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Abstract001

Advances in large language models (LLMs)002
significantly enhance reasoning capabilities003
but their deployment is restricted in resource-004
constrained scenarios. Knowledge distillation005
addresses this by transferring knowledge from006
powerful teacher models to compact and trans-007
parent students. However, effectively captur-008
ing the teacher’s comprehensive reasoning is009
challenging due to conventional token-level su-010
pervision’s limited scope. Using multiple rea-011
soning paths per query alleviates this problem,012
but treating each path identically is suboptimal013
as paths vary widely in quality and suitability014
across tasks and models. We propose Quality-015
filtered Routing with Cooperative Distillation016
(QR-Distill), combining path quality filtering,017
conditional routing, and cooperative peer teach-018
ing. First, quality filtering retains only correct019
reasoning paths scored by an LLM-based evalu-020
ation. Second, conditional routing dynamically021
assigns paths tailored to each student’s current022
learning state. Finally, cooperative peer teach-023
ing enables students to mutually distill diverse024
insights, addressing knowledge gaps and biases025
toward specific reasoning styles. Experiments026
demonstrate QR-Distill’s superiority over tradi-027
tional single- and multi-path distillation meth-028
ods. Ablation studies further highlight the im-029
portance of each component—quality filtering,030
conditional routing, and peer teaching—in ef-031
fective knowledge transfer.032

1 Introduction033

Recent scaling-law studies suggest that the rea-034

soning abilities of large language models (LLMs)035

grows with model size and pre-training data (Zhang036

et al., 2024; Yang et al., 2024b; Patil and Gudivada,037

2024; Zhang et al., 2024). Despite these advances,038

the high inference latency, memory demands, and039

licensing costs of proprietary black-box models040

limit their adoption in resource-constrained set-041

tings (Agrawal et al., 2024; Sun et al., 2024b; Hong042

et al., 2023a), thus ill-suited to many real-world043

Figure 1: Distillation effectiveness of teacher-generated
reasoning paths are path-, task-, and student-dependent.

denotes effective, denotes ineffective distillation.

deployments. Knowledge distillation provides a 044

natural solution by training a compact and trans- 045

parent student to replicate a powerful teacher (Mc- 046

Donald et al., 2024; Xu et al., 2024; Yang et al., 047

2024a; Muralidharan et al., 2024), recovering most 048

of the teacher’s competence while restoring effi- 049

ciency and controllability. 050

Reproducing the teacher’s full reasoning ability 051

remains challenging because conventional black- 052

box distillation supervises students only at the to- 053

ken level (West et al., 2021; Acharya et al., 2024; 054

West et al., 2023), which exposes only a narrow 055

slice of the conditional distribution that underlies 056

the teacher’s outputs. Empirical work shows that 057

supervising on multiple chains of thought (CoTs) 058

sampled for the same query can improve down- 059

stream accuracy (Li et al., 2023b; Luo et al., 2025), 060

suggesting that different reasoning trajectories cap- 061
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ture complementary facets of the teacher’s problem-062

