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Abstract

The success of computer vision tasks is mainly attributed to the architectural
design of neural networks. This highlights the need to automatically design high-
performance architectures via Neural Architecture Search (NAS). To accelerate
the search process, training-free NAS is proposed, which aims to search high-
performance architectures at initialization via zero-cost proxies (ZCPs). However,
existing zero-cost proxies heavily rely on manual design, which is often labor-
intensive and requires extensive expert knowledge. In addition, these crafted
proxies often suffer from poor correlation with final model performance and high
computational complexity, severely limiting NAS efficiency in real-world appli-
cations. To address those issues, this paper proposes a novel Large Language
Models (LLMs)-driven Automatic Proxy Discovery (APD) framework, which
revolutionizes the design paradigm of ZCPs by leveraging LLMs to automatically
discover optimal ZCPs for Training-Free NAS. Moreover, we utilize actor-critic
based reinforcement learning to optimize prompts, enabling to generate better
ZCPs in the next generation. We conduct extensive experiments on mainstream
NAS benchmarks, demonstrating APD excels in both performance and efficiency.
Besides, we firmly believe that our APD will dramatically benefit the deep learning
community through providing novel paradigm of design algorithms via LLMs.

1 Introduction

Neural networks plays an indispensable role in computer vision tasks due to its superior performance,
which raises a trend to deploy neural networks (i.e., ResNet He et al. [2016]) on resource-intensive
scenarios. However, conventional neural networks designed by human experts suffer from Out-Of-
Memory (OOM) problems due to dramatically limited resources Xie et al. [2023], Kang et al. [2025].
Therefore, this highlights the need to design lightweight architectures, liberating the handicraft neural
networks from the OOM bottleneck.

Recently, Neural Architecture Search (NAS) Liu et al. [2018], Ye et al. [2022], Kang has emerged
as a promising paradigm for its searching high-performance architectures in an automatic manner,
while disrupting the conventional paradigm of manually designed architecture. Despite its potential,
NAS still suffers from a key bottleneck of huge computational budgets Ma et al. [2024]. To tackle
this, training-free NAS Mellor et al. [2021], Abdelfattah et al. [2021], Wang et al. [2020], Chen et al.
[2022], Lee and Ham [2024], Peng et al. [2024] is proposed to liberate NAS from the computational
bottleneck via the lens of without gradient descent. Essentially, the training-free NAS leverages ZCPs,
predicting the accuracy ranking of architectures in a training-free manner. Specifically, the ZCPs rely
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Figure 1: A comparison of the designed way of ZCPs. (a) Manual design relies on expert knowledge.
(b) A naive method via LLMs. (c) Our method proposes an LLM-driven APD framework to
automatically discover optimal ZCPs for Training-Free NAS.
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Figure 2: Spearman (SP) ranking correlations & accuracies (Acc) of zero-cost proxies on NAS-
Bench-201 (Left) and Trans-Bench-101 (right).

on some statistical or theoretical properties (i.e., the number of parameters, Neural Tangent Kernel)
of neural architectures to assess their expressivity.

1.1 Challenges

Although these approaches have taken the first step towards ZCPs tailored for training-free NAS
Haidong et al. [2025], current ZCPs still suffer from several fatal drawbacks: (1) they require extensive
expert knowledge through hundreds of time-consuming trial-and-error processes (as shown in Fig.
1a and Table 1), increasing the labor costs and making it hard to design new ZCPs; (2) these crafted
ZCPs incur poor correlation with the final accuracy of searched architecture (as shown in Fig. 2 and
3), making the users do not know why those ZCPs failed and hard to deploy in real-world applications.
This is identified with ZiCO Li et al. [2023], which points out that the performance of simple proxies
(i.e., #Params, FLOPs) excels most of the crafted ZCPs. Those limitations highlight the need to
rethink the design paradigm of AZPs.

Our New Observation. Different from existing methods for training-free NAS, as depicted in Fig.
1b, and Fig. 1c, we observe a new way to automatically design ZCPs via Large Language Models
(LLMs) in this work, which can effectively address the aforementioned drawbacks by revolutionizing
the traditional manual design manner. More details are shown in Section 3.

1.2 Contributions

In this work, we attempt to analyze and address the above drawbacks. To fulfill our goal, we first
conduct an in-depth analysis by rethinking the design of ZCPs, and experimentally confirm their
limitations (as shown in Section 2). To tackle those drawbacks, motivated by powerful large language
models (LLMs) Radford et al. [2018], Brown et al. [2020], Achiam et al. [2023], Chang et al. [2024],
Liu et al. [2024] for generating new ideas and knowledge, we provide an affirmative answer by
proposing a novel way to automatically design ZCPs via LLMs, dubbed APD. Specifically, we first
explore a naive method (as depicted in Fig. 1b) using a simple prompt as input to LLMs, however,
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Spearman (SP) ranking correlation of ZCPs searched by the naive method is very poor. This raises the
challenge and need of how to seek new strategy, improving the effectiveness of LLM-driven ZCPs. To
reveal the root cause, we conduct an in-depth analysis and observe that the naive method lacks thought
between the prompt and tasks, which could be a potential reason of poor correlation. Inspired by
GPT-4o and Deepseek R1 Guo et al. [2025], we leverage actor-critic based reinforcement learning (as
shown in Fig. 1c) as the reasoning engine, enabling it to generate intermediate reasoning steps before
the final answer. This plays a critical Chain-of-Thought (CoT) role in enhancing APD performance,
especially in NAS tasks requiring multi-step reasoning. We summarize the main contributions of this
work as follows:

• New ZCPs paradigm. To the best of our knowledge, we are the first to propose a novel
ZCPs paradigm by leveraging LLMs, providing a new perspective for understanding and
designing training-free NAS.

• CoT driven strategy. Beyond the limit of poor correlation of simple prompts for designing
ZCPs, we first reveal that the root cause is the absence of positive reward signals for these
proxies during search. To address this, we propose an actor-critic based reinforcement
learning to build reasoning engine, achieving improvements akin to Chain-of-Thought
reasoning in GPT-4o and DeepSeek-R1 and yielding much stronger proxy-to-performance
correlation.

• Numerical Verification. Extensive experiments validate the superiority of our APD, outper-
forming previous methods on mainstream search spaces and datasets.

2 Rethinking the design of Zero-cost Proxies

Method Corresponding formula Human expert

SNIP
∣∣(∂L∂θ )⊙ θ∣∣ ✓

Fisher
∑
z∈A

(
∂L
∂z z

)2
✓

SynFlow (∂R∂θ )⊙ θ,R = 1T
(∏

θi∈W |θi|
)
1 ✓

AZ-NAS sAZ(i) =
∑

M∈{E,P,T ,C} log
Rank(sM(i))

m ✓

SWAP ΨN ,θ =
∣∣∣ÂN ,θ

∣∣∣ ✓

APD sAPD =
(∑

l∈B
∥Ml(θ)∥2

F

∥Ml(θ)∥2
2

)
×
(∑

l∈C
∥Wl(θ)∥1

∥Wl(θ)∥2

)
✗

Table 1: Comparison of existing ZCPs. Here,
sAPD is the best-performing ZCP discovered by
APD on NAS-Bench-201. In APD, B and C repre-
sent batchnorm and convolutional layers, while M
and W denote their outputs and weights.

The primary goal of AZPs is to accurately pre-
dict the ranking of architectures without train-
ing on a given search space. As shown in
Table 1, the representative AZPs (i.e., SNIP,
SWAP) leverage heuristics, statistical, or gra-
dient properties to measure expressibility of ar-
chitectures. However, those AZPs heavily rely
on human expertise, which may be suboptimal
for new search spaces or datasets. In addi-
tion, designing new ZCPs is time-consuming.

Notably, ZiCO Li et al. [2023] highlights that
simple proxies such as the number of parameters
and FLOPs often outperform many hand-crafted
ZCPs in predicting neural architecture perfor-
mance. As shown in Fig. 3, hand-crafted ZCPs
(i.e., Grasp, AZ-NAS, SWAP) suffer from a significant poor correlation issue. Those experimentation
with hand-crafted ZCPs motivate us to seek a new ZCPs paradigm for designing training-free NAS.
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Figure 3: A comparison of ZCPs on Au-
toEncoding of Trans-Bench-101.

Inspired by the knowledge generation capabilities of
LLMs, we raise a new question: can LLMs automati-
cally generate zero-cost proxies (ZCPs) for NAS tasks?
To test this, we designed a simple prompt (App. A) that
asks the LLM to output a ZCP, based on the assumption
that LLMs have internalized rich knowledge of neural
networks during pretraining. On NAS-Bench-201, the
generated ZCP achieved a 60.51% spearman correlation
(as shown in Table 6) on NAS-Bench-201 search space
in CIFAR-10 dataset, lower than hand-crafted methods,
yet encouraging for LLM-driven ZCP discovery. Fur-
ther analysis reveals that the lack of reasoning and feed-
back is the key limitation, as prompt-based generation
is a black-box process. To address this, we propose an
actor–critic reinforcement learning framework, inspired
by Chain-of-Thought (CoT) prompting in GPT-4o. This

3



design introduces a feedback loop between the LLM
and the NAS task, enabling the LLM to refine ZCPs iteratively and significantly improving both the
performance and efficiency of proxy generation (as shown in Fig. 3).

3 APD: A Resourceful Adviser for Training-Free NAS

3.1 Automatic Proxy Discovery

To fulfill the goal of designing ZCPs for the training-free NAS, APD utilizes LLMs to automatically
generate proxies by evolving both natural language descriptions and corresponding code. In addition,
we propose an actor-critic RL controller sampling appropriate prompt strategies to guide the evolution,
aiming to optimize the correlation between proxies and final model performance. The overall
framework of APD is depicted in Fig. 4, which consisting of three main components as follows:
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Figure 4: Overview of APD. APD utilizes large-scale pre-trained models to automatically search for
the optimal zero-cost proxies tailored for training-free NAS.

Proxy Candidate Generator. LLM in APD serves as proxy candidate generator. Carefully structured
prompts enable it to synthesize new ZCPs or refine existing ZCPs. Let P denote the set of valid
proxies that satisfy a fixed I/O contract. During time step t, with the current proxy population
Pt(Pt ⊆ P), the LLM L receives both a structured prompt π ∈ Π that specifies the requested
operation Π(initialization,mutation, crossover) and a bounded context window Ct ⊆ Pt containing
existing proxies together with their natural language rationales and codes. This pair (π, Ct) induces a
context-conditioned distribution:

µπ,Ct = PL(f |π, Ct), (2)

where µπ,Ct
represents the probability distribution over candidate proxies induced by prompt π and

context Ct with LLM L. Composing over all prompts and admissible contexts yields an implicit,
context-aware search space:

F =
⋃
t∈N

⋃
π∈Π

⋃
C⊆Pt

supp(µπ,C), (3)

where supp(µπ,C) is the support set of distribution µπ,C . Obviously, we have F ⊆ P . Relative to
context-free pairs, this construction enlarges support while preserving ergodic reachability and allows
the generator to reuse salient patterns already discovered in P , and thereby drives the realized search
space A to lie as close as possible to P .

In APD, three categories of context-conditioned pairs are employed, each of which gives rise to
distinct distribution:

• Initialization µinit,∅ provides only the task description, I/O contract and ample prior knowl-
edge that depicts input architectures and data.
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• Mutation µmut,f conditions on a single proxy f to perform local perturbations, enabling
fine-grained exploitation.

• Crossover µcross,f furnishes at least two parent proxies and asks the LLM to identify their
common principles and fuse complementary components, encouraging recombination of
useful motifs.

The context-aware Proxy Candidate Generator endows APD with flexible exploration granularity:
during a single evolutionary step, the algorithm can elect either to densely sample previously unvisited
regions of the proxy space or to perform fine-grained, local refinement around promising candidates,
thus supporting both broad coverage and deep exploitation as needed.

