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Abstract

Current language models (LMs) use a fixed,001
static subword tokenizer. This default choice002
typically results in degraded efficiency and003
language capabilities, especially in languages004
other than English. To address this issue,005
we challenge the static design and propose006
retrofitting LMs with dynamic tokenization: a007
way to dynamically decide on token bound-008
aries based on the input text via a subword-009
merging algorithm inspired by byte-pair encod-010
ing. We merge frequent subword sequences in011
a batch, then apply a pre-trained embedding-012
prediction hypernetwork to compute the token013
embeddings on-the-fly. For encoder-style mod-014
els (e.g., XLM-R), this on average reduces to-015
ken sequence lengths by >20% across 14 lan-016
guages while degrading performance by less017
than 2%. The same method applied to prefill-018
ing and scoring in decoder-style models (e.g.,019
Mistral-7B) results in minimal performance020
degradation at up to 17% reduction in sequence021
length. Overall, we find that dynamic tokeniza-022
tion can mitigate the limitations of static tok-023
enization by substantially improving inference024
speed and promoting fairness across languages,025
enabling more equitable and adaptable LMs.026

1 Introduction027

(Large) Language Models (LMs) are the backbone028

of modern NLP applications, enabling advanced029

language understanding and generation. However,030

their effectiveness heavily relies on their tokenizers,031

which are responsible for tokenizing the input (Rust032

et al., 2021; Fujii et al., 2023; Toraman et al., 2023;033

Ali et al., 2024; Minaee et al., 2024; Minixhofer034

et al., 2024). This fundamental step involves break-035

ing raw text into smaller units called tokens, which036

are part of the tokenizer’s vocabulary. Since ma-037

chines can only work with numerical data, tokens038

are converted into numerical IDs, which are then039

used to obtain embeddings — fixed-size vectors040

that serve as the model’s representation of a token.041

Language Original Subword Tokenization #tokens

English A sub/stantial im/prove/ment fosters further
im/prove/ment/s

12

Swahili U/bor/esh/aj/i mk/ub/wa una/ku/za u/bor/esh/aj/i
za/idi

18

#merges Dynamic Tokenization #tokens

1 A sub/stantial improve/ment fosters further im-
prove/ment/s

10 (83%)

1 U/boresh/aj/i mk/ub/wa una/ku/za u/boresh/aj/i
za/idi

16 (89%)

2 A sub/stantial improvement fosters further improve-
ment/s

8 (67%)

2 U/boreshaj/i mk/ub/wa una/ku/za u/boreshaj/i za/idi 14 (78%)

4 A substantial improvement fosters further improve-
ments

6 (50%)

11 Uboreshaji mkubwa unakuza uboreshaji zaidi 5 (28%)

Table 1: Comparison of static subword vs dynamic tok-
enization for the same sentences in English and Swahili.
Embeddings for tokens in blue are obtained using a hy-
pernetwork (HN) which composes the subword-level
embeddings, as highlighted by /. The last row shows
the number of merges required to achieve word-level
tokenization, serving as a ‘compression upper bound’ of
the proposed approach. The percentages show the frac-
tion of the original token count remaining after merging.

The majority of contemporary LMs rely on sub- 042

word tokenizers (e.g., Devlin et al., 2019; Touvron 043

et al., 2023) that are inherently static, as their vo- 044

cabularies remain fixed post-training. This rigidity 045

limits the model’s adaptability, requiring expensive 046

retraining to update both the vocabulary and embed- 047

dings (Dagan et al., 2024). Moreover, subword tok- 048

enizers struggle with handling sequences of num- 049

bers (Golkar et al., 2023), are sensitive to spelling 050

errors (Sun et al., 2020; Xue et al., 2022) and often 051

suffer from over-segmentation in languages other 052

than English (Wang et al., 2021). This leads to in- 053

equitable performance across languages, increasing 054

inference costs, latency, and reducing overall model 055

effectiveness (Ahia et al., 2023). While character- 056

or byte-level tokenization provides a potential solu- 057

tion, it produces long token sequences which brings 058

additional challenges, such as the need for dynamic 059

compute allocation or token pooling to stay compet- 060
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itive to models using subword tokenization in terms061