solving abilities and that aggregating them yields063

stronger learning signals than any single path alone.064

However, simply feeding every student all avail-065

able paths is sub-optimal since the pedagogical066

value of reasoning paths is not universal. First,067

some traces arrive at incorrect conclusions (Lyu068

et al., 2023; Trivedi et al., 2022) or embed spurious069

intermediate steps (He et al., 2021), thus providing070

harmful teaching signals. Second, some reasoning071

paths are useful only for specific tasks or students,072

while irrelevant or even misleading for others, as073

shown in Figure 1. For example, program-style ex-074

planations often benefit algorithmic reasoning but075

add little value to routine arithmetic; long multi-076

hop chains help with complex commonsense puz-077

zles but may overthink on questions that admit078

concise solutions (Chen et al., 2024c). Moreover,079

since student models differ in architecture, capacity,080

and pre-training data that leads to different learn-081

ing abilities (Turc et al., 2019), a reasoning path082

that aligns well with one learners can misguide an-083

other. As a result, Effective distillation requires084

path selection that is simultaneously quality-aware,085

task-aware, and student-aware.086

We meet these requirements in two stages. (i)087

Quality filtering. We retain only paths whose fi-088

nal answers match ground truth labels, then score089

their internal reasoning with an LLM-as-judge, pre-090

serving the highest-rated traces. (ii) Conditional091

routing. For each query, a trainable router scores092

the surviving paths with respect to each student’s093

current state and selects the subset predicted to094

yield maximal learning gains.095

Nevertheless, filtering narrows each student’s096

view of the teacher’s knowledge again, risking a097

wider teacher–student gap and bias toward a limited098

set of reasoning styles. To close this gap, we in-099

troduce Quality-filtered Routing with Cooperative100

Distillation (QR-Distill), a cooperative framework101

in which multiple students train concurrently while102

acting as peer teachers. Each sample is processed103

in two passes: first in a teacher-driven pass, where104

the router assigns the filtered paths to individual105

students, and then in a peer-teaching pass, where a106

weighted ensemble of the students serves as a pro-107

visional teacher. A feature-level mutual-distillation108

loss channels information through this ensemble109

bottleneck, enabling learners to compensate for110

gaps in the others’ coverage, redistributing diverse111

insights obtained from the teacher’s supervision.112

We generate a broad, high-quality reasoning path113

pool by prompting an advanced black-box teacher 114

with carefully designed variants, ensuring wide 115

coverage of its solution space. Experiments on 116

various benchmarks show that our framework con- 117

sistently outperforms strong baselines that rely on 118

either single-path distillation or multi-path distilla- 119

tion without routing. Ablation studies confirm that 120

all components including quality filtering, condi- 121

tional routing, and peer teaching contribute to the 122

final gains, underscoring the value of path-aware 123

selection and cooperative learning in distillation 124

with multiple reasoning paths. 125

2 Methodology 126

Our method consists of four main components: (1) 127

Reasoning Path Generation to augment training 128

data, (2) Quality Filtering to eliminate incorrect 129

paths, (3) Conditional Routing to assign reason- 130

ing paths to students adaptively, and (4) Mutual- 131

Student Distillation to enable information exchange 132

across student models, each elaborated below. 133

2.1 Problem Setup 134

Let D = {(Q(i), A(i))}ni=1 denote a reasoning 135

dataset consisting of n samples, where each sample 136

consists of a question Q(i) and its corresponding 137

ground-truth answer A(i). We assume black-box 138

access to a teacher model T , meaning we can ob- 139

tain outputs but not logits. Our goal is to train a 140

smaller student model s to improve its reasoning 141

ability. During training, We augment D to obtain a 142

new dataset Daug = {(Q(i),R(i))}ni=1, where each 143

R(i) = {R(i)
1 , R

(i)
2 , . . . , R

(i)
k } is a set of k diverse 144

reasoning paths generated by a black-box teacher 145

model T . The student model s is trained on Daug. 146

At test time, the student receives a simple instruc- 147

tion along with a question, similar to zero-shot 148

prompting (Kojima et al., 2022). 149

2.2 Reasoning Path Generation 150

To induce diversity in reasoning styles of multiple 151

generated reasoning paths, we design and apply a 152

set of prompting templates, each tailored to elicit a 153

specific reasoning skill. The categories include: 154

• Vanilla Reasoning: Standard prompts which 155

encourage simple and linear reasoning. 156

• Chain-of-Thought Reasoning: Prompts to 157

decompose the problem into multiple fine- 158

grained reasoning steps (Wei et al., 2022). 159
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{Question}\n\nLet's reason step by step, writing
each reasoning step clearly before giving the final

answer.

Use code to solve the following problem and print
the final answer.\n{Question}

First retrieve some relevant facts from your
knowledge, then use them to reason to the final

answer.\n{Question}

Think in a tree of thoughts: outline multiple solution
paths and choose the most promising one to derive

the answer.\n{Question}

Use forward reasoning to propose a candidate
answer, then backward reasoning to verify it and
provide the final verified answer.\n{Question}

Reason to solve the problem:\n{Question}

Chain-of-
Thought

Program-
based

Reasoning

Fact
Retrieval
Reasoning

Tree-of-
Thought

Backward
Reasoning

Vanilla
reasoning

Figure 2: Prompt templates of different reasoning paths.

