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Abstract

Recent studies demonstrate that Large Language Models
(LLMs) can accelerate scientific progress in chemistry and
drug development. However, existing approaches have not
achieved successful automation of the complete drug discov-
ery pipeline, primarily due to the absence of comprehensive
datasets and the limitations of single-model solutions. This
paper introduces multi-agent approach that combines LLMs
with specialized generative models and validation tools to au-
tomate the end-to-end drug discovery process. The key inno-
vation lies in addressing the complex transition from natural
language problem formulation to building a complete compu-
tational pipeline for real pharmaceutical research tasks. Ex-
perimental results demonstrate that our multi-agent solution
achieves 92% accuracy in end-to-end drug search complex
tasks, significantly outperforming single-agent implementa-
tions. We validated the system’s effectiveness on an origi-
nal newly farmed dataset with tasks and full solutions for
three pharmaceutical cases targeting neurodegenerative dis-
eases (Alzheimer’s, multiple sclerosis, and Parkinson’s). The
main contributions include demonstrating the advantages of a
multi-agent LLM-powered approach for automating pharma-
ceutical drug design and validating its success on real-world
drug discovery challenges.

Introduction

Drug discovery remains one of the pharmaceutical indus-
try’s most time-consuming and expensive processes (Huang
et al. 2024). The automation of this process represents a crit-
ical challenge for modern medicine. While various computa-
tional molecular design approaches exist (Zeng et al. 2022),
there remains a significant gap between human-interpretable
drug requests for certain purposes with specific properties
and the automated generation of highly valuable candidate
molecules.

This challenge is particularly acute for neurodegenerative
diseases like Alzheimer’s, Parkinson’s, and multiple scle-
rosis, which affect millions globally (Pushkaran and Arabi
2024). Neurological disorders are among the most challeng-
ing to treat because of the unique biological and chemical
hurdles associated with the brain. The blood-brain barrier
(BBB) restricts the passage of many therapeutic agents, ne-
cessitating the design of molecules with specific physico-
chemical properties to ensure effective delivery (Wu et al.

2023). Additionally, the multifactorial nature of these dis-
eases often requires therapies that can target multiple path-
ways simultaneously, adding to the complexity of the drug
discovery process (Jha et al. 2022).

Large Language Models (LLMs) have emerged as power-
ful tools for bridging this gap, offering impressive capabil-
ities in understanding natural language descriptions of de-
sired molecular properties and translating them into action-
able parameters (Guan and Wang 2024). Several promis-
ing specialized LLM-based tools exist, e.g. DrugLLM (Liu
et al. 2024) for zero-shot molecular generation and Chem-
LLM (Zhang et al. 2024a) for chemistry-related Q&A. How-
ever, the direct application of pre-trained and even fine-tuned
LLMs to chemistry tasks is limited by their inability to per-
form all required specialized operations (such as molecular
generation, validation, filtering, and properties prediction)
and execute them in proper order.

To overcome these limitations, we propose a multi-
agent approach that combines LLMs’ natural language un-
derstanding capabilities with highly specialized generative
models and validation tools for drug discovery tasks. Our
system employs specialized agents with different cogni-
tive functions: Planner Agent, Tool-calling Agent, Valida-
tor Agent and Summarizer Agent. These agents transform
unstructured textual descriptions into valid molecular struc-
tures with desired properties. This approach enables end-to-
end automation of the drug discovery process, from initial
property specification to final molecule generation and vali-
dation.

The key challenge we address is the complex transition
from problem formulation to building a complete compu-
tational pipeline for drug discovery for real pharmaceutical
research tasks instead of academic examples. That is why
we formulate the main research hypothesis as follows:

A multi-agent LLM approach can automate the full drug
discovery pipeline from natural language task formulation
to valid molecular candidates for real pharmaceutical re-
search tasks significantly better than single-agent approach.

Our experimental results support these hypotheses. The
proposed multi-agent solution achieves 92% accuracy' in

!This accuracy indicates how correctly the agents perform the
user’s query.



end-to-end drug search tasks, significantly outperforming a
single-agent implementation (e.g., (M. Bran et al. 2024))
(71%). In complex queries of 4-5 tasks, the accuracy of
the single-agent pipeline is zero - it cannot handle such
a large amount of tasks , while the multi-agent pipeline
shows 92% as well. We experimentally validated the effec-
tiveness of the pipeline by testing it on three pharmaceuti-
cal cases searching for drugs to treat neurodegenerative dis-
eases (Alzheimer’s disease, multiple sclerosis, Parkinson’s
disease).

The main contributions of the paper are: (1) demonstra-
tion of advantage of multi-agent LLM-powered approach for
automation pharmaceutical drug design research tasks; (2)
demonstration of successfulness of suggested approach for
real-world drug design challenges.

Related Work
ML models for drug design

Drug design is a rapidly growing field combining chem-
istry and machine learning. Traditionally, discovering new
molecules or selecting chemical structures to solve a particu-
lar problem relies on existing experimental data and subjec-
tive research experience, which limits the number and va-
riety of possible compounds that can be considered. Gen-
erative models allow efficient exploration of the molecu-
lar space, which has already fueled the explosive growth
of molecular generative design. Recurrent neural networks
(Grisoni et al. 2020; Li et al. 2020; Suresh et al. 2022; Dollar
et al. 2021), variational autoencoders (Gémez-Bombarelli
et al. 2018; Lee and Min 2022; Ochiai et al. 2023; Bhadwal,
Kumar, and Kumar 2023), generative-adversarial networks
(Guimaraes et al. 2017; Prykhodko et al. 2019; Pang et al.
2023; Macedo, Ribeiro Vaz, and Taveira Gomes 2024), evo-
lutionary algorithms (Yoshikawa et al. 2018; Leguy et al.
2020; Kerstjens and De Winter 2022; Jensen 2019; Tripp
and Hernandez-Lobato 2023), and hybrid models using rein-
forcement learning methods (Putin et al. 2018; Thomas et al.
2022; Zhavoronkov et al. 2019) have been successfully ap-
plied to solve various problems in chemistry.

