Under review as a conference paper at ICLR 2021

EMPIRICAL SUFFICIENCY FEATURING REWARD DE-
LAY CALIBRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Appropriate credit assignment for delay rewards is a fundamental challenge in
various deep reinforcement learning tasks. To tackle this problem, we introduce a
delay reward calibration paradigm inspired from a classification perspective. We
hypothesize that when an agent’s behavior satisfies an equivalent sufficient condi-
tion to be awarded, well-represented state vectors should share similarities. To this
end, we define an empirical sufficient distribution, where the state vectors within
the distribution will lead agents to environmental reward signals in consequent
steps. Therefore, an overfitting classifier is established to handle the distribution
and generate calibrated rewards. We examine the correctness of sufficient state ex-
traction by tracking the real-time extraction and building hybrid different reward
functions in environments with different levels of awarding latency. The results
demonstrate that the classifier could generate timely and accurate calibrated re-
wards, and the rewards could make the training more efficient. Finally, we find
that the sufficient states extracted by our model resonate with observations of hu-
man cognition.

1 INTRODUCTION

Reinforcement learning (RL) approaches have made incredible breakthroughs in various do-
mains (Silver et al. 2016; Mnih et al.| 2015 OpenAl et al. [2019; [Vinyals et al., 2019), where
the performance exceeds people’s expectations. The reinforcement learning theoretical basis mod-
els sequential decision tasks as dynamic programming processes to maximize expected accumulated
rewards. Given that environmental rewards generally cannot entirely reflect the contribution of each
action in a step, existing approaches commit to distributing different credits to individual decisions,
known as credit assignment (Sutton & Bartol|1998). Bellman equation-based architecture calculates
a value of a state based on the gathered rewards in the future, which at times assigns an unreason-
able value to prior states. This problem becomes even more intractable when reward signals are
extremely sparse or severely delayed.

In this paper, we formulate an overfitting classification mechanism to extract empirical sufficient
conditions of acquiring desired environmental signals. We refer to this extraction formulation as an
Empirical Sufficient Condition Extractor (ESCE) to fairly assign delayed rewards to corresponding
states. In so doing, we first propose a classification mechanism to identify empirical sufficient states.
To train a classifier with partially labeled data, we label the state vectors with matched environmental
signals. We then train the classifier with two phases, wherein a novel overfitting training process is
conducted. In addition to existing value-based estimation, the ESCE provides concrete predictions.
We equip the ESCE with Asynchronous Advantage Actor Critic (A3C) algorithm (Mnih et al.,[2016))
and measure the performance on six Atari games, most of which have delayed discrete rewards. We
comprehensively examine the extraction correctness by formulating different reward functions, and
further track the accuracy/recall of ESCE on the fly. The results show that agents guided by our
empirical efficiency achieve significant improvements in convergence, especially in the scenarios
with delayed rewards. Furthermore, we constructively modify the environment to render the rewards
even to be more delayed, termed as hindsight rewards settings. The results show that equal calibrated
rewards could lead agents to acquire well-learned target policies as if rewards are not delayed. In
addition to quantitative experiments, we screenshot the identified sufficient states, showing high
similarity with human cognition. Our contributions can be summarized as follows:
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* We introduce an overfitting classification model to extract empirical sufficient conditions,
where overfitting mechanism could significantly reduce uncertainty.

* We formulate a calibrated reward signal in line with the environmental targets to tackle
the reinforcement learning reward delay issues, such that the rewards are provided when
empirical sufficient conditions are satisfied.

» The experimental results show reward-calibrated agents are able to learn decent target poli-
cies in the scenarios where rewards have been severely delayed. The identified sufficient
conditions empirically resonate with the “true” environment targets.

2 RELATED WORK

2.1 INTRINSIC MOTIVATION

Intrinsic rewards (Singh et al., [2004; Ryan & Deci, [2000), inspired by intrinsic motivation, are
primarily introduced to encourage exploration. The rewards mechanism is largely independent of
environmental rewards. Intrinsic Rewards in the exploration-oriented mechanism are generally cor-
related to the novelty or informative acquisition of new arrival states (Pathak et al.,[2017;Burda et al.,
2019; |[Houthooft et al., 2016; Zhang et al.,2019). Due to the awarding mechanism does not depend
on environmental rewards, as an exchange, the policy may not align with the environmental target.
In addition to exploration, intrinsic rewards can often be found in hierarchical frameworks (Kulkarni
et al., | 2016; |Vezhnevets et al., 2017; Frans et al., 2018). Moreover, intrinsic rewards are also used
to assist agents to more directly learn optimal or near-optimal policies (Wang et al., 2020} [Zheng
et al., 2018;2019). Likewise, following down this branch, the ESCE developed in this paper could
generate empirical intrinsic rewards to learn better policies, without encouraging exploration.