• Tree-of-Thought Reasoning: Prompts to ex-160

plore multiple solution paths before converg-161

ing on a final answer (Yao et al., 2023).162

• Program-Based Reasoning: Prompts to syn-163

thesize Python-like pseudocode to solve algo-164

rithmic problems (Liu et al., 2024).165

• Backward Reasoning: Prompts to generate166

backward reasoning consistent with forward167

reasoning, simulating reverse-thinking of a168

problem (Chen et al., 2024a).169

• Fact-Retrieval Reasoning: Prompts guiding170

the model to recall and retrieve relevant fac-171

tual information before reasoning.172

An example set of such prompt templates is il-173

lustrated in Figure 2.174

2.3 Quality Filtering175

Not all generated reasoning paths are equally infor-176

mative or reliable for distillation. To ensure that177

the student model is trained on high-quality signals,178

we apply a two-stage filtering strategy that removes179

incorrect and misleading reasoning paths.180

Step 1: Incorrect Answers Removal. For each181

reasoning path R
(i)
j generated for question Q(i), we182

extract the final predicted answer Â(i)
j and compare183

it against the ground-truth A(i). Paths for which184

Â
(i)
j ̸= A(i) are discarded. This step ensures that185

only reasoning traces that lead to the correct solu-186

tion are retained.187

Step 2: Spurious Reasoning Removal. The re- 188

maining paths are evaluated by a separate LLM- 189

as-a-judge module J , which is prompted to assess 190

whether a path contains hallucinated or spurious 191

intermediate steps. Only those marked as logically 192

valid are retained. This yields a cleaned set R̃(i) of 193

paths for each question. 194

2.4 Conditional Routing 195

While quality filtering removes clearly incorrect or 196

spurious reasoning paths, it does so in a coarse and 197

static manner. In practice, the usefulness of a rea- 198

soning path can vary depending on the query con- 199

text and the specific student model. To enable more 200

adaptive supervision, we introduce a conditional 201

routing mechanism that automatically assigns each 202

reasoning path to one or more students. For each 203

reasoning path R
(i)
j , we first extract a fixed repre- 204

sentation using an encoder, i.e., 205

h
(i)
j = Enc(R̃(i)

j ) ∈ Rd. (1) 206

Next, this representation is mapped to student- 207

specific routing logits by a trainable router parame- 208

terized by an MLP, which are then processed via a 209

Gumbel-Softmax to produce discrete but differen- 210

tiable assignments, i.e., 211

α
(i)
j = GumbelSoftmax(MLP(h(i)

j )) ∈ {0, 1}S ,
(2) 212

where α
(i)
j [s] = 1 if reasoning path R̃

(i)
j is as- 213

signed to student s, and 0 otherwise. S denotes 214

number of students involved during distillation. 215

This allows the model to assign different reasoning 216

paths to different students based on their compati- 217

bility, enabling adaptive supervision. 218

To prevent trivial cases such as always selecting 219

all students or none, we apply an entropy-based 220

regularization to promote balanced usage across 221

students. Specifically, we average the routing as- 222

signment across all students and all reasoning paths 223

and maximize its entropy, i.e., 224

ᾱ(i) =
1

S · k

k∑
j=1

S∑
s=1

α
(i)
j [s], (3) 225

226

Lentropy = −ᾱ(i) log ᾱ(i)−(1−ᾱ(i)) log(1−ᾱ(i)).
(4) 227

This regularization penalizes extreme routing 228

decisions, thereby promoting informative and bal- 229

anced supervision across students. 230

3



Figure 3: Overview of our framework, including (1) Quality Filtering that drops flawed chains-of-thought; (2)
Conditional Routing that sends each reasoning path to the most suitable students for fine-tuning; (3) Mutual-
Student Distillation that shares and refines learned insights of different students.