Another advanced model for sequence generation is
Transformer (Vaswani et al. 2017), which is based on the
attention mechanism. For molecule generation task, this
model has successfully shown high performance in several
studies (Ang, Rakovski, and Atamian 2024; Mao et al. 2023;
Haroon, Hafsath, and Jereesh 2023). Researchers attribute
this architecture’s high performance to its ability to handle
long sequences, which is applicable for chemical structures
as they are usually treated as a sequence of atoms and bonds.

Despite various powerful methods for molecule gen-
eration, developing drugs to treat brain diseases still
poses many challenges (Khachaturian et al. 2023). To
date, researchers believe that machine learning and deep
learning tools can effectively solve such complex prob-
lems(Vicidomini et al. 2024; Doherty et al. 2023).

Chemical LLLM pipelines

Agent-based pipelines have gained widespread adoption in
chemistry and pharmacology tasks (M. Bran et al. 2024;

Zhang et al. 2024b; McNaughton et al. 2024; Li et al. 2024b;
Jablonka et al. 2023) since late 2023. These systems auto-
mate experiments, significantly reducing time and financial
costs and enabling professionals to achieve their objectives
more efficiently.

Chemical agent systems can address a broad range of
tasks, including prediction and modeling of chemical re-
actions; calculation of physical and chemical properties of
substances; generation of molecules with specific charac-
teristics; optimization of molecular structures to enhance
their efficacy or reduce toxicity; analysis and prediction of
pharmacokinetic and pharmacodynamic properties of com-
pounds; assessment of the likelihood of successful synthe-
sis for new compounds; automation of testing and selection
processes for target molecules.

For example, the ChemCrow (M. Bran et al. 2024) is
based on autonomous planning and execution of chemical
synthesis using a robotics platform. This solution supports
15 applied tasks in chemistry, including the planning and
synthesis of a repellent (DEET), the search for and synthe-
sis of a thiourea organocatalyst for the Diels-Alder reaction,
and the synthesis of paracetamol, aspirin, Safinamide, and
Atorvastatin. Another example is chemical agent CACTUS
(McNaughton et al. 2024) which is able to solve tasks such
as molecular property prediction, similarity searching, and
drug-likeness assessment but it supports only one-step tasks
that seems to be not enough for many real-world research
tasks.

Another example is the PhysicsAssistant platform (Latif,
Parasuraman, and Zhai 2024). This platform employs LLMs
to facilitate interactive learning in physics, helping students
conduct experiments and analyze results. Similarly, Can-
cerGPT, a model for predicting drug pair synergy using few-
shot learning, was introduced to accelerate the development
of new therapies (Li et al. 2024b).

Interest in using LLLMs in chemistry is growing as they
demonstrate potential in predictive analytics, molecular
modeling, and developing new compounds. For instance,
Chemdfm, a conversational platform powered by LLMs,
was proposed for working with chemical data (Zhao et al.
2024). Research by M. Bran A. et al. (M. Bran et al. 2024)
showed that integrating LLMs with chemical tools improves
molecular property predictions. Finally, Ye G. (Ye 2024)
proposed a novel approach for de novo drug design using
LLMs, enabling the automation of new chemical compound
generation.

These studies highlight that LLMs can accelerate scien-
tific progress in chemistry and related fields, unlocking new
material and drug development opportunities. Nevertheless,
none of them demonstrate successful automation of full drug
discovery pipeline. Possible reasons are (1) absence of easy
accessible dataset with full drug discovery pipeline for train-
ing and validation of new models and approaches, (2) weak-
ness of existed separated models and agents for solution the
full task with high quality level. Based on these conclusions
we propose our vision of stronger approach and high valu-
able newly farmed dataset with state-of-the-art pharmaceu-
tical research task and their solutions.



Proposed Multi-Agent Approach

Drug discovery is a complex task that involves multiple pro-
cessing tasks: understanding user requirements, generating
valid molecular structures, predicting their properties, and
evaluating results. Single-LLM approaches (e.g. DrugLLM
(Liu et al. 2024) as well, as other chemistry-specific mod-
els (Grisoni 2023)) and single LLM-agents ((M. Bran et al.
2024), (McNaughton et al. 2024)) struggle to handle this
complexity (Garg 2024; Allenspach, Hiss, and Schneider
2024).

Based on our experimental findings and literature analy-
sis, we propose a multi-agent architecture (Figure 1) that ad-
dresses the inherent complexity of drug discovery pipeline
automation. Our empirical study also shows that single-
agent approaches struggle with complex queries requiring
diverse tool interactions and domain-specific processing.

The system’s architecture separates key cognitive func-
tions into specialized agents, each optimized for specific
tasks in the drug discovery workflow. The system utilizes
four agents, each performing a unique task to achieve high
operational accuracy (pipeline planning, governing of the
strategy for tools usage, molecules validation, pipeline re-
sults summarization). This separation is grounded in mod-
ular software design principles and reduction of actions’
space for each agent.

We observed that such a modular approach provides at
least two advantages: (1) it allows each agent to focus on
a narrower task domain, improving accuracy and reducing
error propagation, and (2) it enables easier scalability in a
case of multi-step and multi-turn pipelines without dramatic
loss of quality.

