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ABSTRACT

Motivated by recent empirical success, we examine how neural network-based
ansatz classes can break the curse of dimensionality for high-dimensional, non-
linear elliptic partial differential equations (PDEs) with variational structure. The
high-dimensionality of the PDEs can either be induced through a high-dimensional
physical domain or a high-dimensional parameter space. The latter include paramet-
ric right-hand sides, parametric domains, and material constants. Our main result
shows that any scheme that computes neural network based W 1,p-approximations,
leverages the extraordinary approximation capabilities of neural networks and, thus,
is able to beat the curse of dimensionality if the ground truth solution is smooth
or possesses Barron regularity. Popular examples of W 1,p-convergent schemes
include, e.g., the Deep Ritz Method and physics-informed neural networks. We
present numerical experiments supporting our theoretical findings.

1 INTRODUCTION

High-dimensional partial differential equations (PDEs) arise naturally in applications with
either a high-dimensional domain, a high-dimensional parameter space, or possibly with both. The
former includes the Schrödinger equation in quantum physics, the Black–Scholes equation in finance,
and the Hamilton–Jacobi–Bellman equation in control theory, we refer to Weinan et al. (2021);
Bellman (1954). On the other hand, examples of problems with high-dimensional parameter space
are ubiquitous in engineering applications, for instance, in varying material properties, right-hand
sides or even in the form of varying computational domains, as discussed in Hennigh et al. (2021);
Ohlberger & Rave (2016).

For problems with a high-dimensional physical domain, classical mesh-based approximation
schemes face the curse of dimensionality, meaning that the computational cost increases exponentially
with the dimension of the problem. In the case of parametric problems, one is typically interested in
querying the PDE solution for many different parameter instances, possibly with low inference time.
To this end, classical methods need to repeatedly solve the equations for every required parameter
instance, a potentially prohibitively expensive or slow computational task, see Biegler et al. (2007).
Even assuming additional, favorable structure of the solution of a high-dimensional PDE – may it be
a latent low-dimensionality of the solution or a high degree of smoothness – it remains a challenge
for classical methods to approximate the solution with an acceptable accuracy, especially in situations
of non-linear solution manifolds as discussed in Ohlberger & Rave (2016); Lee & Carlberg (2020).

Artificial neural networks have shown great potential in the approximation of high-dimensional
functions, among those computer vision, classification and natural language processing tasks and are
known to possess extraordinary approximation capabilities with the possibility to achieve dimension-
independent approximation rates for certain function classes, see Ma et al. (2022); Barron (1993);
Yarotsky (2017); Gühring & Raslan (2021); Gühring et al. (2020). Therefore, investigating artificial
neural networks as ansatz classes for the solution of PDEs or PDE solution operators has recently
gained increased interest for high-dimensional and parametric problems. We refer to Kutyniok et al.
(2022); Weinan & Wojtowytsch (2022); Jentzen et al. (2021); Chen et al. (2021) for theoretical studies.
Successful empirical results of neural network-based applications to PDEs posed in high-dimensional
spaces include Hermann et al. (2020); Yu & E (2018); Han et al. (2018); Sirignano & Spiliopoulos
(2018). For the parametric setting, we direct the reader to Li et al. (2021); Khoo et al. (2021); Lee &
Carlberg (2020); Geist et al. (2021).

1



Under review as a conference paper at ICLR 2023

Of the aforementioned contributions, the theoretical works either focus on approximation theo-
retic results or consider linear problems without parametric dependencies. We discuss the relation to
our contribution in detail in Section 1.1. The approximation theoretic results guarantee the existence
of a neural network with desirable approximation rates but provide no practical way to compute the
neural network. For non-linear, parametric PDEs with p-structure, our results deliver the necessary
PDE analysis – in a setting suitable for neural network ansatz functions – to alleviate this problem.
Instead of explicitly constructing a neural network, we show that it suffices to find a neural network
approximation that is close “in energy” to the ground truth solution. This makes a significant dif-
ference: Energy approximations can be found by using the variational energy as a loss function or
more generally by any W 1,p-convergent approximation scheme – a natural property of a reasonable
approximation algorithm.

To summarize, our main contributions are the following:

• We show that every energy convergent approximation scheme for the p-Dirichlet energy utilizing
neural network ansatz functions can leverage the extraordinary approximation capabilities of
neural networks. Further, we explain which assumptions on the ground truth solution allow neural
networks to beat the curse of dimensionality. We extend these results to parametric problems,
where the neural network approximates simultaneously in the physical and the parameter space.
Our contributions are the first quantitative error estimates for parametric and non-linear elliptic
PDEs for neural network approximation schemes.

• From a mathematical point of view, the analysis of non-linear ansatz classes is novel in the case of
the p-Laplacian. Existing literature exclusively exploits strategies based on optimality conditions
(Galerkin orthogonality) only available for linear ansatz classes, hence, excludes neural networks.
Further, to the best of the author’s knowledge, error estimates for parametric problems have not
been considered in the existing literature.

1.1 MAIN RESULT AND RELATED WORK

For clarity, we present our main result for the case of a parametric right-hand side and with
homogeneous Neumann boundary conditions. However, different boundary conditions and parametric
dependencies are covered by our analysis. We explain this in the Appendix and refer to Section C.

Consider a physical domain Ω ⊆ RdΩ , dΩ ∈ N, and a parameter space P ⊆ RdP , dP ∈ N.
Further, let p ∈ (1,∞) be fixed and denote by (f(τ , ·))τ∈P a parametric family of right-hand sides.
We study the non-linear p-Laplace problem as a prototypical, non-linear elliptic PDE. More precisely,
we want to find u∗ : P × Ω → R satisfying

−div
(
|∇xu

∗(τ , x)|p−2∇xu
∗(τ , x)

)
= f(τ , x) for a.e. (τ , x)⊤ ∈ P × Ω , (1)

subjected to – for simplicity – homogeneous Neumann boundary conditions. The case p = 2 retrieves
the classical Poisson equation. In this example, the parametric dependencies are induced through
the right-hand side and both Ω and P may be high-dimensional. Then, we seek a neural network uθ
with input (τ , x)⊤ ∈ RdP ×RdΩ that approximates the solution u∗ : P ×Ω → R simultaneously in
the physical domain Ω and the parameter space P . Essential for the statement of our result is the
reformulation of equation equation 1 as a minimization problem. We find u∗ ∈ Lp(P,W 1,p(Ω)) as
a minimizer of E : Lp(P,W 1,p(Ω)) → R, for every v ∈ Lp(P,W 1,p(Ω)) defined by

E(v) :=
ˆ
P

[
1

p

ˆ
Ω

|∇xv(τ , x)|p dx−
ˆ
Ω

f(τ , x)v(τ , x) dx

]
dτ . (2)

Then, our main result is the following.

Theorem 1. Let Ω ⊆ RdΩ , dΩ ∈ N, be a bounded Lipschitz domain and P ⊆ RdP , dP ∈ N, an
open set. Moreover, let f ∈ Lp

′
(P × Ω), p ∈ (1,∞), be such that

´
Ω
f(τ , ·) dx = 0 for a.e. τ ∈ P .

Denote by u∗ ∈ Lp(P,W 1,p(Ω)), a weak solution of the parametric p-Laplace problem with
homogeneous Neumann boundary conditions, i.e.,

−div(|∇xu
∗|p−2∇xu

∗) = f in P × Ω ,

∂nu
∗ = 0 on P × ∂Ω .

(3)
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Let M ⊂W 1,p(P × Ω) be any subset that contains the zero function1 and let v ∈M be arbitrary.
Setting

M̃ :=
{
u ∈M | ∥∇xu∥Lp(P×Ω)d ≤ 2∥∇xu

∗∥Lp(P×Ω)d
}
,

it holds

∥∇xv −∇xu
∗∥Lp(P×Ω)d ≾

δ(v)1/p + inf ṽ∈M̃∥∇xṽ −∇xu
∗∥

2
p

Lp(P×Ω)d
if p ∈ [2,∞)

δ(v)1/2 + inf ṽ∈M̃∥∇xṽ −∇xu
∗∥

p
2

Lp(P×Ω)d
if p ∈ (1, 2)

,

where δ(v) := E(v)− inf ṽ∈M̃ E(ṽ) is the optimization error and the implicit constants depend on p,
Ω and ∥f∥Lp′ (P×Ω) only.

We stress again that the choice of Neumann boundary conditions is for simplicity of presentation.
A similar result holds for Dirichlet boundary conditions employing an appropriate penalty scheme.
The fact that f(τ , ·) for a.e. τ ∈ P is mean-value-free serves to guarantee the well-posedness in the
Neumann boundary value case. The main reason to pass from M to M̃ is solely of technical nature,
rooted in Lemma 7 and not of relevance for the interpretation of the result.

Leveraging the Power of Approximation-Theoretical Results. As we discuss below, suitable
approximation theorems allow to estimate the infimum in Theorem 1 to deduce error decay rates.
Note that there is no further requirement on the approximating function v ∈M than that it is a “good”
quasi-optimizer of E :M → R, i.e., that δ(v) is sufficiently small. Thus, any algorithm that produces
approximate solutions that converge in energy is able to fully leverage the approximation capabilities
of neural network ansatz classes – up to the exponent 2/p or p/2, which is due to the non-linearity.
Furthermore, energy convergence is equivalent to convergence in the W 1,p-semi-norm2 We stress the
drastic difference of our contribution to mere approximation theoretical results that only guarantee
the existence of a well-approximating network, yet don’t unveil how such an approximation should
be found. In this sense, our contribution is orthogonal to approximation theoretical results as it can
be combined with these to extend them.

