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Abstract 

Globally, crop insect pests lead to 10 – 40% yield loss. 

However, crop insect pest detection and mitigation re-

main an extremely challenging task for the farmers, 

due to several factors. While supervised learning has 

achieved a remarkable feat in insect detection, it re-

quires significant human intervention in labeling the 

input data, thereby making the downstream tasks tedi-

ous and sometimes infeasible. This is particularly the 

case for identifying insects in the field, where labeling 

is tedious. Here, we present a self-supervised learning 

(SSL) approach – Bootstrap your own latent (BYOL) 

to classify 12 types of agricultural insect pests using 

minimal labeling. Both raw and segmented images 

were separately fed to the BYOL SSL method, and the 

linear classification accuracies from the representa-

tions learned were examined. The results indicate that 

using segmented images as input to BYOL could lead 

up to 94% classification accuracy. 

 Introduction   

In agricultural fields insect pests pose a serious threat to 

yield quality and yield potential. Insect pests infestation is 

observed at all crop growth stages, from sowing to harvest 

causing serious biotic stresses in the plants. In USA, pest 

infestation is a major problem in soybean fields. However, 

it is extremely challenging to detect and identify insect pests 

in fields, owing to the similarities in their visual character-

istics, as well as varied size and propensity to cluster to-

gether (leading to occlusions). This is exacerbated by the 

fact that most of these pests are not sessile and tend to hide 

under the leaves or fly away making trapping very difficult 

(Zhong et al. 2018). On many occasions, pests even colonize 

causing severe and widespread damage to the entire field. 

Therefore, early detection of the insect pests is needed to 

prevent such damage and facilitate precise pesticide appli-

cation in the fields. Early identification of the insect pests 
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and applying the apt pesticide in the right quantity and loca-

tion would not only lower production costs and the adverse 

environmental impacts, but also help in contributing to bet-

ter human health and food safety (Hao et al. 2020).  

 Several research projects have been conducted to detect 

the insect pests using imaging systems and computer vision 

techniques. Majority of them, however, rely on supervised 

learning approaches that require voluminous training and la-

beled datasets (Alliegro et al. 2020). For instance, in Tetila 

et al. (2020), Inception-v3, Resnet-50, VGG-16, VGG-19 

and Xception models were evaluated across 5000 images for 

classifying 13 soybean insect pests, and the maximum clas-

sification accuracy reported is 93.82%. 98% accuracy has 

been reported in Li et al. (2020) in classifying ten types of 

crop insect pests using a manually collected dataset by fine-

tuning the GoogLeNet model. However, this model imple-

mentation is both resource and time expensive. Further, 

large insect datasets have been published to aid insect pest 

classification task, e.g., IP102 dataset (Wu et al. 2019). 

However, even combined deep-CNN and saliency-based 

frameworks trained on these large datasets have failed to 

perform satisfactorily in case of insect pest images with 

large intra-class variation (Tetila et al. 2020). 

 While supervised methods look promising with very high 

classification accuracies, these involve intensive human in-

tervention which is infeasible for large datasets. Addition-

ally, supervised learning could hardly help with learning la-

tent representations of the input images and enabling simi-

larity measures between samples, in case of complex tasks 

like crop insect pests and disease detection and localization 

(Fang et al. 2021). Hence, self-supervised learning (SSL) is 

the state of the art (SOTA) that aims to learn useful repre-

sentations from input data without any human annotations. 

Once these useful latent representations are learnt, down-

stream tasks can be performed with significantly reduced 

amount of labelled data. Pioneering studies in SSL have 

shown comparable performance between self-supervised 

and supervised representations (Caron et al. 2021, Grill et 

al. 2020). A key concept in SSL is augmenting the input to 

 



 

 

learn the underlying representations that are invariant to the 

different distortions or augmentations (Misra and van der 

Maaten, 2019). There are several flavors of SSL based on 

how augmentation is performed, as well as how/which in-

variances and constraints are imposed. Successful ap-

proaches to SSL are broadly classified into contrastive 

learning, clustering, distillation and redundancy reduction-

based approaches, with several SSL algorithms proposed. 

 In this paper the Bootstrap Your Own Latent (BYOL) 

method (Grill et al. 2020) is exploited to perform SSL on 12 

insect classes consisting of total 9549 images. Considering 

the complexity of the input images SSL performance on raw 

and segmented images has also compared via linear evalua-

tion of the representations learned in both the cases. Subse-

quently, supervised learning has also been performed to ex-

amine if the supervised and self-supervised results are com-

parable. The following sections, describe the dataset, meth-

odology and the results. 