Agents

The pipeline receives a textual query from the user, passed
to the Planner Agent. In a case of complex tasks, this agent
decomposes an initial query into more simple subtasks and
maps each subtask to a specific query type for subsequent
processing by a Tool-calling Agent. If the query is ambigu-
ous, the Planner Agent is invoked to refine it and enrich its
context with additional data the user provides.

The implementation includes a Tool-calling Agent in-
creases a quality of calling the required models and func-
tions.

The Tool-calling Agent determines required parameters
and executes tool calls in JSON format. For molecule gener-
ation tasks, it interfaces with our generative models to pro-
duce candidate structures matching specified properties.

Validator Agent evaluates tool outputs against quality cri-
teria, triggering reruns via the Planner if results are unsatis-
factory. This ensures generated molecules meet all specified
constraints.

Summarizer Agent compiles verified outputs into a co-
hesive response, presenting generated molecules with their
calculated properties in a structured format.

This architecture enables end-to-end automation of the
drug discovery pipeline while maintaining result quality
through validation loops. Such system can handle both sim-
ple single-task queries and complex multi-step requests re-
quiring coordination between different tools.
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Figure 1: Architecture of the proposed multi-agent approach
allowing to decompose a complex drug discovery process
into several feasible tasks that can be addressed in an auto-
mated way by R&D workers using natural language.

Integrated tools

Our research addresses the complex challenge of real-world
drug discovery, which demands a sophisticated integration
of multiple specialized tools beyond basic chemical anal-
ysis. To meet these requirements, we developed a toolset
combining deep generative models for molecules creation,
ML models for properties prediction, models for evaluation
of synthetic accessibility, drug similarity and other structural
properties of molecules.

Generative models. As follows from the related works,
the variety of generative models used in drug design is
vast. In this work, we refrain from advocating in favor of
any particular approach and employ multiple alternatives to
molecule generation instead. More specifically, we consider
generative adversarial networks (GANSs), autoencoders, and
reinforcement learning. For those, we adapt existing imple-
mentations of LSTM, transformer and graph convolution
networks, respectively.

Our GAN implementation consists of 2 LSTM blocks
with one bidirectional layer, as well as input layer and hid-
den layer of size 128. Inspired by the transformer-based con-
ditional VAE (Kim, Na, and Lee 2021), we implemented our
own transformer for targeted generation with property con-
trol. We trained this model with 8 properties in the condi-
tional block and a vocabulary size of 126 to encode SMILES
molecules. The number of transformer layers and heads in
the encoder and decoder was also increased to 12. Finally,
we extended the recently proposed FREED++ reinforcement
learning (RL) framework (Telepov et al. 2024) to also take



into account the 8 target properties while generating molec-
ular candidates.

The model based on FREED++ did not require any ad-
ditional training as the molecular properties could be esti-
mated and therefore optimized during the generation cycle.
In cases of GAN and transformer, training steps were neces-
sary. We pretrained both generative models on the reduced
ChEMBL dataset containing 1.2M molecules with molecu-
lar weight up to 400 g/mol.

Discriminative models for predicting the activity of gen-
erated molecules. Data from ChEMBL and BindingDB
were used to create machine learning models for predict-
ing the efficacy of inhibitors of GSK-3, BTK and ABL2.
In the case of BTK inhibitors, the data were supplemented
from a recent paper (Li et al. 2024a) that also utilises ML for
this task. The original data set was presented as molecules
in SMILES format and IC50 values (nmol/L). In each case,
the necessary data pre-processing was performed in the form
of data normalization and duplicate removal. The IC50 pre-
diction task was formulated as a binary classification. The
molecules in the data set were divided into two classes by
the median of the IgIC50 distribution. Thus, molecules with
1gIC50 less than the median were defined as “active” and all
others as “inactive”. The structures of the molecules were
represented in various ways, in particular Morgan finger-
prints, Avalon and RDKit descriptors.

Docking score estimation. One of the target properties we
used as training data was the binding energy of the target
protein to a ligand. This energy can be estimated through
molecular docking, typically called the docking score. We
calculated docking scores for the disease-specific target pro-
teins using AutoDock Vina (Eberhardt et al. 2021) and
QuickVina GPU 2.1 (Tang et al. 2024) frameforks. The latter
allowed us to significantly reduce the time required for dock-
ing score calculations, averaging just 0.14 seconds com-
pared to 5 seconds with AutoDock Vina. As a result, the
total time needed to calculate molecular docking scores for
our dataset dropped from 1667 hours to 19 hours.

RDKkit-based tools. The Tool-calling Agent may use two
RDKit functions: for synthetic accessibility (SA) and drug
similarity (QED) estimation. Except this several RDKit-
based functions were implemented: such structural filters as
Brenk, SurehEMBL, Glaxo, and PAINS.

Experimental setup
Selection criteria for generated molecules

Based on the generation results, the filter was carried out by
five stringency groups after calculating all key properties of
the molecules. This was done to compare different require-
ments for compliance with the target properties. Thus, the
filtering groups have the following structure:

e Group 1 (GR1): Docking score < -7 and IC50 = 1
This is the main group of filters that considers the biolog-
ical activity of the generated molecules, the properties of
which are proposed to be used as a primary focus.

* Group 2 (GR2): SA score < 3
Here, filtering by the possibility of synthesizing sub-
stances (SA) to the filters in the first group. This level of
filtering additionally shows how many of the generated
molecules can potentially be synthesized.

e Group 3 (GR3): Brenk = 0
The Brenk filter removes molecules that contain sub-
structures with undesirable pharmacokinetics or toxicity.

e Group 4 (GR4): SureChEMBL = 0, Glaxo = 0, and
PAINS =0

SureChEMBL is a publicly available resource containing
compounds extracted from the patent documents. Glaxo
filters are designed to exclude unstable and other prob-
lematic compound classes. Pan-assay interference com-
pounds (PAINS) are chemical compounds that often give
false positive results in high-throughput screens. PAINS
tend to react non-specifically with numerous biological
targets, which often leads to side effects.

