva

RLPR 554 56.5
w/o debiasing 52727 54.124
w/o std-filtering 52.529 55.1-14
w/o token prob. 33.5219 342223

Table 3: Ablation experimental results. Token prob.:
token probability average. Avg@?2 results are reported.

3.4 Ablation Study

To investigate the contribution of different design
choices in RLPR, we perform an ablation study.
Effect of per-token probability as reward. We
compare our per-token probability-based reward
with naive sequence likelihood as the reward signal.
In the calculation of likelihood, low-probability to-
kens can dramatically affect the final reward. For
instance, probabilities of 1e % versus 1e~® can lead
to a tenfold difference in reward, despite their small
absolute difference. This issue becomes more pro-
nounced for longer answers, which are more likely
to contain at least one low-probability token. (Zhou
et al., 2025) addresses this instability by filtering
out prompts whose reference answers exceed seven
tokens. However, this also significantly limits the
data diversity. In contrast, using the mean per-token
probability is much more robust and yields better
performance, as shown in Table 3. We compare the
quality of the likelihood reward and our proposed
PR in Figure 4, where PR consistently achieves
better results on both domains.

Effect of reward debiasing and standard devi-
ation filtering. We compare our final debiased
reward 7 with directly using the reward in Eq 2.
Results in Table 3 shows that the performance on
both benchmarks is worse with original reward,
demonstrating the effectiveness of the debiasing
operation. To quantify the effectiveness of the stan-
dard deviation filtering approach, we also train a
model without any filtering mechanism. The re-
sults in Table 3 show that the filtering strategy is
important for the final performance of models by re-
moving prompts that do not get diverse responses.

3.5 Robustness Analysis

Compared with rule-based rewards, the distribution
of our proposed probability-based reward (PR) may
be influenced by variations in training prompt tem-
plates. To evaluate the robustness of RLPR with
different templates, we consider three prompt set-
tings: p; from VeriFree (Zhou et al., 2025), ps used
in DeepSeek-R1 (DeepSeek-Al et al., 2025) and
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Figure 5: Robustness across different training prompt templates. RLPR yields consistently higher performance
compared with VeriFree. Left: average performance on seven benchmarks. Middle: response length. Right:

response entropy during training.

ps which moves the format requirement to user
prompt. To reduce training costs, we switch the
base model to Qwen2.5-3B, decrease the batch
size to 128, and apply a single update per train-
ing step. For fair comparison, we adopt the origin
dataset from VeriFree for this experiment. Fig-
ure 5 presents the comparison of performances, re-
sponse length, and entropy across different training
steps. We observe that RLPR maintains consistent
performance regardless of prompt choice, while
VeriFree exhibits high sensitivity, with a notable
performance drop of by 8.0 at step-400 when using
p1. Furthermore, the response length of RLPR un-
der all prompts converges to a similar level, and the
entropy remains within a reasonable range with no
signs of entropy collapse (Cui et al., 2025b).

4 Related Works

We introduce the most related background works
in this section and refer readers to the Appendix
for a more detail review of related works.
Reinforcement Learning with Verifiable Re-
wards. Reinforcement learning from binary veri-
fiable rewards (Cui et al., 2025a; Yu et al., 2025;
Luoetal., 2025c; Team, 2025b; DeepSeek-Al et al.,
2025) recently demonstrates strong reasoning ca-
pabilities on math and code tasks, and has emerged
as a common practice. However, this paradigm
is restricted to domains where robust verifiers are
available. In this work, we propose to extend RLVR
practices to domains without robust verifiers.
Reasoning in General Domains. One line of
work is generative reward models (Mahan et al.,
2024), where a generative model judges the roll-
outs, which was further extended to the verifiers
based on a generative model (Ma et al., 2025; Liu
et al., 2025a). In this work, we demonstrate that re-
inforcement learning for general-domain reasoning
can rely on the decoding probability of the refer-
ence answer as a reward signal. Concurrent to our

work, (Zhou et al., 2025) utilizes policy likelihood
for reference answer as rewards, while limited to
short answers less than 7 tokens and requires an
auxiliary fine-tuning-based objective. Instead, we
observe the robustness of per-token probability as a
reward signal and extend RLVR to general domains
without length constraints.