Fitness Evaluator. The fitness evaluator swiftly quantifies each candidates ZCP by computing its
Spearman correlation with ground-truth accuracies on the given NAS benchmark A (e.g., NAS-
Bench-201). For a benchmark set B = {(ai, pi)}mi=1 of architectures and ground-truth accuracies
under dataset D. The fitness assigned to f is

ϕ(f) = ρ(f(a),p)− βcost(f). (4)

Where ρ is Spearman or Kendall correlation, computed on randomly sampled subset of B to provide
an unbiased estimate of ranking fidelity. cost(f) is the average runtime required to evaluate one
architecture of B. β is a hyperparameter that controls the trade-off between predictive quality and
computational efficiency.

RL Evolution Scheduler. To render the proxy evolution strategy learnable and capable of converging
efficiently toward optimal ZCPs, APD introduces an actor–critic module that serves as the evolutionary
decision-maker. The actor–critic treats the fitness score returned by the evaluator as its reward and
learns a policy that maximizes this signal, thereby jointly optimizing both the evolving set of ZCPs
and the evolution strategy itself.

In a given search space A of candidate architectures and their ground-truth performance p(a), the
objective of APD is to learn a proxy f : A → R whose scores preserve the ranking induced by p.
Therefore, we aim to maximize the expected correlation:

max
f∈F

Ea⊆A[ρ(f(a), p(a))], (1)

where ρ is Spearman ρs. Each proxy f is represented as a tuple (T , C) of T a natural language
thought describing the proxy’s principle, and C an executable code that returns a scalar score, ensuring
interpretability and deterministic replay throughout the evolutionary process.

To accelerate convergence toward high correlation proxies while maintaining effective exploration in
search space F , APD introduces a light-weight Actor-Critic as evolution scheduler that governs every
evolutionary step. At generation t, the controller observes a compact state vector with fixed-width
histogram of fitness values and strategies, sampling an action at ∈ Π from a categorical policy
πθ(a|st). Executing at yields candidate proxies P

′

t , whose fitness ϕ(P
′

t ) is evaluated by the Fitness
Evaluator. The scheduler then receives a clipped reward rt = E(ϕ(P ′

t )) that promotes substantive
improvements and updates the Actor-Critic by standard advantage-actor-critic gradient steps:

θ ←θ + η∇θ log πθ(at | st)
[
rt + γVψ(st+1)− Vψ(st)

]
,

ψ ←ψ − ηv∇ψ
(
rt + γVψ(st+1)− Vψ(st)

)2
.

(5)

Where θ and ψ denote the actor and critic parameters, η and ηv are the actor and critic learning
rates, Vψ is the value baseline parameterized by ψ, and γ is the discount factor. The critic minimizes
(r + γV (st+1)− V (st))

2, and the actor maximizes the advantage-weighted log likelihood.

3.2 Evolution Framework

Based on the components outlined in Section 3.1, we integrate the Proxy Candidate Generator, Fitness
Evaluator, and the RL Evolution Scheduler into evolutionary loop. As shown in Algorithm 1, APD
unfolds through the following mutually dependent steps:

Step 0 Initialization In time step 0, an (initialization, ∅) is issued to the LLM, producing the seed
P0 = {f1, · · · , fN}.
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Step 1 Generation At generation t the actor samples an action at = (op, Ct) ∼ πθ(·|st) where
op ∈ {init,mut, cross}. The corresponding prompt and context window Ct ⊆ Pt are fed to the LLM,
yielding candidate proxies P

′

t .

Step 2 Evaluation The candidates are scored in B by the fitness function ϕ(·). If the proxy fails the
contract check, it is assigned ϕ = −∞.

Step 3 Policy update The scheduler receives reward rt = E(ϕ(f)) by calculating the mean ϕ and
updates (θ, ψ) by the rule in (5).

Step 4 Population replacement The union Pt ∪ {P
′

t } is sorted by fitness. The worst proxies are
dropped to keep |Pt+1| = N . A tie-breaking rule that favors younger proxies prevents age-related
stagnation. The loop then returns to Step 1.

The loop terminates after Tmax generations. Empirically, the framework produced proxies whose
Spearman correlation on NASBench201 exceeds 0.80 within 30 generations roughly one GPU-hour
on a single RTX4090.

Algorithm 1 Evolution Framework

Require: LLM L, benchmark B, population N , budget Tmax, actor-critic (πθ, Vψ)
P0 ← first N proxies from µinit,∅, s0 ← {∅, ∅}
for t = 1 to Tmax do

op ∼ π(·|st), C ← P

P
′ ← L(µop,C), φ← ϕ(P

′
)

rt ← E(φ), update (θ, ψ, st+1)

P ← (P ∪ P ′
)/{worst(P )}

end for
return argmaxf∈F ϕ(f)

4 Experiments

4.1 Experimental Settings

We evaluate APD on 5 representative search spaces (e.g., NAS-Bench-201 Dong and Yang [2020],
NAS-Bench-101 Ying et al. [2019], DARTS Liu et al. [2018], TransNAS-Bench-101–Micro Duan
et al. [2021], OoD-ViT-NAS Bai et al. [2021]) across 4 tasks: image recognition, autoencoding,
scene classification, and self-supervised jigsaw puzzles. We transfer the zero-cost proxy identified
on CIFAR-10 within the NAS-Bench-201 search space to all datasets in both NAS-Bench-201 and
NAS-Bench-101. However, due to the substantial search space disparities between TransNAS-Bench-
101, OoD-ViT-NAS, and NAS-Bench-201, we search for new zero-cost proxies directly within these
spaces to ensure optimal performance. In addition, we train APD with 7 mainstream LLMs (i.e.,
GPT4o Achiam et al. [2023], Claude 3.7 Anthropic [2025], Deepseek V3 Liu et al. [2024], Gemini
flash Google Cloud [2025], Llama 4 Meta AI [2025], Grok 3 xAI [2025]). Full experimental details
are provided in App. B.

4.2 Performance on NAS-Bench-201&101 search spaces

Table 2 compares APD with state-of-the-art training-free NAS methods on NAS-Bench-201 (CIFAR-
10/100, ImageNet16-120) and NAS-Bench-101 (CIFAR-10). APD consistently achieves the highest
test accuracy and ranking correlations (SPR/KT) across all datasets. Compared to the best existing
methods, APD improves test accuracy by +0.07% on CIFAR-10 (vs. ZiCo), +0.52% on CIFAR-100
(vs. Synflow), and +0.69% on ImageNet16-120 (vs. AZ-NAS), while reducing runtime cost by over
50%. On ImageNet16-120, APD also outperforms Grasp by +14.18%, ZenNAS by +7.85%, ZiCo
by +3.61%, and AZ-NAS by +0.69%. These results not only highlight the efficiency and robustness
of APD across diverse search spaces, but also demonstrate the strong potential of LLM-driven ZCP
design, advancing the development of training-free NAS.
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Table 2: Performance comparison on NAS-Bench-201 (NB-201) search space with CIFAR-10/100,
and ImageNet16-120 datasets, and NAS-Bench-101 (NB-101) search space with CIFAR-10 dataset.
We report Kendall’s τ (KT) and Spearman’s ρ (SPR) computed with all candidate architectures. In
addition, we report the average independent runs results obtained from our method. The red, blue,
and orange indicate the best, second-best, and third-best results, respectively.

Method
CIFAR-10(NB-201) CIFAR-100(NB-201) ImageNet16-120(NB-201) CIFAR10(NB-101) Runtime

(ms/arch)SPR KT Test acc.(%) SPR KT Test acc.(%) SPR KT Test acc.(%) SPR Test acc.(%)

Params 0.751 0.576 93.61 ± 0.08 0.726 0.552 70.95 ± 0.37 0.690 0.519 41.67 ± 0.64 0.38 92.18 ± 1.53 -
FLOPs 0.733 0.541 93.61 ± 0.08 0.708 0.517 70.95 ± 0.37 0.691 0.517 41.67 ± 0.64 0.67 92.18 ± 1.53 -
Snip Abdelfattah et al. [2021] 0.614 0.455 86.63 ± 3.89 0.618 0.461 56.53 ± 7.56 0.545 0.409 15.13 ± 10.86 0.71 85.41 ± 1.38 45.78
Grasp Abdelfattah et al. [2021] 0.460 0.318 88.01 ± 3.14 0.470 0.329 61.43 ± 7.04 0.406 0.282 30.85 ± 5.66 0.45 87.08 ± 1.40 93.70
Synflow Abdelfattah et al. [2021] 0.769 0.571 93.67 ± 0.39 0.758 0.562 71.70 ± 0.94 0.745 0.553 43.39 ± 3.21 0.38 89.93 ± 2.97 78.26
NWOT Mellor et al. [2021] 0.743 0.557 91.95 ± 1.29 0.769 0.579 68.88 ± 1.60 0.760 0.573 42.31 ± 3.43 0.32 93.16 ± 0.36 36.54
ZenNAS Lin et al. [2021] 0.365 0.283 89.55 ± 1.12 0.338 0.245 64.69 ± 3.86 0.372 0.260 37.18 ± 3.17 0.65 93.06 ± 0.73 30.07
ZiCo Li et al. [2023] 0.784 0.589 93.69 ± 0.07 0.813 0.620 70.63 ± 1.08 0.804 0.614 41.42 ± 0.97 0.65 92.64 ± 0.99 75.50
AZ-NAS Lee and Ham [2024] 0.913 0.741 93.49 ± 0.30 0.900 0.723 70.33 ± 1.16 0.886 0.710 44.34 ± 1.26 0.42 92.01 ± 0.85 69.43
SWAP Peng et al. [2024] 0.810 0.634 90.48 ± 0.94 0.820 0.649 67.13 ± 1.83 0.774 0.610 35.40 ± 3.96 0.44 90.51 ± 2.08 47.61
APD 0.832 0.635 93.76 ± 0.09 ↑(0.07) 0.843 0.654 72.22 ± 0.65 ↑(0.52) 0.817 0.633 45.03 ± 0.76 ↑(0.69) 0.73 93.49 ± 0.34 ↑(0.33) 16.81 ↓(13.26)

Optimal - - 94.33 ± 0.08 - - 73.30 ± 0.20 - - 46.97 ± 0.19 - 93.87 ± 0.08 -

Table 3: Comparison on the DARTS search space using CIFAR-10/100 (left) and ImageNet1k (right).
"C10", "C100", and "Img" indicate search conducted on CIFAR-10, CIFAR-100, and ImageNet1k,
respectively. All models are retrained using official code from Liu et al. [2018] for fair comparison.
"Paper" shows results from original publications; "∗" denotes results from released training code
Zheng et al. [2021]; “–” means unavailable or unreleased data.

Method CIFAR-10 Top-1 (%) CIFAR-100 Top-1 (%) Params
(M) GPU-Days Search

method Method Top-1(%) Top-5(%) Params
(M)