of efficiency (Nawrot et al., 2023). These issues062

underscore the need for a more flexible or dynamic063

tokenization that adapts token boundaries based on064

the input text. This is the focus of our work. Specif-065

ically, we introduce a way of retrofitting existing066

(subword-based) LMs with dynamic tokenization.067

Our proposed dynamic tokenization approach068

focuses on improving efficiency and cross-lingual069

fairness by repurposing a hypernetwork (HN) in-070

troduced by Minixhofer et al. (2024) — originally071

intended for zero-shot transfer across tokenizers —072

to support dynamic tokenization; see Table 1 for073

an illustrative example, and later Figure 1. This074

adaptation uses the HN to dynamically generate to-075

ken embeddings on-the-fly, substantially reducing076

token sequence lengths at minimal performance077

degradation, and also effectively enabling an un-078

bounded vocabulary for encoding text.079

This approach, as our extensive experiments080

demonstrate, is highly beneficial for prefilling081

(computing the key-value states of a prompt) and082

scoring (computing the likelihood of a text) with083

generative models. However, applying it to autore-084

gressive next-token generation is more challenging085

since softmax normalization over an unbounded086

vocabulary is intractable. We thus aim to achieve087

the benefits of dynamic tokenization for autoregres-088

sive generation by expanding to a large, but still089

bounded vocabulary (in practice, 1M tokens); we090

introduce a highly efficient method to deal with the091

large vocabulary. It is based on an approximate092

nearest neighbor index to overcome the parameter093

overhead and the softmax bottleneck (Yang et al.,094

2018) by dynamically retrieving tokens.095

Contributions. 1) We propose an approach of096

retrofitting LMs with dynamic tokenization, achiev-097

ing a 22.5% reduction in token sequence length098

on XNLI and a 26.4% reduction on UNER, with099

minimal performance degradation. This improves100

inference speed and leads to fairer compute allo-101

cation across languages (see Section 5). 2) We102

adapt the same method to prefilling and scoring103

in decoder-style LLMs, achieving minimal perfor-104

mance degradation at up to 17% sequence length105

reduction. 3) Since naïvely applying our method to106

autoregressive generation is intractable, we further107

investigate generation with a large but bounded vo-108

cabulary of 1M tokens, achieving additional gains109

in efficiency. Our code is publicly available at §110

[Anonymous-GitHub-Repository].111

2 Background and Related Work 112

Tokenizers: Preliminaries. We follow the tok- 113

enizer definition used by Uzan et al. (2024) and 114

Minixhofer et al. (2024). Let V denote a vocabu- 115

lary, and T a tokenization function. A tokenizer is 116

then a tuple consisting of these two components, 117

(V, T ). The vocabulary V contains the set of to- 118

kens, while the tokenization function T is used to 119

segment the input text into smaller units, which 120

are part of V . Importantly, for a given V , there 121

are multiple ways to encode the same input text 122

into a sequence of tokens (Hofmann et al., 2022), 123

with T determining the specific encoding method. 124

After tokenizing the input text into a sequence of 125

tokens, each token is then mapped to a continuous 126

vector representation using the embedding func- 127

tion Eϕ : V → Rdmodel , parameterized by a matrix 128

ϕ. This matrix serves as a lookup table, assigning 129

each token a unique dmodel-dimensional vector. 130

Static Tokenizers. Existing tokenizers implement 131

character-, byte-, subword- and word-level tok- 132

enization. Character- (El Boukkouri et al., 2020; 133

Tay et al., 2022; Clark et al., 2022) and byte- 134

level (Xue et al., 2022; Yu et al., 2023) methods 135

offer advantages such as small vocabularies and 136

increased robustness to noise, helping in handling 137

rare words and low-resource languages. However, 138

they suffer from reduced processing speed due to 139

longer token sequences or required sequence pool- 140

ing, impacting training and inference efficiency 141

(Clark et al., 2022; Nawrot et al., 2023). Further- 142

more, byte-level tokenizers are biased against non- 143

Latin scripts (Limisiewicz et al., 2024). 144

Word tokenization methods provide faster pro- 145

cessing with shorter token sequences, but strug- 146

gle with out-of-vocabulary (OOV) words and re- 147

quire large vocabularies. A commonly used ‘mid- 148

dle ground’ is thus subword tokenization, which 149

breaks down the text into smaller, more manage- 150

able units, such as pieces of words or entire words. 151

Techniques like Byte-Pair Encoding (BPE; Sen- 152

nrich et al., 2016), WordPiece (Schuster and Naka- 153

jima, 2012) and UnigramLM (Kudo, 2018), handle 154

OOV words by breaking them into known subword 155

units, while also maintaining manageable vocabu- 156

lary sizes and sequence lengths. Crucially, all these 157

methods are static, relying on a predefined vocabu- 158

lary V that does not adapt to new data post-training, 159

limiting adaptability to new words or evolving lan- 160

guage. This is problematic especially in multi- 161

lingual contexts, leading to over-segmentation, re- 162

2

[Anonymous-GitHub-Repository]


duced performance, and increased inference costs163

in languages other than English (Ahia et al., 2023).164

These issues highlight the need for dynamic tok-165

enization to potentially achieve higher efficiency166

and more equitable performance across languages.167

Vocabulary Expansion. Previous work on adap-168

tive tokenization focused on expanding vocabu-169

laries with domain- or language-specific tokens.170

However, this greatly increases the size of the em-171

bedding matrix — sometimes accounting for up172

to 93% of model parameters (Liang et al., 2023)173

— which limits how many new tokens can be ef-174

fectively added and results in inefficient parameter175

allocation. New token embeddings are typically176

initialized with heuristics (Minixhofer et al., 2022;177

Gee et al., 2022; Liu et al., 2024; Gee et al., 2022)178

and require additional training for optimal perfor-179

mance, restricting real-time adaptation. We use180

Fast Vocabulary Transfer (FVT; Gee et al., 2022)181

as a baseline heuristic. FVT generates embeddings182

for a new token by tokenizing it with the original183

tokenizer and averaging the embeddings of its sub-184

word tokens. Alternative multi-token generation185

techniques like Copy-Generator (Lan et al., 2023)186

and Nearest Neighbor Speculative Decoding (Li187

et al., 2024) use token databases and nearest neigh-188

bor retrieval, but face challenges with factual ac-189

curacy and computational efficiency. In contrast,190

our pre-trained HN efficiently generates individ-191

ual token embeddings removing the need for fine-192

tuning across domains, addressing both the parame-193

ter overhead of vocabulary expansion and the com-194

putational requirements of multi-token generation.195

Token Embedding Prediction. Instead of relying196

on heuristics to initialize the embeddings of new197

tokens, more advanced methods predict them us-198

ing neural networks. This includes using neural199

networks to predict the embeddings of rare (Schick200

and Schütze, 2019) or OOV (Pinter et al., 2017)201

words in traditional word models, an approach202

later adapted by Schick and Schütze (2020) for203

BERT (Devlin et al., 2019). However, these meth-204

ods are limited to expanding the existing tokenizers205

rather than enabling transfer to an entirely differ-206

ent tokenizer. In contrast, Zero-Shot Tokenizer207

Transfer (ZeTT; Minixhofer et al., 2024) enables208

transferring LMs to any arbitrary, but fixed/static209

tokenizer. This extends beyond only enabling vo-210

cabulary extension to full transfer to a completely211

new tokenizer while preserving the LM’s perfor-212

mance to a large extent in most cases by using a213

hypernetwork to predict the token embeddings. 214

3 Methodology 215

Problem Formulation. Dynamic tokenization 216

changes the traditional static encoding process by 217

adaptively adjusting token boundaries based on the 218

input text, continuously updating the vocabulary 219

V and the tokenization function T . This contrasts 220

with the static tokenization, where V and T remain 221

fixed post-training. More formally, let the initial 222

tokenizer be (Vinit, Tinit). As the LM operates with 223

new text data D, the tokenization function Tinit is 224

updated to Tnew. The update process can be repre- 225

sented by the function U : 226

Tnew(D) = U(Tinit(D)) (1) 227

To retrofit an LM pre-trained with subword tok- 228

enization to dynamic tokenization, two steps are 229

required: (1) deciding on a tokenization Tnew; and 230

(2) obtaining the token embeddings. This approach 231

can be applied to any case where the (subword- 232

level) token sequence is known in advance. 233

3.1 Dynamic Tokenization via BPE-Style 234

Compression 235

Deciding on a Dynamic Tokenization. Let D 236

represent the input data to be tokenized. The 237

first step in dynamic tokenization involves updat- 238

ing the initial tokenization Tinit to a new func- 239

tion Tnew, using the update function U . Since our 240

focus is on efficiency, this update aims to mini- 241

mize over-segmentation in the input data D, result- 242

ing in a more compact representation for D (i.e., 243

|Tnew (D) | ≤ |Tinit (D) |). 244

Importantly, given that LMs operate at batch- 245

level, U is specifically applied at this level on Dbatch. 246

This allows U to dynamically adapt the tokeniza- 247

tion to the unique linguistic features in each batch. 248

To define U (Tinit(Dbatch)), we take inspiration 249

from BPE (Sennrich et al., 2016). Specifically, 250

for each batch Dbatch tokenized under the initial 251

scheme Tinit, we begin with a batch-specific vo- 252

cabulary Vnew comprised of all unique subword 253

tokens present in Tinit (Dbatch). We then perform 254

a fixed number of merge operations, m, combin- 255

ing the most frequent adjacent tokens within the 256

batch, continuously refining the tokenization to bet- 257

ter compress Dbatch. 258

We formally define the update function U as: 259

U : (Tinit (D) ,m) → Tnew (D)

with |Tnew (D) | ≤ |Tinit (D) |,
(2) 260
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Figure 1: Dynamic tokenization applied to encoders and
decoders LMs.