Dataset 

The RGB insect images were collected from the research 

fields of Iowa State University, USA using different mobile 

phones, both android and iPhones, between 8:00 AM to 5:00 

PM over a period of two months. Thus, the 9549 images col-

lected across 12 insect classes greatly varied in resolution. 

The images were taken from the different Iowa State Uni-

versity (ISU) experimental fields including soybean, mung 

bean, corn and various vegetable crops. Several classes were 

found to have large intra-class variability in terms of color, 

patterns, and texture of the images. Besides intra-class vari-

ability, two major challenges identified in the dataset were 

class-imbalance and large background with very small fore-

ground. Due to varying illumination conditions in a day, 

shadow effects were also found. All the images were resized 

to 224 x 224 pixels, before being fed to the SSL framework. 

Framework 

The framework (Fig.1) comprises two major steps, pretrain-

ing and linear evaluation. In the pretraining stage, BYOL 

was utilized to derive the representations from the input im-

ages and in the linear evaluation stage, those representations 

were utilized as input to the linear classifier to assess the 

SSL efficiency. In many classes it was found that insects of 

the same class greatly differed in color and pattern, while 

insects from different classes looked similar. Hence, the 

framework was implemented on both raw and segmented 

images, to examine the quality of raw data as well as to study 

if segmentation helps in learning the representations better. 

Here, local entropy-based segmentation (Hržić et al. 2019) 

was chosen, since it segments an image based on the level 

of complexity in a certain section, majorly attributed to im-

age texture than color. The initial values to the entropy func-

tion and the threshold values for masking after segmentation 

were empirically selected for each insect class. Fig.2(a) and 

(b) represent the intra-class variability and visual inter-class 

similarity, and Fig.3 shows the raw and segmented images 

of each class.  

 During pretraining, BYOL was implemented using both 

ResNet18 and ResNet50 models as the backbone and the re-

sults were compared. The ResNet models were initialized 

with weights trained on the Imagenet dataset (Deng et al. 

2009), and then fine-tuned on the insect dataset i.e., 75% as 

the training and 15% validation data. The remaining 15% 

images were utilized as the test set for linear evaluation.

 BYOL was preferred in this study since it learns the rep-

resentations from pretext tasks that can be used for down-

stream tasks, without relying on negative samples needed 

for contrastive methods. Its architecture comprises two same 

encoder networks, online and target that obtain representa-

tions from the image and its augmented view. Target net-

work weights are essentially slow-moving average of the 

online network weights and help reduce the contrastive loss  

between the two representations. There are several hyperpa-

rameters, representing essential data augmentation attributes 

that need to be tuned for efficient SSL via BYOL. In this 

case, multi-cropping was enabled i.e., augmentations were 

performed on random crops of sizes 128,128,64 of the same 

image. Besides that, random grayscale conversion and ran-

dom color distortion, consisting of a random sequence of 

color jitter, brightness, contrast, saturation, hue and gaussian 

blur adjustments were also applied. Pretraining was done for 

800 epochs, followed by linear evaluation of the learned rep-

resentations. The solo-learn library (Turrisi et al. 2021) was 

used for the entire implementation.  

 

Figure 1. SSL framework for insect classification 



 

 

 
Figure 2. Examples of (a) intra-class variability showing 

same insect with different colors and patterns, and (b) in-

ter-class similarity showing different similar looking in-

sects 

 

 
Figure 3. Raw and segmented images of each insect class. 

Results and Discussion 

In plant stress phenotyping studies, one of the major chal-

lenges in achieving desired efficiency from deep learning 

models, is caused due to the large and complex background 

compared to the foreground (e.g., an insect or a damaged 

portion of a diseased leaf). Therefore, many works have 

demonstrated the use of segmented images that yield super-

pixel regions (or superpixels), such that the networks can 

learn better representations of the foreground from those su-

perpixels and enhance classification outcomes. Further, 

studies have also reported combining saliency networks to 

the deep learning frameworks, with an attempt to simultane-

ously explore model-interpretability and identify the visual 

features that helped in correct classification. However, all 

these analyses are performed using supervised learning, and 

it is shown (Nagasubramanian et al. 2020) that these inter-

pretations are subjective to the interpretability methods 

used, and often spurious feature correlations were found to 

help in correctly classifying the images. The subjectivity 

and specificity of the results imply the problem of trivial so-

lution (where the learned features do not generalize well for 

downstream tasks like classification, object detection, etc.) 

encountered in supervised learning methods that is over-

come in the pretraining phase of SSL. Therefore, this study 

has attempted to leverage the possible benefits of segmenta-

tion and SSL in desirably classifying the insects. 