Self-Reward Optimization. The common idea
behind the practice of self-reward is raising the
probability of consistent answers (Zuo et al., 2025).
Recent literature (Agarwal et al., 2025; Li et al.,
2025) shows that entropy minimization is a sugar
for reasoning tasks, though restricted to certain
model families. However, such practice might be
problematic for restricting exploration (Cui et al.,
2025b; Hochlehnert et al., 2025). In contrast to self-
rewarding methods that remove diversity to exploit
existing reasoning ability, our approach builds the
reward based on the reference answer, yielding
reasoning performance with healthy token entropy
from the clip-high trick (Yu et al., 2025).

5 Conclusion

In this work, we present RLPR , a novel frame-
work that extends this paradigm to broader general
domains. Comprehensive experimental results on
Gemma, Llama and Qwen show that our method
achieves significant improvement on both general
and mathematical reasoning tasks without using
external verifiers. We propose a novel probability
reward (PR) and reward debiasing strategy to en-
hance its quality further. By replacing rule-based
reward with PR, we eliminate the need for exter-
nal verifiers and achieve better performance than
using naive likelihood as a reward or using verifier
models. Moreover, we propose a simple standard
deviation filtering strategy that stabilizes training
by removing samples with low reward standard de-
viation. In the future, we will extend RLPR to
multimodal domain and larger models.



6 Limitations

Though RLPR extrapolate RLVR to generate do-
mains, it still requires reference answers to provide
supervision. Further investigation is required for
scenarios where reference answers are hard to ac-
quire, such as scientific research problems.
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A Appendix

A.1 Experimental Details

Our experiments are conducted on Qwen2.5-
7B (Team, 2024) if not additionally specified. Fol-
lowing most RLVR practices, we forgo the super-
vised fine-tuning process and directly post-train on
the base model, and use GRPO algorithm by de-
fault. We change the prompt template during train-
ing and validation time in our main experiments to
control the response structure to have extractable
thoughts and answers. The prompt template is
shown in Table 4. ]

A.1.1 Parameter Settings

Each experiment is trained on 32 NVIDIA A100
GPUS. We use a le-3 entropy penalty coefficient
and no KL penalty. The learning rate for the policy
model is Se-7.

A.1.2 Training Logs

We monitor key training metrics of our methods in
Fig. 6. During training, the response length (Fig.
6a) steadily increases, allowing more profound rea-
soning behaviors and no sign of degeneration. In
Fig. 6b, the policy model quickly learns to fol-
low the response structure. Moreover, as shown in
Fig. 6c, our training entropy exhibits neither col-
lapses as a result of the clip-high trick, nor abrupt
increases. This ensures the balance between explo-
ration and exploitation.

A.2 Pass@k Evaluation

To further test the impact on the potential reason-
ing boundary of our method, we provide pass@k
results on various tasks in Fig. 7 following (Yue
et al., 2025). Compared to standard RLVR and
General Reasoner, RLPR shows comparable or
better pass @k accuracy, indicating that our method
is not trading reasoning potential for pass@1 im-
provements.

A.3 Training Data

We adopt Weblnstruct (Ma et al., 2025) as our train-
ing dataset, excluding math-related prompts to fo-
cus on general-domain reasoning. To ensure the
quality and difficulty of training samples, we ap-
ply a multi-stage filtering strategy: First, we re-
move history-related questions and those targeting
elementary or middle school levels to avoid com-
monsense or overly simple content. Finally, lever-
aging GPT-4.1-mini’s reasoning scores (14, see
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Table 5), we retain only highly challenging samples
(score > 3). This process reduces the dataset from
231,833 to 77,687 samples, yielding a focused and
high-quality corpus for complex non-mathematical
reasoning.