* Group 5 (GRS): QED > 0.6
The most stringent group in terms of filtering includes
restrictions on the QED property. Thus, when requiring
the inclusion of an assessment of molecules by drug sim-
ilarity, it is necessary to focus on the fifth group.

Validation dataset preparation

The initial validation dataset, which subsequently served as
the basis for generating modified versions for experimen-
tal purposes, consists of 245 potential user queries involving
mentions of target proteins, properties, and disease symp-
toms. Examples of these user queries are given in Appendix
6. The dataset was constructed through the following steps:

1. Initial query design. 30 queries were manually com-
posed representing theoretical examples that could be
posed by the users of different levels of expertise in
chemistry. Each query was labeled with a corresponding
disease/property name. Most of these queries did not ex-
plicitly specify the type of task (e.g., generation/proper-
ties calculation) or request invocation of a specific func-
tion.

2. Dataset expansion via few-shot learning. The dataset
was expanded using few-shot learning techniques ap-
plied to several LLMs, including GPT-4o0, ol-mini,
Claude Sonnet 3.5, and Gemini 1.5 Pro. The LLMs were
provided with a few examples and instructions to gener-
ate similar but non-redundant examples. Instructions in-
cluded explicit requests to generate some examples from
a perspective of an experienced professional and a begin-
ner. Upon completion, the dataset was expanded to the
total of 400 queries.

3. Validation by chemistry experts. Chemistry experts re-
viewed the synthetically generated queries and selected
the most plausible ones. This step yielded the final
dataset of 245 queries.

4. Technical annotation. The validated dataset underwent
annotation by a technical specialist to facilitate down-
stream processing in validation modules.
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Figure 2: The process of obtaining a validation dataset for
further experiments on agents

Examples of user queries are provided in the Appendix
A.l.

Experimental conditions

Experiment #1. Comparison of LLMs in the multi-agent
system. Experiment 1 focused on analyzing the routing
quality for complex queries consisting of up to 5 tasks based
on the type of system prompt and the choice of the underly-
ing LLM. The objective was to assess the performance of the
pipeline as a whole, utilizing different LLMs and tracking
quality metrics for the Planner Agent and the Tool-calling
Agent across queries with varying levels of complexity.
Two prompting strategies were evaluated:

1. Unified system prompt. A universal prompt is applied
uniformly across all models.

2. Optimized individual prompts. Tailored prompts were
designed to maximize each model’s performance. This
strategy included two types of prompts: a baseline op-
timized prompt, enhanced prompt with additional to-
kens (by including keywords in function descriptions and
more precise instructions).

As a metric was used Accuracy (%) of choosing the cor-
rect route (was defined in a benchmark) by agents.

Experiment #2. Comparison against a single-agent sys-
tem. Experiment #2 focused on comparison of routing
quality between proposed multi-agent implementation with
single-agent implementation. For a clear experiment we use
unified core (Langchain based agent) for both implemen-
tations. It is worth noting that both implementations share
the same set of tools. A individual system prompt was used
throughout the experiments, except for the agent-specific in-
structions. In the single-agent implementation, instructions
were updated to align with the single-agent logic. Llama-
3.1-70b was employed for both implementations as the best
performing model.
Two levels of task complexity were evaluated:

1. Requests with 1-3 subtasks. Requests with small amount

of details that have to be taken into account by an agentic
system.

2. Requests with 45 subtasks. More complex and detailed
requests.

As a metric was used Accuracy (%) of choosing the cor-
rect route (was defined in a benchmark) by agents with dif-
ferentiation between correct routing on a step of tool calling
and routing through the whole task.

Experiment #3. Comparative analysis of generative mod-
els efficiency. Experiment #3 is devoted to the demonstra-
tion of efficiency of generative models for drug discovery
for considered diseases. A key metric for evaluating drug
candidate molecules is their ability to meet target properties.
We assessed this by calculating the percentage of generated
molecules that satisfied our filtering criteria while remaining
both novel and chemically valid. This metric was calculated
across multiple experimental runs for each model to ensure
reliable comparison.

As a metric was used percentage of remained target
molecules after filtering with criteria groups.

Experiment #4. Property prediction models validation.
Experiment #4 is devoted to evaluation of ML models
for property prediction. In order to select the best mod-
els for 1gIC50 prediction, cross-validation was performed
for CatBoost (Prokhorenkova et al. 2018), XGBoost (Chen
and Guestrin 2016), Random Forest (Breiman 2001), Extra
Trees (Geurts, Ernst, and Wehenkel 2006), and LightGBM
(Ke et al. 2017) models. Selection of the best models for
each task was made from 5 candidates. Table 5 in Appendix
A.4 shows comparative candidate’s results.

Experimental results
Demonstration of agentic pipeline efficiency
Experiment #1 results. Comparison of LLMs in the
multi-agent system We found that Llama-3.1-70b with an
optimized system prompt was the best-performing model for
routing agents (Figure 3). Notably, this model outperformed
the strong baseline of o/-mini model and the newer gen-
eration Llama-3.2-90b, both of which also incurred higher
costs. Not unexpectedly, Llama-3.1-8b being a smaller and
less capable model showed rather poor performance. Pur-
suing performance and cost efficiency we also included a
quantized version of Llama-3.1-70b for comparison, which
delivered the worst accuracy.
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Experiment #2 results. Comparison against a single-
agent system The single-agent system failed to process
any requests with 4-5 tasks. While functions were correctly
identified and invoked, the final responses were not valid
(e.g. include no generated molecules, contained fewer than
half of the expected outputs, etc.).