2.2 CREDIT ASSIGNMENT FOR DELAYED REWARDS

Most evaluation mechanisms in reinforcement learning rely on Bellman equation, where the en-
vironmental signals are passed across states in sequences (Lee et al., |2019; |Arjona-Medina et al.,
2019; INg et al., [1999; Marom & Rosmanl 2018). To make the training more efficient, one effective
direction is to build an extra mechanism to capture critical states and to emphatically regress on
these states (Sutton et al.,[2016; [Ke et al.,| 2018} |Hung et al., 2018). Ideologically, [rpan et al.|(2019)
introduce binary classification into evaluation, and positive-unlabeled learning (Kiryo et al.; 2017) is
adopted to distinguish promising and catastrophic states. Our work evaluates states by discriminat-
ing states as a simple binary classification problem without relying on Bellman equation. Specially,
we accurately differentiate states between “sufficient for success” and “insufficient for success”, by
developing a new overfitting classifier (see Sections[3.3]and [3.4).

3 REWARD DELAY CALIBRATION

3.1 LEARNING WITH HYBRID REWARD FUNCTIONS

As an independent module, the proposed Empirical Sufficient Condition Extractor (ESCE) can be
incorporated into multiple mainstream reinforcement learning frameworks. Calibrated rewards are
provided by ESCE when a state meets the empirical sufficient condition. We denote 7(s;;6p) as
the learned policy, where fp is the set of parameters of the policy network; rf is the calibrated
reward generated by ESCE and r; an environmental reward from the environment, at time step ¢.
Both reward signals have the same scale. The total reward function is synthesized with calibrated
signals and environmental signals, r; = arf + Srf, where o and (3 are the weight coefficients of
corresponding rewards. Our baseline, optimized by environmental rewards, has coefficients o = 0
and S = 1. The policy network is optimized to maximize expected accumulated rewards, as shown
below:

max Brig,.0,)2eTe (D
Op
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Figure 1: The overall framework of a RL agent equipped with ESCE. Agents receive environmental rewards
and calibrated signals from ESCE as its total rewards. The policy network and ESCE are two independent
models. The ESCE examines each state and provides calibrated rewards when the state is considered as an
empirical sufficient state. Within the ESCE training process, state vectors are automatically labeled with our
proposed novel labeling method, and are then stored in corresponding pools. The ESCE network is updated
with overfitting training, where phase one is a binary classification with data from pools and Ryegative pools,
and phase two is the proposed overfitting training updated with Rycgative data alone.

The overview of our framework is illustrated in Figure [I Whenever an empirical sufficient state is
identified by ESCE, a positive reward is offered. The calibrated reward is available after receiving
an environmental signal. Meanwhile, these states are labeled and stored in pools. The training of
the ESCE and policy network proceeds alternately. We take as input raw image pixels without any
data preprocessing.

3.2 EMPIRICAL SUFFICIENT DISTRIBUTION (ESD)

The occurrence of a particular event’s sufficient condition is always followed by the occurrence of
its corresponding event. Inspired by this, we try to resolve the reward delay issue in reinforcement
learning from a similar perspective. We consider a set of particular environmental signals as tar-
get events, and utilize the information from state feature vectors to yield the sufficiency to incur
these target events. We hypothesize some vectors are closely distributed to each other, if: (1) the
state vectors contain all critical information, and (2) the state vectors include the information of a
same sufficient condition. We therefore use this hypothesis to proceed with the classification-based
evaluation.

Definition 3.1. Empirical Sufficiency. We define empirical sufficiency if there exists a bounded
space such that all reachable state vectors inside always imply a particular environmental reward
signal.

Given a stable environment, let R, .sitive be desired environmental signals, such as positive rewards.
P

Conversely, we use Ryegative 10 Tepresent undesired environmental signals, including negative re-

wards, agent’s deaths, game endings, etc.