2.5 Mutual-Student Distillation231

After filtering and routing, each student Ss receives232

a subset of reasoning paths. However, isolated233

learning from limited reasoning styles may lead234

to narrow reasoning coverage and a persistent gap235

between students and the teacher. To mitigate this,236

we propose a mutual-student distillation frame-237

work that allows students to learn from each other238

through internal representations of co-routed paths.239

Let z(i,j)s ∈ RT×d denote the last hidden states240

of student s for path R̃
(i)
j , where T is the number241

of tokens. Each student projects their hidden states242

to a lower-dimensional shared space via a student-243

specific projection function, i.e.,244

z̃(i,j)s = Projs(z
(i,j)
s ). (5)245

We then compute a competence score γ
(i,j)
s by246

averaging the projected hidden states across tokens247

and passing them through a linear regressor fol-248

lowed by a softmax over students, i.e.,249

γ(i,j)s = softmaxs
(
w⊤

s · meant(z̃(i,j)s )
)
, (6)250

The scores are used to form a soft ensemble rep-251

resentation of the reasoning path, which includes252

knowledge from both students, i.e.,253

z
(i,j)
ens =

S∑
s=1

γ(i,j)s · z̃(i,j)s . (7)254

Each student then aligns its representation with255

the ensemble via a mean-squared error loss, i.e.,256

Lmutual =
S∑

s=1

∑
i,j

∥∥∥z̃(i,j)s − z
(i,j)
ens

∥∥∥2
2
. (8) 257

This mutual distillation allows each student to 258

benefit from complementary knowledge learned by 259

its peers, thereby reducing the gap between student 260

and teacher. 261

2.6 Training Objective 262

The full objective function combines vanilla distil- 263

lation losses, entropy regularization for the router, 264

and mutual distillation losses: 265

L =
S∑

s=1

L(s)
distill + λ1Lentropy + λ2Lmutual, (9) 266

where L(s)
distill denotes supervised fine-tuning 267

(SFT) loss for student s on the reasoning paths as- 268

signed by the router. λ1 and λ2 control the relative 269

importance of the other two losses. 270

3 Experimental Setup 271

3.1 Backbone Models 272

We use Gemini-1.5-Pro-001 (Team et al., 2024a) 273

as the black-box teacher model T , chosen for its 274

strong reasoning performance across diverse do- 275

mains. We train S = 2 student models and instanti- 276

ate them as Mistral-7B-Instruct-v0.3 (Jiang 277

et al., 2024) and Gemma-7B-Instruct (Team 278

et al., 2024b), both of which are widely-used 279
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Methods SQA ARC MATH ANLI Date Avg

Gemini-1.5-Pro-001 (Teacher Model)

Zero-shot (Kojima et al., 2022) 77.39 91.51 55.90 70.12 80.00 79.76

Mistral-7B-Instruct

Zero-shot (Kojima et al., 2022) 53.89 73.68 10.42 43.92 39.64 44.31

SKD (Li et al., 2023b) 63.76 74.66 12.48 44.90 48.50 48.86
Distill Step-by-Step (Hsieh et al., 2023) 64.19 75.32 11.54 44.42 49.63 49.02
Rephrase Question (Yu et al., 2024) 65.07 74.51 12.98 43.58 45.51 48.33
Question Aug (Li et al., 2024) 65.07 73.32 13.64 42.20 47.21 48.29

Answer Aug (Yu et al., 2024) 66.38 76.77 14.78 45.01 49.12 50.41
RevTHINK (Chen et al., 2024a) 70.97 78.50 15.28 48.58 70.40 56.75

QR-Distill (Ours) 69.87 80.25 16.92 55.75 73.37 59.23

Gemma-7B-Instruct

Zero-shot (Kojima et al., 2022) 56.33 68.34 8.58 37.92 40.24 42.28

SKD (Li et al., 2023b) 56.77 73.29 16.86 45.42 59.62 50.39
Distill Step-by-Step (Hsieh et al., 2023) 56.77 72.92 16.04 44.23 60.91 50.17
Rephrase Question (Yu et al., 2024) 54.15 72.37 16.96 43.07 57.99 48.91
Question Aug (Li et al., 2024) 55.10 72.74 17.76 41.22 59.83 49.33