Finally note that, analyzing the effect of a solution scheme on the achievable value of δ(v) is a difficult
problem, typically connected to a non-convex optimization task, that we do not study in this article.

Using Smoothness to Beat the Curse of Dimensionality. We can utilize quantitative universal
approximation results to estimate the infimum in Theorem 1. In some situations, this allows us to beat
the curse of dimensionality. Assume that the solution u∗ to equation 3 is a member of W k,p(P × Ω)
for some k ∈ N, k > 1. Then, for every n ∈ N, we may use Theorem 4.9 in Gühring & Raslan (2021)
to guarantee the existence of a fully connected neural network architecture with ReLU2-activation3

with parameter space Θn of dimension O(n) such that, setting M = FΘn
, where FΘn

denotes the
realization set of the ansatz class, it holds

inf
ψ∈Θn

∥∇xuψ −∇xu
∗∥Lp(P×Ω)d ≾ ∥u∗∥

2
p

Wk,p(P×Ω)

(
1

n

) 2
p

k−1
dΩ+dP

for the case p ≥ 2 and with 2
p replaced by p

2 in the case p < 2. Hence, for arbitrary uθ ∈M , θ ∈ Θn,
we get

∥∇xuθ −∇xu
∗∥Lp(P×Ω)d ≾

{
δn(uθ)

1/p + ∥u∗∥Wk,p(P×Ω)

(
1
n

) 2
p ·

k−1
dΩ+dP if p ∈ [2,∞)

δn(uθ)
1/2 + ∥u∗∥Wk,p(P×Ω)

(
1
n

) p
2 ·

k−1
dΩ+dP if p ∈ (1, 2)

,

where δn(uθ) := E(uθ)− infψ∈Θn
E(uψ). This shows – given sufficient smoothness of u∗ ∈ M

– that the error of the neural network approximation does not decay exponentially slow in the
dimension n ∈ N of the parameter space Θn. More precisely, the result requires dimension-dependent
smoothness with the smoothness parameter k ∈ N, k > 1, scaling like k ∼ dΩ + dP . However, the
assumption of smoothness is very natural in the context of (linear) elliptic PDEs and holds also in
the parametric case, see Lemma B which gives an easily verifiable criterion when the smoothness
assumption holds.

1The subsets we have in mind consist of neural network functions of a given architecture and, thus, v ∈ M
is a neural network. But any choice of M is admissible.

2To see this, we refer to equation 7 in Proposition 2.
3This result holds also for other activation functions, we refer to the original work.
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Employing Barron Regularity to Beat the Curse of Dimensionality. A different situation where
the curse of dimensionality can be circumvented is when u∗ ∈M is a member of the Barron space B,
or can be “well-approximated” by Barron functions. We refer to Barron (1993); Ma et al. (2022) for
a definition of the Barron space. In essence, members of B can be approximated with respect to the
H1-norm by shallow neural networks with a dimension-independent rate of n−1/2, where n ∈ N is
the width of the shallow network. Hence, setting p = 2 and assuming u∗ ∈ B, we can estimate for
an arbitrary shallow neural network uθ ∈M

∥∇xuθ −∇xu
∗∥L2(P×Ω)d ≾ δ

1
2
n +

(
1

n

) 1
2

∥u∗∥B .

The assumption u∗ ∈ B is too restrictive in general, cf. the discussion in Weinan & Wojtowytsch
(2022). However, assuming that the data f ∈ L2(P × Ω) (and possibly coefficients) are of Barron
regularity, it was recently established that the solution u∗ ∈ M can be approximated by Barron
functions with Barron norm growing only polynomially in the dimension, yielding the rate n−1/2

for shallow networks of width (dn)C log(n), where C is a constant, we refer to Chen et al. (2021).
Note that the result in Chen et al. (2021) so far does only hold for linear elliptic PDEs and special
activation functions, and does not include parametric dependencies. Our result, then, shows that this
error decay rate is preserved for any energy-convergent approximation scheme and is, in fact, not a
mere approximation result.

Related Work For PDEs that admit a stochastic representation, several situation are known in
which the curse of dimensionality can be circumvented, Jentzen et al. (2021); Han et al. (2018);
Weinan et al. (2021). These results are of approximation theoretic nature and do not provide a way
to construct the approximating network. Further, this approach crucially relies on the stochastic
representation of the PDE’s solution and, thus, is not generally applicable.

The works Xu (2020); Jiao et al. (2021); Duan et al. (2021); Müller & Zeinhofer (2022) are
similar to our contribution since they consider elliptic equations and provide a Céa type Lemma and,
consequently, are not only approximation theoretic results. However, they neither analyze non-linear
nor parametric equations.

The contributions in Chen et al. (2021); Weinan & Wojtowytsch (2022) mark the beginning of a
regularity theory for elliptic equations with respect to Barron spaces. These results are complementary
to our analysis in the sense that they can be combined with our contribution. For instance, the main
result of Chen et al. (2021) states that a solution to a linear elliptic PDE with Barron data is “almost”
of Barron regularity and can be approximated with a polynomial rate with respect to the dimension.
Our analysis, then, guarantees that every neural network approximation that is close in energy to the
ground truth solution realizes this rate.

Notation For a Banach space X with norm ∥ · ∥X : X → R≥0, we denote by X∗, its (topological)
dual space equipped with the norm ∥·∥X∗ : X∗ → R≥0, defined by ∥x∗∥X∗ := sup∥x∥X≤1 ⟨x∗, x⟩X
for all x∗ ∈ X∗. Here, ⟨·, ·⟩X : X∗ ×X → R denotes the duality pairing, defined by ⟨x∗, x⟩X :=
x∗(x) for all x∗ ∈ X∗ and x ∈ X .

For p ∈ [1,∞], we denote by Lp(Ω), the space of (Lebesge-)measurable functions u : Ω → R that are
integrable in p-th power, i.e.,

´
Ω
|u|p dx <∞ if p ∈ [1,∞) and ess supx∈Ω|u(x)| <∞ if p = ∞.

Endowed with the norm ∥u∥Lp(Ω) :=(
´
Ω
|u|p dx)

1
p if p∈ [1,∞) and ∥u∥L∞(Ω) :=ess supx∈Ω|u(x)|

if p=∞, the space Lp(Ω) forms a Banach space, which is separable if p ∈ [1,∞) and reflexive if
p ∈ (1,∞), cf. (Adams & Fournier, 2003, Chapter 2).

For k ∈ N and p ∈ [1,∞], we denote byW k,p(Ω), the space of functions inLp(Ω) with distributional
derivatives up to k-th order in Lp(Ω). Endowed with the norm ∥u∥Wk,p(Ω) :=

∑k
l=0 ∥Dlu∥Lp(Ω), the

space W k,p(Ω) forms a Banach space, which is separable if p ∈ [1,∞) and reflexive if p ∈ (1,∞),
cf. (Adams & Fournier, 2003, Chapter 3). For k ∈ N and p ∈ [1,∞], we denote by W k,p

0 (Ω), the
closure of all compactly supported, smooth functions C∞

c (Ω) in W k,p(Ω).

We always denote parameter-dependent functions by boldface letters, e.g.,u,v,w, . . . , and parameter-
independent functions by non-boldface letters, e.g., u, v, w, . . . . In the same spirit, we denote by
E : Lp(P;W 1,p(Ω)) → R, the parametric p-Dirichlet energy equation 2 and by E :W 1,p(Ω) → R,
the non-parametric p-Dirichlet energy (c.f. equation 6).

4



Under review as a conference paper at ICLR 2023

2 PROOF OF THE MAIN RESULT

In this section, we provide the proof of Theorem 1. For clarity, we first consider the non-para-
metric case and extend the results afterwards to include parametric dependencies.

2.1 PROOF OF THE NON-PARAMETRIC SETTING

The main step in the proof of the non-parametric version of Theorem 1 is to show that conver-
gence in energy, i.e., E(un) → E(u∗) (n→ ∞) (cf. equation 6) for a neural network approximation
un ∈M of the ground truth solution u∗ ∈M , is equivalent to the convergence of un → u∗ (n→ ∞)
in the Sobolev topology. To establish this in a quantitative fashion, we need an optimal measure of the
convexity of the p-Dirichlet energy (cf. equation 6). This is given through the bi-variate, symmetric
mapping ρ2F :W 1,p(Ω)×W 1,p(Ω) → R, defined by

ρ2F (v, w) := ∥F (∇v)− F (∇w)∥2L2(Ω)d for all v, w ∈W 1,p(Ω) , (4)

where F : Rd → Rd is defined by

F (a) := |a|
p−2
2 a for all a ∈ Rd . (5)

The map ρ2F :W 1,p(Ω)×W 1,p(Ω) → R is the optimal distance measure for the p-Dirichlet problem.
This is embodied in the two-sided estimate proved in the next proposition, see equation 7, that relates
convergence in energy to convergence in terms of ρ2F :W 1,p(Ω)×W 1,p(Ω) → R. In the literature,
ρ2F :W 1,p(Ω)×W 1,p(Ω) → R is usually referred to as the Natural Distance, cf. Diening & Růžička
(2007); Diening et al. (2007); Diening & Ettwein (2008); Kaltenbach & Růžička (2022).

Next, we establish a Céa type Lemma in terms of ρ2F :W 1,p(Ω)×W 1,p(Ω) → R, see Lemma 5.
This decomposes the distance of un to u∗ into an optimization error and an approximation theoretic
contribution. Finally, we study the relation of ρ2F :W 1,p(Ω)×W 1,p(Ω) → R to the standard Sobolev
topology in Lemma 7.