For smaller requests (1-3 subtasks), the single-agent sys-
tem produced better results but still fell short compared
to the multi-agent implementation. The multi-agent sys-
tem provides a clear, structured response by separating
molecules by task type and ensuring completeness. In con-
trast, a single-agent system often misses important proper-
ties or confounds unrelated results.

In particular, on queries consisting of 1-3 tasks, the multi-
agent system achieved 9% higher accuracy in function calls
and 20% higher precision in the whole pipeline, as shown in
the Table 1. For queries of 4-5 tasks, based on the inability of
the single-agent system to produce a final complete answer,
its accuracy was 0%. At the same time, the single-agent sys-
tem did not do so poorly in function detection, yielding to
the multi-agent system by 18%.

Table 1: The accuracy of the entire pipeline and function
calls in both multi-agent and single-agent implementations
for different number of subtasks in user query.

Number Pipeline Accuracy
of Function  Overall
tasks call pipeline
1-3 Multi-Agent 0.92 0.92
Single-Agent 0.82 0.71
4.5 Multi-Agent 0.92 0.92
Single-Agent 0.74 0.0

Demonstration of designed case study practical
valuability

Beyond validating the agentic pipeline efficiency, we pro-
vide additional experimental evidence demonstrating our ap-
proach practical value for state-of-the-art drug discovery re-
search. Since our goal is to advance automated pharmaceu-
tical design rather than solve textbook chemistry problems,
we focused on complex therapeutic targets in neurodegener-
ative diseases.

Experiment #3. Comparative analysis of generative mod-
els efficiency. The key finding from Experiment #3 is a
demonstration of ability to generate valid novel molecules
that pass multiple pharmaceutical filters (with non-zero suc-
cess rate). Both GAN and Transformer based models suc-
cessfully generated viable drug candidates across all three
disease targets. The FREED++ model proved effective for
two targets (Alzheimer’s and Multiple Sclerosis) but failed
to generate valid molecules for Parkinson’s disease. Com-
parison results are presented in Table 2.

Another important property for generative models in-
side drug design benchmark is an ability to create diverse
molecules that is estimated using Tanimoto similarity ((Ba-
jusz, Racz, and Héberger 2015)). As shown in Table 2 (and

Figure 5 in Appendix A.4) all models give a reasonable
level of diversity. Although, GAN-based models produced
more diverse molecules compared to Transformer and RL
approaches. While the latter models prioritized target prop-
erties over diversity, leading to higher success rates in gen-
erating viable drug candidates.

Also following (Telepov et al. 2024), we analyzed the top
25 molecules from each model (Table 4 in Appendix A.3).
All molecules achieved zero scores on key drug-likeness fil-
ters (Brenk, SureChEMBL, Glaxo, PAINS).

Experiment #4. Property prediction models validation.
Selected results of the best chosen models are shown in Ta-
ble 3. Such results suggest that molecules potentially ap-
plicable for the treatment of a particular disease and have
specific combinations of properties. However, the results for
multiple sclerosis show a slight decrease in accuracy com-
pared to a recent study (Li et al. 2024a) for predicting the
activity of BTK inhibitors (5.32%), which is probably due
to an extended training dataset in our work and the resulting
improved generalization ability.

Detailed evaluation: Alzheimer’s disease In addition to
evaluating individual molecular properties, we conducted
comprehensive analysis of the drug candidates generated
through our benchmark. Due to limited volume, we present
here detailed validation results only for the Alzheimer’s dis-
ease case.

16,082 novel GSK-3 /3 inhibitors were generated using the
transformer model. To validate generated molecules with al-
ready known compounds, we compared novel with active in-
hibitors from the ChEMBL dataset, which was used to cre-
ate the IC50 prediction model (see Figure 4). The average
SA Score of the generated molecules is lower than exper-
imentally validated compounds, suggesting easier ways of
laboratory synthesis. Moreover, the average QED score of
generated molecules increased 11.8%, which indicated en-
hanced pharmacological properties. Lower toxicity can also
be reported since all the generated molecules have passed
the Brenk filter. At the same time, the Tanimoto similarity
of 0.43 between novel and ChEMBL molecules leads to a
conclusion that along with improved properties, the obtained
compounds make up a different chemical space, which can
potentially result in unconventional and effective solutions
for this case (Ganeeva et al. 2024).

Conclusion and Discussion

In the paper, we aimed to demonstrate that transitioning
from traditional human-in-ML-loop drug discovery to fully
automated drug discovery is more challenging than com-
monly assumed, particularly when moving beyond textbook
chemistry problems to state-of-the-art pharmaceutical re-
search tasks. This conclusion is supported by two key ex-
perimental findings.

First, we demonstrate that automating the transition from
unstructured text queries to valid molecular structures re-
quires multi-agent approach. While single-agent LLM im-
plementations perform adequately on simple queries (71%
accuracy), they fail on complex drug discovery tasks that re-
quire coordinating multiple specialized tools and extended



Table 2: Percentage of target molecules across filter groups obtained during the generation series by each model.

Case Model GR1,% GR2,% GR3,% GR4,% GRS5,% Diversity
GAN 19.03 14.75 11.70 11.32 11.32 0.37
Alzheimer Transformer 26.06 23.58 18.47 18.15 18.15 0.24
RL 15.8 14.34 10.99 10.74 10.74 0.21
GAN 5.90 4.35 3.49 3.36 3.36 0.39
Multiple sclerosis  Transformer 15.43 13.75 13.32 13.29 13.29 0.25
RL 22.81 20.34 18.39 18.22 18.22 0.11
GAN 14.45 11.48 8.92 8.57 8.57 0.36
Parkinson Transformer 3.32 3.06 2.69 2.65 2.65 0.24
RL 0.03 0.03 0 0 0 0.17

Table 3: Performance of machine learning models predict-
ing activity of the generated molecules (binary classification
based on the case-specific 1gIC50 threshold).