Answer Aug (Yu et al., 2024) 57.21 73.92 18.92 42.72 64.14 51.38
RevTHINK (Chen et al., 2024a) 64.19 75.09 19.96 47.36 66.27 54.57

QR-Distill (Ours) 67.29 78.05 23.32 51.50 79.29 59.89

Table 1: Performance comparison across five reasoning benchmarks with two students: Mistral-7B-Instruct and
Gemma-7B-Instruct. Results are reported from prior work unless noted. Best values are bolded.

open-weight instruction-tuned LLMs for distilla-280

tion (Chen et al., 2024a). For encoding reason-281

ing paths during routing, we use a pretrained282

RoBERTa-base model (Liu et al., 2019).283

3.2 Training Details284

All students are fine-tuned using QLoRA (Dettmers285

et al., 2023) with rank 32. The learning rate is set to286

5×10−6 for Mistral and 2×10−4 for Gemma, and287

remains consistent across all experiments. Each288

student model is fine-tuned using the AdamW opti-289

mizer with a batch size of 8 per device. We train290

for 3 epochs on mathematical reasoning datasets291

(MATH, GSM8K) and 10 epochs on all other tasks.292

3.3 Datasets293

We evaluate our method across diverse reasoning294

benchmarks spanning multiple domains, including295

(1) Commonsense Reasoning: StrategyQA (SQA,296

Geva et al. (2021)) and ARC-Challenge (ARC,297

Clark et al. (2018)); (2) Mathematical Reason-298

ing: Math (Hendrycks et al., 2021); (3) Natural299

Language Inference: ANLI (Nie et al., 2019); (4)300

Logical Reasoning: Date (Srivastava et al., 2022). 301

3.4 Baselines 302

We compare against three categories of baselines. 303

(1) Zero-shot: Standard CoT prompting without 304

fine-tuning (Kojima et al., 2022). Single-Path 305

Distillation: This includes (2) Symbolic Knowl- 306

edge Distillation (SKD) (Li et al., 2023b), which 307

trains on teacher-generated CoTs using next-token 308

prediction, and (3) Distilling Step-by-Step (Hsieh 309

et al., 2023), which adds supervision on both ra- 310

tionale and answer. We also include question- 311

level augmentation methods: (4) Question Rephras- 312

ing (Yu et al., 2023) and (5) Question Genera- 313

tion (Li et al., 2021). Multi-Path Distillation: 314

These methods leverage multiple teacher-generated 315

reasoning paths, including (6) Answer Augmenta- 316

tion (Yu et al., 2023) and (7) Backward Reasoning 317

Augmentation (Chen et al., 2024a). 318

4 Results and Analysis 319

In this section, we aim to address four research 320

questions. RQ1: How does QR-DISTILL compare 321
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with existing baselines? RQ2: What is the impact322