FLOPs
(M) GPU-Days Search

methodRetrain Paper Paper
ResNet18 He et al. [2016] - - 75.61 11.2 - Manual ResNet50 He et al. [2016] 75.3 92.2 25.6 4100 - Manual
AmoebaNet-A Zoph et al. [2018] - 97.45 ± 0.05 16.82 - 3150 Evolution AmoebaNet-A Zoph et al. [2018] 74.5 92.4 6.4 555 3150 Evolution
ENAS Pham et al. [2018] - - 81.09 4.6 0.5 Evolution ProxylessNAS-RL Cai et al. [2018] 74.6 92.3 5.8 465 8.3 RL
PNAS Liu et al. [2018] - 96.59 82.37 3.2 225 SMBO EfficientNet-B0 Tan and Le [2019] 76.3 93.2 5.3 390 ≈3000 RL
NASNet-A Zoph et al. [2018] - 97.37 82.19 3.3 1,800 RL NASNet-A Zoph et al. [2018] 74.0 91.6 5.3 564 2000 RL
DARTS(2nd) Liu et al. [2018] - 97.24 ± 0.09 82.46 3.3 1 Gradient DARTS Liu et al. [2018] 73.3 91.3 4.7 574 4 Gradient
DARTS(1nd) Liu et al. [2018] - 97.00 ± 0.14 83.18 3.3 0.4 Gradient FBNet Wu et al. [2019] 74.9 - 5.5 375 216 Gradient
P-DARTS Chen et al. [2019] 97.30 ± 0.15∗ 97.50 83.37 3.4 0.3 Gradient P-DARTS(C100) Chen et al. [2019] 75.3 92.5 5.1 577 0.3 Gradient
PC-DARTS Xu et al. [2019] 97.29 ± 0.11∗ 97.43 ± 0.07 82.89 3.6 0.1 Gradient PC-DARTS(Img) Xu et al. [2019] 75.8 92.7 5.3 597 3.7 Gradient
DARTS+ Liang et al. [2019] - 97.50 ± 0.11 83.72 3.7 0.4 Gradient DARTS+ Liang et al. [2019] 76.3 92.8 5.1 591 0.2 Gradient
DARTS- Chu et al. [2020] 97.38∗ 97.41 ± 0.08 82.49 3.5±0.13 0.4 Gradient DARTS-(Img) Chu et al. [2020] 76.2 93.0 4.9 467 4.5 Gradient
FairDARTS-D Chu et al. [2020] 97.29∗ 97.46 ± 0.05 - 3.8 0.4 Gradient FairDARTS-B(Img) Chu et al. [2020] 75.1 92.5 4.8 541 - Gradient
DARTS+PT Wang et al. [2021] - 97.39 ± 0.08 - 3.0 0.8 Gradient DARTS+PT(C10) Wang et al. [2021] 74.5 92.0 4.6 - 0.8 Gradient
β-DARTS Ye et al. [2022] - 97.47 ± 0.08 83.48 3.8±0.15 0.4 Gradient β-DARTS(C100) Ye et al. [2022] 75.8 92.9 5.4 597 0.4 Gradient
Λ-DARTS Movahedi et al. [2023] - 97.48 ± 0.11 83.47 3.5±0.13 - Gradient Λ-DARTS Movahedi et al. [2023] 75.7 - 5.2 - - Gradient
FP-DARTS Wang et al. [2023] - 97.50 ± 0.05 83.50±0.05 3.9 0.08 Gradient FP-DARTS(C10) Wang et al. [2023] 75.7 92.7 5.4 - 0.08 Gradient
DARTS-AERb Jing et al. [2023] - 97.47 ± 0.02 - 3.64 ± 0.18 0.3 Gradient PDARTS-AERad Jing et al. [2023] 76.0 92.8 5.1 578 2.0 Gradient
IS-DARTS He et al. [2024] - 97.44 ± 0.04 - 4.25 ± 0.22 0.42 Gradient IS-DARTS He et al. [2024] 75.9 92.9 6.4 - 0.42 Gradient
NWOT Mellor et al. [2021] 95.73 - - 5.0 - Training-free NAO Luo et al. [2018] 74.3 91.8 11.4 584 200 Proxy
TENAS Chen et al. [2021] 97.37±0.064 - - 3.8 0.05 Training-free TENAS Chen et al. [2021] 75.5 92.5 5.4 - 0.17 Training-free
NASI-ADA Shu et al. [2022] - 97.10±0.13 - 3.7 0.24 Training-free NASI-ADA(C10) Shu et al. [2022] 75.0 92.2 4.9 559 0.01 Training-free
SWAP Peng et al. [2024] - 97.52±0.09 - 4.3 0.004 Training-free SWAP Shu et al. [2022] (Img) 76.0 92.4 5.8 - 0.006 Training-free
APD(C10) 97.63±0.13 ↑(0.13) - 84.83±0.09 ↑(1.33) 4.4 0.004 Training-free APD(Img) 76.9 ↑(0.6) 94.0 ↑(0.8) 6.3 695 0.004 ↓(1.5×) Training-free

4.3 Performance on DARTS Search Space

CIFAR-10 and CIFAR-100 Datasets. As shown in Table 3, APD achieves state-of-the-art perfor-
mance with significantly reduced search costs. On CIFAR-10, APD attains a top-1 accuracy of 97.63%
using merely 0.004 GPU-days, surpassing representative gradient-based methods such as DARTS and
advanced training-free methods like TENAS. Similarly, on CIFAR-100, APD achieves 84.83% accu-
racy, outperforming leading competitors including DARTS+ and FP-DARTS. These results clearly
demonstrate that APD sets a new benchmark in both accuracy and search efficiency across datasets.

Table 4: Results on TransNAS-Bench-101-Micro.

Method Autoencoding Scene Classification Jigsaw
SSIM Accuracy (%) Accuracy (%)

Ground Truth 0.58 54.9 95.4
Grad_norm Abdelfattah et al. [2021] 0.36± 0.03 48.7±0.7 80.3±0.3
SNIP Abdelfattah et al. [2021] 0.33±0.04 48.7±1.1 80.3±0.1
Grasp Abdelfattah et al. [2021] 0.33±0.06 50.2±1.6 91.1±0.3
Fisher Abdelfattah et al. [2021] 0.49±0.01 48.7±0.6 83.5±1.2
Synflow Abdelfattah et al. [2021] 0.46±0.07 53.7±1.2 90.9±0.4
NWOT Mellor et al. [2021] 0.43±0.02 53.2±0.6 92.3±0.3
Zen-score Lin et al. [2021] 0.46±0.01 53.7±0.2 87.5±0.4
GradSign Zhang and Jia [2021] 0.35±0.03 53.6±0.4 93.1±0.4
Params 0.46 53.7 85.9
FLOPs 0.46 53.7 85.9
ZiCo Li et al. [2023] 0.48±0.02 53.7±0.4 93.2±0.4
SWAP Peng et al. [2024] 0.42±0.02 45.0±10.9 89.8±5.6
APD 0.54±0.01 ↑(0.06) 54.0±0.6 ↑(0.3) 91.2±0.1 ↓(2)

ImageNet1k Dataset.
Table 3 (right) summarizes
results on ImageNet1k,
demonstrating the strong
generalization capability
of our method. APD
achieves 76.9% top-1
accuracy, improving over
the leading training-free
method (e.g. NASI-ADA
and SWAP) and the exist-
ing best one-shot method.
Importantly, APD achieves
these improvements with a minimal search cost of only 0.004 GPU-days, which is 1.5× less
than SWAP. These findings clearly demonstrate APD’s excellent performance and generalization
efficiency across different datasets.
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4.4 Results on TransNAS-Bench-101–Micro

As summarized in Table 4, our method consistently achieves state-of-the-art performance across
all three tasks on TransNAS-Bench-101-Micro, highlighting its strong generalization capability
heterogeneous downstream tasks. In particular, for the Autoencoding task, our approach attains an
SSIM score of 0.54, surpassing leading methods such as ZiCo (0.48), NWOT (0.43), and SWAP
(0.42). Similar performance improvements are observed in the Scene Classification and Jigsaw tasks,
demonstrating APD’s robustness and effectiveness across diverse downstream tasks.

4.5 Generalizability on OoD-ViT-NAS-Ti

To further evaluate the generalizability of our method on vision transformers under Out-of-Distribution
(OoD) conditions, we conduct experiments on the OoD-ViT-NAS-Ti search space Ho et al. [2025]
across five datasets: ImageNet1k, ImageNet-A, ImageNet-R, ImageNet-D/Texture, and ImageNet-
D/Material. All results are averaged over 5 independent runs. As shown in Table 5, APD consistently
outperforms prior methods across all OoD settings. Specifically, APD achieves +0.04 higher ρ
than NWOT on ImageNet1k, and +0.01 over DSS on ImageNet-D/Texture. On ImageNet-R, APD
surpasses all methods with a highest ρ of 0.88, outperforming AutoProx by +0.10 and DSS by
+0.07. These results highlight the strong generalizability of APD under distribution shifts, and further
confirm the effectiveness of leveraging LLMs to design accurate and robust zero-cost proxies for
transformer-based NAS.

Table 5: Correlation on OoD-ViT-NAS-Ti search space.
Method ImageNet1k ImageNet-A ImageNet-R ImageNet-D/Texture ImageNet-D/Material

SNIP 0.38 0.51 0.55 -0.06 0.11
Grasp -0.03 -0.06 -0.07 -0.01 0.03
MeCo 0.48 0.40 0.33 0.09 0.08
CroZe 0.40 0.54 0.60 0.01 0.12
DSS 0.62 0.82 0.81 0.02 0.17

AutoProx 0.67 0.82 0.78 0.05 0.15
NWOT 0.75 0.76 0.74 0.11 0.12
APD 0.79↑(0.04) 0.82 0.88 0.12↑(0.01) 0.15

4.6 Ablation studies

Table 6: Comparison of APD with different LLMs on
NAS-Bench-201 search space in CIFAR-10 dataset.

Method LLMs Run 1 Run 2 Run 3 Run 4 Average (ρ)

Naive GPT4o 60.37 59.74 60.52 61.40 60.51
APD Claude 3.7 80.90 80.91 82.72 81.91 81.14
APD Deepseek V3 79.77 80.78 79.77 79.77 80.24
APD Gemini flash 75.47 73.31 73.50 74.66 75.22
APD Llama 4 73.04 72.70 72.32 72.95 72.87
APD GPT4o 81.59 80.96 81.75 82.62 81.10
APD Grok 3 72.23 79.77 80.78 84.51 79.32

The impact of various LLMs: To scru-
tinize the impact of various LLMs (i.e.,
GPT4o, Llama 4), we perform an abla-
tion study of LLMs on the NAS-Bench-
201 search space in the CIFAR-10 dataset
(As shown Table 6 and the left panel of
Fig. 5) and the TransNAS-Bench-101
Micro search space (as shown Fig. 5
right). Specifically, we conduct experi-
ments by averaging 4 independent runs
to keep a fair comparison. From Table
6 and Fig. 5, we draw two conclusions:
(1) Our APD demonstrates strong robust-
ness across different LLMs. Specifically, APD achieves highly consistent results under different
LLMs, showing minimal performance fluctuations across models. Moreover, APD is stable to
noise caused by different training settings, further enhancing its reliability in real-world deployment.
(2) Compared to Naive method, our APD significantly improves the performance in terms of accuracy.
For example, the accuracy of APD with Claude 3.7 is 21.26% higher than the Naive method. The
performance improvement can be attributed to our proposed actor–critic reinforcement learning
framework, which provides key reasoning and feedback for proxy generation.

Table 7: Ablation study of various components.

Naive Evolution Actor-Critic CIFAR-10(NB-201) CIFAR-100(NB-201)
1⃝ ✓ ✗ ✗ 82.04 47.62
2⃝ ✓ ✓ ✗ 88.53 61.16
3⃝ ✓ ✓ ✓ 93.76 72.22

The impact of various components:
We conduct ablation studies on NAS-
Bench-201 (CIFAR-10/100) to evaluate
the effectiveness of key components in
APD. As shown in Table 7, the naive ver-
sion without Evolution and Actor-Critic
modules performs poorly (82.04% in CIFAR-10 and 47.62% in CIFAR-100). Introducing Evolution
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Figure 5: A comparison of ranking correlations of our method designed by 7 mainstream LLMs
including GPT4o, Claude 3.7, Deepseek V3, Gemini2.0 flash, Grok 3, Llama 4 Maverick, and Qwen
plus. Specifically, we conduct the empirical validation on NAS-Bench-201 (Left) and TransNAS-
Bench-101 (Right) search spaces in the CIFAR-10 dataset.

alone significantly boosts performance, yielding +6.49% and +13.54% improvements, respectively. In
addition, we observe that there is a joint contribution between Actor-Critic and Evolution. Specifically,

3⃝ obtains 93.76% in CIFAR-10 and 72.22% in CIFAR-100. Those results validate the effectiveness
of our APD.

4.7 Discussion

We are surprised by the remarkable performance of zero-cost proxies designed by LLMs for training-
free NAS, in this section, we conduct an in-depth analysis of APD. APD achieves impressive
performance primarily due to the effectiveness of the reinforcement learning strategy. The RL policy
enables adaptive selection and refinement of zero-cost proxies, guiding the LLM toward generating
more task-relevant strategies. This interaction mechanism significantly enhances the synergy between
LLMs and NAS, ensuring that the discovered proxies are both generalizable and high-performing.

Despite involving LLMs, our framework mitigates the typical “black-box” concerns by embedding
the LLM within an RL-guided optimization loop. This interaction provides a structured feedback
signal, reducing the opaqueness of the overall process and making the optimization more transparent
and controllable. Moreover, our approach redefines the traditional NAS design paradigm by shifting
from handcrafted heuristics to LLM-guided discovery. This not only introduces a new learning
framework for NAS but also offers a transferable methodology for other deep learning domains.