Case The best model Accuracy F1-score
Alzheimer Extra Trees 0.82 0.83
Multiple sclerosis Random Forest 0.89 0.92
Parkinson Catboost 0.91 0.92
a
00 01 02 03 04 05 06 07 08 09 10
Tanimoto similarity
b Generated
Real
1 2 3 4 5 6 7
SA Score
c
Generated
Real

0.0 0.2 0.4 0.6

QED

0.8 1.0

Figure 4: Complex validation of generative pipeline for
Alzheimer’s disease case: a) Distribution of maximum Tan-
imoto Similarity between generated molecules and experi-
mentally validated GSK-3 inhibitors; b) SA Score distribu-
tions, ¢) QED distributions. “Generated” are molecules gen-
erated using generative models, “Real” are experimentally
validated GSK-3 inhibitors

planning. Proposed multi-agent system achieves 92% ac-
curacy by effectively decomposing and planning routes for
complex tasks solution.

Despite the function calls achieving an accuracy of 74%,
gathering information on all tasks and formulating a final

response for the user were not carried out correctly, resulting
in zero accuracy, in contrast to the multi-agent pipeline.

Second, we demonstrate that our pipeline can address
real pharmaceutical challenges rather than just academic ex-
amples through experiments on brain degenerative disease
cases. While implemented queries, generative models, prop-
erty prediction models altogether may form a new bench-
mark with comprehensive pharmaceutical research pipeline
for solution of current scientific tasks.

Our results suggest that while LLM-based automation of
drug discovery shows promise, the gap between automated
and traditional approaches remains significant. The multi-
agent approach provides a viable path forward, but requires
careful consideration of both computational and domain-
specific challenges. This highlights the importance of rig-
orous validation against real pharmaceutical research prob-
lems rather than relying solely on simplified academic ex-
amples.

It appears that single-LLM approaches currently signifi-
cantly lag behind in capabilities compared to results achiev-
able through agent-based approaches that leverage a wide
range of tools and ML models. Our experiments showed that
general models like Llama 3.1, GPT-4o, ol-mini fail to gen-
erate valid molecules in the vast majority of cases. How-
ever, specialized LLM models face similar limitations: for
instance, ChemLLM cannot solve the molecule generation
task at all, while DrugLLM is designed only for optimiz-
ing existing formulas. While single-LLM approach capabil-
ities undoubtedly require more detailed quantitative anal-
ysis and comprehensive comparison with agent-based ap-
proaches, that remains as future work.

Besides all, objective comparison between multi-agent
and single-agent implementations remains an open discus-
sion point, involving numerous architectural and implemen-
tation nuances (prompt selection, multi-agent network struc-
ture, choice of base frameworks, etc.). While additional re-
search is required for definitive conclusions, we believe our
experimental results support the validity of our findings at
the current level of tested hypotheses.

Another important future work is extending the exist-
ing test cases beyond brain diseases to a new comprehen-
sive benchmark that includes possible queries, candidate
molecules, filtered through criteria set molecules and final
answers.
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Appendix
A.1 - Examples of Queries:
Manually Composed Queries by Experts
* Alzheimer’s Disease:
— Generate GSK-3beta inhibitors with high docking score and low brain-blood barrier permeability.
— Generate GSK-3beta inhibitors with high activity.
Synthetic Queries Generated by LLMs
* Alzheimer’s Disease:
— Generate structures with many aromatic rings to facilitate w-m stacking interactions with beta-amyloid aggregates.

— Generate compounds with flexible linkers to allow for conformational adaptability in binding to amyloid-beta.

A.2 - Examples of single-agent responses:

* Response 1: “Here are the generated GSK-3beta inhibitors with high activity for the treatment of Alzheimer” (no molecules
provided).

* Response 2: “Here are the generated GSK-3beta inhibitors...” (identical molecules were duplicated for each task, ignoring
valid outputs and missing properties).

A.3 - Properties of generated molecules:

Table 4: Average values of key properties for top-25 generated molecules

Case Models Avg Docking score  Avg SA  Avg QED
GAN -9.5 2.4 0.49
Alzheimer RL (FREED++) 9.1 23 0.54
Transformer -10.7 2.5 0.51
GAN -11.4 2.3 0.73
Mupltiple sklerosis RL (FREED++) -11.4 2.3 0.74
Transformer -11.5 2.5 0.65
GAN -9.3 2.3 0.40
Parkinson RL (FREED++) -6.1 2.25 0.51
Transformer -8.2 2.1 0.60

A4 - Additional ML results:
The more detailed results for ML experiments are provided in Table 5 and Figure 5.

A.5 - Analysed brain disease cases:

Alzheimer’s disease Currently, there are no medications that fully prevent or halt Alzheimer’s disease (AD). Existing drugs
only reduce symptoms. Tau proteins play arole in stabilizing microtubules, which maintain the healthy state of neurons (Buerger
et al. 2006). In a healthy brain, tau proteins undergo phosphorylation and dephosphorylation, processes regulated by various
kinases. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that plays a key role in cellular metabolism and
signal transduction. It is associated with various diseases, including AD, by promoting tau protein hyperphosphorylation, which
is a major component of neurofibrillary tangles, one of the hallmarks of AD. One of the inhibitors of this kinase, tideglusib,
has completed phase I and II clinical trials, during which it was found that cognitive function in patients improved slightly
compared to placebo (insufficient efficacy), and gastrointestinal side effects (toxicity) were observed (Dominguez et al. 2012).
Thus, development of novel GSK-3 inhibitors with enhanced properties is of great importance.