From a technical perspective, the central estimate in equation 7 is proved via a Taylor expansion
of the p-Dirichlet energy around its minimizer u∗ ∈W 1,p(Ω). However, care needs to be taken since
E : W 1,p(Ω) → R is not twice continuously differentiable and a subtle regularization procedure
needs to be employed to rigorously carry out the expansion.
Proposition 2. Let Ω ⊆ Rd, d ∈ N, be a bounded domain, f ∈ W 1,p(Ω)∗, p ∈ (1,∞), and let
U ⊆ W 1,p(Ω) be a closed subspace such that Poincaré’s inequality is valid, i.e., there exists a
constant CP > 0 such that for every v ∈ U , it holds

∥v∥Lp(Ω) ≤ CP ∥∇v∥Lp(Ω)d .

Moreover, define E : U → R for every v ∈ U by

E(v) :=
1

p

ˆ
Ω

|∇v|p dx− ⟨f, v⟩W 1,p(Ω) . (6)

Then, the following statements apply:

(i) There exists a unique minimizer u∗ ∈ U for E : U → R.

(ii) There exists a constant c(p) > 0, depending only on p ∈ (1,∞) and not depending on d ∈ N,
such that for every v ∈ U , it holds

c(p)−1 ρ2F (v, u
∗) ≤ E(v)− E(u∗) ≤ c(p) ρ2F (v, u

∗) . (7)

Moreover, we can choose c(p) > 0 such that (p 7→ c(p)) ∈ C0(1,∞).

Proof. The proof is provided in the Appendix, see A.

Remark 3 (The Case p = 2). In the case p = 2, we retrieve the well-known Dirichlet energy. Further,
equality holds in equation 7 with constant c(p) = 1

2 . More precisely, for every v ∈ U , we have that

E(v)− E(u∗) =
1

2
∥∇v −∇u∗∥2L2(Ω)d = ρ2F (v, u

∗) .

This can be shown by a straight-forward Taylor expansion of E : U → R around u∗ ∈ U , cf. Müller
& Zeinhofer (2022).
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Remark 4 (The Role of the Space U ). The space U encodes boundary conditions, for example,
U =W 1,p

0 (Ω) is an admissible choice. However, when choosing U =W 1,p(Ω) and requiring that
the right-hand side f ∈W 1,p(Ω)∗ vanishes on constant functions, Proposition 2 stays valid with the
exemption of the uniqueness of the minimizer u∗ ∈ U . In this case, u∗ ∈ U is only determined up
to additive constants. This can be seen by considering the energy E on the quotient space W 1,p(Ω)
modulo the constant functions. On this space, a Poincaré inequality is available.

An immediate consequence of Theorem 2 is the following Céa type lemma.
Lemma 5 (Céa Lemma). Let the assumptions of Proposition 2 be satisfied. Moreover, let M ⊆ U be
an arbitrary subset. Then, there exists a constant c(p) > 0, depending only on p ∈ (1,∞) and not
depending on d ∈ N, such that for every v ∈M , it holds

ρ2F (v, u
∗) ≤ c(p)

(
δ(v) + inf

ṽ∈M
ρ2F (ṽ, u

∗)
)
,

where δ(v) := E(v) − inf ṽ∈M E(ṽ) is the optimization error. Moreover, we can choose c(p) > 0
such that (p 7→ c(p)) ∈ C0(1,∞).

Proof of Lemma 5. Let v ∈M be arbitrary. Then, by referring to Theorem 2, we find that

c(p)−1ρ2F (v, u
∗) ≤ E(v)− inf

ṽ∈M
E(ṽ) + inf

ṽ∈M
E(ṽ)− E(u∗) ≤ δ(v) + c(p) inf

ṽ∈M
ρ2F (ṽ, u) . □

Remark 6. Note that we do not need to impose any structure on the set M , in particular, it does not
need to possess a linear structure. This, in contrast to classical formulations of Céa’s Lemma, allows
us to choose M as an ansatz class consisting of neural networks.

In order to arrive at error decay rates in Sobolev topology, we need the relation of ρ2F to the
W 1,p(Ω)-semi-norm.
Lemma 7 (Relation Between Natural Distance and W 1,p-Semi-Norm). Let Ω ⊆ Rd, d ∈ N, be
a bounded domain and p ∈ (1,∞). Then, there exists a constant c(p) > 0, depending only on
p ∈ (1,∞) and not depending on d ∈ N, such that the following relations apply:

(i) If p ∈ [2,∞), then for every u, v ∈W 1,p(Ω), it holds

c(p)−1 ∥∇u−∇v∥p
Lp(Ω)d

≤ ρ2F (u, v)

≤ c(p)
(
∥∇u∥Lp(Ω)d + ∥∇v∥Lp(Ω)d

)p−2∥∇u−∇v∥2Lp(Ω)d .

(ii) If p ∈ (1, 2), then for every v, w ∈W 1,p(Ω), it holds

c(p)−1 ρ2F (u, v) ≤ ∥∇u−∇v∥p
Lp(Ω)d

≤ c(p)
(
∥∇u∥Lp(Ω)d + ∥∇v∥Lp(Ω)d

) p(2−p)
2 ρ2F (u, v)

p
2 .

Moreover, we can choose c(p) > 0 such that (p 7→ c(p)) ∈ C0(1,∞).

Proof. The proof is provided in the Appendix, see A.

We are now able to prove the main result in a setting excluding parametric dependencies.
Theorem 8. Let f ∈W 1,p(Ω)∗, p ∈ (1,∞), be such that ⟨f, c⟩W 1,p(Ω) = 0 for all c ∈ R. Moreover,
let u∗ ∈ W 1,p(Ω) be a weak solution of the p-Laplace problem with homogeneous Neumann
boundary conditions, i.e., u∗ ∈ W 1,p(Ω) minimizes E : W 1,p(Ω) → R, for every v ∈ W 1,p(Ω)
defined by

E(v) :=
1

p

ˆ
Ω

|∇v|p dx− ⟨f, v⟩W 1,p(Ω) . (8)

Let M ⊂ W 1,p(Ω) be any subset that contains the zero function and let v ∈ M be an arbitrary.
Setting

M̃ :=
{
u ∈M | ∥∇u∥Lp(Ω)d ≤ 2∥∇u∗∥Lp(Ω)d

}
,
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it holds

∥∇v −∇u∗∥Lp(Ω)d ≾

δ(v)1/p + inf ṽ∈M̃∥∇ṽ −∇u∗∥
2
p

Lp(Ω)d
if p ∈ [2,∞)

δ(v)1/2 + inf ṽ∈M̃∥∇ṽ −∇u∗∥
p
2

Lp(Ω)d
if p ∈ (1, 2)

,

where δ(v) := E(v)− inf ṽ∈M̃ E(ṽ) is the optimization error and the implicit constant depends on p,
Ω and ∥f∥W 1,p(Ω)∗ only.

Proof. ad p ∈ [2,∞). If p ∈ [2,∞), then we estimate, using the relation of the natural distances
to Sobolev semi-norms as described in Lemma 7, Céa’s Lemma 5, and the coercivity estimate in
Lemma 13 to obtain

∥∇v−∇u∗∥p
Lp(Ω)d

≤ c(p) ρ2F (v, u
∗)

≤ c(p)
(
δ(v)+inf

ṽ
ρ2F (ṽ, u

∗)
)

≤ c(p)

(
δ(v)+ inf

ṽ∈M̃

[(
∥∇ṽ∥Lp(Ω)d +∥∇u∗∥Lp(Ω)d

)p−2 ∥∇ṽ−∇u∗∥2Lp(Ω)d

])
≤ c(p)

(
δ(v)+3p−2 ∥∇u∗∥p−2

Lp(Ω)d
inf
ṽ∈M̃

∥∇ṽ−∇u∗∥2Lp(Ω)d

)
≤ c(p) δ(v)+3p−2 c(p,Ω) ∥f∥

p−2
p−1

W 1,p(Ω)∗ inf
ṽ∈M̃

∥∇ṽ−∇u∗∥2Lp(Ω)d .

ad p ∈ (1, 2]. If p ∈ (1, 2], then, again, using the relation of the natural distance to Sobolev semi-
norms (cf. Lemma 7) and Céa’s Lemma 5, we obtain

∥∇v−∇u∗∥Lp(Ω)d ≤ c(p)
(
∥∇v∥Lp(Ω)d +∥∇u∗∥Lp(Ω)d

) 2−p
2

(
δ(v)

1
2 + inf

ṽ∈M
∥∇ṽ−∇u∗∥

p
2

Lp(Ω)d

)
.

Thus, it remains to estimate the first factor in the equation above. We use the coercivity estimate of
Lemma 13 to obtain

∥∇v∥Lp(Ω)d ≤ c(p,Ω)
(
E(v) + ∥f∥p

′

W 1,p(Ω)∗

) 1
p ≤ c(p,Ω) ∥f∥

1
p−1

W 1,p(Ω)∗ ,

where we used that 0 ∈M to be able to estimateE(v) ≤ δ(v). As a result, again applying Lemma 13,
it follows that(

∥∇v∥Lp(Ω)d + ∥∇u∗∥Lp(Ω)d
) 2−p

2 ≤ c(p,Ω)

(
δ(v)

2−p
2p + ∥f∥

2−p
2p−2

W 1,p(Ω)∗

)
= c(p,Ω)

(
δ(v)

1
2 + ∥f∥

2−p
2p−2

W 1,p(Ω)∗

)
.