We define Policy-based Empirical Sufficient Distribution (ESD-policy) as: Agents explore the en-
vironment with a specific policy; if an agent reaches a state s7, ¢, invariably acquiring Rpositive, W€
take a state s] ; as a policy-based empirical sufficient state to acquire I,qsitive. If all reachable
states in a bounded distribution are empirical sufficient states, then we consider the distribution as a
Policy-based Empirical Sufficient Distribution of R qsitive. In this case, the ESD-policy is effective
if: (1) the environment remains stable, and (2) the policy remains stable. If the policy is upgraded,
the corresponding ESD-policy may change as well.

3.3 LABELING

We implement ESCE training with a binary classification mechanism and take individual raw pixels
of states as input. For labeling, we automate this process to extend environmental signals as labels
for classification training.
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We first cut a long sequence of states into rounds along with environmental signals, and use these
labels as break points of rounds. Furthermore, these environmental signals are adopted as the labels
for states within a round. Specifically, we use a newly received environmental signal as a mutual
label for states starting from the last environmental signal to the newly received signal. The labeling
procedure is shown in Figure |l We generalize all desired environmental signals as Rositive, and
all undesired environmental signals as Rycgative. Correspondingly, Rpositive and Ryegative POOls are
created for collecting labeled pixels.

As we adopt nearby environmental signals as labels, another problem is label ambiguity. For the
states whose endings are not determined yet, the labels can be converse in different episodes, such
as beginning states. To put it differently, the state vectors of two different labels might be densely
mixed, and there might not be a clear boundary between them, as opposed to supervised training,
where every sample has only one corresponding label. Our classification training procedure is in-
spired by the label ambiguity. Regarding Definition [3.1} ESD should only contain states that lead to
one particular environmental signal. This indicates that ESD should only include states with unique
labels. We formulate ESCE training as an overfitting training process to exclude state space with
ambiguous labels.

3.4 OVERFITTING TRAINING

We formulate a two-phase training process to extract pure distribution. In phase one, we expect
ESCE to assign a dominant probability to real empirical sufficient states since ambiguous states may
fool the classifier. In phase two, to exclude insufficient states, an overfitting training mechanism is
adopted to update the decision boundary.

We measure performance and maturity of ESCE with Precision and Recall on R qsitive. The Recall
roughly indicates the ratio of identification coverage on those samples associated with [ qsitives
and the Precision roughly shows how accurate the identification is. We set the number of rounds
that include identified states as NVigent, and let Ngumcient denote the number of rounds that contains
identified empirical sufficient states and leads to 2, qsitive- Additionally, we set the total number of
samples leading to Rpositive acquired as Npos.

The phase one is carried out by a binary classification training. The training data are from both
Rpositive and Rycgative pools, where all Ryogitive Samples (spos) have desired signal labels (rp05),
and Ryegative Samples (Syeg) have undesired signal labels (rne¢). We use both types of samples to
prudently maximize Recall on the basis that ESCE parameters 6y are trained with an appreciable
amount of representative samples (Figure [2(a)). Let the learning function f generate estimates
of foreseeable reward 7 with ESCE network parameters g, where 7,05 and 7,c, are respectively
generated with s, and sy,¢¢, as defined below:

Tpos = f (spos; 9E>7 )
g = I (Snegi 05 3

To reflect the real network identification of samples, the output is returned by the maximum likeli-
hood estimate of the soft-max distribution rather than sampling. The loss of phase one measures the
discrepancy between estimates and foreseeable signals, which are defined as follows:

.. Nsufﬁciont
max (Precisionpesitive) = max | —————
O (45} I Vident

“4)

~ r%in L%"e((fpos, Tpos) + (Pneg, Tneg))'
E

In phase two, we maximize Precision with complete Ry egative Samples. The classification boundary
is updated to acquire a distribution of pure R,ositive Samples by excluding all insufficient samples.
The signal that the ESCE has sufficiently excluded insufficient distribution appears when the Recall
of Ryegative sSample batch reaches 100% (o) (see Figure . The loss of phase-two process is
defined as follows:
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Figure 2: A schematic diagram of decision boundary after phase-one overfitting training: the classifier
will try to make most of the samples correctly distributed on both sides of the boundary. However, there are
still quite a few promiscuous samples falsely allocated due to label ambiguity. A schematic diagram of
decision boundary after phase-two overfitting training: all state vectors labeled with Rycgative are excluded
from Rpegative boundary, which matches the definition of ESD-policy. A schematic diagram of sensitive
Sampling: the actual ESD-policy may change with the policy’s updating. The state vectors inside the gray
region were insufficient states, and then turn into empirical sufficient states. The ESCE is primarily updated
with these dynamic samples.
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Once phase-two process is terminated, the states recognized as [Zpositive Should only include states
with label RRositive. In other words, all states identified as s should have resulted in [2,sitive, in
line with the definition of empirical sufficient distributions. If the network is updated with the policy
and the sampling is representative, the distribution identified would be the Policy-based Empirical
Sufficient Distribution (ESD-policy). Theoretically, if stochastic policies are adopted without any
bias, Task-Specific Empirical Sufficient Distribution (ESD-fask) may be acquired. We show the
ESCE architecture in Algorithm 1, which can be found in the Appendix.