4.8 Additional Evaluation

Due to the page limit, we provide more experimental results in App. A-H. ❶ Detailed Prompt
Engineering of APD are presented in App. C. ❷ More ablation studies are presented in App. D. ❸
Limitations are presented in App. E. ❹ Visualizations of designed AZPs are presented in App. F.
❺ Visualizations of searched architectures are presented in App. G.

Related Work. The related work is provided in App. H.

5 Conclusion and Future Works

In this work, we observe that existing zero-cost proxies in training-free NAS are manually crafted,
inefficient, and poorly correlated with final performance. To address this, we propose APD, an
LLM-driven framework that automatically discovers high-quality proxies without human effort. By
incorporating an actor-critic reinforcement learning strategy, APD iteratively refines prompts to
generate better proxies. The proposed method achieves state-of-the-art performance and efficiency on
multiple NAS benchmarks. We believe APD offers a novel design paradigm and will inspire broader
applications of LLMs in automated machine learning. In the future, we plan to further improve the
performance of APD.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly and accurately reflect the paper’s contri-
butions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our limitations are in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The full set of assumptions and complete proofs are provided in section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper provide sufficient information to reproduce the main experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [Yes]
Justification: We provided runnable code in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details and settings are in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The error bars reported in our paper are appropriately and clearly defined.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sufficient information is included in the paper to reproduce all experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We mention the license in the README file in the code of the provided
supplementary material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe our prompt engineering workflow using LLMs as a core compo-
nent in section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A A Simple Prompt

To empirically validate the hypothesis presented in Section 2, we employ the prompt depicted in
Figure 6 to assess the capability of LLMs in generating effective ZCPs.

Figure 6: A representative minimal prompt used in our naive experiments.

Prompt for Naive

Please help me design five novel Zero-Cost Proxies for evaluating the expressive performance of a
neural network on a given batch of image data using training-free metrics.

These proxies should require no training, and must be computationally cheap to evaluate, similar to
existing zero-cost proxy methods such as NWOT, SynFlow, or Jacobian Covariance. However, you
should not copy or imitate these methods — your goal is to creatively propose original ideas that
align with the following requirements:

For each of the five proxies, do the following:
Firstly, provide a one-paragraph description of the idea, including how the score is computed.
Secondly, Implement the proxy in Python, as a function named ‘evaluate(model, data)’ that: Takes a
neural network object (‘model’)(pytorch model) and image batch (‘data’)(tensor) as input. Returns a
scalar score (‘score’) reflecting expressive performance.

Note: Do not use training. Avoid random sampling or stochastic components. The heuristic must
work on general-purpose image data and standard neural networks (e.g., CNNs). Do not provide any
additional explanation outside of the required description and code.

B Experimental settings

B.1 Evolution Settings

Table 8 summarizes the default hyper-parameter configuration used in APD evolutionary experiments.
Searches are conducted on a single RTX4090 GPU with a fixed random seed of 0. Each candidate
proxy’s performance is averaged over 5 independent forward passes using a batch of 16 random
samples. We adopt CIFAR-10 as the primary benchmark and report transfer results on CIFAR-10
and ImageNet-16. The actor-critic controller is a two layer MLP with 256 hidden units. The actor
and critic learning rates are set to 1e-3 and 1e-2, respectively, with a discount factor γ = 0.9. During
search we run 10 episodes of 100 steps search and test every individual for 200 architectures. The
controller retains a history window of 5.

Table 8: Hyper-parameters for Automatic Proxy Discovery.
Parameter Value Parameter Value
Episodes 10 Steps 100
History windows 5 Discount factor 0.9
Actor learning rate 1e-3 Critic learning rate 1e-2
Input batch size 16 Repeats 5
Hidden size 256 Number of layers 2
Population size 5 β 1

B.2 DARTS Settings

We list the training hyper-parameters we adopt for all experiments on DARTS. Figure 27 shows the
optimal architecture obtained by APD in the DARTS search space.

As detailed in Table 9, models are trained for 600 epochs with a fixed random seed of 42. We employ
SGD with momentum 0.9, an initial learning rate of 0.025 that is decayed to zero via cosine annealing,
weight decay of 5e-4, and gradient clipping at a maximum norm of 5. Architectures begin with 36
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Table 9: Hyper-parameters for DARTS training.
Parameter Value Parameter Value
Seed 42 Batch size 96
CutOut length 16 Initial channels 36
Cells / layers 20 Aux. loss weight 0.4
Learning rate 0.025 Momentum 0.9
Weight decay 5e-4 Grad clip (norm) 5
DropPath prob. 0.2 Lr scheduler CosineAnnealing

channels and stack 20 cells. An auxiliary classifier is attached with a loss weight of 0.4. We apply
CutOut regularization (length=16) and linearly increase DropPath probability 0.2 over the course of
training. All runs use a batch size of 96.

B.3 Autoformer Settings

For all ImageNet-1k training runs, we adhere to the core setup prescribed by AutoFormer [69], which
is listed in Table 10. The subnet discovered by APD are reported in Figure 28, Figure 29 and Figure
30.

We retrain discovered AutoFormer architectures for 300 epochs on ImageNet-1k using AdamW with
an initial learning rate of 5e-4, cosine decay to 1e-5, and a 5 epoch warm-up. The network consumes
224×224 images split into 16×16 patches, and optimization runs with a batch of 128. Regularization
follows the AutoFormer baseline. RandAugment (9 transformations, magnitude 0.5), mixup-cutmix
blending (α = 0.8, switch probability 0.5), random erasing (probability 0.25, pixel model), and a
linearly ramped drop-path of 0.1. All experiments use the retrain mode, thereby only the chosen
subnet’s weights are updated while the supernet is frozen.

Table 10: Hyper-parameter configuration used to retrain the subnet on ImageNet-1K.
Category Parameter Value Notes

Data
Input resolution 224× 224 —
Patch size 16 ViT patch size
Batch size 128 —

Optimiser

Optimizer AdamW β = (0.9, 0.999), ϵ = 10−8

Initial LR 5e-4 Scaled by batch size / 512
Weight decay 0.05 Decoupled
LR schedule Cosine 5 warm-up + 300 epochs

Regularisation
Drop-path rate 0.10 Linearly increased
RandAugment rand-m9-mstd0.5-inc1 Timm default
Mixup / CutMix α=0.8, prob.= 1 Switch prob.= 0.5

Model Training mode retrain Only subnet weights updated
Max rel. position 14 Bias radius

B.4 LLMs Settings

For proxy generation, we interface with GPT-4o via the Chat Completion API [2] and evaluate
APD across multiple LLMs, including Claude 3.7 [4], Grok 3 [66], Gemini 2.0 Flash [21], Deepseek
V3 [38], and Qwen Plus [51]. To balance diversity and syntactic correctness, APD is performed with
a temperature of 0.5 and the output length is capped at 8192 tokens. We supply a specialized system
prompt that constrains LLM to emit JSON object with two fields: thought + code.

C Prompt Engineering

In this section, we outline the guiding principles underlying the design of our prompts. Given that
the effectiveness of LLM-driven heuristic discovery critically hinges on prompt quality, our prompts
are carefully crafted to maintain clarity, specificity, and structured output. Particularly, we ensure
clarity and specificity by precisely defining the computational boundaries and structural properties of

23



candidate proxies within each prompt, clearly delineating the allowable search space of the metrics
to facilitate efficient exploration by the LLM. Inspired by previous auto proxy discovery research,
we prompt the LLM to construct compositional proxies represented as directed acyclic graphs that
integrate network-derived signals (e.g., gradients, activations, or weights) with basic statistical and
arithmetic operations. Collectively, this rigorous prompt engineering strategy significantly enhances
the efficiency, validity, and innovativeness of the ZCPs by APD.

Moreover, through extensive empirical experimentation, we observe that the initial code representation
of a generated ZCP typically fails to fully realize its underlying conceptual potential. Specifically, the
initial instantiation of the proxy, directly produces from a single prompt, often exhibits suboptimal
correlation with the final performance metrics. It is only after applying evolutionary strategies such
as mutation and crossover operations that iteratively refine the proxy structure and composition that
the intrinsic effectiveness of the proxy becomes evident. This empirical insight underscores the
necessity of iterative exploration and refinement within the APD, highlighting mutation and crossover
as critical mechanisms for achieving robust and effective ZCPs.

C.1 Prompt For NAS-Bench-201

We provide the detailed prompts employed in our experiments on NAS-Bench-201 [18]. These
prompts serve as explicit instructions guiding the LLM to systematically generate novel ZCPs.
Specifically, we design three variants of prompts as depicted in Figure 7, 8, and 9. Each prompt
variant progressively introduces structured definitions, constraints on computational operations, and
explicit guidelines to ensure that the generated proxies adhere to our framework requirements, thereby
facilitating effective exploration of the proxy search space and enhancing the quality of the discovered
ZCPs.

C.2 Prompt For TransNAS-Bench-101

We detail the specific prompts utilized for proxy discovery experiments on TransNAS-Bench-101
[20]. These prompts are carefully crafted to instruct the large language model (LLM) to produce
novel zero-cost proxies tailored specifically for their diverse tasks, including JIGSAW, autoencoding,
scene classification, and object classification. To accommodate these distinct downstream tasks, we
designed three prompt variants as shown in Figure 10, 11 and 12.

C.3 Prompt For AutoFormer

We present the detailed prompts employed for proxy discovery experiments conducted on the
AutoFormer architecture search space. Given AutoFormer’s specific structural characteristics and its
transformer-based design for vision tasks, we carefully tailor three distinct prompt variants following
previous designs in Figure 13, 14 and 15.

D Extended Experimental Results

D.1 Additional Ablation Studies

Analysis on Mutation and Crossover operations To figure out the roles of the mutation and
crossover operations, we evaluate the individual contribution of the mutation and crossover operation
by selectively disabling each component during proxy search and observing the resulting performance
changes. Figure 11 illustrates that omitting the mutation prompt reduces the proxy’s correlation with
ground-truth metrics while removal of the crossover operation narrows the architectural exploration
space and weakens proxy accuracy. These findings confirm that mutation and crossover provide
distinct but complementary functions. collectively enabling the effective of high-quality zero-cost
proxies.

Analysis on population size To understand how the size of the evolving population affects the
quality and convergence of our zero-cost proxy search, we perform an ablation study over three
different population sizes: 1, 2, 3, 4, 5 and 10. A larger population can offer richer diversity and
robustness but incurs greater computational overhead and makes it harder for the LLM to follow
context, thereby reducing ZCPs quality.In contrast, a smaller population accelerates each generation
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Figure 7: Prompt used for intialization in NAS-Bench-201.

Prompt for Initialization

Your Task: Please design 5 Zero-Cost Proxies to evaluate the representation capability of different
convolutional network architectures on a given dataset. The final goal of each proxy is to provide a
scalar score that reflects the performance of a given network. You should generate Zero-Cost Proxies
according to the following specifications, which include: proxy requirements, description of the
proxy search space (defining the structure of how the proxy is computed), the search space of the
networks being evaluated, the given dataset, and the output format, as described below:

Proxy Requirements:
Training-free: No gradient descent, weight updates, or learned parameters
Efficient: Low computational cost, suitable for early-stage model selection
Dxeterministic: No stochastic elements or randomness
Input-aware: The proxy should utilize a batch of input image data
Model-sensitive: The proxy should reflect meaningful differences between models.

Proxy Search Space: The computation of the proxy can be represented as a directed acyclic graph
(DAG). For any given node, its in-degree must satisfy 0 ≤ degreein ≤ 2.
Nodes with only outgoing edges and no incoming edges are called inputs. Inputs consist of two parts:
the input module and the input property. The input module refers to different types of network layers
(e.g., convolutional layers, BatchNorm, activation layers, etc.), and the input property is one of the
following: gradient G, weights W , or output feature maps Z. An input is defined as a combination of
these two components. For example, (convolutional layer + gradient G) refers to the gradients of the
convolutional layer’s parameters. A proxy can have multiple inputs.
Nodes with both incoming and outgoing edges are referred to as operations, which are further divided
into two types:

• When degreein = 1, the node typically performs a statistical operation such as computing
the mean or standard deviation of the preceding node’s output.