Assuming δ(v) ≤ 1, it holds δ(v)
1
2 + δ(v)

1
p ≤ 2δ(v)

1
2 , which concludes the proof.

2.2 PROOF OF THE PARAMETRIC SETTING

As detailed in the introduction, the energy formulation we use for a p-Laplace problem with
a parametric right-hand side f ∈ Lp

′
(P × Ω) and parameter space P ⊆ RdP , dP ∈ N, for every

v ∈ Lp(P,W 1,p(Ω)), is defined by

E(v) :=
ˆ
P

[
1

p

ˆ
Ω

|∇xv(τ , ·)|p dx −
ˆ
Ω

f(τ , ·)v(τ , ·) dx
]
dτ .

Before proving the error decay rates of Theorem 1, we need to identify the correct function space U
for the definition of E . In the case of a parametric right-hand side, this is straight-forward and the
space U is a standard Bochner space, see Proposition 9. For varying domains or a varying exponent
as a parametric dependency, the corresponding function spaces are intricate, we refer to Appendix C.

Next, we need to guarantee that the minimizer of E indeed solves the parametric problem. This
is carried out in Proposition 9 and is encoded in the fact that u∗(τ , ·) ∈ W 1,p(Ω) for a.e. τ ∈ P
minimizes Eτ in the notation of this Proposition.

7
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Proceeding to derive error estimates, we want to mimic the strategy of the non-parametric case.
This crucially relies on the fact that the constants in equation 7 do not depend on the right-hand
side. As a consequence, we can prove a two-sided estimate as in Proposition 9 with an analogue of
ρ2F :W 1,p(Ω)×W 1,p(Ω) → R given by ρ2F : Lp(P,W 1,p(Ω))×Lp(P,W 1,p(Ω)) → R, for every
v,w ∈ Lp(P,W 1,p(Ω)) defined by

ρ2F (v,w) :=

ˆ
P
ρ2F (v(τ , ·),u(τ , ·)) dτ .

Finally, we can proceed as in the non-parametric case and derive a Céa Lemma.

Proposition 9 (Variable Right-Hand Sides). Let Ω ⊆ RdΩ , dΩ ∈ N, and P ⊆ RdP , dP ∈ N, be
bounded domains and p ∈ (1,∞). Assume U ⊂W 1,p(Ω) is a closed subset that satisfies a Poincaré
inequality, as in Proposition 2. Moreover, we define the Bochner–Lebesgue space

U := Lp(P, U) .

For fixed f ∈ Lp
′
(P × Ω), we define the variable right-hand side p-Dirichlet energy E : U → R for

every v ∈ U by

E(v) :=
ˆ
P

[
1

p

ˆ
Ω

|∇xv(τ , ·)|p dx −
ˆ
Ω

f(τ , ·)v(τ , ·) dx
]
dτ ,

where the gradient ∇x for a.e. τ ∈ P is to be understood with respect to the variable x ∈ Ω only.
Then, the following statements apply:

(i) There exists a unique (parametric) minimizer u∗ ∈ U of E : U → R.

(ii) For a.e. τ ∈ P , the function u∗(τ , ·) ∈ U is the unique minimizer of Eτ : U → R, for
every v ∈ U defined by

Eτ (v) :=
1

p

ˆ
Ω

|∇v|p dx−
ˆ
Ω

f(τ , ·) v dx .

(iii) Furthermore, for every v ∈ U , it holds

c(p)−1ρ2F (v,u∗) ≤ E(v)− E(u∗) ≤ c(p) ρ2F (v,u∗) , (9)

where c(p) > 0 is the constant from Proposition 7 (ii).

Proof. We prove this for more general parametric dependencies in the Appendix, see C.

Remark 10. Requiring f(τ , ·) to be mean-value-free for a.e. τ ∈ P , we may, again, drop the
assumption of a Poincaré inequality on the space U , as we explained in Remark 4. In this case, we
cannot expect the minimizer to be unique.

The estimate 9 is the key to establish a Céa type Lemma for the energy E : U → R. In the
situation of Proposition 9, we can accomplish this as in Lemma 5. More precisely, for any fixed
v ∈M ⊂ U , it holds

ρ2F (v,u∗) ≤ c(p)

(
δ(v) + inf

ṽ∈M
ρ2F (ṽ,u∗)

)
, (10)

where δ(v) := E(v)− inf ṽ∈M E(ṽ) the parametric optimization error. With all the previous work,
the Main Theorem is can now be proved in a similar way as in the case without parameters. We
postpone the proof to the Appendix, see A.2.

3 NUMERICAL EXAMPLES

We give two examples, one with a high dimensional physical domain and one with a high-
dimensional parametric right-hand side. Our goal is to investigate the error in dependence on the
dimension. To find good neural network approximations, we employ a Deep Ritz Method for training.

8
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Example 1 As a PDE posed on a high-dimensional physical domain, we consider

−∆u+ u = f in Ω ,

with homogeneous Neumann boundary conditions, and Ω = (0, 1)dΩ , dΩ ∈ N. As manufactured
solution, we use u ∈W 1,2(Ω), for every x = (x1, . . . , xdΩ)

⊤ ∈ Ω defined by

u(x) := c ·
dΩ∑
i=1

cos(πxi) ,

where c > 0 is chosen such that u has uniform L2(Ω) norm. Then, the right-hand side f ∈ L2(Ω),
for every x ∈ Ω is given via

f(x) = (π2 + 1)u(x) .

Example 2 As a problem with a high-dimensional parametric right-hand side, we consider

−u′′ + u = f in P × Ω ,

with homogeneous Neumann boundary conditions, parameter space P = [−1, 1]dP , dP ∈ N,
and physical domain Ω = (0, 1). As manufactured solution and right-hand side, we use u ∈
L2(P,W 1,2(Ω)) and f ∈ L2(P × Ω), for every (τ , x)⊤ = (τ1, . . . , τdP , x)

⊤ ∈ P × Ω defined by

u(τ , x) :=

dP−1∑
k=0

τk
k2π2 + 1

cos(kπx) and f(τ , x) =

dP−1∑
k=0

τk cos(kπx) .

Neural Network Architecture and Training We employ fully-connected ReLU2-networks with
four hidden layers and varying width as well as a Deep Ritz energy formulation as a loss function. To
resolve the minimization problem, we employ the Adam optimizer with learning rate set to 0.001.
The appearing integrals are discretized using Monte–Carlo approximations, where new random
points are drawn for every update in the gradient descent. The optimization is run until no further
improvement is seen in approximating the ground truth, which in our examples happens typically in
around 10, 000 to 20, 000 iterations.
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Figure 1: The plot on the left shows the relative L2 errors obtained from Example 1 and the plot on
the right reports the errors for Example 2. Here, dashed lines represent relative H1 errors and solid
lines stand for relative L2 errors.

Discussion In Figure 1, we report the relative errors obtained for the two examples in dependence
on the total dimension d = dΩ + dP ∈ N of the parametric cylinder P × Ω ⊂ RdP × RdΩ . In both
examples, no exponential increase of the error is observable – at least for moderately high dimensions.
Although it is impossible for us to quantify how well the empirically found solutions resolve the
minimization, i.e., how large the quantity δ(uθ) in Theorem 1 is, the experiments still confirm the
promising behavior of neural networks for solving high-dimensional and parametric problems.
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Alex Kaltenbach and Michael Růžička. Variable exponent Bochner–Lebesgue spaces with symmetric
gradient structure. Journal of Mathematical Analysis and Applications, 503(2), 2021.
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A PROOFS

Here, we collect the proofs that were deferred to the Appendix.

A.1 PROOF OF PROPOSITION 2

In order to prove Proposition 2, we need some preparation. The first two lemmas analyze the
point-wise properties of the function F : Rd → Rd, for every a ∈ Rd defined by F (a) = |a|p−2a,
that induces the natural distance measure ρ2F :W 1,p(Ω)×W 1,p(Ω) → R, which is essential for the
error analysis of the p-Laplacian.
Lemma 11. Let p ∈ (1,∞) and d ∈ N. Then, there exists a constant c(p) > 0, depending only on
p ∈ (1,∞) and not depending on d ∈ N, such that the following statements apply:

(i) For every a, b ∈ Rd, it holds

c(p)−1 |F (a)− F (b)|2 ≤ (|a|p−2a− |b|p−2b) · (a− b) ≤ c(p) |F (a)− F (b)|2 .

(ii) For every a, b ∈ Rd, it holds

c(p)−1 |F (a)− F (b)|2 ≤ (|a|+ |b|)p−2|a− b|2 ≤ c(p) |F (a)− F (b)|2 .

Moreover, we can choose c(p) > 0 such that (p 7→ c(p)) ∈ C0(1,∞).

Proof. See (Diening et al., 2007, Appendix) or (Diening & Ettwein, 2008, Appendix). Furthermore,
carefully reviewing the proofs in (Diening et al., 2007, Appendix) reveals that the constants c(p)>0,
p∈(1,∞), in Lemma 11 depend continuously on p∈(1,∞).