of each module inside QR-DISTILL? RQ3: How323

does the conditional router assign reasoning paths?324

RQ4: How does QR-Distill perform under varying325

training sample size?326

4.1 Main Results327

To address RQ1, we present our main results in328

Table 1. Overall, QR-Distill outperforms all base-329

lines across datasets and models. Compared to the330

zero-shot performance of the student model, QR-331

Distill achieves an average improvement of 41.44%332

with Mistral and 63.33% with Gemma, indicating333

that knowledge learned from the teacher model334

can significantly enhance student performance on335

downstream reasoning tasks. When compared to336

baselines in which teachers provide only a single337

reasoning path for distillation, QR-Distill yields a338

substantial performance gain of 24.32% on aver-339

age, demonstrating that leveraging multiple reason-340

ing paths leads to more effective student training.341

Against baselines that also use multiple reason-342

ing paths but without our routing or collaborative343

mechanisms, QR-Distill still achieves up to 13.36%344

improvement, which highlights the benefit of our345

path-aware routing and multi-student collaboration346

design in distilling diverse reasoning signals.347

We also observe several noteworthy patterns.348

QR-Distill shows a larger performance boost for349

Gemma compared to Mistral across most datasets.350

Interestingly, on the Date dataset, Gemma even351

outperforms Mistral under QR-Distill, whereas it352

consistently underperforms in other baselines. This353

suggests that weaker student models benefit more354

from our method, likely due to the mutual distil-355

lation effect where Gemma learns useful patterns356

from its peer Mistral, which helps bridge the gap357

between Gemma and the black-box teacher.358

Finally, we find that QR-Distill’s improvements359

are most pronounced on datasets where multi-path360

distillation baselines greatly outperform single-361

path ones, suggesting that QR-Distill can further362

unlock the potential of multiple reasoning paths.363

4.2 Ablation Study364

To address RQ2, we conduct an ablation study by365

systematically removing different components of366

QR-Distill to assess their individual contributions.367

In the Table 2, we denote QF as Quality Filter-368

ing, Route as Conditional Routing, and Collab as369

Mutual-Student Distillation. Our observations are370

summarized as follows: (1) Across most datasets,371

Methods ARC ANLI Date Avg

Mistral-7B-Instruct

w/o QF 77.98 53.04 66.86 65.69
w/o Route 78.07 59.00 72.78 69.95
w/o Collab 75.38 59.16 72.19 68.91

QR-Distill 80.25 55.75 73.37 69.79

Gemma-7B-Instruct

w/o QF 68.00 31.10 69.23 56.11
w/o Route 75.19 30.17 78.10 61.15
w/o Collab 77.88 46.33 76.33 66.85

QR-Distill 78.05 51.50 79.29 69.61

Table 2: Ablation results on ARC, ANLI, and Date.
Best values are bolded.
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Figure 4: Routing selection rates across different dataset
and student model architectures.

removing any individual module results in perfor- 372

mance degradation, suggesting that each compo- 373

nent contributes to the overall distillation process. 374

(2) Among the three components, Quality Filter- 375

ing appears to contribute the most consistently. 376

This supports the hypothesis that filtering out low- 377

quality reasoning paths particularly those with in- 378

correct final answers or spurious intermediate steps 379

can help reduce harmful supervision signals and 380

mitigate potential hallucinations in the student mod- 381

els. This effect is especially pronounced on ANLI, 382

suggesting that natural language inference tasks 383

may be more sensitive to the quality of reasoning 384

chains. (2) The Mutual Distillation module seems 385

particularly beneficial for the Gemma student, as 386

its removal results in more noticeable performance 387

drops compared to Mistral. This aligns with our 388

earlier observation that weaker models tend to ben- 389

efit more from peer collaboration. 390
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Figure 5: Routing selection rates across different ques-
tion difficulty levels and student model architectures.

4.3 Routing Analysis391

To answer RQ3, we analyze the routing deci-392

sions made for different reasoning paths across the393

two student models. Specifically, we investigate394

whether the domain and difficulty of questions395

influence routing behavior. For the domain aspect,396

we compare routing choices across datasets. In397

Figure 4, CoT denotes chain-of-thought, ToT de-398

notes tree-of-thought, program refers to program-399

based reasoning, backward denotes backward rea-400

soning, and FactRtr indicates fact-retrieval reason-401

ing. We make the following observations: (1) For402

the same dataset, the two students often select dif-403

ferent reasoning paths, suggesting that compatibil-404

ity between reasoning styles and model architec-405

ture can vary. (2) For the same student, different406

datasets lead to different path preferences, indi-407

cating that question domain affects routing deci-408

sions. (3) Fact-retrieval reasoning is favored on409

the ARC-Challenge dataset instead of the Date410

dataset, which aligns with our intuition that com-411

monsense tasks rely more on factual recall than412

structured reasoning. (4) A trade-off is observed413

between program-based and tree-of-thought rea-414

soning, where when one is preferred, the other is415

often suppressed, suggesting a possible antagonis-416

tic relationship between these reasoning styles.417

For question difficulty, we examine routing on418

the Math dataset at varying levels of complexity419

in Figure 5. We have the following observations:420

(1) At the same difficulty level, different students421

favor different reasoning paths, further verifying422

the existence of student-reasoning path compatibil-423

ity. (2) Easier questions have higher selection rates,424

possibly reflecting a greater gap between student425
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Figure 6: Comparison of QR-Distill and the SFT base-
line with different sample sizes.