• When degreein = 2, the node typically performs a binary operation, such as addition,
subtraction, or division between two inputs.

• Nodes with only incoming edges are outputs. There must be only one output node in the
DAG. The input to this final node must be a scalar.

Network Search Space: Networks drawn from NASBench-201, varying only in cell structure. Macro
architecture: input → conv → cell_n → residual (stride=2) → cell_n → residual (stride=2) → cell_∗n
→ global average pooling. Cells: DAGs of four nodes with operations: zeroize, skip-connection, 1×1
conv, 3×3 conv, 3×3 avg-pool.

Given Dataset: CIFAR-10 classification with input shape (3×32×32) and 10-dimensional output.

Output: For each proxy, provide a Description paragraph and Code demo implementing
evaluate(model, inputs, targets) in PyTorch. Ensure numerical stability, deterministic
outputs, and move any returned tensors to CPU.

Note: Your Zero-Cost Proxies must not be the same as any existing ones (such as nwot, snip, etc.),
though you may draw inspiration from them. Ensure numerical stability in your functions (avoid
inf or nan during computation). Do not provide any additional explanation outside of the required
description and code.

but risks premature convergence. We fix all other settings and report the average Spearman correlation
between proxy scores in Table 12.

Analysis on hyperparameter To assess how the discount factor γ and the history window size affect
proxy quality, we conduct two separate ablations, one varying γ over {0.5, 0.7, 0.9, 0.99}, and the
other varying the history window over {1, 3, 5, 10}. All other settings remain fixed. Results are
reported in Table 13 and Table 14.

Analysis on actor-critic To evaluate the effect of varying the number of hidden layers in the actor-
critic controller on proxy search performance and convergence speed, we conduct an ablation over
depths of 2, 3, 4, and 5 layers. Table 15 reports the final Spearman correlation achieved after
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Figure 8: Prompt used for mutation in NAS-Bench-201.

Prompt for Mutation

Your Task: Building upon the initial set of Zero-Cost Proxies, you will now perform a mutation step
to generate novel and distinct proxies. You should introduce creative variations into existing proxies
through systematic modifications. Follow the mutation rules and constraints defined below to design 5
distinct mutated proxies:

Mutation Rules: When mutating a proxy, you must choose at least one and up to four of the following
mutations to apply:

• Input Mutation: Replace, add, or remove one type of input (e.g., switch from convolutional
layer gradients (G) to activation outputs (Z)). Consider using less commonly utilized inputs
such as BatchNorm statistics or residual block outputs.

• Operation Mutation: Change statistical operations (mean, variance, max, min) to another
statistic. Substitute binary operations (+, -, , /) with different arithmetic operations, ensuring
numerical stability.

• Structure Mutation: Adjust the computational graph by altering the connections (edges) be-
tween nodes, ensuring the DAG property remains valid. Introduce an additional intermediate
node for richer representations.

• Aggregation Mutation: Modify how multiple layer values are aggregated (e.g., sum, mean,
weighted average).

Mutated Proxy Search Space:

• Each node has an in-degree 0 ≤ degreein ≤ 2.

• Exactly one output node producing a scalar value.

• Inputs: Combinations of modules (conv, BatchNorm, activation layers, residual block outputs)
and properties (gradients G, weights W , outputs Z).

• Operations: Statistical (mean, variance, max, min, sum) or binary (+, -, , /).

Network Search Space: Networks drawn from NASBench-201, varying only in cell structure. Macro
architecture: input → conv → cell_n → residual (stride=2) → cell_n → residual (stride=2) → cell_∗n
→ global average pooling. Cells: DAGs of four nodes with operations: zeroize, skip-connection, 1×1
conv, 3×3 conv, 3×3 avg-pool.

Given Dataset: CIFAR-10 classification with input shape (3×32×32) and 10-dimensional output.

Output: For each proxy, provide a Description paragraph and Code demo implementing
evaluate(model, inputs, targets) in PyTorch. Ensure numerical stability, deterministic
outputs, and move any returned tensors to CPU.

Note: Do not use training. Avoid random sampling or stochastic components. The heuristic must
work on general-purpose image data and standard neural networks (e.g., CNNs). Do not provide any
additional explanation outside of the required description and code.

Existing Proxies:
<Existing Proxies>

convergence and the generation at which the search stabilized for each depth. The results indicate
that evolution planning itself is relatively straightforward. A two-layer actor-critic controller already
achieves convergence within 50 generations. Employing additional layers results in an increased
number of ineffective generations, incurring unnecessary computational overhead without further
improving performance (e.g., in the later stages of evolution when proxy quality improvements
become minimal, continuing with fixed initialization procedures can result in diminishing returns,
incurring unnecessary computational overhead).
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Figure 9: Prompt used for crossover in NAS-Bench-201.

Prompt for Crossover

Your Task: Expanding upon the previously defined Zero-Cost Proxies, your next step is to implement
a crossover operation to create novel proxies. The crossover process involves combining aspects
of two parent proxies to produce 5 distinct crossover proxies. Adhere to the crossover rules and
constraints defined below:

Crossover Rules: To generate crossover proxies, select two parent proxies from previously defined
proxies. Apply at least one and up to two of the following crossover techniques:

• Input Crossover: Exchange input nodes between parent proxies, such as combining gradients
(G) from one proxy and outputs (Z) from another.

• Operation Crossover: Merge operation nodes by replacing a statistical or binary operation
from one parent with an operation from the other parent.

• Structure Crossover: Blend the computational graph structures of two proxies by inter-
changing node connections, ensuring the resulting DAG remains valid.

• Aggregation Crossover: Combine aggregation strategies (e.g., sum, mean, weighted average)
from the two parent proxies.

Crossover Proxy Search Space:

• Nodes must have an in-degree 0 ≤ degree_in ≤ 2.

• Exactly one output node producing a scalar value.

• Inputs: combinations of modules (conv, BatchNorm, activation layers, residual block outputs)
and properties (gradients G, weights W , outputs Z).

• Operations: statistical (mean, variance, max, min, sum) or binary (+, -, , /).

Network Search Space: Networks drawn from NASBench-201, varying only in cell structure. Macro
architecture: input → conv → cell_n → residual (stride=2) → cell_n → residual (stride=2) → cell_∗n
→ global average pooling. Cells: DAGs of four nodes with operations: zeroize, skip-connection, 1×1
conv, 3×3 conv, 3×3 avg-pool.

Output: For each proxy, provide a Description paragraph and Code demo implementing
evaluate(model, inputs, targets) in PyTorch. Ensure numerical stability, deterministic
outputs, and move any returned tensors to CPU.

Note: Do not use training. Avoid random sampling or stochastic components. The heuristic must
work on general-purpose image data and standard neural networks (e.g., CNNs). Do not provide any
additional explanation outside of the required description and code.

Existing Proxies:
<Existing Proxies>

D.2 Detailed Cross-LLM Performance

We track the evolution of average Spearman correlation over 20 generations for each LLM backbone
under. Table 16 reports the per-generation correlation on NAS-Bench-201 for all seven models.

D.3 AutoFormer Accuracy Results

We evaluate the architectures discovered by APD in the AutoFormer search space on ImageNet–1k
classification. Table 17 reports the Top-1 accuracies for the tiny, small, and base variants: the tiny
model achieves 76.1 %, the small model 81.5 %. These results demonstrate that our search not
only produces proxies with high correlation to ground truth but also yields architectures that deliver
competitive performance on a large-scale vision benchmark.
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Figure 10: Prompt for initialization in TransNAS-Bench-101.

Prompt for Initialization

Your Task: Please design 5 novel Zero-Cost proxies to evaluate the representation capability of
different convolutional network architectures on a given downstream task. The final goal of each proxy
is to provide a scalar score that reflects the performance of a given network. You should generate
Zero-Cost Proixes according to the following specifications, which include: proxy requirements,
description of the proxy search space (defining the structure of how the proxy is computed), the
search space of the networks being evaluated, the given dataset, and the output format, as described
below:
Proxy Requirements:

• Training-free: No gradient descent, weight updates, or learned parameters.

• Efficient: Low computational cost, suitable for early-stage model selection.

• Deterministic: No stochastic elements or randomness.

• Model-sensitive: The proxy should reflect meaningful differences between models.

Proxy Search Space: The computation of the proxy can be represented as a directed acyclic graph
(DAG. For any given node, its in-degree must satisfy 0 ≤ degreein ≤ 2.
Nodes with only outgoing edges and no incoming edges are called inputs. Inputs consist of two parts:
the input module and the input property. The input module refers to different types of network layers
(e.g., convolutional layers, BatchNorm, activation layers, etc.), and the input property is one of the
following: gradient G, weights W , or output feature maps Z. An input is defined as a combination of
these two components. For example, (convolutional layer + gradient G) refers to the gradients of the
convolutional layer’s parameters. A proxy can have multiple inputs.
Nodes with both incoming and outgoing edges are referred to as **operations**, which are further
divided into two types:

• When degreein = 1, the node typically performs a statistical operation such as computing
the mean or standard deviation of the preceding node’s output.

• When degreein = 2, the node typically performs a binary operation, such as addition,
subtraction, or division between two inputs.

Nodes with only incoming edges are outputs. There must be only one output node in the DAG. The
input to this final node must be a scalar.

Network Search Space: The networks to be evaluated come from TransNAS-Bench-101, which
includes variations in both cell-level and macro-level structures.
Macro architecture: img → searched backbone (composed of stacked cells) → task-specific decoder.
The macro structure consists of three stages, each containing modules made of residual blocks. After
each stage, downsampling and channel doubling occur. For example: Stage 1 (Module 1) → residual
blocks → Stage 2 (Module 2, 3) → residual blocks → Stage 3 (Module 4) → residual blocks →
task-specific head.
Cell structure: Each cell is modeled as a directed acyclic graph (DAG) with six nodes. For any
vi, vj ∈ V , if i < j, then eij ∈ E. Each node represents a latent feature tensor, and each edge
represents a candidate operation from the following set:

• zeroize

• skip-connection

• 1 × 1 convolution

• 3 × 3 convolution

Each cell forms the base unit of the backbone and is repeatedly stacked according to the macro-level
configuration. This enables flexible network designs across different tasks such as object classification,
semantic segmentation, surface normal estimation, and more.

Given Downstream Task:
<Given Downstream Task>
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Figure 11: Prompt for mutation in TransNAS-Bench-101.

Prompt for Mutation

Your Task: Building upon the initial set of Zero-Cost Proxies, you will now perform a mutation step
to generate novel and distinct proxies. You should introduce creative variations into existing proxies
through systematic modifications. Follow the mutation rules and constraints defined below to design 5
distinct mutated proxies:
Mutation Rules: When mutating a proxy, you must choose at least one and up to four of the following
mutations to apply:

• Input Mutation: Replace, add, or remove one type of input (e.g., switch from convolutional
layer gradients (G) to activation outputs (Z)). Consider using less commonly utilized inputs
such as BatchNorm statistics or residual block outputs.

• Operation Mutation: Change statistical operations (mean, variance, max, min) to another
statistic. Substitute binary operations (+, -, , /) with different arithmetic operations, ensuring
numerical stability.

• Structure Mutation: Adjust the computational graph by altering the connections (edges)
between nodes, ensuring the DAG property remains valid.Introduce an additional intermediate
node for richer representations.

• Aggregation Mutation: Modify how multiple layer values are aggregated (e.g., sum, mean,
weighted average).

Proxy Search Space: The computation of the proxy can be represented as a directed acyclic graph
(DAG. For any given node, its in-degree must satisfy 0 ≤ degreein ≤ 2.
Nodes with only outgoing edges and no incoming edges are called inputs. Inputs consist of two parts:
the input module and the input property. The input module refers to different types of network layers
(e.g., convolutional layers, BatchNorm, activation layers, etc.), and the input property is one of the
following: gradient G, weights W , or output feature maps Z. An input is defined as a combination of
these two components. For example, (convolutional layer + gradient G) refers to the gradients of the
convolutional layer’s parameters. A proxy can have multiple inputs.
Nodes with both incoming and outgoing edges are referred to as **operations**, which are further
divided into two types:

• When degreein = 1, the node typically performs a statistical operation such as computing
the mean or standard deviation of the preceding node’s output.