The optimization for overall architecture could be derived through combining Equations (I), (@),

and (@)):

min (— Eﬂ.(st;@},)zt’rt + LOEHC + O'LtEWO), (6)
Op,0r

3.5 SENSITIVE SAMPLING

Given ESD-policy is based on a particular policy defined in Section [3.2] ESD-policy might change
with corresponding policy’s updating. To efficiently update the ESCE network, we adopt a sensitive
sampling strategy for overfitting training.

For ESD-policy, the empirical sufficient distribution of R,ositive should change as the agent is up-
dated. For instance, if an agent becomes more skillful, it may stably acquire rewards which were
previously unattainable. As a result, the physical volume of ESD-policy would inflate. An efficient
way to update the ESCE parameter 0 is to focus on the evolving data distribution (see Figure [2(c)).
Accordingly, we build two sensitive state pools. One pool is for missed identification, indicating
which rounds reach Rqsitive, Without identified states in the sequences; the other pool is built for
false identification, which collects the rounds containing identified pixels that did not actually reach
Rpositive- These two state pools force ESCE to focus on the variation of policy, either new strategy
learned or strategy forgotten due to the network update. Approximately 75% of training data are
imported from two sensitive pools.
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Table 1: Comparison with baselines on hindsight rewards settings: r{ = 1 - r{ 4+ 0 - r{. Rewards are offered
after a Rycgative signal or the end of episodes; the real time Precision and Recall of Rpositive are synchronized
with time steps, which are referred to as the right vertical axis.

— Agents with Environmental Rewards Agents with Customized Rewards Precision Recall

FishingDerby-v0 Breakout-v0 Pong-v0

w00%

Max Score 5.0 782.0 3.0

4 EXPERIMENTAL RESULTS

We primarily measure the ESCE component by building different reward functions, and compare to
the baseline A3C+LSTM agents on six Atari games. The original A3C LSTM agent only optimizes
with environmental rewards, written as r; = 0 - ¢ + 1 - r{. The detailed experiment settings are laid
out in Appendices[A.T|and[A.2] Further, we examine agents’ performance on modified experimental
settings, termed as hindsight rewards settings, where the summation of environmental rewards is
provided after a short episode.

Since it is unusual and risky to schedule overfitting as a part of the training, the intuition behind
the design is that the spatial expansion of the Rycgative identification potentially makes the space of
Rpositive inevitably shrink. It is worth worrying how overfitting affects the recognition on Rpsitive
samples. We therefore try to raise two research questions in our experiments:

* RQI1: Does the severely overfitting network perform well, and what are the results of the
extraction?

* RQ2: How do calibrated rewards affect RL training?

We attempt to answer RQ1 in Sections[4.T)and [#.2]and answer RQ2 in Sections[4.3|and [4.4]

4.1 PRECISION AND RECALL OF EMPIRICAL SUFFICIENT STATE TRAINING

To answer RQ1, we first examine the training process of empirical sufficient extraction statistically.
The Recall indicates how widespread the identification is, and the Precision indicates how accurate
the prediction is.

It is rare, although almost unlikely, that the boundary trained perfectly matches the “true” boundary
of the sufficient distribution. This means the Recall and Precision of positive samples are the pair
of trade-offs. Empirically, we fine-turned the hyper-parameter o from 0.81 to 1, which in turn keeps
Recall and Precision both high. The changes of these two indices are recorded in Tables [I] and [2}
in which the right vertical axes correspond to the two indices. We also identify that Precision has a
strong positive correlation with the policy. Since the policy networks are randomly initialized at the
beginning, the erratic performance makes the prediction difficult. In most games, both Recall and
Precision could reach high values when the sampling policy becomes stable.