and teacher on more challenging questions. (3) As 426

question difficulty increases, differences in routing 427

across reasoning paths diminish, suggesting a limi- 428

tation in the students’ ability to effectively assess 429

and select among reasoning strategies when facing 430

complex problems. 431

4.4 Sample Efficiency 432

Having demonstrated the QR-Distill’s performance 433

on the full training set, we now address RQ4 by 434

evaluating whether QR-Distill maintains its advan- 435

tage under limited supervision. Specifically, we 436

compare QR-Distill with SFT across varying ratios 437

of the training data of Date dataset, as shown in Fig- 438

ure 6. We can observe that QR-Distill consistently 439

outperforms SFT at all training levels. Notably, 440

QR-Distill is even comparable with SFT trained 441

with 100% data when using as little as 30% data 442

for Gemma, indicating better sample efficiency. 443

5 Related Works 444

5.1 LLM Reasoning 445

Recent advancements in LLMs have demon- 446

strated significant capabilities in complex reason- 447

ing tasks (Plaat et al., 2024; Wang et al., 2024c; 448

Huang and Chang, 2022; Yu et al., 2024; Sun et al., 449

2023; Ahn et al., 2024). A key factor behind this 450

success is the use of advanced prompting tech- 451

niques such as Chain-of-Thought (CoT) prompt- 452

ing (Chu et al., 2023; Wei et al., 2022; Lyu et al., 453

2023) and Tree-of-Thought prompting (Yao et al., 454

2023; Long, 2023; Bi et al., 2024). These methods 455

encourage models to articulate reasoning explicitly, 456
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enhancing their ability to solve intricate problems.457