• When degreein = 2, the node typically performs a binary operation, such as addition,
subtraction, or division between two inputs.

Nodes with only incoming edges are outputs. There must be only one output node in the DAG. The
input to this final node must be a scalar.

Network Search Space: The networks to be evaluated come from TransNAS-Bench-101, which
includes variations in both cell-level and macro-level structures.
Macro architecture: img → searched backbone (composed of stacked cells) → task-specific decoder.
The macro structure consists of three stages, each containing modules made of residual blocks. After
each stage, downsampling and channel doubling occur. For example: Stage 1 (Module 1) → residual
blocks → Stage 2 (Module 2, 3) → residual blocks → Stage 3 (Module 4) → residual blocks →
task-specific head.
Cell structure: Each cell is modeled as a directed acyclic graph (DAG) with six nodes. For any
vi, vj ∈ V , if i < j, then eij ∈ E. Each node represents a latent feature tensor, and each edge
represents a candidate operation from the following set:

• zeroize

• skip-connection

• 1 × 1 convolution

• 3 × 3 convolution

Each cell forms the base unit of the backbone and is repeatedly stacked according to the macro-level
configuration. This enables flexible network designs across different tasks such as object classification,
semantic segmentation, surface normal estimation, and more.

Given Downstream Task:
<Given Downstream Task>
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Figure 12: Prompt for crossover in TransNAS-Bench-101.

Prompt for Crossover

Your Task: Expanding upon the previously defined Zero-Cost Proxies, your next step is to implement
a crossover operation to create novel proxies. The crossover process involves combining aspects
of two parent proxies to produce 5 distinct crossover proxies. Adhere to the crossover rules and
constraints defined below:

Crossover Rules: To generate crossover proxies, select two parent proxies from previously defined or
mutated proxies. Apply at least one and up to two of the following crossover techniques:

• Input Crossover: Exchange input nodes between parent proxies, such as combining gradients
(G) from one proxy and outputs (Z) from another.

• Operation Crossover: Blend the computational graph structures of two proxies by inter-
changing node connections, ensuring the resulting DAG remains valid.

• Structure Crossover: Blend the computational graph structures of two proxies by inter-
changing node connections, ensuring the resulting DAG remains valid.

• Aggregation Crossover: Combine aggregation strategies (e.g., sum, proxies.

Proxy Search Space: The computation of the proxy can be represented as a directed acyclic graph
(DAG. For any given node, its in-degree must satisfy 0 ≤ degreein ≤ 2.
Nodes with only outgoing edges and no incoming edges are called inputs. Inputs consist of two parts:
the input module and the input property. The input module refers to different types of network layers
(e.g., convolutional layers, BatchNorm, activation layers, etc.), and the input property is one of the
following: gradient G, weights W , or output feature maps Z. An input is defined as a combination of
these two components. For example, (convolutional layer + gradient G) refers to the gradients of the
convolutional layer’s parameters. A proxy can have multiple inputs.
Nodes with both incoming and outgoing edges are referred to as **operations**, which are further
divided into two types:

• When degreein = 1, the node typically performs a statistical operation such as computing
the mean or standard deviation of the preceding node’s output.

• When degreein = 2, the node typically performs a binary operation, such as addition,
subtraction, or division between two inputs.

Nodes with only incoming edges are outputs. There must be only one output node in the DAG. The
input to this final node must be a scalar.

Network Search Space: The networks to be evaluated come from TransNAS-Bench-101, which
includes variations in both cell-level and macro-level structures.
Macro architecture: img → searched backbone (composed of stacked cells) → task-specific decoder.
The macro structure consists of three stages, each containing modules made of residual blocks. After
each stage, downsampling and channel doubling occur. For example: Stage 1 (Module 1) → residual
blocks → Stage 2 (Module 2, 3) → residual blocks → Stage 3 (Module 4) → residual blocks →
task-specific head.
Cell structure: Each cell is modeled as a directed acyclic graph (DAG) with six nodes. For any
vi, vj ∈ V , if i < j, then eij ∈ E. Each node represents a latent feature tensor, and each edge
represents a candidate operation from the following set:

• zeroize

• skip-connection

• 1 × 1 convolution

• 3 × 3 convolution

Each cell forms the base unit of the backbone and is repeatedly stacked according to the macro-level
configuration. This enables flexible network designs across different tasks such as object classification,
semantic segmentation, surface normal estimation, and more.

Given Downstream Task:
<Given Downstream Task>
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Figure 13: Prompt for initialization in AutoFormer.

Prompt for Initialization

Your Task: Please design 5 novel Zero-Cost Proxies to evaluate the representation capability of
different transformer network architectures on a given dataset. The final goal of each proxy is to
provide a scalar score that reflects the performance of a given network. You should generate zero-cost
proxies according to the following specifications, which include: proxy requirements, description
of the proxy search space (defining the structure of how the metric is computed), the search
space of the networks being evaluated, the given dataset, and the output format, as described below:

Proxy Requirements:

• Training-free: No gradient descent, weight updates, or learned parameters.

• Efficient: Low computational cost, suitable for early-stage model selection.

• Deterministic: No stochastic elements or randomness.

• Model-sensitive: The proxy should reflect meaningful differences between models.

Proxy Search Space: The computation of the proxy can be represented as a directed acyclic graph
(DAG). For any given node, its in-degree must satisfy 0 ≤ degreein ≤ 2.
Nodes with only outgoing edges and no incoming edges are called inputs. Inputs consist of two parts:
the input module and the input property. The input module refers to different types of network layers,
and the input property is one of the following: gradient G, weights W , or output feature maps Z.
An input is defined as a combination of these two components. For example, (convolutional layer +
gradient G) refers to the gradients of the convolutional layer’s parameters. A proxy can have multiple
inputs.
Nodes with both incoming and outgoing edges are referred to as operations, which are further divided
into two types:

• When degreein = 1, the node typically performs a statistical operation such as computing
the mean or standard deviation of the preceding node’s output.

• When degreein = 2, the node typically performs a binary operation, such as addition,
subtraction, or division between two inputs.

Nodes with only incoming edges are outputs. There must be only one output node in the DAG. The
input to this final node must be a scalar.

Search Space: The search space defines a set of possible architectural configurations derived from
the supernet. Instead of fixed parameters, it provides discrete choices or ranges for each architectural
hyperparameter, enabling the selection or evaluation of optimal subnetworks.
A typical search space includes the following parameters with explicit candidate values:

• EMBED DIM: A set of embedding dimensions (D ∈ {D1, D2, . . . , Dn}), e.g., (D ∈
{528, 576, 624}).

• NUM HEADS: Choices for attention heads (H ∈ {H1, H2, . . . , Hm}), e.g., (H ∈
{9, 10}).

• MLP RATIO: Options for the MLP expansion ratio (Rmlp ∈ {R1, R2, . . . , Rk}), e.g.,
(Rmlp ∈ {3.0, 3.5, 4.0}).

• DEPTH: Number of transformer blocks (L ∈ {L1, L2, . . . , Ls}), e.g., (L ∈ {14, 15, 16}).
Formally, the search space A can be defined as a Cartesian product of discrete hyperparameter
sets: A = {(D,H,Rmlp, L) | D ∈ {528, 576, 624}, H ∈ {9, 10}, Rmlp ∈ {3.0, 3.5, 4.0}, L ∈
{14, 15, 16}}

Given Dataset: The architectures will be evaluated on an image classification task using IMAGE-NET.
The input image shape is (3, 224, 224), and the network outputs a 1000-dimensional vector.

Note: Your Zero-Cost Proxies must not be the same as any existing ones (such as nwot, snip, etc.),
though you may draw inspiration from them. Ensure numerical stability in your functions (avoid inf or
nan during computation).
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Figure 14: Prompt for mutation in AutoFormer.

Prompt for Mutation

Your Task: Given 5 existing Zero-Cost proxies, mutate each of these proxies to create 5 new
ones (one mutated version per original proxy). Each mutated proxy should still be training-free,
computationally efficient, deterministic, input-aware, and model-sensitive. The final goal is to
produce 5 updated or extended training-free proxies that remain valid for early-stage model selection
but differ in approach from the original set.
When generating each mutated proxy, you may:

• Slightly alter or combine existing nodes in the computation DAG

• Introduce new operations or input types (still abiding by the in-degree constraints)

• Change the nature of the final scalar computation

• Ensure numerical stability (avoid division by zero, log of non-positive numbers, etc.)

Proxy Requirements:

• Training-free: Do not use any form of parameter updates.

• Efficient: Maintain low overhead in computation.

• Deterministic: Must produce consistent outputs for the same model and data.

• Model-sensitive: Should vary meaningfully with different subnetworks sampled from the
supernet.

Proxy Search Space: All mutated proxies should still form a directed acyclic graph (DAG) in their
computation. For any given node:

• In-degree Constraint: 0 ≤ degreein ≤ 2.

• Input Nodes: Consist of a network module. Tied to a property (W , G, or Z). You may now
choose to introduce new input properties that are still relevant to a training-free scenario (e.g.,
a logarithm of weights, or a combined dimension of feature maps), but be sure to keep them
deterministic and valid.

• Operation Nodes (single-operand): Perform statistical transformations (e.g., mean, vari-
ance, norms, etc.).

• Operation Nodes (binary): Perform pairwise operations (e.g., addition, multiplication,
ratio).

• Output Node: Must be a single scalar value (with no outgoing edges).

Search Space: The search space defines a set of possible architectural configurations derived from
the supernet. Instead of fixed parameters, it provides discrete choices or ranges for each architectural
hyperparameter, enabling the selection or evaluation of optimal subnetworks.
A typical search space includes the following parameters with explicit candidate values:

• EMBED DIM: A set of embedding dimensions (D ∈ {D1, D2, . . . , Dn}), e.g., (D ∈
{528, 576, 624}).

• NUM HEADS: Choices for attention heads (H ∈ {H1, H2, . . . , Hm}), e.g., (H ∈
{9, 10}).

• MLP RATIO: Options for the MLP expansion ratio (Rmlp ∈ {R1, R2, . . . , Rk}), e.g.,
(Rmlp ∈ {3.0, 3.5, 4.0}).

• DEPTH: Number of transformer blocks (L ∈ {L1, L2, . . . , Ls}), e.g., (L ∈ {14, 15, 16}).
Formally, the search space A can be defined as a Cartesian product of discrete hyperparameter
sets: A = {(D,H,Rmlp, L) | D ∈ {528, 576, 624}, H ∈ {9, 10}, Rmlp ∈ {3.0, 3.5, 4.0}, L ∈
{14, 15, 16}}

Given Dataset: The architectures will be evaluated on an image classification task using IMAGE-NET.
The input image shape is (3, 224, 224), and the network outputs a 1000-dimensional vector.

Note: Your Zero-Cost Proxies must not be the same as any existing ones (such as nwot, snip, etc.),
though you may draw inspiration from them. Ensure numerical stability in your functions (avoid inf or
nan during computation).

Existing Proxies:
<Existing Proxies>
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Figure 15: Prompt for crossover in AutoFormer.

Prompt for Crossover

Your Task: Please design 5 novel Zero-Cost Proxies to evaluate the representation capability of
different transformer network architectures on a given dataset, using a crossover-based approach.
This means each of your new proxies should be created by combining at least two distinct ideas,
components, or sub-nodes from hypothetical or existing parent proxies. For instance, if you have
two parent proxies A and B with specific inputs or operations, you must form a new child proxy
by merging relevant parts from each parent, ensuring the final proxy remains logically consistent
and provides a scalar score that reflects the performance of a given network. You should generate
Zero-Cost Proxies according to the following specifications, which include: proxy requirements,
description of the proxy search space, the search space of the networks being evaluated, the given
dataset, and the output format, as described below:

Proxy Requirements:

• Training-free: Do not use any form of parameter updates.

• Efficient: Maintain low overhead in computation.

• Deterministic: Must produce consistent outputs for the same model and data.

• Model-sensitive: Should vary meaningfully with different subnetworks sampled from the
supernet.

• Crossover-based: Each proxy must inherit or merge conceptual “genes” (e.g., particular
input sources or operations) from at least two parent proxies, forming a new, valid proxy
design.