where m represents the number of merge opera-261

tions to perform. Since the BPE-style merging pro-262

cess is applied to Tinit (Dbatch) — the data we wish263

to tokenize — we implicitly tokenize this batch264

under the new tokenization scheme Tnew (Dbatch)265

by sequentially applying merge operations. This266

allows us to simplify the training and tokenization267

processes of traditional BPE into a single, unified268

algorithm, outlined in Appendix A.1269

Subword-level tokenization represents the start-270

ing point or the lower-bound for the new tokeniza-271

tion, Tnew, obtained when m = 0, and equivalent272

with Tinit. On the other hand, we consider word-273

level, or, more precisely, pre-token-level,2 as the274

upper-bound for Tnew. In other words, we constrain275

the merging process to never merge adjacent tokens276

which are part of different words.277

Obtaining Token Embeddings. After map-278

ping the tokens from the initial tokenization to279

a more compact tokenization, Tinit (Dbatch) →280

Tnew (Dbatch), we need to obtain the embeddings281

for all tokens t ∈ Tnew (Dbatch). To achieve this,282

we repurpose the HN trained by Minixhofer et al.283

(2024). While the HN was originally intended to284

transfer an LM to a fixed, static tokenizer, we ob-285

serve that it can also be used to achieve dynamic286

tokenization: since the HN amortizes over the tok-287

enization function (i.e., embedding predictions for288

1Additionally, since the new tokenization is only applied
to the specific batch data Dbatch and not reused for other text,
there is no need to store or compute new merge rulesMnew or
maintain an expanded vocabulary Vnew.

2Pre-tokens are preliminary units often equivalent to
words (Mielke et al., 2021). For simplicity of terminology,
we use pre-tokens and words interchangeably, but note that
‘pre-token’ is the more precise term.

every token are independent of each other), it does 289

not require a static (or even bounded) vocabulary. 290

Therefore, for each t ∈ Tnew (Dbatch), we apply the 291

hypernetwork Hθ to obtain its embedding: 292

Eϕnew (t) = Hθ (t) , ∀t ∈ Tnew (Dbatch) (3) 293

where Eϕnew (t) is the embedding for token t and 294

ϕnew is the matrix corresponding to the batch- 295

specific vocabulary, Vnew. This process can alter- 296

natively also be viewed as transferring the LM to 297

a new tokenizer (Vnew, Tnew) for each batch, dy- 298

namically adjusting token boundaries based on the 299

specific data within that batch. Recall that it is ap- 300

plicable to any case where the token sequence is 301

known in advance, i.e., any use-case of encoder- 302

style LMs, as well as prefilling and scoring of gen- 303

erative (decoder-style) LMs, as shown in Figure 1. 304

4 Experimental Setup 305

Models. We use XLM-R (Conneau et al., 2020) 306

as the representative multilingual encoder-style 307

LM. To test our method on a decoder-style model 308

LM, we use both the base and instruct versions 309

of Mistral-7B (Jiang et al., 2023). This choice is 310

partially due to the fact that the two established 311

models come with pre-trained HNs. 312

Datasets. For our XLM-R experiments, we use 313

two datasets: Cross-lingual Natural Language In- 314

ference (XNLI; Conneau et al., 2018), and Univer- 315

sal Named Entity Recognition (UNER; Mayhew 316

et al., 2024). These datasets quantify the effect of 317

dynamic tokenization across a total of 14 languages, 318

with XNLI focusing on sentence-level and UNER 319

on token-level understanding.3 For Mistral-7B ex- 320

periments, we use the following evaluation bench- 321

marks: the “lite” version of Global-MMLU (Singh 322

et al., 2024) in English, French, German, Span- 323

ish and Portuguese, and the English Multi-Turn 324

Benchmark (MT-Bench; Chiang and Lee, 2023). 325

Embeddings. We compare the performance of 326

the model using (i) the original embeddings, (ii) 327

FVT embeddings4 (see Section 2) and (iii) HN- 328

generated embeddings. 329

3For XNLI, we evaluate on 13 different languages: Arabic,
Bulgarian, German, Greek, English, Spanish, French, Hindi,
Russian, Swahili, Turkish, Urdu, Vietnamese. Similarly, for
UNER, we train our adapters on English, “en_ewt” training
split, and evaluate on 4 languages: English, German, Por-
tuguese, and Russian.

4We use FVT since it achieves comparable performance to
FOCUS (Dobler and de Melo, 2023) while being substantially
faster than FOCUS (Minixhofer et al., 2024), which is crucial
for our dynamic setup.

4



Hyperparameters. Appendix B details the hyper-330

parameter settings used in our experiments.331

4.1 Experiments with Encoder Models332

We train a LoRA adapter (Hu et al., 2022) for both333

task — natural language inference for XNLI and334

named entity recognition for UNER — and dy-335

namic tokenization adaptation. The adapter jointly336

learns to adapt to the task and operate with coarser337

token granularities. We perform two experiments:338

(1) training an adapter with a fixed number of339

merges m and (2) training an adapter with m sam-340

pled from a Uniform distribution.5341

(1) Predetermined Number of Merges. Here, we342

train an adapter with dynamic tokenization that re-343

duces sequence length by a fixed percentage of the344

maximum possible reduction. We set this percent-345

age to 50% for XNLI and 75% for UNER. Note346

that 100% reduction corresponds to the difference347

between the initial sequence length — obtained348

when tokenizing with Tinit — and the sequence349

length obtained with word-level tokenization (i.e.,350

the number of words in the sequence). We ap-351

ply the function U(Tinit(Dbatch),m) for each batch352

to meet the specific reduction percentage in se-353

quence length. This is necessary since the cor-354

relation between the number of merges m and355

the sequence length reduction varies across lan-356

guages and datasets; for instance, 140 merges357

achieve 100% relative sequence reduction on En-358

glish XNLI, whereas 250 merges are required for359

the same reduction on Turkish XNLI.360

(2) Sampling from a Uniform Distribution. In361

the second approach, instead of using a fixed362

number of merges m and applying the function363

U(Tinit(Dbatch),m) with the same m across the364

training batch, we introduce stochasticity into the365

tokenization process. Specifically, we explore the366

impact of sampling different numbers of merges367

from a Uniform distribution. By training the368

adapter with tokenizations sampled from this distri-369

bution, we hypothesize that the model will learn to370

be more robust to the type of dynamic tokenization371

used (i.e., the value of m). We sample a tokenizer372

per batch (i.e., a fixed m) rather than a tokenizer373

for each sample in the batch due to the high compu-374

5Our preliminary experiments included selecting m from
a Gaussian distribution. However, this yielded suboptimal
results. Additionally, we investigated disentangling task adap-
tation from tokenization adaptation, but this also led to subop-
timal results; future work could re-investigate whether disen-
tangling the task and the tokenization is possible.