Multiple sclerosis Multiple sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system, character-
ized by inflammation, demyelination, gliosis, and neuroaxonal degeneration (McGinley, Goldschmidt, and Rae-Grant 2021).
While it is traditionally thought that MS is primarily mediated by T-cells, B-cells and almost all types of innate immune cells
appear to play a significant role in both the initiation and propagation of the disease. Peripheral immune cells that cross the
blood-brain barrier (BBB) induce relapses and the formation of focal demyelinating plaques (Cencioni et al. 2021). Bruton’s
tyrosine kinase (BTK) is a protein that plays a critical role in the development and function of immune cells. The use of BTK



Table 5: Comparison of Accuracy and F1 score for the considered machine learning models. For Alzheimer disease case
MACCS fingerprints were used, for mupltiple sclerosis - Morgan fingerprints (1024, radius=2), for Parkinson disease - RDKit
descriptors and Avalon fingerprints.

Case Model Accuracy F1 Score
CatBoost 0.810 0.810
Random Forest 0.822 0.829
Alzheimer XGBoost 0.803 0.803
Extra Trees 0.823 0.829
LightGBM 0.810 0.820
CatBoost 0.865 0.905
Random Forest 0.887 0.920
Mupltiple sclerosis XGBoost 0.876 0.912
Extra Trees 0.886 0.919
LightGBM 0.885 0.918
CatBoost 0.910 0.920
Random Forest 0.890 0.900
Parkinson XGBoost 0.910 0.910
Extra Trees 0.890 0.900
LightGBM 0.900 0.910
RL
Transformer
GAN

Alzheimer disease

0.0 0.2 0.4 0.6 0.8 1.0

RL
Transformer
GAN

Multiple sklerosis

0.0 0.2 0.4 0.6 0.8 1.0

RL
Transformer
GAN

Parkinson disease

0.0 0.2 0.4 0.6 0.8 1.0
Tanimoto similarity

Figure 5: Tanimoto similarity (maximum values) for all generated molecules

inhibitors for the treatment of MS is a promising area of research, as these drugs have been shown to reduce B-cell activity and
decrease inflammation in the brain and spinal cord (Kriamer et al. 2023). By targeting BTK, these drugs may slow or halt the
progression of MS, improve symptoms, and enhance the quality of life of patients (Li et al. 2022). Currently, at least six BTK
inhibitors (BIIBO91, Evobrutinib, Fenebrutinib, Orelabrutinib, Remibrutinib, Tolebrutinib) are in phase II-III clinical trials.
Despite promising results, there are still areas for improvement in BTK inhibitors, such as binding mechanism (non-covalent
inhibitors are less potent and require higher doses, but they offer increased selectivity and a lower propensity for resistanc) and
blood-brain barrier permeability (Saberi et al. 2023). The objective of this case is to generate noncovalent BTK inhibitors with
improved IC50 values and enhanced BBB permeability.

Parkinson’s disease Parkinson’s disease is a progressive neurodegenerative disorder, which is characterized by the loss of
dopaminergic neurons (Tolosa et al. 2021). The primary causes and mechanisms of development include mitochondrial dys-



function, oxidative stress, genetic mutations, protein manifolding and aggregation, as well as disruptions in cellular clearance
processes. These factors contribute to neuronal degeneration and make them key targets for therapeutic approaches. Two main
targets are being investigated for the treatment of Parkinson’s disease: tyrosine protein kinase ABL and catecholamines. Inhi-
bition of ABL is considered a promising approach to slowing neurodegenerative processes (Werner and Olanow 2022). This
protein kinase is involved in the regulation of cellular metabolism, and its hyperactivation is associated with increased oxida-
tive stress and the accumulation of damaged proteins, which contribute to neuronal death (Kwon et al. 2021). This case study
focuses on the generation of new ABL inhibitors with improved properties.

A.6 - Examples of requests.
Simple requests. Requests with 1-3 subtasks:

L]

L]

”Generate GSK-3beta inhibitors with high activity”.

”Give me active molecules against GSK-3beta protein. I want them to be not toxic”

”Design one unique molecular entity with a binding affinity greater than 100 nM that specifically targets amyloid-beta
plaques associated with Alzheimer’s disease. This compound should demonstrate a permeability coefficient of at least 1.5 to
ensure effective crossing of the blood-brain barrier.”

”Generate inhibitors of KRAS protein with G12C mutation. The inhibitors should be selective, meaning they should not bind
with HRAS and NRAS proteins.”

”Generate highly potent non-covalent BTK tyrosine kinase inhibitors from the TEC family of tyrosine kinases that have the
potential to affect B cells as a therapeutic target for the treatment of multiple sclerosis”

”Generate molecules with activity against Parkinson’s disease based on phenethylamine scaffolds.
”Synthesize dual-action agents that modulate both HDL and LDL particle size for improved cardiovascular outcomes.”

”»”

”Design irreversible inhibitors of cholinesterases with improved selectivity to enhance cholinergic transmission in the
Parkinson’s patient population.”

”Create one detailed SMILES representation for a potent inhibitor that effectively modulates the activity of ABC transporters
implicated in drug resistance. ”

”Develop one novel therapeutic candidate that functions as a selective antagonist of the N-methyl-D-aspartate (NMDA)
receptor with a Ki value lower than 30 nM. This candidate should prevent excitotoxicity while maintaining synaptic func-
tion, showing a balance in action with a minimal effect on synaptic transmission at therapeutic doses. Design novel small
molecules targeting the efflux pumps responsible for drug resistance.”

”Generate derivatives that incorporate multi-targeted inhibition to address the complex mechanisms underlying Alzheimer’s
disease.Create 1 selective molecule that targets KRAS G12C and doesn’t affect HRAS or NRAS. Generate molecular struc-
tures targeting drug resistance mechanisms in cancer cells.”