Proxy Search Space: All mutated proxies should still form a directed acyclic graph (DAG) in their
computation. For any given node:

• In-degree Constraint: 0 ≤ degreein ≤ 2.

• Input Nodes: Consist of a network module. Tied to a property (W , G, or Z). You may now
choose to introduce new input properties that are still relevant to a training-free scenario (e.g.,
a logarithm of weights, or a combined dimension of feature maps), but be sure to keep them
deterministic and valid.

• Operation Nodes (single-operand): Perform statistical transformations (e.g., mean, vari-
ance, norms, etc.).

• Operation Nodes (binary): Perform pairwise operations (e.g., addition, multiplication,
ratio).

• Output Node: Must be a single scalar value (with no outgoing edges).

Search Space: The search space defines a set of possible architectural configurations derived from
the supernet. Instead of fixed parameters, it provides discrete choices or ranges for each architectural
hyperparameter, enabling the selection or evaluation of optimal subnetworks.
A typical search space includes the following parameters with explicit candidate values:

• EMBED DIM: A set of embedding dimensions (D ∈ {D1, D2, . . . , Dn}), e.g., (D ∈
{528, 576, 624}).

• NUM HEADS: Choices for attention heads (H ∈ {H1, H2, . . . , Hm}), e.g., (H ∈
{9, 10}).

• MLP RATIO: Options for the MLP expansion ratio (Rmlp ∈ {R1, R2, . . . , Rk}), e.g.,
(Rmlp ∈ {3.0, 3.5, 4.0}).

• DEPTH: Number of transformer blocks (L ∈ {L1, L2, . . . , Ls}), e.g., (L ∈ {14, 15, 16}).
Formally, the search space A can be defined as a Cartesian product of discrete hyperparameter
sets: A = {(D,H,Rmlp, L) | D ∈ {528, 576, 624}, H ∈ {9, 10}, Rmlp ∈ {3.0, 3.5, 4.0}, L ∈
{14, 15, 16}}

Given Dataset: The architectures will be evaluated on an image classification task using IMAGE-NET.
The input image shape is (3, 224, 224), and the network outputs a 1000-dimensional vector.

Note: Your Zero-Cost Proxies must not be the same as any existing ones (such as nwot, snip, etc.),
though you may draw inspiration from them. Ensure numerical stability in your functions (avoid inf or
nan during computation).
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Table 11: Average proxy correlation over 20 generations for different prompt operations on NAS-
Bench-201. Full denotes the complete operation configuration, incorporating both mutation and
crossover.

Generation No Crossover No Mutation Full

1 0.444 0.193 0.246
2 0.533 0.237 0.470
3 0.533 0.349 0.617
4 0.533 0.439 0.628
5 0.541 0.463 0.662
6 0.541 0.463 0.662
7 0.541 0.463 0.705
8 0.572 0.463 0.705
9 0.627 0.547 0.754

10 0.640 0.547 0.794
11 0.640 0.547 0.800
12 0.640 0.669 0.800
13 0.640 0.713 0.800
14 0.640 0.761 0.800
15 0.640 0.761 0.800
16 0.680 0.780 0.800
17 0.714 0.780 0.803
18 0.739 0.780 0.803
19 0.739 0.780 0.813
20 0.758 0.780 0.813

Table 12: Effect of population size on the average Spearman correlation of the full prompt configura-
tion over 20 generations.

Population Size Avg. Spearman ρ

1 0.6023
2 0.6837
3 0.7541
4 0.8013
5 0.8124

10 0.7895

E Limitations

While APD markedly advances training-free NAS, several caveats remain. We group them here for
clarity.

Black-box optimization Because APD delegates the generation of every candidate proxy to a LLM,
the token-level reasoning that maps a prompt to executable code is not observable, raising black-box
concerns. We acknowledge that the LLM itself remains opaque. Nevertheless, APD is designed
so that its outer optimization loop is inspectable. The LLM’s outputs are evaluated by a public
fitness function, and the actor–critic scheduler is trained only on this scalar reward. All decisions that
influence the search trajectory therefore pass through a measurable, task-specific signal rather than
hidden logits. Thus, while some inner LLM reasoning remains inaccessible, the information APD
exposes is already adequate for transparency and troubleshooting, so the residual opacity of LLM is
unlikely to undermine the method’s value.

Need for a small ground-truth subset Computing fitness requires baseline accuracies for roughly
2-3% of each benchmark, which is standard in NAS studies and inexpensive compared with full
training. Although a small ground-truth subset is indispensable for APD, we have empirically shown
that the ZCPs obtained on one such subset continue to generalize when transferred to search space
with no significant differences. Consequently, even for previously unseen NAS tasks, the overhead
introduced by APD remains minimal and well within acceptable bounds.

Prompt-context length growth on very large searches The generator receives at most Ct proxies
per step, and both prompt and context are explicitly bounded to fit the LLM window. Empirically the
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Table 13: Effect of discount factor γ on average Spearman correlation. Best value is highlighted in
yellow.

Discount Factor γ Avg. Spearman ρ

0.50 0.7124
0.70 0.7823
0.90 0.8137
0.99 0.8015

Table 14: Effect of history window size on average Spearman correlation. Best value is highlighted
in yellow.

History Window Avg. Spearman ρ

1 0.6987
3 0.8042
5 0.8259

10 0.7791

combined length stayed under 6k tokens in specific population size, and we have to down-sample the
context if future domains require longer code.

Security and stability when executing LLM-generated code Each proxy is arbitrary code and
could, in principle, issue unsafe or resource-hungry calls. Therefore, code has to be run inside a
resource-capped sandbox.

F Discovered AZPs

F.1 Proxy for NAS-Bench-201

To demonstrate the effectiveness of our approach, we present three representative proxies that achieved
strong performance on NAS-Bench-201, which are illustrated in Figures 16, 17, and 18.

F.2 Proxy for TransNAS-Bench-101

We present the zero-cost proxies discovered on TransNAS-Bench-101 by APD in Figure 19, 20, and
21.

F.3 Proxy for AutoFormer

In Figure 22, 23, and 24, we present the zero-cost proxies discovered through APD on AutoFormer.

G Searched Architectures

In the DARTS search space, the optimal architecture discovered by APD is shown in Figure 27,
with its normal and reduction cells visualized in Figures 25 and 26, respectively. In the AutoFormer
setting, the architectures found for the tiny, small, and base variants are presented in Figure 28, 29,
and 30, respectively.

H Related Work

H.1 Neural Architecture Search

Neural Architecture Search (NAS) aims to seek high-performance neural networks in an automatic
manner. Early works cast the problem as black-box reinforcement learning or evolutionary optimiza-
tion. NASNet [77] and AmoebaNet [53] trained thousands of architectures from scratch on large GPU
clusters, demonstrating the promise of search but at prohibitive cost. Subsequent one-shot methods
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Table 15: Impact of A2C network depth on proxy search quality and convergence.
Hidden Layers Final Spearman ρ Convergence Generation

2 0.8216 42
3 0.8367 79
4 0.8175 96
5 0.8230 103

Table 16: Evolution of average Spearman correlation over 20 generations on NAS-Bench-201 for
different LLM backbones.

Gen. Claude 3.7 Gemini 2.0 Flash GPT-4o Deepseek V3 Qwen Plus Grok 3 Llama4

1 0.0000 0.3460 0.0989 0.0853 0.0228 0.1293 0.0000
2 0.5040 0.4290 0.1091 0.1720 0.0732 0.1293 0.1319
3 0.5040 0.5027 0.1816 0.1720 0.1292 0.1293 0.1319
4 0.5040 0.5560 0.3909 0.1720 0.3230 0.1293 0.1319
5 0.6553 0.5560 0.4312 0.2126 0.3807 0.1293 0.1319
6 0.7087 0.6033 0.4312 0.2126 0.3807 0.1293 0.1319
7 0.7304 0.6212 0.5036 0.3189 0.3962 0.2669 0.1319
8 0.7304 0.6714 0.6028 0.4923 0.5244 0.2669 0.1319
9 0.7304 0.6714 0.6278 0.4969 0.5518 0.2669 0.1319

10 0.7304 0.6714 0.6806 0.6531 0.6109 0.4071 0.1605
11 0.7713 0.6869 0.7411 0.6531 0.6303 0.6933 0.1605
12 0.7713 0.6869 0.7411 0.6531 0.6303 0.6933 0.1605
13 0.7713 0.6869 0.7744 0.7944 0.6303 0.6933 0.2809
14 0.7713 0.6986 0.7898 0.7944 0.6303 0.7081 0.2809
15 0.7728 0.7317 0.7898 0.7944 0.6439 0.7395 0.3011
16 0.7728 0.7317 0.8090 0.8024 0.6439 0.7395 0.4225
17 0.8114 0.7317 0.8090 0.8024 0.6994 0.7395 0.4348
18 0.8114 0.7517 0.8090 0.8024 0.7212 0.7395 0.5598
19 0.8114 0.7517 0.8090 0.8024 0.7212 0.7697 0.6495
20 0.8114 0.7522 0.8110 0.8024 0.7212 0.7697 0.6973

reduce cost by sharing parameters into a single supernet. ENAS [75] introduces weight sharing with
a recurrent controller, while DARTS [40] relaxes the discrete search space to a differentiable mixture,
enabling gradient-based updates but inheriting optimization bias and collapse issues that spawned a
line of robust variants. However, performance estimation remains the key throughput bottleneck [44].

H.2 Zero-Cost Proxies

NAS traditionally relies on partial or full training to judge candidate models, making large-scale
exploration prohibitive. Zero-Cost Proxies (ZCPs) address this bottleneck by estimating an archi-
tecture’s potential from its randomly initialized weights in significantly less time and constitute a
standard component of training-free NAS. The earliest ZCPs exploit gradient saliency. SNIP [34]
evaluates weights with the first-order loss sensitivities, GraSP [1] extends the idea to second-order
information, and SynFlow [1] removes data dependence by propagating an all-ones input, yielding
strong correlations in deep convolutional spaces. A second strand replaces gradients with cheap
statistics of activations or parameter layouts. NWOT [44] measures neural-tangent-kernel overlap,
Zen-score [37] evaluates Jacobian log-determinants, while ZiCo [35] shows that even simple norms
such as parameter count or FLOPs can outperform many hand-crafted heuristics once appropriately
normalized.

Despite steady progress, two limitations persist. Firstly, all existing proxies are manually specified.
Their functional form rarely transfers intact across tasks (e.g., from NAS-Bench-201 CIFAR10 to
TransNAS-Bench-101 autoencoding). Secondly, correlation improvements have largely plateaued,
and gains often come at the cost of additional forward passes or Jacobian computations.

H.3 Automatic Proxy Discovery

Automatic Proxy Discovery aims to relieve experts from hand-crafting ZCPs by treating the proxy
itself as the search object. The most systematic effort so far is Auto-Prox [64]. It encodes a proxy
as a computation graph whose nodes are primitive arithmetic or operations (e.g., exp, log). An
evolutionary algorithm with elitism preservation mutates these graphs to maximize a joint correlation
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Table 17: The comparison results on the Autoformer search space in the ImageNet dataset. ∗ denotes
the results reported by [28].