 After pretraining the networks, the pretrained representa-

tions were used for linear evaluation, performed across 200 

epochs. The pretraining results (Fig.4) show that, segmented 

images resulted in higher validation (val_acc1) as well as 

training accuracies (train_acc1), as suggested in previous 

works (Machado et al. 2016, Tetila et al. 2020). For instance, 

Figure 4. Training and validation accuracy curves during 

pretraining raw and segmented images with ResNet18 and 

ResNet50 architectures. 



 

 

Tetila et al. (2020) has utilized the Simple Linear Iterative 

Clustering (SLIC) superpixels to classify 5000 insect im-

ages. However, that method was not found beneficial for this 

case, owing to the large heterogeneity in the visual features 

within the same class, as described before. Therefore, en-

tropy-based image subset selection was preferred, which has 

shown promising results in reducing the need of training 

data for deep learning-based segmentation in medical imag-

ing (Gaonkar et al. 2021). 

 

  

Validation Accuracy (%) 

Raw Segmented 

Res-

Net18 

Res-

Net50 

Res-

Net18 

Res-

Net50 

Linear Evaluation 86.24 89.04 89.75 93.54 

Supervised Learning 85.23 90.32 88.53 93.34 

  

Validation Loss 

Raw Segmented 

Res-

Net18 

Res-

Net50 

Res-

Net18 

Res-

Net50 

Linear Evaluation 0.38 0.28 0.27 0.19 

Supervised Learning 0.39 0.21 0.28 0.21 

 

Table 1. Validation accuracy and loss comparison between 

linear evaluation and supervised learning (with ResNet18 

and ResNet50 architectures) on raw and segmented images. 

 

 The linear evaluation results (Table1) further showed that 

the texture-based superpixels helped in learning the distor-

tion-invariant features better than the raw images. It was ob-

served that the representations learned using the deeper Res-

Net50 architecture led to ~3% higher classification accuracy 

(93.539%) than ResNet18, and the validation loss was also 

greatly reduced (0.190). Additionally, SSL outcomes were 

found comparable to the supervised strategy. The validation 

accuracy and loss curves from supervised learning using 

ResNet50 on raw and segmented data is plotted in Fig.5. In 

Table1, the outcomes of transfer learning have also been 

shown, using the same ResNet18 and ResNet50 networks 

initialized with Imagenet weights. However, in this case the 

learning rate was 0.0001. 

 Throughout the analysis i.e., across the 4 cases, learning 

rate was maintained at 0.1. Given that, most of the image 

classes had high intra-class variability, as well as there were 

multiple instances of non-uniform illumination conditions 

(since the images were collected from real agricultural 

fields), multi-cropping with a wide range of augmentation 

parameters were selected before the runs. Each image was 

subjected to multiple crops i.e., 1, 1 and 6 of sizes 128, 128 

and 64, followed by augmentation with brightness, color jit-

ter, contrast, gaussian blur and hue transformations with 

probabilities, (0.4,0.4,0.4), (0.8,0.8,0.8), (0.4,0.4,0.4), 

(0.1,0.2,0.3) and (0.2,0.2,0.2), respectively. The multi-crop-

ping feature of BYOL evidently helped in augmentation-in-

variant learning of the representations of each insect. In all 

the cases, stochastic gradient descent (sgd) optimizer was 

used, and the models were trained with a batch size of 64 

and ReLU and softmax activations in the convolutional and 

dense layers, respectively. 

Conclusion 

This preliminary study on a dataset with real-world 9549 in-

sect pest images of 12 insect classes, shows the potential of 

SSL in correctly identifying insect classes with up to 94% 

accuracy. In most cases, the results were either comparable 

or better than supervised learning. Thus, it could be deduced 

that the learned representations could be effectively used for 

further complex downstream tasks like object detection and 

extended to larger datasets with greater heterogeneity in the 

images. The significance of entropy-based image subset se-

lection in learning distortion-invariant features has also been 

shown, which possibly achieved better performance by re-

ducing intra-class variability. This is yet to be ascertained in 

future work by examining across the representations learned 

from various other SSL algorithms for different downstream 

tasks on plant stress phenotyping. Real-time application of 

such insect pests detection framework could not only help 

mitigation but also precise pesticide applications, thereby 

ensuring crop and food safety.  

Figure 5. Validation and loss curves from supervised learn-

ing using ResNet50 on (a)segmented and (b)raw images. 
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