tational requirements of the latter. The tokenization 375

function applied during training is then: 376

U(Tinit(Dbatch),m), m ∼ U(0,mmax) (4) 377

where mmax is determined by D and represents the 378

merge level yielding word-level tokenization. 379

4.2 Experiments with Decoder Models 380

Unlike XLM-R, we do not train the Mistral-7B de- 381

coder model as we evaluate our method out-of-the- 382

box on a pretrained checkpoint. We apply dynamic 383

tokenization with a fixed number of merges m to 384

the input batch Dbatch. We evaluate performance 385

trends across all sequence reduction percentages, 386

0% to 100%, where again 100% corresponds to the 387

reduction achieved with word-level tokenization. 388

For prefilling, we compute the key-value states of 389

the dynamically tokenized input sequence. For 390

scoring, our goal is to compute the conditional 391

probability p(suffix|prefix). Our key insight en- 392

abling dynamic tokenization is that we do not need 393

to compute p(prefix) to compute the normalized 394

conditional probability of some suffix relative to 395

other suffixes. This means we can dynamically 396

tokenize the prefix, then use the original tokeniza- 397

tion to tokenize (and evaluate the probability of) 398

the suffix. In practice, e.g., for MMLU this means 399

processing each input prompt using dynamic tok- 400

enization only keeping the last hidden state h, and 401

compute a probability distribution over the four an- 402

swer choices using h with the embeddings of the 403

answer choices A, B, C and D. This setup also allows 404

evaluating the quality of the HN output embeddings 405

by comparing the performance when the suffix se- 406

quence is embedded with the original embeddings 407

versus the HN-generated embeddings. 408

5 Results and Discussion 409

5.1 Encoder Models 410

Evaluation results for XLM-R with task adapters 411

and joint task and tokenization adapters, using dif- 412

ferent tokenization and embedding strategies are 413

summarized in Table 2 for XNLI and Table 3 for 414

UNER. Figure 2a illustrates the average perfor- 415

mance across languages in XNLI with different 416

sequence length reductions and adapters, while 417

Figure 2b focuses on English-only results. Corre- 418

sponding results for UNER are shown in Figure 3. 419

Dynamic tokenization substantially reduces se- 420

quence lengths. Applying dynamic tokenization 421

with an adapter jointly trained for the task and a 422
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Tokenization &
Embeddings Adapter Accuracy per Language (%)

ar bg de el en es fr hi ru sw tr ur vi Avg.

(1) original task 71.6 76.5 76.9 75.1 84.8 78.0 78.5 68.7 74.9 63.2 72.4 65.4 73.9 73.9
(2) original, HN task 71.8 76.5 76.7 75.7 84.1 79.0 78.2 69.6 75.7 61.7 72.1 65.9 73.7 74.0

(3) word, HN task 67.1 72.8 74.9 71.5 82.5 77.1 75.6 66.2 72.0 59.2 67.4 64.9 73.4 71.1
(4) word, FVT task 64.5 68.9 70.8 68.3 79.7 74.2 71.0 65.2 68.6 54.8 63.3 63.8 73.6 68.2
(5) word, HN task + m50% 67.8 74.2 74.3 72.4 83.2 78.3 75.7 66.6 72.9 61.3 67.5 66.4 75.0 72.0
(6) word, HN task + msampled 66.5 74.1 74.5 71.6 84.3 77.0 75.9 64.9 72.7 58.8 66.5 65.1 73.7 71.2

∆Acc. (%) (1), (5) -3.8 -2.3 -2.6 -2.7 -1.6 0.3 -2.8 -2.1 -2.0 -1.9 -4.9 1.0 1.1 -1.9
∆Length (%) original (1, 2), word (3-6) -31.4 -25.1 -22.8 -33.2 -14.7 -17.3 -17.3 -21.8 -28.2 -28.4 -29.4 -17.5 -5.9 -22.5

Table 2: Accuracy on XNLI validation with different adapters, tokenizations and embeddings. ∆Acc. (%) is the
absolute accuracy change between word-level tokenization with the optimal adapter and HN embeddings (5) and
the baseline (1) which uses original tokenization and embeddings. ∆Length. (%) represents the average decrease in
token sequence length of word-level tokenization over the original. Boldface indicates the best result for a language
when using original subword-level tokenization or word-level tokenization.
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(b) Accuracies for different adapters on English.

Figure 2: Accuracies on XNLI with different adapters as a function of sequence length reduction (%). Adapter
names follow the format: Adapter type, Embeddings used. In this and subsequent figures, a 0% reduction refers
to sequence length obtained with the original subword-level tokenization, while 100% indicates ‘upper bound’
word-level tokenization. Intermediate percentages show proportional reductions between these two extremes.

Tokenization &
Embeddings Adapter Language F1-score (%)

en_ewt de_pud pt_bosque pt_pud ru_pud Avg.

(1) original task 81.6 78.0 82.3 82.9 69.0 78.8
(2) original, HN task 80.9 78.3 80.8 82.3 68.4 78.1

(3) word, HN task 77.0 75.8 77.6 77.3 65.5 74.6
(4) word, FVT task 67.2 57.0 58.0 58.4 40.7 56.3
(5) word, HN task + m75% 80.5 75.0 80.5 81.3 67.9 77.0
(6) word, HN task + msampled 81.3 76.3 78.5 80.2 67.1 76.7

∆F1-score (%) (1), (5) -1.1 -3.0 -1.8 -1.6 -1.1 -1.7
∆Length (%) original (1, 2), word (3-6) -17.6 -30.5 -24.1 -24.2 -35.8 -26.4

Table 3: F1-score on UNER with different adapters, tokenizations and embeddings. The results reported are on the
validation split for ewt and bosque datasets, and test split for pud due to the availability.

specified number of merges reduces token sequence423

length by an average of 22.5% on the XNLI dataset424

(Table 2), with an average accuracy decrease of425

1.9% compared to the original tokenization and426

embeddings. On the UNER dataset (Table 3), this427

approach achieves a 26.4% reduction in sequence428

length, with only a 1.7% decrease in F1-score.429

Sampling the tokenization granularity improves 430

in-domain performance. Comparing our two 431

types of adapters, we find that, for both datasets, the 432

adapter trained with m sampled from U(0,mmax) 433

on average outperforms the fixed-merge adapter 434

on English (i.e., in-domain). This adapter yields 435

better results across all sequence length reductions 436
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Figure 3: F1-scores on UNER with different adapters as a function of sequence length reduction (%).