For Breakout-v0 shown in Table [2] the Recall significantly reduces when agents on average get
more than 40 marks in the game as the bricks hit by the pellet could be vastly different in every
episode. Thus, when compared with other games, there are more state variance in Breakout-v0
environment. Given that the overfitting mechanism is adopted in our model, its ability to eliminate
negative samples differentiates across models. Therefore, when compared to other networks that do
not account for overfitting, the ESCE model is more sensitive to state change.
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Figure 3: MThe calibrated rewards and environmental rewards are encoded in red and yellow, and the value
estimation (Critic) trained with calibrated rewards and environmental rewards are encoded in green and red,
respectively. The blue line displays that ESCE identifies a empirical sufficient state when the agent hit the
pellet with the edge of the bat (right bat), which significantly increases transverse velocity for the agent to win
the game, and makes it unsolvable for its opponent. However, the value of baseline (red) increases continuously
until receiving the reward returned by the environment, which is far away from the decisive state. To the best
of our knowledge, prior approaches could not make such precise prediction (blue) on critical states. @ In
FishingDerby-v0, most states are identified when the agents’ hook close to fishes or a fish is already hooked.
For Breakout-v0, most recognition occurs when the pellet is close to the bat or the bat is on the pellet’s
potential trajectory. [3(d)] For Pong-v0, the recognized states show that the opponent is about to miss, or agents
hit the pellet with the edge of the bat, which gives pellets has a quick vertical velocity.

4.2 EMPIRICAL EFFICIENCY IDENTIFICATION

To further verify the correctness of ESCE, we screenshot the extracted states on three games. Most
states identified exhibit high correlations with rewards acquisition and are visually close to
human cognition. With the evolving of the agent policy, ESD-policy keeps altering, which results
in the dynamically changed observations. In the initial episode, the empirical sufficient checkpoints
are recognized only a few steps away from the states where the actual rewards are given; with the
policy becoming stronger and stabler, more and earlier states can be identified. We thus infer that a
well-trained ESCE model is capable of making accurate predictions through the deep understanding
of the policy and environment. We visualize the screenshots of extracted states in Figure[3]

4.3 REWARD DELAY CALIBRATION IN HINDSIGHT REWARDS SETTING

The latency in realistic environments can be highly unpredictable. Since current experiments are
still largely unable to reflect the performance of different models on reward delay environments,
we further modify the environments to force it to offer more delayed rewards, which we termed as
hindsight rewards. In this setting, rewards are only provided if an episode ends or after a negative en-
vironment signal. We compare the performance of two agents trained with environment rewards and
calibrated rewards in the hindsight rewards settings, respectively. The results of the three games are
shown in Table[I] In this modified scenario, agents guided by environment rewards can hardly make
any progress, whereas the ones updated with calibrated rewards are able to learn distinctive
target policies.

The reason behind this phenomenon is that the ESCE model helps to calibrate the reward by iden-
tifying those states that meet the empirical sufficient condition. Given that the value is gained from
the acquired rewards, rewards received from inappropriate states would thus mislead the value esti-
mation. Figure [3(a)|illustrates the difference of agent value estimation learned with environmental
rewards and calibrated rewards. As seen from Figure @ the value function (Critic) trained with
environmental rewards and calibrated rewards are encoded in red and green, respectively. The cal-
ibrated reward (blue) is offered beforehand compared with the environment reward (yellow). This
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Table 2: Comparison between different reward functions and original environmental rewards. Row-one: r; =
0.3-rf +1-rf. Row-two: ry = 1-7{ 4+ 0-7f. The real time Precision and Recall of Rpositive are synchronized
with time steps, which are referred to as the right vertical axis. For Bowling-v0, the data size is too small to
provide valid Precision and Recall statistics.

— Agents with Environmental Rewards Agents with Customized Rewards Precision Recall

FishingDerby Breakout Pong Boxing Asterix Bowling
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is because the ESCE identifies an empirical sufficient state at the moment when the agent hits the
pellet with the edge of the bat.

4.4 FULLY- AND SEMI-CALIBRATED REWARDS

In addition to modified hindsight rewards settings, we also build two reward settings to explore how
the calibrated rewards affect the RL training process. The first is the semi-calibrated rewards setting,
where the calibrated reward coefficient is set to 0.3 and the environmental reward coefficient is 1,
written altogether as r; = 0.3 - r{ 4+ 1 - r¢. The second is the fully-calibrated rewards setting, where
the reward function is 7, = 1 - 7§ + 0 - rf. The results are shown in Table 2}

For the semi-calibrated rewards setting, the results show that a small number of calibrated rewards
could accelerate the training process. It is also clear that higher Recall and Precision are essential
prerequisites to ensure the effectiveness of calibrated rewards toward environmental targets. In
Breakout-v0 and Boxing-v0, the Recall can barely reach a high value, and we believe this is due to
the large variance in their states (see Section[4.2). Essentially, for Boxing-v0 the two players could
be found in any position of the screen, while for Breakout-v0 the remaining bricks could be vastly
different at each episode.