Lemma 12. Let p ∈ (1,∞) and d ∈ N. Then, there exits a constant c(p) > 0, depending only on
p ∈ (1,∞) and not depending on d ∈ N, such that for every a, b ∈ Rd with |a|+|b| > 0, we have that

c(p)−1 |F (a)− F (b)|2 ≤
ˆ 1

0

D2ϕ(τa+ (1− τ)b) : (a− b)⊗ (a− b) (1− τ) dτ

≤ c(p) |F (a)− F (b)|2 ,

where ϕ ∈ C1(Rd)∩C2(Rd \ {0}), defined by ϕ(a) := 1
p |a|

p for all a ∈ Rd, denotes the p-Dirichlet
density. Moreover, we can choose c(p) > 0 such that (p 7→ c(p)) ∈ C0(1,∞).

Proof. We introduce the abbreviation η2 : Rd × Rd \ {(0, 0)⊤} → R≥0, for every a, b ∈ Rd with
|a|+ |b|> 0 defined by

η2(a, b) :=

ˆ 1

0

D2ϕ(τa+ (1− τ)b) : (a− b)⊗ (a− b) (1− τ) dτ .

Using D2ϕ(a) : b⊗ b ≥ min{1, p− 1}|a|p−2|b|2 for all a ∈ Rd \ {0}, b ∈ Rd (cf. (Růžička, 2004,
p. 73, ineq. (1.35))), for every a, b ∈ Rd with |a|+ |b| > 0, we obtain

η2(a, b) ≥ min{1, p− 1}
ˆ 1

0

|τa+ (1− τ)b|p−2|a− b|2 (1− τ) dτ . (11)
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With the help of Jensen’s inequality applied with respect to the measure dµ = (1 − τ)dτ , i.e., in
particular, we use that dµ([0, 1]) = 1

2 , for every a, b ∈ Rd with |a|+ |b| > 0, we observe that(
2

ˆ 1

0

|τa+ (1− τ)b|(1− τ) dτ
)p

≤
ˆ 1

0

|τa+ (1− τ)b|p(1− τ) dτ . (12)

Then, we continue in equation 11 by incorporating equation 12 and, thus, find that for every a, b∈Rd
with |a|+ |b|>0, it holds

η2(a, b) ≥ min{1, p− 1}
ˆ 1

0

|τa+ (1− τ)b|p (1− τ) dτ
|a− b|2

(|a|+ |b|)2

≥ min{1, p− 1}
(
2

ˆ 1

0

|τa+ (1− τ)b| (1− τ) dτ
)p |a− b|2

(|a|+ |b|)2
.

(13)

For every a, b ∈ Rd, it holds

2

ˆ 1

0

|τa+ (1− τ)b| (1− τ) dτ ≥ 1

6
(|a|+ |b|) , (14)

which is based on that for |a| > |b| and τ ∈ [ 23 , 1], it holds |τa+ (1− τ)b| ≥ 1
3 |a| >

1
6 (|a|+ |b|),

and for |b| ≥ |a| and τ ∈ [0, 13 ], it holds |τa+ (1− τ)b| ≥ 1
3 |b| ≥

1
6 (|a|+ |b|). Using equation 14 in

equation 13, for every a, b ∈ Rd with |a|+ |b| > 0, we deduce that

η2(a, b) ≥ min{1, p− 1} 1

6p
(|a|+ |b|)p−2 |a− b|2 .

Resorting to Lemma 11, we conclude the existence of a constant c(p) > 0, depending only on
p ∈ (1,∞), with (p 7→ c(p)) ∈ C0(1,∞), such that for every a, b ∈ Rd with |a|+ |b| > 0, it holds

η2(a, b) ≥ c(p)−1 |F (a)− F (b)|2 .
On the other hand, since also D2ϕ(a) : b ⊗ b ≤ max{1, p − 2}|a|p−2|b|2 for all a ∈ Rd \ {0},
b ∈ Rd, which, again, follows very similarly to (Růžička, 2004, p. 73, ineq. (1.35)), we find that

η2(a, b) ≤ max{1, p− 2}
ˆ 1

0

|τa+ (1− τ)b|p−2 (1− τ) dτ |a− b|2 . (15)

Since, appealing to (Diening et al., 2007, Lemma 6.1), there is a constant c(p) > 0, depending only on
p ∈ (1,∞), with (p 7→ c(p)) ∈ C0(1,∞), such that for every a, b ∈ Rd with |a|+ |b| > 0, it holdsˆ 1

0

|τa+ (1− τ)v|p−2 dτ ≤ c(p) (|a|+ |b|)p−2 ,

we deduce from equation 15 that η2(a, b) ≤ max{1, p−2}c(p)(|a|+ |b|)p−2|a−b|2 for all a, b ∈ Rd
with |a|+ |b| > 0, which, resorting again to Lemma 11, completes the proof of Lemma 12.

Proof of Proposition 2. ad (i). The p-Dirichlet energy E : U → R is proper, strictly convex, and
continuous, hence, weakly lower semi-continuous. In addition, the validity of Poincaré’s inequality
guarantees the coercivity of E : U → R, so that the direct method in the calculus of variations yields,
cf. Dacorogna (2007), the existence of a unique minimizer u∗ ∈ U of E : U → R.

ad (ii). We proceed similar to (Diening & Kreuzer, 2008, Lemma 16.). Again, we employ the
notation ϕ ∈ C1(Rd) ∩ C2(Rd \ {0}), defined by ϕ(a) := 1

p |a|
p for all a ∈ Rd, for the p-Dirichlet

density. Since Dϕ ∈ C0(Rd)d with |Dϕ(a)| = |a|p−1 for all a ∈ Rd, the p-Dirichlet energy is
continuously Fréchet differentiable with

⟨DE(u), v⟩U :=

ˆ
Ω

Dϕ(∇u) · ∇v dx− ⟨f, v⟩W 1,p(Ω) .

for all u, v ∈U . In particular, due to the minimality of u∗ ∈U , we have that DE(u∗) = 0 in U∗,
i.e., for every v∈U , it holds

⟨DE(u), v⟩U = 0 . (16)

However, E : U → R is not twice continuously Fréchet differentiable. Therefore, we consider reg-
ularizations (ϕε)ε>0 ⊆ C2(Rd), defined by ϕε(a) := 1

p (ε
2 + |a|2)

p
2 for every ε > 0 and a ∈ Rd,

having the following properties:
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(α) ϕε(a) → ϕ(a) (ε→ 0) for all a ∈ Rd and ϕε(a) ≤ 2
p
2 /p (|a|p + εp) for all a ∈ Rd and ε > 0,

(β) (Dϕε)(a) → (Dϕ)(a) (ε → 0) for all a ∈ Rd and |(Dϕε)(a)| ≤ 2
p−1
2 (|a|p−1 + εp−1) for all

a ∈ Rd and ε > 0,
(γ) (D2ϕε)(a) → (D2ϕ)(a) (ε→ 0) for all a ∈ Rd \ {0} and |(D2ϕε)(a)| ≤ (p− 1) 2

p−2
2 (εp−2 +

|a|p−2) for all a ∈ Rd and ε > 0.

Inasmuch as (ϕε)ε>0 ⊆C2(Rd) satisfies (α), (β) and (γ), it is easily checked that for every ε > 0,
the regularized p-Dirichlet energy Eε : U → R, for every v ∈ U defined by

Eε(v) :=

ˆ
Ω

ϕε(∇v) dx− ⟨f, v⟩W 1,p(Ω) ,

is twice continuously Fréchet differentiable. In consequence, using Taylor’s formula and Fubini’s
theorem, for every ε > 0 and v ∈ U , we obtain
Eε(v)− Eε(u∗) = ⟨DEε(u∗), v − u∗⟩U

+

ˆ 1

0

D2Eε(τv + (1− τ)u∗) [v − u∗, v − u∗] (1− τ) dτ (17)

=

ˆ
Ω

Dϕε(∇u∗) · ∇(v − u∗) dx

+

ˆ 1

0

ˆ
Ω

D2ϕε(τ∇v + (1− τ)∇u∗) :∇(v − u∗)⊗∇(v − u∗) dx (1− τ) dτ

=

ˆ
Ω

Dϕε(∇u∗) · ∇(v − u∗) dx

+

ˆ
Ω

ˆ 1

0

D2ϕε(τ∇v + (1− τ)∇u∗) :∇(v − u∗)⊗∇(v − u∗) dx (1− τ) dτ .

Next, given both (α), (β) and (γ), it is allowed to apply Lebesgue’s dominated convergence theorem
in equation 17. Hence, by passing for ε→ 0 in equation 17, using equation 16 in doing so, for every
v ∈ U , we find that

E(v)− E(u∗) =

ˆ
Ω

Dϕ(∇u∗) · ∇(v − u∗) dx (18)

+

ˆ
Ω

ˆ 1

0

D2ϕ(τ∇v + (1− τ)∇u∗) : ∇(v − u∗)⊗∇(v − u∗) (1− τ) dτ dx

= ⟨DE(u∗), v − u∗⟩U

+

ˆ
Ω

ˆ 1

0

D2ϕ(τ∇v + (1− τ)∇u∗) : ∇(v − u∗)⊗∇(v − u∗) (1− τ) dτ dx

=

ˆ
Ω

ˆ 1

0

D2ϕ(τ∇v + (1− τ)∇u∗) : ∇(v − u∗)⊗∇(v − u∗) (1− τ) dτ dx .

Apart from that, resorting to Lemma 12, we deduce the existence of a constant c(p) > 0, depend-
ing only on p ∈ (1,∞), with (p 7→ c(p)) ∈ C0(1,∞), such that for every v ∈ U , it holds

c(p)−1ρ2F (v, u
∗) ≤

ˆ
Ω

ˆ 1

0

D2ϕ(τ∇v + (1− τ)∇u∗) : ∇(v − u∗)⊗∇(v − u∗) (1− τ) dτ dx

≤ c(p) ρ2F (v, u
∗) . (19)

Eventually, by combining equation 18 and equation 19, we conclude the assertion of Theorem 2.