Building on CoT approaches, researchers have ex-458

plored various strategies to further exploit the diver-459

sity and richness of multiple reasoning paths (Naik460

et al., 2023; Chen et al., 2023d; Wang et al., 2024b).461

For instance, Self-Consistency employs multiple462

reasoning samples from the same prompt, aggre-463

gating them via majority voting to improve answer464

reliability (Wang et al., 2022; Chen et al., 2023a;465

Liang et al., 2024; Ahmed and Devanbu, 2023).466

Despite these improvements, existing strategies467

utilizing multiple reasoning paths largely focus on468

aggregating reasoning paths post-generation with-469

out adequately addressing the selective utilization470

of reasoning paths (Yin et al., 2024; Wang et al.,471

2024b; Fang et al., 2024). Most approaches in-472

discriminately combine reasoning samples, which473

risks incorporating redundant or low-quality ratio-474

nales (Xu et al., 2023; Wang et al., 2024a), po-475

tentially limiting model efficacy. A critical yet476

under-explored direction involves systematically477

identifying and selecting reasoning paths based on478

their quality, relevance, and compatibility with spe-479

cific tasks and model characteristics.480

5.2 Knowledge Distillation481

Knowledge distillation (KD) aims to transfer482

knowledge from powerful but cumbersome teacher483

models to smaller student models (Gou et al., 2021;484

Hinton et al., 2015; Park et al., 2019; Chen et al.,485

2021). Traditional KD approaches typically align486

the student’s predictive distributions closely with487

those of the teacher, often requiring internal access488

to the teacher’s parameters (Zhao et al., 2022; Cho489

and Hariharan, 2019; Kim and Rush, 2016; Gu490

et al., 2023). However, such methods become im-491

practical for proprietary and black-box LLMs (Xu492

et al., 2024; Yang et al., 2024a; Hong et al., 2023a),493

motivating the exploration of distillation methods494

that rely on token-level model outputs.495

Recently, symbolic distillation techniques have496

emerged, which leverage explicit rationales or sym-497

bolic outputs from large-scale teacher models with-498

out requiring internal access (Acharya et al., 2024;499

West et al., 2021; Li et al., 2023b). Hsieh et al.500

(2023) demonstrated that the utility of rationales501

in the distillation step by step can improve the per-502

formance and improve sample efficiency. In addi-503

tion, Jiang et al. (2023) propose a teacher-feedback504

mechanism where LLM-generated rationales for505

challenging examples guide student models.506

Despite their effectiveness, these symbolic dis-507

tillation approaches frequently employ a single rea- 508

soning path per query, thus inadequately capturing 509

the teacher’s comprehensive reasoning capabilities. 510

Consequently, recent efforts have explored multi- 511

path distillation, integrating diverse CoT samples to 512

enhance student performance (Chen et al., 2023b, 513

2024a; Li et al., 2023b). Nonetheless, most of these 514

studies lack a rigorous selection mechanism for rea- 515

soning paths, risking the inclusion of suboptimal 516

or irrelevant rationales, thus hindering the poten- 517

tial benefits. In addition, none of existing methods 518

utilize the collaboration of students to improve the 519

distillation of multiple reasoning paths. 520

5.3 Multi-Agent Collaboration 521

Multi-agent collaborative frameworks have demon- 522

strated notable improvements in complex reason- 523

ing and problem-solving tasks by harnessing col- 524

lective intelligence (Tran et al., 2025; Hong et al., 525

2023b; Talebirad and Nadiri, 2023; Chen et al., 526

2023c; Li et al., 2023a, 2024). This is achieved by 527

combining diverse perspectives and complemen- 528

tary capabilities to enhance overall performance. 529

Through mechanisms such as information shar- 530

ing (Han et al., 2024), joint decision-making (Sun 531

et al., 2024a), and iterative refinement (Chen et al., 532

2024b), collaborative approaches consistently out- 533

perform isolated single-agent models. 534

Despite the advantages of collaborative frame- 535

works, integrating these principles explicitly within 536

knowledge distillation is relatively unexplored. Our 537

approach uniquely combines collaboration of multi- 538

ple student models with selective distillation, lever- 539

aging inter-agent cooperation to enhance reasoning 540

path selection and learning, thereby addressing crit- 541

ical gaps identified in prior research. 542

6 Conclusion 543

We propose QR-Distill, a novel framework that 544

addresses the varied suitability of multiple reason- 545

ing paths across tasks and student models. QR- 546

Distill integrates three key components: (1) Qual- 547

ity Filtering to retain only high-quality, correct 548

reasoning paths using an LLM-based evaluator; (2) 549

Conditional Routing to adaptively assign paths 550

to students based on their current learning state; 551

and (3) Mutual-Student Distillation to enable mu- 552

tual knowledge transfer among students, mitigating 553

reasoning style bias and teacher-student gaps. Ex- 554

tensive experiments confirm the effectiveness of 555

our approach in improving multi-path distillation. 556
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Limitations557

Limited number of student models. Due to con-558

straints in computational resources, we conduct559

experiments using only two student models. While560

this setup already demonstrates the benefits of col-561

laborative learning, increasing the number of col-562

laborative students holds huge potential for further563

performance gains.564

Single teacher model. All reasoning paths in this565

work are generated using the Gemini-1.5 model.566

Although Gemini is a strong teacher, including567

outputs from additional teacher models such as568

GPT may expose students to a broader range of569

reasoning styles and improve generalization.570

Restricted diversity of reasoning prompts. We571

employ a predefined set of prompt templates to in-572

duce different reasoning styles. Exploring a wider573

set of reasoning path types could further enrich574

training signals and enhance the effectiveness of575

our distillation framework.576

Ethics Statement577

Our work focuses on developing an effective dis-578

tilling framework using publicly available datasets579

and pretrained LLMs. While acknowledging the580

need for responsible usage of the proposed method,581

we do not foresee major negative societal impacts.582
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