and nearly closes the gap with the baseline perfor-437

mance with the original tokenization and embed-438

dings. For XNLI, with word-level tokenization, it439

obtains an accuracy of 84.3%, compared to 83.2%440

with the fixed-merge adapter and 84.8% with the441

baseline (Figure 2b). These results align with the442

UNER results where the adapter trained with sam-443

pled merges achieves an F1-score of 81.3% on444

word-level tokenization, compared with the fixed-445

merge adapter at 80.5% and close to the baseline446

of 81.6% (Figure 3b), confirming that the model447

benefits from a balanced exposure to different tok-448

enization granularities on in-domain tasks.449

Cross-lingual performance. Unlike our in-450

domain results, the fixed-merges adapter consis-451

tently shows stronger cross-lingual transferability452

than its counterpart trained with sampled merges.453

On XNLI, it obtains an average accuracy of 72.0%454

compared to 71.2% (Table 2). Similarly, for UNER,455

it achieves 77.0% compared to 76.7% (Table 3).456

Heuristic embeddings ≪ HN-generated embed-457

dings < original embeddings. Using original to-458

kenization with HN embeddings (Setting 2 in Ta-459

ble 2) shows comparable results to original embed-460

dings (Setting 1), in both English and cross-lingual461

contexts, highlighting the quality of HN embed-462

dings. However, there is a noticeable gap between463

subword- and word-level HN embeddings in Set-464

tings 1 and 3, as the model was not previously465

exposed to HN embeddings. FVT embeddings,466

by contrast, show a prominent performance drop:467

for instance, FVT achieves an average accuracy468

of 68.2% on XNLI, compared to 71.1% (Table 2)469

with word-level HN embeddings, and scores 56.3%470

F1 on UNER, substantially lower than the 74.6%471

achieved with HN embeddings (Table 3). This sug-472

gests that HN embeddings more effectively capture 473

the semantic nuances required for tasks like NER, 474

where accurate token representation is important. 475

5.2 Decoder Models 476

Figure 4 presents performance trends for different 477

granularities obtained using dynamic tokenization 478

for scoring and prefilling (see Section 4.2). 479

Dynamic tokenization improves prefilling and 480

scoring efficiency. In zero-shot evaluation of dy- 481

namic tokenization across different granularities, 482

we observe that using the original output embed- 483

dings consistently outperform the HN-generated 484

output embeddings, highlighting that the degrada- 485

tion in performance is primarily due to the type 486

of output embeddings used rather than the input 487

embeddings (Figure 4). For both MMLU and MT- 488

Bench, reducing the sequence length by 40-50% 489

(relative to the word-level) — corresponding to a 490

17% average reduction for MMLU and ≈ 6% for 491

MT-Bench (in absolute terms) — and using the 492

original output embeddings (from Vinit) yields the 493

smallest gap to the baseline, unlike FVT, whose per- 494

formance quickly degrades above 30% reduction. 495

Overall, we can use this insight to compress the key- 496

value cache with minimal performance degradation 497

by exclusively changing the input embeddings i.e., 498

without any changes to the pre-trained model. 499

Expanding the vocabulary allows achieving 500

some of the benefits of dynamic tokenization 501

for autoregressive generation. Our dynamic to- 502

kenization approach works for LM scoring (i.e., 503

computing the conditional probability of a text) 504

and prefilling, as we know the sequence in advance. 505

However, this is not the case for autoregressive gen- 506

eration. To address this, we propose a method that 507
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Figure 4: Performance of dynamic tokenization applied to decoders for scoring and prefilling, evaluated across
various vocabularies and embeddings in a zero-shot setting. For MMLU, the baseline is the accuracy with the
original tokenization and embeddings, while for MT-Bench, it is the first-turn score with the original setup. Labels
follow the format: a) MMLU: Embeddings used for the dynamic tokenized input and output embeddings used for
scoring; b) MT-Bench: Vocabulary Vgen and embeddings used for generation. V1M expands Vinit to 1M tokens.

expands the initial vocabulary, Vinit, from ≈32k508

tokens to 1M tokens, V1M, moving token gran-509

ularity closer to word-level while maintaining a510

large bounded vocabulary. In a nutshell, our ap-511

proach involves three steps: (1) expanding Vinit to512

V1M by applying BPE on a large corpus; (2) using513

longest-prefix (LP) tokenization — instead of the514

previous dynamic tokenization — to overcome the515

challenges involved in merging two tokenizers (i.e.,516

the initial tokenizer and the one obtained for V1M);517

and (3) constructing an approximate nearest neigh-518

bor index to efficiently retrieve token embeddings519

using an HN. This approach is described in full520

technical detail in Appendix C and Tables 9 and 10521

summarize the results with different settings.522

Using this expanded vocabulary we achieve523

shorter token sequences — similar to word-level524

tokenization — at the expense of degrading the per-525

formance by 5.9% for MMLU (English) and 0.9526

points on MT-Bench (Table 9 and Table 10). Ad-527

ditionally, retrieving the embeddings for tokens in528

V1M on-the-fly using an HN allows us to maintain529

the original model’s parameter count. The current530

performance gap could potentially be minimized531

through n-shot tokenizer transfer, as demonstrated532

by Minixhofer et al. (2024), but we leave this explo-533

ration beyond zero-shot setups to future research.534

Throughput analysis. Table 4 shows that dynamic535

tokenization reduces the main model’s FLOPs (e.g.,536

14.4T to 9.7T in French, 67.4% of the baseline)537

while the hypernetwork’s FLOPs remain below 3%538

of the total. The gains align with sequence reduc-539

tion, yielding near-linear throughput improvements540

Lng FLOPs Sequence Reduction

0% 50% 100%

en Model 10.1T 9.4T 8.5T
Hypernet 169.3B (1.7%) 191.0B (2.0%) 199.8B (2.2%)

fr Model 14.4T 12.2T 9.7T
Hypernet 91.8B (0.6%) 163.5B (1.3%) 238.5B (2.4%)

Table 4: FLOPs per sample with dynamic tokenization
on multilingual MMLU. Percentages in parentheses de-
note the fraction of hypernetwork FLOPs out of total.

with negligible overhead from the hypernetwork. 541

Appendix E shows the complete set of results. 542

6 Conclusion 543

We proposed a novel dynamic tokenization method 544

for (large) language models, using a hypernetwork 545

to dynamically adapt token boundaries based on the 546

input data, which efficiently generates token em- 547

beddings on-the-fly. We then demonstrated its use- 548

fulness both on encoder- and decoder-style models. 549

As some main findings, we highlight that for en- 550

coder models (e.g., XLM-R), our approach substan- 551

tially reduces token sequence lengths by > 20% 552

on average over 14 languages, with less than 2% 553

loss in accuracy. When applied to decoder-style 554

models (e.g., Mistral-7B) for prefilling and scoring, 555

our method yields minimal performance degrada- 556

tion with up to 6% reduction in (absolute) sequence 557

length on English. Overall, these results demon- 558

strate that dynamic tokenization can mitigate some 559

of the limitations of static tokenizers, particularly 560

in multilingual settings, improving inference effi- 561

ciency and promoting fairness across languages. 562
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Limitations563