A.2 THE REMAINING PROOFS

Proof of Lemma 7. The following proof is inspired by (Nakov & Toulopoulos, 2021, Section 3.1).

ad (i) By referring to Lemma 11 (ii), we deduce the existence of a constant c(p)>0, depend-
ing only on p ∈ (1,∞), with (p 7→ c(p)) ∈ C0(1,∞), such that for every u, v ∈W 1,p(Ω), it holds

∥∇u−∇v∥p
Lp(Ω)d

≤
ˆ
Ω

|∇u−∇v|2(|∇u|+ |∇v|)p−2 dx ≤ c(p) ρ2F (u, v) ,

14
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and, using Hölder’s inequality with respect to
(
p
2 ,

p
p−2

)
,

c(p)−1 ρ2F (u, v) ≤
ˆ
Ω

|∇u−∇v|2(|∇u|+ |∇v|)p−2 dx

≤
(ˆ

Ω

|∇u−∇v|p dx
) 2

p
(ˆ

Ω

(|∇u|+ |∇v|)p dx
) p−2

p

≤
(
∥∇u∥Lp(Ω)d + ∥∇v∥Lp(Ω)d

)p−2∥∇u−∇v∥2Lp(Ω)d .

ad (ii) By referring to Lemma 11 (ii), we deduce the existence of a constant c(p) > 0, depending
only on p ∈ (1,∞), with (p 7→ c(p)) ∈ C0(1,∞), such that for every u, v ∈ W 1,p(Ω), using
Hölder’s inequality with respect to

(
2
p ,

2
2−p

)
, it holds

∥∇(u− v)∥Lp(Ω)d ≤
(ˆ

Ω

|∇(u− v)|2(|∇u|+ |∇v|)p−2 dx
) p

2
(ˆ

Ω

(|∇u|+ |∇v|)p dx
) 2−p

2

≤
(
∥∇u∥Lp(Ω)d + ∥∇v∥Lp(Ω)d

) 2p−p2

2

(ˆ
Ω

|∇(u− v)|2(|∇u|+ |∇v|)p−2 dx
) p

2

≤ c(p)
(
∥∇u∥Lp(Ω)d + ∥∇v∥Lp(Ω)d

) p(2−p)
2 ρ2F (u, v)

p
2 ,

and

c(p)−1 ρ2F (u, v) ≤
ˆ
Ω

|∇u−∇v|2(|∇u|+ |∇v|)p−2 dx

≤
ˆ
Ω

|∇u−∇v|p |∇u−∇v|2−p

(|∇u|+ |∇v|)2−p
dx ≤ ∥∇u−∇v∥p

Lp(Ω)d
. □

Lemma 13 (Coercivity of the p-Dirichlet Energy). Let f ∈ W 1,p(Ω)∗, p ∈ (1,∞), be such that
⟨f, c⟩W 1,p(Ω) = 0 for all c ∈ R. Moreover, we define E :W 1,p(Ω) → R for every v ∈W 1,p(Ω) by

E(v) :=
1

p

ˆ
Ω

|∇v|p dx− ⟨f, v⟩W 1,p(Ω) . (20)

Then, for every v ∈W 1,p(Ω), we can estimate

∥∇v∥Lp(Ω)d ≤ c(p,Ω)

(
∥f∥

1
p−1

W 1,p(Ω)∗ + E(v)
1
p

)
.

For a minimizer u∗ ∈W 1,p(Ω) of E :W 1,p(Ω) → R, this reduces to

∥∇u∗∥Lp(Ω)d ≤ c(p,Ω) ∥f∥
1

p−1

W 1,p(Ω)∗ .

The constant c(p,Ω) > 0 depends continuously on p and on the domain Ω.

Proof. Using that f ∈W 1,p(Ω)∗ vanishes on constant functions, the Poincaré–Wirtinger inequality
and the ε-Young inequality, for every v ∈W 1,p(Ω) and ε > 0, abbreviating ⟨v⟩Ω :=

ffl
Ω
v dx, it holds

E(v) = 1
p∥∇v∥

p
Lp(Ω)d

+ ⟨f, v − ⟨v⟩Ω⟩W 1,p(Ω)

≥ 1
p∥∇v∥

p
Lp(Ω)d

− c(p, ε) ∥f∥p
′

W 1,p(Ω)∗ − ε ∥v − ⟨v⟩Ω∥W 1,p(Ω)

≥
(
1
p − εCP

)
∥∇v∥p

Lp(Ω)d
− c(p, ε) ∥f∥p

′

W 1,p(Ω)∗ ,

(21)

where c(p, ε) := (pε)1−p
′
p−1. Hence, choosing ε > 0 sufficiently small – depending on the value of

the Poincaré constant CP – in equation 21, for every v ∈W 1,p(Ω), we find that

∥∇v∥Lp(Ω)d ≤ c(p,Ω)
(
E(v) + ∥f∥p

′

W 1,p(Ω)∗

)
, (22)

where the dependence of the Poincaré constant leads to dependence on the domain Ω.

15
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Remark 14 (On the Constant c(p,Ω)). While the dependence of c(p,Ω) on p can directly be
understood from the proof, the dependence on Ω stems from the constant appearing in the Poincaré
inequality – which we call the Poincaré constant and denote by CP . For convex domains, one has that

CP ≤
(

πp
diam(Ω)

)p
, where πp := 2π

(p− 1)
1
p

p sin(π/p)
,

we refer to Esposito et al. (2013) or Koerber (2018).

Finally, we provide the missing proof of the Main Theorem.

Proof of Theorem 1. Let p ≥ 2 and v ∈ M̃ be arbitrary. Using Proposition 9 and the inequality 10,
we estimate

∥∇xv −∇xu
∗∥p
Lp(P×Ω)d

=

ˆ
P
∥∇ (v(τ )− u∗(τ ))∥p

Lp(Ω)d
dτ

≤ c(p)

ˆ
P
ρ2F (v(τ ),u∗(τ )) dτ

≤ c(p)

(
δ(v) + inf

ṽ∈M̃

[ˆ
P
ρ2F (ṽ(τ ),u∗(τ )) dτ

])
=: (∗) .

We proceed by utilizing the relation of the natural distance ρ2F : W 1,p(Ω)×W 1,p(Ω) → R to the
Sobolev topology from Lemma 7 and, subsequently, apply Hölder’s inequality with the exponents
( p
p−2 ,

p
2 )

(∗) ≤ δ + inf
ṽ∈M̃

[ˆ
P

(
∥∇ṽ(τ )∥Lp(Ω)d + ∥∇u∗(τ )∥Lp(Ω)d

)p−2 ∥∇ṽ(τ )−∇u∗(τ )∥2Lp(Ω)ddτ

]
≤ δ + inf

ṽ∈M̃

[(ˆ
P

(
∥∇ṽ(τ )∥Lp(Ω)d +∥∇u∗(τ )∥Lp(Ω)d

)p
dτ

) p−2
p

∥∇xṽ −∇xu
∗∥2Lp(P×Ω)d

]
≤ δ + 3p−2 ∥∇xu

∗∥p−2
Lp(P×Ω)d

inf
ṽ∈M̃

∥∇xṽ −∇xu
∗∥2Lp(P×Ω)d

≤ δ + 3p−2 c(p,Ω) ∥f∥
p−2
p−1

Lp′ (P×Ω)
inf
ṽ∈M̃

∥∇xṽ −∇xu
∗∥2Lp(P×Ω)d .

This implies the assertion in the case p ≥ 2. The proof in the situation of p < 2 works similarly and
is therefore omitted.

B SMOOTHNESS ASSUMPTION

For linear elliptic equations with parametric right-hand side, higher order Sobolev regularity
holds true, provided the right-hand side f ∈ L2(P × Ω) and the domain Ω ⊂ RdΩ , dΩ ∈ N, are
smooth enough. In the following, we denote byH ḱ(Ω), the Sobolev space with vanishing mean value.

Lemma 15. Let k ∈ N be fixed and let P ⊂ RdP , dP ∈ N, be open and Ω ⊂ RdΩ , dΩ ∈ N, be a
domain with ∂Ω ∈ Ck+1,1 boundary. Let, furthermore, f ∈ Ck+2(P, H ḱ(Ω)) be given. Then, the
weak solution u∗ ∈ L2(P, H 1́(Ω)) to

−∆u = f in P × Ω ,

∂nu = 0 on P × ∂Ω ,
(23)

is a member of the space Hk+2(P × Ω).

Proof. We define e : Hk+2´ (Ω)× P → H ḱ(Ω) for every u ∈ Hk+2´ (Ω) and τ ∈ P by

e(u, τ ) := −∆u− f(τ) H ḱ(Ω) .

Then, the zero level set {
(u, τ )⊤ ∈ Hk+2´ (Ω)× P | e(u, τ) = 0

}

16
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is parametrized through the solution map (τ 7→ u∗(τ )) : P → Hk+2´ (Ω). In fact, standard elliptic
regularity theory yields that u∗(τ ) ∈ Hk+2(Ω) for a.e. τ ∈ P , see for instance Grisvard (2011).
The implicit function theorem for Banach spaces guarantees that u∗ ∈ Ck+2(P, Hk+2(Ω)) provided
the partial derivative of e with respect to the first component, i.e., ∂1e(u, τ) : Hk+2´ (Ω) → H ḱ(Ω),
for every (u, τ)⊤ ∈ Hk+2´ (Ω)× P given via

∂1e(u, τ)[v] = −∆v in H ḱ(Ω) for all v ∈ Hk+2´ (Ω) ,

is a linear homeomorphism. However, by using the exact same elliptic regularity result as used above,
we see that this is in fact true. Hence, the assertion of the lemma follows.