A.4 Implementation Details

This section provides additional implementation de-
tails to supplement Section 3.1. The policy model
generates 8 responses per question, using a learn-
ing rate of le-6. We remove the KL divergence
term by setting the KL coefficient to 0. Detailed
configurations are presented in Table 6, where the
number of policy updates per step and the value
of (8 are empirically determined to be optimal for
their respective scenarios.

RLVR baselines are trained under the same set-
ting with corresponding RLPR results, except us-
ing rule-based verifiers and accuracy filtering. For
RLVR training on Llama and Gemma, we find
accuracy filtering can remove over 90% training
prompts and thus significantly increase the training
cost and find small batch size causes entropy blow
up. So we do not apply accuracy filtering for these
two experiments and conduct only one update for
each batch to stabilize training.

A.5 Detailed Related Works

Reinforcement Learning with Verifiable Re-
wards. Reinforcement learning from binary verifi-
able rewards (Cui et al., 2025a; Yu et al., 2025;
Luo et al., 2025c; Team, 2025b; DeepSeek-Al
et al., 2025) recently demonstrates strong rea-
soning capabilities on math and code tasks, and
has emerged as a common practice. These prac-
tices utilize verifiers such as Math-Verify (Hynek
and Greg, 2025), SandboxFusion (Bytedance-Seed-
Foundation-Code-Team et al., 2025), and custom
implemented ones (Cui et al., 2025a), which effec-
tively judge the correctness of model rollouts and
forgo the need for preference annotations. How-
ever, this paradigm is restricted to domains where
robust verifiers are available. Moreover, exist-
ing implementations of verifiers show inconsisten-
cies (He et al., 2025) since the complexity for rule-
based verifiers to handle edge cases is nontrivial.
In this work, we propose to extend RLVR practices
to domains without robust verifiers.

Reasoning in General Domains. Previous re-
search explores reasoning in general domains, a
vital part of which is how to obtain reliable re-
ward signals. One line of work is generative re-



RLPR training prompt

<|im_start|>system

answer here </answer>.
<|im_end|>
<|im_start|>user
{{question}}<|im_end|>
<|im_start|>assistant

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and

<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer>

Table 4: We adopt the training prompt of R1 (DeepSeek-Al et al., 2025) for RLPR.
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Figure 6:

ward models (Mahan et al., 2024), where a gen-
erative model judges the rollouts. This concept
has been extended to the implementation of veri-
fiers based on a generative model (Ma et al., 2025;
Liu et al., 2025a) and enhancements of the judge
model itself as a reasoner (Chen et al., 2025). In
this work, we demonstrate that reinforcement learn-
ing for general-domain reasoning can rely on the
decoding probability of the reference answer as
a reward signal. Concurrent to our work, (Zhou
et al., 2025) utilizes policy likelihood for reference
answer as rewards, while limited to short answers
less than 7 tokens and requires an auxiliary fine-
tuning-based objective. Instead, we observe the
robustness of per-token probability as a reward sig-
nal and extend RLVR to general domains without
length constraints.

Self-Reward Optimization. Unsupervised re-
inforcement learning on language models us-
ing the policy model itself as a reward has re-
cently emerged as an embarrassingly effective ap-
proach (Zuo et al., 2025; Zhao et al., 2025). The
common idea behind the practice of self-reward is
raising the probability of consistent answers (Zuo
et al., 2025), intuitively from the observation that
concentrating on the majority brings free improve-
ments (Wang et al., 2022). Recent literature (Agar-

100

Training Steps

(b) Format reward
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(c) Token entropy

Training dynamics of RLPR on Qwen2.5-7B

wal et al., 2025; Li et al., 2025) shows that entropy
minimization, which naively degrades generation
diversity, is a sugar for reasoning tasks, though re-
stricted to certain model families. However, such
practice might be problematic for restricting ex-
ploration (Cui et al., 2025b; Hochlehnert et al.,
2025; Yu et al., 2025). In contrast to self-rewarding
methods that remove diversity to exploit existing
reasoning ability, our approach builds the reward
based on the reference answer, yielding reasoning
performance with healthy token entropy from the
clip-high trick (Yu et al., 2025).
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Prompt for GPT-4.1 to assess reasoning complexity

# Description

You are asked to evaluate the reasoning level requirement of problems. Problems are scored from 1 to 4, with higher
scores indicating greater reasoning demands. You should make your decision based on the following detail instructions.