One limitation of our study includes the compu-564

tational overhead associated with (1) generating a565

new vocabulary for each batch, which increases566

with the number of merges m; and (2) on-the-fly567

generation of token embeddings using an HN (c.f.,568

Minixhofer et al., 2024). To amortize the latter, we569

implemented an HN embeddings cache, particu-570

larly motivated by the frequent repetition of certain571

tokens (e.g., “the”; c.f., Appendix D). Additionally,572

the success of on-the-fly token embeddings relies573

on the accuracy and robustness of the hypernet-574

work. Any limitations in the hypernetwork’s train-575

ing or design might directly impact the quality of576

the token embeddings and, consequently, the over-577

all model performance, but research into a more578

sophisticated design and training of the hypernet-579

works goes beyond the scope of this work.580

For the main experiments we have opted for rep-581

resentative and established encoder and decoder582

models for which the pre-trained hypernetworks583

are already available (Minixhofer et al., 2024) - ob-584

taining similar (or improved, as mentioned above)585

hypernetworks for other LMs would make our dy-586

namic tokenization approach applicable to other587

LMs in future work.588

Another limitation is that our current dynamic589

tokenization approach primarily works in settings590

where the full sequence is known in advance (e.g.,591

scoring and prefilling in decoder models). For au-592

toregressive generation, we offered a first solution593

which relies on a large but static, bounded vocab-594

ulary to achieve some of the benefits of dynamic595

tokenization (e.g., token sequence length compres-596

sion). Closing this gap by integrating “true” dy-597

namic tokenization into autoregressive generation598

remains an open challenge for future research.599

Finally, our dynamic tokenization approach op-600

erates at the batch-level, chosen to gain a broader601

context of co-occurring tokens across multiple to-602

ken sequences; this helps in identifying effective603

merges. However, future research might explore604

sample-level dynamic tokenization approaches, par-605

ticularly given that decoders (e.g., chatbots) often606

operate at sample-level.607
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A Dynamic Tokenization Algorithm for937

Encoder LMs938

Algorithm 1 shows the simplified version of the939

byte-pair encoding inspired merging process we940

use to dynamic tokenize (i.e., compress) a sequence941

of tokens.942

B Reproducibility Details943

A summary of the hyperparameters we used for944

training and evaluation is shown in Table 5 and945

Table 6. For decoders, specifically for MMLU, we946

used the template shown in Figure 5 with a maxi-947

mum sequence length of 8192. Additionally, both948

MMLU and MT-Bench were run with bfloat16949

precision and a batch size of 1 due to computational950

constraints. For MT-Bench specifically, we set the951

maximum number of tokens to be generated to952

1024. Finally, all the experiments were conducted953

using an NVIDIA GeForce RTX 4090 GPU with954

24 GB of VRAM, powered by the NVIDIA driver955

version 525.105.17 and CUDA version 12.0.956

C Vocabulary Expansion for Dynamic957

Autoregressive Generation958

Dynamic tokenization can not be applied in the959

same way described in Section 3.1 for autoregres-960

sive generation since it results in an unbounded961

vocabulary. However, to still achieve some of the962

benefits of dynamic tokenization, we introduce a963

method that expands Vinit to a large (but bounded)964

size for improved inference efficiency in token gen-965

eration.966

Our approach, similar to CoG (Lan et al., 2023)967

and NEST (Li et al., 2024) in its training-free do-968

main adaptation, uses a large token vocabulary969

instead of a phrase table, reducing the need for970

billions of phrases. We significantly expand the971

initial vocabulary to Vlarge, aiming to include more972

specialized terms and word variations in English.973

This moves token granularity from subword-level974

closer to word-level, improving efficiency of the975

generation process. This vocabulary, while static,976

integrates with the LM using HN-generated embed-977

dings from Minixhofer et al. (2024), providing a978

similar flexibility to a dynamic approach, without979

the need for training the embeddings. Although980

this approach does not currently include dynamic981

updates of Vlarge, it sets the foundation for future982

dynamic vocabulary adjustments.983

Our proposed approach for decoder LMs re-984

quires three steps: (1) expanding the vocabulary to985

a large size; (2) deciding on a tokenization; (3) con- 986

structing an approximate nearest neighbor (ANN) 987

index and populating it with token embeddings. 988

Expanding the Vocabulary. In the first step, we 989

aim to expand the initial vocabulary of a decoder 990

LM, Vinit, to a significantly larger vocabulary, Vlarge. 991

To achieve this, we can apply one of the widely 992

used subword tokenizers such as BPE, WordPiece 993

or UnigramLM on a large corpus to obtain a vo- 994

cabulary of |Vlarge| − |Vinit| tokens.6 In our method, 995

we use BPE algorithm to find Vnew and Mnew. We 996

then obtain Vlarge = Vinit ∪ Vnew. 997

Deciding on a Tokenization Function. Although 998

we have obtained the new merge rules Mnew spe- 999

cific to Vnew, integrating these with the source tok- 1000

enizer’s existing rules, Minit, is challenging. This 1001

is because the original and new merge rules, even 1002

if both derived from BPE, were learned indepen- 1003

dently and are stored sequentially. An example 1004

illustrating the challenges associated with merging 1005

Mnew and Minit is presented in Table 7. 1006

These challenges highlight the complexity in- 1007

volved in merging tokenizers and the need for a 1008

tokenization function that facilitates merging. To 1009

address this, we use a Longest-Prefix (LP) tokeniza- 1010

tion function,7 denoted TLP, similar to the default 1011

method used by WordPiece when the continuation 1012

prefix is set to blank (i.e., no character). 1013

Obtaining Token Embeddings and Index Con- 1014

struction. Similar to the previous experiments, we 1015

use an HN pre-trained on the decoder LM from 1016

Minixhofer et al. (2024) to obtain token embed- 1017

dings for all the tokens t ∈ Vlarge, using Equation 3 1018

with the expanded vocabulary. The next token is 1019

generated as follows: 1020

Step 1: Input Tokenization. Tokenize the textual 1021

prompt x: TLP(x); 1022

Step 2: Input Embeddings. Obtain the input em- 1023

beddings for each token in TLP(x) using the 1024

hypernetwork: Eϕin(TLP(x)); 1025

Step 3: LM Processing. Forward the tokenized 1026

input to the LM; 1027

Step 4: Output Embeddings. Obtain the output 1028

embeddings for each token in the vocabulary 1029

6In practice, the SentencePiece package (Kudo and
Richardson, 2018) is often used, particularly for low-resource
languages, because it works without the need for pre-tokenized
input

7Uzan et al. (2024) show that LP greedy tokenization per-
forms on par or better than other tokenization functions.
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Algorithm 1 Dynamic Tokenization for Encoders
1: Input: Tokenized batch data tokenizedBatch under initial tokenization, Tinit (Dbatch); number of merges m
2: Output: Tokenized batch data under a new, dynamically learned tokenization, Tnew (Dbatch)

3: procedure APPLYDYNAMICTOKENIZATION(tokenizedBatch, m)
4: for i← 1 to m do
5: pairFreqs← ComputePairFreqs(tokenizedBatch)
6: bestPair← GetMostFrequentPair(pairFreqs)
7: Apply bestPair merge rule to tokenizedBatch
8: end for
9: return tokenizedBatch ▷ Dbatch as Tnew (Dbatch)

10: end procedure

Experiment Python’s
random

torch
random

numpy
random

Encoder experiments 42 42 42

Decoder experiments
on MMLU

0 1234 1234

Decoder experiments
on MT-Bench

1234 1234 1234

Table 5: Summary of random seeds used across different experiments.