C MORE GENERAL PARAMETRIC DEPENDENCIES

In the main part of the manuscript, we only considered parametric dependencies that were in-
duced through a parameter dependent right-hand side. This was done to keep the technicality minimal,
yet does not constitute the full generality of our analysis. In this Section, we outline more general
parametric dependencies, including varying integrability exponents, domains and material tensors. In
every situation, we guarantee the well-posedness of the parametric problem, providing an analogue
result to Proposition 9 and, consequently, allows to deduce error decay rates. As error decay rates –
assuming smoothness – follow the same pattern as in Theorem 1, we do not explicitly state them.

C.1 PARAMETRIC EXPONENTS AND PARAMETRIC RIGHT-HAND SIDES

We begin with a problem where both, the exponent p ∈ (1,∞) and the right-hand side f are
allowed to vary in a parameter space P . More precisely, we seek u∗ : P × Ω → R satisfying

−div
(
|∇xu

∗(τ , x)|p(τ )−2∇xu
∗(τ , x)

)
= f(τ , x) for a.e. (τ , x)⊤ ∈ P × Ω ,

subjected to suitable boundary conditions. The precise statement is the following.

Proposition 16 (Variable Exponents). Let Ω ⊆ RdΩ , dΩ ∈ N, and P ⊆ RdP , dP ∈ N, be
bounded domains and p ∈ L∞(P) such that there exist p−, p+ ∈ (1,∞) with p− ≤ p(τ ) ≤ p+ for
a.e. τ ∈ P . Moreover, we define the variable exponent Lebesgue space4

Lp(·)(P × Ω) :=

{
v ∈ L0(P × Ω)

∣∣∣∣ ˆ
P

ˆ
Ω

|v(τ , x)|p(τ ) dx dτ <∞
}
,

and the variable exponent Bochner–Lebesgue space

U :=
{
v ∈ Lp(·)(P × Ω) | v(τ , ·) ∈W 1,p(τ )

0 (Ω) for a.e. τ ∈ P, |∇xv| ∈ Lp(·)(P × Ω)
}
,

where the gradient ∇x for a.e. τ ∈ P is to be understood with respect to the variable x ∈ Ω only.
For fixed f ∈ Lp

′(·)(P × Ω), i.e., f ∈ L0(P × Ω) and
´
P
´
Ω
|f(τ , x)|p′(τ ) dx dτ < ∞, where

p′ ∈ L∞(P) is defined by p′(τ ) := p(τ )
p(τ )−1 for a.e. τ ∈ P , we define variable exponent p(·)-Dirichlet

energy E : U → R for every v ∈ U by

E(v) :=
ˆ
P

[
1

p(τ )

ˆ
Ω

|∇xv(τ , ·)|p(τ ) dx−
ˆ
Ω

f(τ , ·)v(τ , ·) dx
]
dτ .

Then, the following statements apply:

(i) There exists a unique (parametric) minimizer u∗ ∈ U of E : U → R.

(ii) For a.e. τ ∈ P , u∗(τ , ·) ∈ W 1,p(τ )
0 (Ω) is a unique minimizer of Eτ : W 1,p(τ )

0 (Ω) → R,
for every v ∈W 1,p(τ )

0 (Ω) defined by

Eτ (v) :=
1

p(τ )

ˆ
Ω

|∇v|p(τ )dx−
ˆ
Ω

f(τ , ·) v dx .

4Here, L0(P × Ω) denotes the space of scalar (Lebesgue–)measurable functions on P × Ω.
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(iii) For a.e. τ ∈ P and v ∈W 1,p(τ )
0 (Ω), it holds

c(p(τ ))−1
∥∥Fτ (∇v)− Fτ (∇xu

∗(τ , ·))
∥∥2
L2(Ω)d

≤ Eτ (v)− Eτ (u
∗(τ , ·))

≤ c(p(τ ))
∥∥Fτ (∇v)− Fτ (∇xu

∗(τ , ·))
∥∥2
L2(Ω)d

,

where Fτ : Rd → Rd, τ ∈ P , for every τ ∈ P is defined by Fτ (a) := |a|
p(τ)−2

2 a for all
a ∈ Rd and c(p(τ )) > 0 is the constant from Theorem 2.

(iv) Furthermore, for every v ∈ U , it holds

ess inf
τ∈P

c(p(τ ))−1 ρ2F (v,u∗) ≤ E(v)− E(u∗) ≤ ess sup
τ∈P

c(p(τ ))ρ2F (v,u∗) ,

where
ρ2F (v,u∗) :=

ˆ
P

∥∥Fτ (∇xv(τ , ·))− Fτ (∇xu
∗(τ , ·))

∥∥2
L2(Ω)d

dτ .

Proof. ad (i). The space U equipped with the norm ∥ · ∥U := ∥ · ∥Lp(·)(P×Ω) + ∥ |∇x · | ∥Lp(·)(P×Ω),
where

∥v∥Lp(·)(P×Ω) := inf

{
λ > 0

∣∣∣ ˆ
P

ˆ
Ω

∣∣∣∣v(τ , x)λ

∣∣∣∣p(τ ) dxdτ ≤ 1

}
denotes the Luxembourg norm, cf. Diening et al. (2011), is a reflexive Banach space, cf. (Kaltenbach,
2021, Proposition 3.7 & Proposition 3.9) or (Kaltenbach & Růžička, 2021, Proposition 3.6 & Propo-
sition 3.7)5. Apparently, E : U → R is strictly convex and continuous. In addition, for every v ∈ U ,
due to Poincaré’s inequality applied for a.e. fixed τ ∈ P , which is allowed since v(τ , ·) ∈W 1,p(τ )

0 (Ω)
for a.e. τ ∈ P , we have thatˆ

P

ˆ
Ω

|v(τ , x)|p(τ ) dxdτ ≤
ˆ
P

(
2 diam(Ω)

)p(τ ) ˆ
Ω

|∇xv(τ , x)|p(τ ) dxdτ

≤
(
1 + 2diam(Ω)

)p+ ˆ
P

ˆ
Ω

|∇xv(τ , x)|p(τ ) dx dτ ,
(24)

which for every v ∈ U and ε ∈ (0, 1
p− ], using for a.e. τ ∈ P , the ε-Young inequality with constant

c(p(τ ), ε) := (p(τ )ε)1−p′(τ)

p′(τ ) , implies that

E(v) ≥
ˆ
P

1

p(τ )

ˆ
Ω

|∇xv(τ , ·)|p(τ ) dxdτ

−
ˆ
P

ˆ
Ω

c(p(τ ), ε)|f(τ , ·)|p
′(τ ) − ε|v(τ , ·)|p(τ ) dxdτ

≥
(

1

p+
− ε(1 + 2diam(Ω))p

+

)ˆ
P

ˆ
Ω

|∇xv(τ , ·)|p(τ ) dxdτ

− (p−ε)1−(p−)′

(p+)′

ˆ
P

ˆ
Ω

|f(τ , ·)|p
′(τ ) dxdτ .

(25)

Hence, since
´
P
´
Ω
|v(τ , ·)|p(τ ) + |∇xv(τ , ·)|p(τ ) dx dτ → ∞ if ∥v∥U → ∞ (cf. (Diening et al.,

2011, Lemma 3.2.4)) from equation 24 and equation 25 for ε ∈ (0, 1
p− ] sufficiently small, we

conclude that from ∥v∥U → ∞, it follows that E(v) → ∞, i.e., E :U →R is weakly coercive, so
that the direct method in the calculus of variations, cf. Dacorogna (2007), yields the existence of a
unique minimizer u∗ ∈ U of E : U → R.

ad (ii). A standard calculation shows that E : U → R is continuously Fréchet differentiable with

⟨DE(u),v⟩U =

ˆ
P
⟨DEτ (u(τ , ·)),v(τ , ·)⟩W 1,p(τ)

0 (Ω) dτ

5More precisely, these references prove only the case N = 1, since therein P represents a time interval in an
unsteady fluid flow problem. However, the proofs can be generalized verbatimly to the case N > 1, so that we
will refrain from proving these results again at this point.
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for all u,v ∈ U . Therefore, due to the minimality of u∗ ∈ U , for every v ∈ U , we have that

0 = ⟨DE(u∗),v⟩U =

ˆ
P
⟨DEτ (u

∗(τ , ·)),v(τ , ·)⟩W 1,p(τ)
0 (Ω) dτ . (26)

Inasmuch as W 1,p+

0 (Ω) ↪→ W 1,p(τ )
0 (Ω) densely for a.e. τ ∈ P and W 1,p+

0 (Ω) is separable and,
thus, contains a countable dense subset (ψk)k∈N ⊆W 1,p+

0 (Ω), the subset (ψk)k∈N lies even densely
inW 1,p(τ )

0 (Ω) for a.e. τ ∈ P . Next, choosing v = φψk ∈ U in equation 26 for arbitrary φ ∈ C∞
0 (P)

and k ∈ N, we further deduce thatˆ
P
⟨DEτ (u

∗(τ , ·)), ψk⟩W 1,p(τ)
0 (Ω)φ(τ ) dτ = 0 , (27)

so that for each fixed k∈N, the fundamental lemma of calculus of variations implies that for a.e. τ ∈P ,
it holds ⟨DEτ (u

∗(τ , ·)), ψk⟩W 1,p(τ)
0 (Ω) = 0. This, since the countable union of sets of zero mea-

sure has still zero measure, we deduce from equation 27 that for a.e. τ ∈ P , it holds for all k ∈ N
⟨DEτ (u

∗(τ , ·)), ψk⟩W 1,p(τ)
0 (Ω) = 0 . (28)

Since (ψk)k∈N is dense in W 1,p(τ )
0 (Ω) for a.e. τ ∈ P , from equation 28 we infer that for a.e. τ ∈ P ,

it holds for all v ∈W 1,p(τ )
0 (Ω)

⟨DEτ (u
∗(τ , ·)), v⟩W 1,p(τ)

0 (Ω) = 0 .