For the fully-calibrated rewards setting, only calibrated rewards are provided when reaching an
empirical sufficient condition. This ablation comparison examines the rationality of the time of
awarding. The results show that agents trained with calibrated rewards can beat our baseline
model in multiple different games. To acquire rewards in FishingDerby-v0, agents need to move a
hook to catch fish, and then reel back the line before a shark eats the fish. It is common that the shark
steals the fish if the agents have not learned strategies to quickly pull the hook up. In the first column
of Table 2] the calibrated rewards significantly boost the convergence of the model, causing a spike.
This is because when the agent learns a stable policy of pulling the hook up, the empirical sufficient
condition simply becomes hooking the fish. The ESCE provides instant calibrated rewards to the
action triggering the state of successfully hooking the fish. This training process also resembles the
human learning strategy by breaking down complex missions into easier sub-tasks.

5 CONCLUSION

In this paper, we formulate an approach to calibrating delay rewards from a classification perspec-
tive. Due to the overfitting mechanism, the proposed ESCE model is capable of accurately extract-
ing the critical states. Accordingly, the agents trained with calibrated rewards could assign supreme
values to the critical states. In addition, the results show that agents trained with calibrated rewards
could learn distinctive target policies in environments with extremely delayed rewards. Furthermore,
the screenshots of extracted states show a strong correlation with environmental rewards, visually
approaching the observations of human cognition.
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A APPENDICES

A.1 SPARSE AND DELAY REWARD SETTING

We evaluate our model and the comparing models on 6 Atari 2600 games on OpenAl Gym (Brockman et al.,
2016)), and uniformly choose v0 of all games, where actions are not repeated. Positive rewards are defined as
Ryositive, While the negative rewards, deaths, and game endings are Ryegative. In some games, the environmen-
tal rewards are offered in a few steps after the empirical sufficient state. For instance, in the game Bowling-v0,
the environmental rewards are determined when the character throws the ball. Reinforcement Learning algo-
rithms are inevitably facing the low sample efficiency issue, while the delayed rewards worsen the problem.
The longer gaps in time between empirical sufficient state and reward are, the more challenge the agent has to
learn the “correct” policies.

A.2 A3C AND ESCE ARCHITECTURE

We adopt an A3C + LSTM framework as our backbone architecture. The original RGB value 210x 160 image
frames are converted to 80x80 gray-scale frames. Four continuous frames are stacked as the input. In A3C
architecture, four convolution layers and max-pooling layers are adopted. An LSTM layer with 512 units is
followed with two heads — a policy head and a value function head.

Considering the policy is evolving on the fly, the policy-based empirical sufficient conditions should be updated
accordingly. To ensure the extracted empirical sufficient distribution is up to date with the policy, we train the
ESCE model with data sampled from the latest episodes. Subject to this reason, the maximum capacity of the
datasets for the training of empirical sufficient state classifier should be flexibly decided. On the other hand,
training models in model-free settings request vast samples for convergence. Thus, it is necessary to expand
datasets to cover more cases. After trading-off between covering more cases and minimizing the variance of
collected sample points, the capacity of Rpositive and Ruegative pools is set from 20,000 frames to 80,000
frames, sampled by 24 workers.

Algorithm 1: Empirical Sufficient Conditions Extractor (ESCE)

Initialize Extractor network and policy 6;
Initialize Rpositive pool and Ry cgative POOI;
repeat
Initialize temporary storage;
while any state pool is not full do
if state S is identified as Rpositive and no calibrated reward have been given to the
agent in this round then
| Assign calibrated reward to the agent;
end
Push states to a temporary storage;
Update the policy network with the parameters 6;
if environmental signal is not null then
Push temporary storage to pool based on positive/negative environmental signals;
Clear temporary storage;
Reset calibrated awarding status (Start a new round);
end

end
Update Extractor with states from both pools;
while Recall of Ryegaiive< 0 do
\ Update ESCE parameters with data from R, cgative poOl;
end
Clear all pools;
until Converged,
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