Hyperparameter XNLI: Task
Adapter with
Original Subword
Tokenization

XNLI: Joint Task
and Dynamic
Tokenization
Adapter

UNER: Task Adapter
with Original Subword
Tokenization & Joint
Task and Dynamic
Tokenization Adapter

Matrix Rank r 32 128 256

Scaling Factor α 64 256 512

Dropout 0.3

Epochs 10 {10, 15} 15

Learning Rate 3× 10−4 1× 10−4 3× 10−4

Batch Size 32

Optimiser AdamW

Optimiser
Parameters

ϵ = 10−8,
β1 = 0.9,
β2 = 0.999

ϵ = 10−8,
β1 = 0.9,
β2 = 0.999

ϵ = 10−8, β1 = 0.9,
β2 = 0.999

Scheduler Linear, no warmup steps

Max Sequence
Length

128

Weight Decay 0

Precision bfloat16

Table 6: Summary of hyperparameters used for LoRA training.

Vlarge: Eϕout(Vlarge);1030

Step 5: Compute Probability Distribution.1031

Compute the probability distribution over the1032

vocabulary Vlarge using the output embeddings1033

and the last hidden state h:1034

p = softmax
(
h · Eϕout(Vlarge)

⊤
)
.1035

Step 6: Sample Next Token. Sample the next to- 1036

ken from the probability distribution p. 1037

The computational bottleneck of this approach 1038

lies in Step 5, involving a costly dot product calcu- 1039

lation between the last hidden state h and the out- 1040

put embeddings transposed matrix Eϕout(Vlarge)
⊤, 1041

due to the large vocabulary size. To mitigate this, 1042
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Prompt Template: 5-shot from the same domain as the current question

〈QUESTION_1〉
〈ANSWERS_1〉
Answer: 〈ANSWER_1〉
.
.
.
〈QUESTION_5〉
〈ANSWERS_5〉
Answer: 〈ANSWER_5〉

This question refers to the following information.
〈QUESTION〉
〈ANSWERS〉
Answer:”

Figure 5: 5-shot prompt template used for MMLU evaluation

Tokenizer 1 Tokenizer 2 Merged tokenizer

Initial Vocabulary a, b, c, d, e a, b, c, d, e a, b, c, d, e

Merge Tables

Rule 1 ‘a’, ‘b’→ ‘ab’ ‘a’, ‘d’→ ‘ad’ ‘a’, ‘b’→ ‘ab’
Rule 2 ‘ab’, ‘c’→ ‘abc’ ‘ad’, ‘e’→ ‘ade’ ‘ab’, ‘c’→ ‘abc’
Rule 3 ‘d’, ‘e’→ ‘de’ ‘b’, ‘c’→ ‘bc’ ‘d’, ‘e’→ ‘de’
Rule 4 - - ‘a’, ‘d’→ ‘ad’
Rule 5 - - ‘ad’, ‘e’→ ‘ade’
Rule 6 - - ‘b’, ‘c’→ ‘bc’

New Vocabulary a, b, c, d, e, ab, abc, de a, b, c, d, e, ad, ade, bc a, b, c, d, e, ab, abc, de, ad,
ade, bc

Example tokenize: ‘ade’

Step 1 [‘a’, ‘d’, ‘e’] [‘a’, ‘d’, ‘e’] [‘a’, ‘d’, ‘e’]
Step 2 - [‘ad’, ‘e’] [‘a’, ‘de’]
Step 3 - [‘ade’] -

Table 7: Example illustrating how combining merge rules from two BPE tokenizers results in conflicts when
tokenizing “ade”.

we implement an ANN index, I, allowing us to1043

use h to efficiently retrieve the k closest tokens,1044

denoted as Ik(h). This significantly reduces com-1045

putational overhead by focusing on the “closest”1046

tokens during generation, therefore maintaining1047

the LM’s parameter count and avoiding excessive1048

scaling of the embedding matrix — usually seen in1049

multilingual models. This facilitates using large vo-1050

cabularies without retraining the embedding layer.1051

Figure 6 illustrates the flow for applying dynamic1052

tokenization to decoders with the ANN.1053

Experimental Setup. In our experiments, we de-1054

cide to set Vlarge to one million entries which we de-1055

note V1M. To obtain this vocabulary V1M, we train1056

a BPE tokenizer on the clean English subset of the1057

MADLAD-400 corpus (Kudugunta et al., 2023).1058

Being around twice as large as the Oxford English 1059

Dictionary,8 we expect this vocabulary to contain 1060

most English words along other common fragments 1061

of text, allowing us to decrease the granularity of 1062

the tokens close to word-level on average. This 1063

vocabulary is significantly larger than those used 1064

in previous works on vocabulary expansion and 1065

≈ 32 times larger than Vinit. Following the expan- 1066

sion of the vocabulary, we construct a ScaNN (Guo 1067

et al., 2020) index to enable approximate nearest 1068

neighbour (ANN) search over HN embeddings. We 1069

chose ScaNN due to its good performance on ann- 1070

benchmarks.9 We use this index to retrieve the top 1071

10 closest token embeddings, following the process 1072

8oed.com
9ann-benchmarks.com
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Prompt 

Tokenize prompt 

Hypernetwork

Language Model

Predict next token  using 

Legend

Tokenization-related
 process or computation

  Output

Model operation, unmodified

  Optional

Indexing-related process or
computation

Figure 6: Dynamic tokenization with expanded vocabu-
lary Vlarge and ANN index I applied to decoder LMs.

illustrated in Figure 6.1073

Table 8 includes the hyperparameters used for1074

ScaNN index training and inference.1075

Attribute Value

Num. neighbours 200
Num. leaves 2000
Num. leaves to search 250
Training Sample Size 1,000,000
Dim. per block 3
Anisotropic quantization 0.2
Reorder 200
Metric Dot product

Table 8: Configuration details for the ScaNN index.