Eventually, since for a.e. τ ∈ P , the p(τ )-Dirichlet energy Eτ :W 1,p(τ )
0 (Ω) → R is strictly convex,

for a.e. τ ∈ P , the slice u∗(τ , ·) ∈W 1,p(τ )
0 (Ω) is a unique minimizer of Eτ :W 1,p(τ )

0 (Ω) → R.

ad (iii) and (iv). Follows from point (ii) and Theorem 2.

C.2 PARAMETRIC DOMAINS

We consider parametric domains, where we focus on domains depending on only one parameter,
as the required function spaces are only studied in this case. More precisely, we aim to solve

−div
(
|∇xu

∗(τ , x)|p−2∇ux(τ , x)
)
= f(τ , x) for a.e. x ∈ Ω(τ ) , τ ∈ P .

The precise requirements are given in the following proposition.
Proposition 17 (Variable Domains). Let Ω ⊆ RdΩ , dΩ ∈ N, a bounded Lipschitz domain and
p ∈ (1,∞). Moreover, let φτ : Ω → Ω(τ ), τ ∈ P := (0, T ), T > 0, the induced flow of a smooth,
compactly supported vector field v : R× Rd → Rd, cf. (Delfour & Zolésio, 2011, Chapter 4). For the
non-cylindrical domain Q :=

⋃
τ∈P {τ} × Ω(τ ), we define the variable domain Bochner–Lebesgue

space

U :=Lp(P,W 1,p
0 (Ω(·))) := {u∈Lp(Q) | u(τ , ·)∈W 1,p

0 (Ω(τ )) for a.e. τ ∈P, |∇xu| ∈Lp(Q)} ,
where the gradient ∇x for a.e. τ ∈ P is to be understood with respect to the variable x ∈ Ω(τ ) only.
For fixed f ∈ Lp

′
(Q), we define the variable domain p-Dirichlet energy E : U → R for every v ∈ U

by

E(v) :=
ˆ
P

[
1

p

ˆ
Ω(τ )

|∇xv(τ , ·)|p dx−
ˆ
Ω(τ )

f(τ , ·)v(τ , ·) dx
]
dτ .

Then, the following statements apply:

(i) There exists a unique (parametric) minimizer u∗ ∈ U of E : U → R.

(ii) For a.e. τ ∈ P , u∗(τ , ·) ∈W 1,p
0 (Ω(τ )) is a unique minimizer of Eτ :W 1,p

0 (Ω(τ )) → R,
for every v ∈W 1,p

0 (Ω(τ )) defined by

Eτ (v) :=
1

p

ˆ
Ω(τ )

|∇v|p dx−
ˆ
Ω(τ )

f(τ , ·) v dx .

(iii) For a.e. τ ∈ P and v ∈W 1,p(τ )
0 (Ω), it holds

c(p)−1 ∥F (∇v)− F (∇xu
∗(τ , ·))∥2L2(Ω(τ ))d ≤ Eτ (v)− Eτ (u

∗(τ , ·))

≤ c(p) ∥F (∇v)− F (∇xu
∗(τ , ·))∥2L2(Ω(τ ))d ,

where c(p) > 0 is the constant from Theorem 2.
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(iv) Furthermore, for every v ∈ U , it holds

ess inf
τ∈P

c(p)−1 ρ2F (v,u∗) ≤ E(v)− E(u∗) ≤ ess sup
τ∈P

c(p)ρ2F (v,u∗) ,

where

ρ2F (v,u∗) :=

ˆ
P
∥F (∇xv(τ , ·))− F (∇xu

∗(τ , ·))∥2L2(Ω(τ ))d dτ .

Proof. ad (i). The space U equipped with the norm ∥ · ∥U := ∥ · ∥Lp(Q)+∥ |∇ · | ∥Lp(Q), forms a
reflexive Banach space, cf. (Nägele, 2015, Proposition 3.17 & Corollary 3.25) or Nägele et al. (2017);
Nägele & Růžička (2018). Apparently, E : U → R is strictly convex and continuous. Apart from that,
for every v ∈ U , due to Poincaré’s inequality applied for each fixed τ ∈ P , which is allowed since
v(τ , ·) ∈W 1,p

0 (Ω(τ )) for all τ ∈ P , we have thatˆ
P

ˆ
Ω(τ )

|v(τ , x)|p dxdτ ≤
ˆ
P

(
2 diam(Ω(τ ))

)p ˆ
Ω(τ )

|∇xv(τ , x)|p dxdτ

≤
(
1 + 2 sup

τ∈P
diam(Ω(τ ))

)p ˆ
P

ˆ
Ω(τ )

|∇xv(τ , x)|p(τ ) dxdτ ,
(29)

which for any v ∈ U and ε ∈ (0, 1], using for each τ ∈ P , the ε-Young inequality with constant
c(p, ε) := (pε)1−p′

p′ , implies that

E(v) ≥
ˆ
P

1

p

ˆ
Ω(τ )

|∇xv(τ , ·)|p dxdτ −
ˆ
P

ˆ
Ω(τ )

c(p, ε)|f(τ , ·)|p
′
− ε|v(τ , ·)|p dxdτ

≥
(
1

p
− ε

(
1 + 2 sup

τ∈P
diam(Ω(τ ))

)p)ˆ
P

ˆ
Ω(τ )

|∇xv(τ , ·)|p dxdτ

− (pε)1−p
′

p′

ˆ
P

ˆ
Ω(τ )

|f(τ , ·)|p
′
dxdτ .

(30)

From equation 29 and equation 30, for ε > 0 sufficiently small, using that, by assumption, it holds
supτ∈P diam(Ω(τ )) <∞6, we conclude that from ∥v∥U → ∞, it follows that E(v) → ∞, i.e.,
E : U → R is weakly coercive, so that the direct method in the calculus of variations, cf. Dacorogna
(2007), yields the existence of a unique minimizer u∗ ∈ U of E : U → R.

ad (ii). A direct calculation shows that E : U → R is continuously Fréchet differentiable with

⟨DE(u),v⟩U =

ˆ
P
⟨DEτ (u(τ , ·)),v(τ , ·)⟩W 1,p

0 (Ω(τ )) dτ

for all u,v ∈ U . Therefore, due to the minimality of u∗ ∈ U , for every v ∈ U , we have that

0 = ⟨DE(u∗),v⟩U =

ˆ
P
⟨DEτ (u

∗(τ , ·)),v(τ , ·)⟩W 1,p
0 (Ω(τ )) dτ . (31)

Since W 1,p
0 (Ω(0)) is separable, there exists a countable dense subset (ψk)k∈N ⊆W 1,p

0 (Ω(0)). Also,
appealing to (Nägele, 2015, Lemma 2.1), for any τ ∈ P , the pull-backs ((φ−1

τ )∗ψk)k∈N := (ψk ◦
φ−1
τ )k∈N ⊆W 1,p

0 (Ω(τ )), are dense in W 1,p
0 (Ω(τ )). In addition, (Nägele et al., 2017, p. 6 ff.) shows

that (ψk)k∈N := (τ 7→ (φ−1
τ )∗ψk)k∈N ⊆ U . Next, choosing v = φψk ∈ U in equation 31 for

arbitrary φ ∈ C∞
0 (P) and k ∈ N, we further deduce thatˆ

P
⟨DEτ (u

∗(τ , ·)),ψk(τ , ·)⟩W 1,p(τ)
0 (Ω) φ(τ ) dτ = 0 ,

so that, owing to the countability of (ψk)k∈N ⊆ U , the fundamental lemma of calculus of variations
implies that for a.e. τ ∈ P , it holds for all k ∈ N

⟨DEτ (u
∗(τ , ·)), (φ−1

τ )∗ψk⟩W 1,p(τ)
0 (Ω) = 0 .

6Here, we exploit that there exists K > 0 such that K−1 ≤ det(Dφτ ) ≤ K in Ω(τ ) for all τ ∈ P ,
cf. (Nägele et al., 2017, (3.1)).
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As ((φ−1
τ )∗ψk)k∈N is dense in W 1,p

0 (Ω(τ )) for all τ ∈ P , we find that for a.e. τ ∈ P , it holds for
all v ∈W 1,p

0 (Ω(τ ))

⟨DEτ (u
∗(τ , ·)), v⟩W 1,p(τ)

0 (Ω) = 0 .

Eventually, since for every τ ∈ P , the p-Dirichlet energy Eτ :W 1,p
0 (Ω(τ )) → R is strictly convex,

for a.e. τ ∈ P , the slice u∗(τ , ·)∈W 1,p
0 (Ω(τ )) is a unique minimizer of Eτ :W 1,p

0 (Ω(τ ))→R.

ad (iii) and (iv). Follow from point (ii) and Theorem 2.
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