”Synthesize a potent and selective ANGPTL3 inhibitor to reduce plasma triglycerides.”

”Generate molecules with inhibitory activity against glycogen synthase kinase 3 beta (GSK-3) to reduce tau phosphorylation
in Alzheimer’s pathology. Create I selective molecule that targets KRAS GI12C and doesn’t affect HRAS or NRAS. Generate
molecular structures targeting drug resistance mechanisms in cancer cells.”

Complex requests. Requests with 4-5 subtasks:

L]

”Generate GSK-3beta inhibitors with high activit. Suggest some small molecules that inhibit KRAS G12C - a target respon-
sible for non-small cell lung cancer. Generate high activity tyrosine-protein kinase BTK inhibitors. Generate me 2 molecules
that would help me with my blood lipid spectrum disorder, which is manifested by an increase in cholesterol, triglycerides,
low and very low density lipoproteins and a decrease in high density lipoproteins, or alpha lipoproteins. It is important that
medications do not produce side effects such as muscle pain and liver problems.”

”Suggest several molecules that have high docking affinity with KRAS G12C protein. Molecules should possess common
drug-like properties, including low toxicity, high QED score, and high level of synthesizability. Generate high activity
tyrosine-protein kinase BTK inhibitors. Can you suggest molecules that inhibit Proprotein Convertase Subtilisin/Kexin Type
9 with enhanced bioavailability and the ability to cross the BBB? Generate me new drug that enhance neurotransmitter
balance, promote neuroprotection, and reduce oxidative stress. These compounds should possess high bioavailability, cross
the blood-brain barrier efficiently, and show minimal metabolic degradation.”

”Synthesize compounds that inhibit the phosphoinositide 3-kinase pathway in resistant cancers. Generate molecules with
inhibitory activity against glycogen synthase kinase 3 beta (GSK-3) to reduce tau phosphorylation in Alzheimer’s pathology.
Suggest some small molecules that inhibit KRAS G12C - a target responsible for non-small cell lung cancer. Generate highly
potent non-covalent BTK inhibitors that will have increased permeability through the blood-brain barrier. Generate me 2
molecules that would help me with my blood lipid spectrum disorder, which is manifested by an increase in cholesterol,
triglycerides, low and very low density lipoproteins and a decrease in high density lipoproteins, or alpha lipoproteins. It is
important that medications do not produce side effects such as muscle pain and liver problems.”



”Discover therapeutic agents targeting non-covalent BTK modulation to prevent multiple sclerosis progression. Create novel
small molecules to specifically bind and inhibit KRAS GI2C, ensuring no activity against HRAS and NRAS. Generate me
2 molecules that could help in the treatment of Parkinson’s disease, focusing on compounds that support the regulation
of dopamine levels and protect neurons from oxidative stress and mitochondrial dysfunction. It is important that these
molecules do not cause severe side effects such as hallucinations, dyskinesia, or cardiovascular issues. Generate me 2
molecules that could overcome chemotherapeutic resistance in cancer treatment, specifically targeting mechanisms such as
increased drug efflux, enhanced DNA repair, or apoptosis evasion. It is important that these compounds avoid toxicity to
healthy cells and minimize side effects like immunosuppression or gastrointestinal distress.”

”Design 3 novel inhibitors targeting KRAS GI2C for lung cancer treatment, ensuring high selectivity and no binding to
HRAS or NRAS. Generate highly potent non-covalent BTK inhibitors that will have increased permeability through the
blood-brain barrier. Generate inhibitors of SIRTI to modulate lipid metabolism and improve insulin sensitivity. Generate
molecules with properties of glutamate receptor antagonists for neuroprotection.”

” Identify novel small molecules that suppress BTK-mediated pathways, reducing inflammation in multiple sclerosis. Suggest
some small molecules that inhibit KRAS G12C - a target responsible for non-small cell lung cancer. Generate me 2 molecules
that could help in the treatment of Parkinson’s disease, focusing on compounds that support the regulation of dopamine levels
and protect neurons from oxidative stress and mitochondrial dysfunction. It is important that these molecules do not cause
severe side effects such as hallucinations, dyskinesia, or cardiovascular issues. Generate one synergistic compound that
significantly enhances the activity of existing therapeutic agents against drug-resistant pathogens.”

”Create selective drug-like inhibitors that target the KRAS G12C mutation in lung cancer, while avoiding off-target activity
with HRAS and NRAS proteins. Focus on selectivity for KRAS and avoid off-target effects with other RAS family pro-
teins. Devise novel compounds that interfere with immune signaling pathways to treat multiple sclerosis. Can you suggest
molecules that inhibit Proprotein Convertase Subtilisin/Kexin Type 9 with enhanced bioavailability and the ability to cross
the BBB? Generate me new drug that enhance neurotransmitter balance, promote neuroprotection, and reduce oxidative
stress. These compounds should possess high bioavailability, cross the blood-brain barrier efficiently, and show minimal
metabolic degradation.”

”Develop selective tyrosine kinase inhibitors with strong binding affinity for BTK. Create novel small molecules to specifi-
cally bind and inhibit KRAS G12C, ensuring no activity against HRAS and NRAS. Generate me 2 molecules that could help
in the treatment of Parkinson’s disease, focusing on compounds that support the regulation of dopamine levels and protect
neurons from oxidative stress and mitochondrial dysfunction. It is important that these molecules do not cause severe side
effects such as hallucinations, dyskinesia, or cardiovascular issues. Can you suggest molecules that inhibit signal trans-
ducer and activator of transcription 3 (STAT3) with water solubility greater than 60 g/mL and inhibitory ability to P450
CYPIA2?”