Importantly, when evaluating our approach on1076

MT-Bench, we use both conversation turns rather1077

than just the first turn, as was done in prefilling1078

(see Section 5.2). This adjustment is made be-1079

cause the current approach with V1M focuses on1080

achieving only (closer to) word-level tokenization,1081

without varying the percentage of sequence length1082

reductions. As a result, determining the number of1083

merges is unnecessary and is in fact difficult to ap-1084

proximate when using two turns, since the second1085

turn contains the model’s response to the first turn1086

within its prompt.1087

Further findings. When MISTRAL-7B is evalu-1088

ated using LP tokenization and HN embeddings 1089

with V1M on MT-Bench, we note a decrease in 1090

scores of 0.24 — compared with the same setting 1091

but with Vinit. 1092

Similar to the previous experimental results, the 1093

coarser granularity decreases performance, likely 1094

due to the quality of the generated HN embeddings. 1095

However, the gap between HN and original embed- 1096

dings is more significant here than in encoders or 1097

when applying dynamic tokenization for scoring 1098

or prefilling, which could potentially be minimized 1099

through n-shot tokenizer transfer, as demonstrated 1100

by Minixhofer et al. (2024). Additionally, we ob- 1101

serve a general trend where performance declines 1102

with the use of HN embeddings, worsens further 1103

with LP tokenization, and decreases even more 1104

with Vlarge, although with the benefit of reduced 1105

token sequence length. 1106

Token repetition penalty improves generations 1107

quality. Qualitatively inspecting the MT-Bench 1108

generated answers, we observed a token repetition 1109

issue in settings with HN embeddings, particularly 1110

for prompts from domains requiring creativity (e.g., 1111

writing). To address this, we introduced a repeti- 1112

tion penalty and top-k sampling with minimum 1113

probability threshold. This significantly improved 1114

model performance, across all settings using HN 1115

embeddings. The token repetition issue may also 1116

stem from the MISTRAL-7B model itself, as multi- 1117

ple reports highlighted similar problems occurring 1118

during generation.10 1119

ANN vs Exhaustive Search. Contrary to our ex- 1120

pectations, the results indicate that using an ANN 1121

index outperforms exhaustive search (setting 9 and 1122

10). This result aligns with findings from other 1123

studies, such as those by Xu et al. (2023), who 1124

suggest that the slight “inaccuracies” introduced by 1125

the ANN index search adds a level of noise or vari- 1126

ability, which acts like a regularization technique. 1127

D Hypernetwork Embeddings Caching 1128

In all our experiments, we implemented a Least- 1129

Recently-Used (LRU) cache for storing HN embed- 1130

dings to enhance efficiency and reduce overhead. 1131

This approach was particularly motivated by the 1132

frequent repetition of certain tokens across batches 1133

in encoder experiments. Common words like “the” 1134

or “and” appear in nearly every utterance, making 1135

it practical to cache their embeddings rather than 1136

10huggingface.co/mistralai/Mistral-7B-
v0.1/discussions/29
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Tokenization Embeddings Vocab.
Size ∆Length. (%)

Accuracy
(%)

(1) original original 32k 0 61.8
(2) original HN 32k 0 58.8
(3) LP HN 32k -1 57.8
(4) LP HN 1M -13.6 55.9

Table 9: Performance of MISTRAL-7B on the MMLU English task under different settings. ∆Length. (%) represents
the average decrease in token sequence length for the prompt over the original tokenization. Evaluation was
performed under a 5-shot setting with each shot chosen from same domain as the question prompt.

Tokenization Embeddings Vocab.
Size

Next token
search

Repetition
Penalty

Min.
Prob.

Sample
from top 10?

Avg
Score

(1) Original Original 32k exhaustive - - ✗ 7.54
(2) Original Original 32k exhaustive 1.1 0.05 ✓ 7.46

(3) Original HN 32k exhaustive - - ✗ 6.84
(4) Original HN 32k exhaustive 1.1 0.1 ✓ 7.10

(5) LP HN 32k exhaustive - - ✗ 6.50
(6) LP HN 32k exhaustive 1.1 0.05 ✓ 6.92

(7) LP HN 1M ScaNN index - - ✗ 6.26
(8) LP HN 1M ScaNN index 1.1 0.05 ✓ 6.64

(9) LP HN 1M exhaustive - - ✗ 5.24
(10) LP HN 1M exhaustive 1.1 0.05 ✓ 6.53

Table 10: Performance of MISTRAL-7B-INSTRUCT on MT-Bench English under different settings.
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Figure 7: Tokens processed by the hypernetwork using an HN-specific LRU cache versus processing all unique
tokens without caching. Results obtained on the validation subset of XNLI English.

regenerate them for each batch.1137

E Throughput analysis results1138

Table 4 shows the FLOPs per sample for both1139

the main model and hypernetwork with different1140

sequence reduction percentages on multilingual1141

MMLU. We report results for English, French, Ger-1142

man, Spanish, and Portuguese. As shown, the1143

model’s FLOPs decrease almost linearly with se-1144

quence length, while the hypernetwork overhead1145

remains negligible — typically under 3.1% of total 1146

FLOPs. Additionally, the overhead from the dy- 1147

namic tokenization algorithm is minimal and can 1148

be offloaded alongside other data loading logic. 1149
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Lng FLOPs Sequence Reduction / FLOPs

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

en

Model 10.1T 10.0T 9.9T 9.7T 9.5T 9.4T 9.2T 9.1T 8.8T 8.7T 8.5T
Hypernet 169.3B 171.3B 175.0B 180.2B 184.7B 191.0B 196.8B 198.7B 201.5B 198.0B 199.8B

HN FLOPs / total 1.7% 1.7% 1.7% 1.8% 1.9% 2.0% 2.0% 2.1% 2.2% 2.2% 2.2%

Seq. Length 682.2 672.8 667.6 655.5 640.6 631.7 619.4 614.4 598.1 586.7 578.4

de

Model 15.0T 14.3T 13.8T 13.2T 12.4T 11.8T 11.1T 10.6T 9.7T 9.0T 8.4T
Hypernet 82.9B 94.6B 107.8B 128.9B 149.3B 171.1B 194.7B 212.2B 235.5B 251.3B 261.4B

HN FLOPs / total 0.5% 0.7% 0.8% 1.0% 1.2% 1.4% 1.7% 1.9% 2.2% 2.3% 3.0%

Seq. Length 1015.0 963.3 937.7 882.0 825.9 782.9 748.2 711.7 668.1 608.2 571.0

es

Model 14.2T 13.6T 13.3T 12.8T 12.2T 11.7T 11.2T 10.7T 10.1T 9.5T 9.0T
Hypernet 85.2B 92.0B 102.1B 120.4B 140.5B 157.7B 179.1B 200.5B 222.9B 230.6B 238.1B

HN FLOPs / total 0.6% 0.7% 0.8% 1.0% 1.1% 1.3% 1.6% 1.8% 2.1% 2.4% 2.6%

Seq. Length 956.3 928.1 893.0 851.0 809.2 779.0 743.7 716.6 677.1 641.1 612.5

fr

Model 14.4T 14.0T 13.7T 13.2T 12.6T 12.2T 11.7T 11.3T 10.7T 10.2T 9.7T
Hypernet 91.8B 99.4B 109.6B 128.4B 146.6B 163.5B 183.1B 200.1B 223.2B 230.3B 238.5B

HN FLOPs / total 0.6% 0.7% 0.8% 1.0% 1.2% 1.3% 1.5% 1.7% 2.0% 2.2% 2.4%

Seq. Length 956.7 927.9 915.3 870.7 830.9 804.6 772.6 745.9 709.1 677.8 651.9

pt

Model 14.2T 13.6T 13.2T 12.7T 12.0T 11.5T 10.9T 10.5T 9.8T 9.1T 8.6T
Hypernet 84.0B 89.2B 101.0B 118.5B 131.7B 154.0B 175.7B 196.7B 218.6B 229.5B 237.9B

HN FLOPs / total 0.6% 0.7% 0.8% 1.0% 1.1% 1.3% 1.6% 1.8% 2.1% 2.3% 2.7%

Seq. Length 952.3 929.7 888.2 850.4 814.5 766.0 728.9 698.3 655.0 615.3 584.8

Table 11: FLOPs per sample estimates for the model and hypernetwork when applying dynamic tokenization
with different sequence reductions on multilingual MMLU. The HN FLOPs / total row shows the fraction of
hypernetwork FLOPs out of total FLOPs. Seq. Length represents the average number of tokens per sample.
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