## 1 Point: No reasoning requirements.

Problems requiring direct recall of specific facts and commonsense knowledge.
Examples:

- What is Fermat’s Last Theorem. (Requires only recalling facts)

- What are the five quantitative forecasting models? (Requires only recalling facts)
- What is the capital of China? (Requires only recalling commonsense knowledge)
- When was Mark Twain born? (Requires only recalling commonsense knowledge)

## 2 Points: No reasoning skill requirements.

Problems that do not require reasoning skills. Either because (1) it is too simply and reasoning skills don’t help, or (2)
it is too hard to clearly rank different answers since the question is too open-ended and reasoning skills also do not
help.

Examples:
- Solve x + 1 = 10, what is the value of x. (Too simple)
- What would you do if you have four legs. (Too open-ended to determine response quality)

## 3 Points: Moderate level reasoning skills and knowledge are enough.

Problems requiring moderate level reasoning skills and knowledge. Such as problems that are mostly likely to be
solved by any random undergraduate student regardless of their majors.

Examples:

- Solve a quadratic equation: x2- 5x + 6 = 0.

- Find all solutions to [/z + 2v/22 + Tz + \/x + 7 = 35 — 2z]. Enter all the solutions, separated by commas.

- Summarize the main causes of World War 1. (Requires recalling and organizing established historical factors).

- Describe the importance of empathy in storytelling to someone unfamiliar with the concept, using no more than 4
sentences, and ensure all text is in lowercase. Include a quote from a famous author at the end.

## 4 Points: Long-time analysis and deep understanding of relevant knowledge are required.

Problems requiring long-time to analyze and solve, and depend on deep understanding of relevant knowledge. Such as
designing a complex system, developing a comprehensive strategy or providing detail and easy-to-understand solution
for realworld problems.

Examples:

- Design a scalable and secure REST API for a large e-commerce platform, considering microservices architecture,
data consistency, fault tolerance, and evolving business needs.

- Develop a comprehensive urban planning strategy for sustainable development in a rapidly growing city, integrating
environmental, social, economic, and infrastructural considerations.

- Conduct a thorough root cause analysis for a major systemic failure (e.g., a financial crisis or a large-scale
environmental disaster) and propose multi-level preventative and corrective policy measures.

- The polynomial P(z) = (1 + = 4+ 2° + ... + 2')? — ' has 34 complex zeros of the form
zr = 1k [cos(2man) +isin(2rax)], k = 1,2,3,...,34, with 0 < an < a2 < az < -+ < aza < 1
and 7 > 0. Find a1 + a2 + a3 + a4 + as.

Please score the following question: Q: {question}
You should first explain your reasoning briefly, then give the final score in following format:
Reasoning score: [1-4]

Table 5: Prompt for GPT-4.1 to assess reasoning complexity.

14



Experiment name Table / Figure Batch Size Update per Step Clip Threshold 3 Temperature

Figures 1, 6, 7 768 4 0.8,1.27) 0.5 1.0

Main experiment Qwen in Table 1 768 4 (0.8,1.27) 0.5 1.0
P Llama in Table 1 256 4 (0.8,1.27) 09 0.6
Gemma in Table 1 256 4 0.8,1.27) 1.0 0.6

RLPR vs. RLVR  Table 2 768 4 0.8,1.27) 0.5 1.0
Ablation study Table 3 768 4 0.8,1.27) 0.5 1.0
Robustness analysis Figure 5 128 1 (0.8,1.27) 0.5 1.0

Table 6: Implementation setup for each experiment. Default settings align with Sections 3.1 and A 4.
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