Models #Param (M) FLOPS (B) Top-1 (%) Top-5 (%) Model Type Design Type Years GPU Days
Tiny search space

ResNet-18∗ [26] 11.7 1.8 72.5 - CNNs Manual 2015 -
MobileNet-V3 [54] 5.5 - 75.2 - CNNs Manual 2015 -
Deit-Ti [59] 5.7 1.2 72.2 91.1 Transformer Manual 2015 -
TNT-Ti [24] 6.1 1.4 73.9 91.9 Transformer Manual 2015 -
ViT-Ti [19] 5.7 - 74.5 - Transformer Manual ICLR2020 -
CPVT-Ti [17] 6.0 - 74.9 92.6 Transformer Manual 2015 -
PVT-Tiny [62] 13.2 1.9 75.1 - Transformer Manual 2015 -
AutoFormer-Ti [11] 5.7 1.3 74.7 92.6 Transformer Auto CVPR2021 24
GLiT-Ti [10] 7.2 1.4 76.3 - Hybrid Auto ICCV2021 N/A
ViTAS-C [56] 5.6 1.3 74.7 91.6 Transformer Auto ECCV2022 32
TF-TAS-Ti [76] 5.9 1.4 75.3 92.8 Transformer Auto CVPR2022 0.5
Auto-Prox [64] 6.4 - 75.6 - Transformer Auto AAAI2024 0.1
AZ-NAS [33] 6.2 1.4 76.4 - Transformer Auto CVPR2024 0.04
CET-TAS (Ours) 8.4 1.9 76.1 93.1 Transformer Auto - 0.25

Small search space
ResNet-50∗ [26] 25.6 4.1 80.2 - CNNs Manual 2015 -
RegNetY-4GF [27] 20.6 - 79.4 - CNNs Manual 2015 -
DeiT-S [59] 22.1 4.7 79.9 95.0 Transformer Manual 2015 -
ViT-S/16 [19] 22.1 4.7 78.8 - Transformer Manual 2015 -
PVT-Small [62] 24.5 3.8 79.8 - Transformer Manual 2015 -
Swin-T [41] 29.0 4.5 81.3 - Transformer Manual 2015 -
TNT-S [24] 23.8 5.2 81.5 95.7 Transformer Manual 2015 -
CPVT-S [17] 23.0 - 81.5 95.7 Transformer Manual 2015 -
T2T-ViT_t-14 [72] 21.5 - 81.7 - Transformer Manual 2015 -
AutoFormer-S [11] 22.9 5.1 81.7 95.7 Transformer Auto CVPR2021 24
GLiT-S [10] 24.6 4.4 80.5 - Hybrid Auto ICCV2021 N/A
ViTAS-F [56] 27.6 6.0 80.5 95.1 Transformer Auto ECCV2022 32
TF-TAS-S [76] 22.8 5.0 81.9 95.8 Transformer Auto CVPR2022 0.5
AZ-NAS [33] 23.8 5.1 82.2 - Transformer Auto CVPR2024 0.07
CET-TAS (Ours) 30.9 6.3 81.5 95.3 Transformer Auto - 0.25

objective. Auto-Prox, however, is specialized to ViTs. Its search space hard-codes transformer-
specific primitives. Similar variants, such as EZNAS [3] and Auto-DAS [57] follow identical graph
enumeration but remain tied to fixed settings, respectively, limiting cross-domain portability and
placing heavy reliance on human expertise.

H.4 LLM for Neural Architecture Search

Recent research has explored leveraging large language models to assist or even automate the neural
architecture search process. EvoPrompting [9] pioneers this direction by treating NAS as a code-level
program synthesis task, where LLMs evolve architecture generation programs through an evolutionary
prompt-tuning mechanism. By iteratively mutating and refining code snippets that specify archi-
tectural design choices, EvoPrompting enables LLMs to autonomously discover performant neural
architectures without explicit gradient-based optimization. Building on this paradigm, LLMatic
[47] combines LLM-driven architecture generation with quality-diversity optimization, allowing
the search process to balance exploration and exploitation more effectively. Through LLM-guided
mutation and recombination, LLMatic produces diverse yet high-performing architectures across
vision and reinforcement learning benchmarks. Collectively, these works demonstrate that LLMs hold
substantial potential for application in neural architecture search, suggesting that language-driven
reasoning can serve as a viable mechanism for exploring the search space.

However, a critical limitation of these approaches lies in their reliance on evolutionary operations and
crossover to progressively refine architectures. This paradigm inevitably necessitates the instantiation,
training, and subsequent evaluation of each generated model to ascertain its performance, a process
that is notoriously resource-intensive. The iterative cycle of generating a population of architectures,
training them for even a few epochs, and measuring their fitness creates a significant computational
bottleneck, rendering the search process both time-consuming and expensive. Consequently, the
practical application of such methods is limited, particularly in scenarios demanding efficient and
lightweight architecture discovery.
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Figure 16: zero-cost proxy1 discovered by APD in the NAS-Bench-201.

import torch
import torch.nn as nn

def proxy1(model , inputs , targets):
bn_ranks = []
ratios = []
hooks = []

def bn_hook(module , inp , out):
if isinstance(out , torch.Tensor):

B, C, H, W = out.shape
mat = out.view(B, C, -1).permute(0, 2, 1).reshape(-1, C)
frob_norm = torch.linalg.matrix_norm(mat , ord=’fro’)**2
spec_norm = torch.linalg.matrix_norm(mat , ord =2) **2
stable_rank = frob_norm / (spec_norm + 1e-6)
bn_ranks.append(stable_rank.mean())

for layer in model.modules ():
if isinstance(layer , nn.BatchNorm2d):

hooks.append(layer.register_forward_hook(bn_hook))
elif isinstance(layer , nn.Conv2d):

weights = layer.weight
l1_norm = weights.abs().sum(dim=(1,2,3)).mean()
l2_norm = weights.norm(p=2, dim=(1,2,3)).mean()
ratios.append (( l1_norm / l2_norm).item())

with torch.no_grad ():
model(inputs)

for hook in hooks:
hook.remove ()

bn_sum = torch.stack(bn_ranks).sum().item() if bn_ranks else 0.0
ratio_sum = sum(ratios) if ratios else 0.0

return bn_sum * ratio_sum
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Figure 17: zero-cost proxy2 discovered by APD in the NAS-Bench-201.

import torch
import torch.nn as nn

def proxy2(model , inputs , targets):
ratios = []
spatial_stds = []

activations = []
def hook_fn(module , input , output):

activations.append (( module.weight.detach (), output.detach ()))

hooks = []
for layer in model.modules ():

if isinstance(layer , nn.Conv2d):
hooks.append(layer.register_forward_hook(hook_fn))

with torch.no_grad ():
model(inputs)

for hook in hooks:
hook.remove ()

for weight , act in activations:
weight_norm = torch.norm(weight , p=’fro’)
act_norm = torch.norm(act , p=’fro’)
if act_norm != 0:

ratios.append (( weight_norm / act_norm).item())

spatial_std = act.std(dim=1, keepdim=True)
spatial_stds.append(spatial_std.mean().item())

avg_ratio = sum(ratios) / len(ratios) if ratios else 0.0
avg_std = sum(spatial_stds) / len(spatial_stds) if spatial_stds

else 0.0
return -2 * (avg_ratio * avg_std) / (avg_ratio + avg_std + 1e-10)
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Figure 18: zero-cost proxy3 discovered by APD in the NAS-Bench-201.

import torch
import torch.nn as nn

def proxy3(model , inputs , targets):
activations = []

def hook_cnn(module , input , output):
activations.append(output.detach ().flatten (2))

hooks = []
for layer in model.modules ():

if isinstance(layer , nn.Conv2d):
hooks.append(layer.register_forward_hook(hook_cnn))

with torch.no_grad ():
_ = model(inputs)

for h in hooks:
h.remove ()

scores = []
for act in activations:

act = act - act.mean(dim=-1, keepdim=True)
channel_mean = act.abs().mean(dim=(0, 2))
if channel_mean.mean() > 1e-6:

cv = channel_mean.std() / channel_mean.mean()
scores.append(cv.item())

return -sum(scores) / len(scores) if scores else 0.0

Figure 19: zero-cost proxy1 discovered by APD in the TransNAS-Bench-101.

import torch
import torch.nn.functional as F

def proxy1(model , inputs , targets):
inputs.requires_grad_(True)

with torch.enable_grad ():
output = model(inputs)
loss = F.cross_entropy(output , targets)
grad_clean = torch.autograd.grad(loss , inputs)[0]

output = model(inputs + 0.01)
loss = F.cross_entropy(output , targets)
grad_noisy = torch.autograd.grad(loss , inputs)[0]

inputs.requires_grad_(False)
cos_sim = F.cosine_similarity(grad_clean.flatten (), grad_noisy.

flatten (), dim=0)
return cos_sim.cpu().item()
return score.cpu()
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Figure 20: zero-cost proxy2 discovered by APD in the TransNAS-Bench-101.

import torch

def proxy2(model , inputs , targets):
with torch.no_grad ():

clean_output = model(inputs)
scaled_inputs = inputs * 1.01 # Small fixed scaling
scaled_output = model(scaled_inputs)

logit_diff = torch.norm(clean_output - scaled_output , p=2, dim =1)
.mean()

return logit_diff.cpu().item()

Figure 21: zero-cost proxy3 discovered by APD in the TransNAS-Bench-101.

import torch
import torch.nn.functional as F

def proxy3(model , inputs , targets):
with torch.no_grad ():

clean_output = model(inputs)
noise = torch.zeros_like(inputs)
for i in range(inputs.shape [2]):

for j in range(inputs.shape [3]):
noise[:, :, i, j] = 0.01 * ((i + j) % 2 * 2 - 1)

noisy_output = model(inputs + noise)

clean_probs = F.softmax(clean_output , dim=1)
noisy_probs = F.softmax(noisy_output , dim=1)

kl_div = F.kl_div(clean_probs.log(), noisy_probs , reduction=’
batchmean ’)

return kl_div.cpu().item()
return score.cpu()

Figure 22: zero-cost proxy1 discovered by APD in the AutoFormer.

import torch
import torch.nn.functional as F

def heuristic_5(model , inputs , targets , loss_fn):
with torch.no_grad ():

clean_output = model(inputs)
noise_levels = [0.01, 0.05, 0.1]

kl_values = []
clean_probs = F.softmax(clean_output , dim=1)

for level in noise_levels:
noise = torch.randn_like(inputs) * level
noisy_output = model(inputs + noise)
noisy_probs = F.softmax(noisy_output , dim=1)
kl_div = F.kl_div(clean_probs.log(), noisy_probs ,

reduction=’batchmean ’)
kl_values.append(kl_div)

score = torch.prod(torch.stack(kl_values)) ** (1/ len(
kl_values))

return score.cpu().item()
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Figure 23: zero-cost proxy2 discovered by APD in the AutoFormer.

import torch
import torch.nn.functional as F

def proxy2(model , inputs , targets , loss_fn):
with torch.no_grad ():

# Input perturbation component
noise = torch.randn_like(inputs) * 0.01
perturbed_inputs = inputs + noise
original_outputs = model(inputs)
perturbed_outputs = model(perturbed_inputs)
diff = torch.norm(original_outputs - perturbed_outputs , p=2,

dim =1).mean()

# KL divergence component
original_softmax = original_outputs.softmax(dim=1)
perturbed_softmax = perturbed_outputs.softmax(dim=1)
kl_div = F.kl_div(original_softmax.log(), perturbed_softmax ,

reduction=’batchmean ’)

return (diff + kl_div).cpu().item()

Figure 24: zero-cost proxy3 discovered by APD in the AutoFormer.

import torch

def proxy2(model , inputs , targets):
with torch.no_grad ():

clean_output = model(inputs)
scaled_inputs = inputs * 1.01 # Small fixed scaling
scaled_output = model(scaled_inputs)

logit_diff = torch.norm(clean_output - scaled_output , p=2, dim =1)
.mean()

return logit_diff.cpu().item()
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Figure 25: Normal cell searched by APD.
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Figure 26: Reduction cell searched by APD.

Figure 27: Optimal structure found in the DARTS search space by APD.

Genotype(normal =[(’sep_conv_3x3 ’, 0), (’sep_conv_5x5 ’, 1),
(’sep_conv_3x3 ’, 0), (’sep_conv_3x3 ’, 1),
(’sep_conv_5x5 ’, 0), (’sep_conv_5x5 ’, 0),
(’sep_conv_3x3 ’, 3), (’sep_conv_3x3 ’, 0)], normal_concat=range(2, 6),
reduce =[(’sep_conv_3x3 ’, 0), (’dil_conv_3x3 ’, 0),
(’dil_conv_3x3 ’, 0), (’skip_connect ’, 0),
(’max_pool_3x3 ’, 0), (’dil_conv_5x5 ’, 3),
(’sep_conv_3x3 ’, 2), (’skip_connect ’, 1)], reduce_concat=range(2, 6))

Figure 28: Subnet discovered in the AutoFormer tiny search space by APD.
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Figure 29: Subnet discovered in the AutoFormer small search space by APD.
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Figure 30: Subnet discovered in the AutoFormer base search space by APD.
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