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ABSTRACT

Learning from noisily-labeled data is common in real-world visual learning tasks.
Mainstream Noisy-Label Learning (NLL) methods mainly focus on sample-
selection approaches, which typically divide the training dataset into clean and
noisy subsets according to the loss distribution of samples. However, they over-
look the fact that clean samples with complex visual patterns may also yield large
losses, especially for datasets with Instance-Dependent Noise (IDN), in which
the probability of an image being mislabeled depends on its visual appearance.
This paper extends this idea and distinguishes complex samples from noisy ones.
Specifically, we first select training samples with small initial losses to form an
easy subset, where these easy samples are assumed to contain simple patterns
with correct labels. The remaining samples either have complex patterns or in-
correct labels, forming a hard subset. Subsequently, we utilize the easy subset
to hallucinate multiple anchors, which are used to select hard samples to form
a clean hard subset. We further exploit samples from these subsets following a
semi-supervised training scheme to better characterize the decision boundary. Ex-
tensive experiments on synthetic and real-world instance-dependent noisy datasets
show that our method outperforms the State-of-The-Art NLL methods.

1 INTRODUCTION

The achievements of Deep Neural Networks (DNNs) (He et al., 2017; 2016; Redmon et al., 2016)
heavily rely on the availability of extensively annotated datasets (Deng et al., 2009; Lin et al., 2014).
However, annotating data unavoidably introduces label noise (Xiao et al., 2015; Li et al., 2017; Wei
et al., 2021b), which degrades model performance. Therefore, there is growing research interest in
automatically correcting label noise or learning with robust representation to address the challenges
arising from noisy labels (Han et al., 2020; Song et al., 2022). In this paper, we focus on image
classification tasks with Instance-Dependent Noise (IDN), which is more applicable in real-world
scenarios (Wei et al., 2021b) as the probability of each image being mislabeled depends on its visual
appearance.

The State-of-The-Art (SoTA) NLL methods are mainly based on the sample selection (Li et al.,
2020; Nishi et al., 2021; Li et al., 2021a; Karim et al., 2022; Yao et al., 2021; Wang et al., 2022b),
which aims at selecting correctly-labeled samples from the training set that potentially contains
noisy labels. Semi-Supervised Learning (SSL) techniques can then be directly applied by treating
the selected samples as labeled data and the remaining ones as unlabeled data. In recent selection-
based approaches such as DivideMix (Li et al., 2020) and its successors (Nishi et al., 2021; Karim
et al., 2022; Wang et al., 2022b), the sample selection process is carried out by adopting the small-
loss criterion. That is, samples with small classification losses during training are considered to be
correctly labeled (i.e., clean), and the labels of the large-loss samples can be discarded. However,
DNNs are known to learn simple patterns much faster than complicated ones (Arpit et al., 2017).
The initial small-loss samples might only represent an easy subset of the training data. On the other
hand, samples with large classification losses during training are not necessarily noisy—they could
still be clean samples that are just hard to learn for the DNNs due to their complex visual patterns.
For example, in CIFAR-10 (Krizhevsky & Hinton, 2009), airplanes are usually in the sky and ships
are usually on the water but a few samples of airplanes are on the water. These kinds of samples
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Figure 1: A schematic plot of our method for visual classification in comparison with classic
NLL methods. (a) Classification on a noisy dataset with Instance-Dependent Noise (IDN) noisy
labels. (b) Existing selection-based NLL methods (Li et al., 2020; Nishi et al., 2021; Karim et al.,
2022; Wang et al., 2022b) treat large-loss samples near the decision boundary that are hard to classify
as unlabeled data. (c) Our proposed method identifies the hard samples and corrects their labels
through anchor hallucination and selection.

are harder to learn from a data-driven learning perspective. Such clean hard samples are typically
distributed around the decision boundary and contain critical labeling information for DNNs to learn
robust representations (Xia et al., 2021). Simply discarding their labels would result in inaccurate
decision boundary, model overfitting, and performance degradation, as noted in (Chen et al., 2021;
Wang et al., 2022b).

To address the above issue, we propose to distinguish easy samples from hard ones, in addition to
the dimension of samples with clean vs. noisy labels. Fig. 1 shows the idea of our approach in
comparison with existing NLL methods. We design a novel hard anchor hallucination technique
to identify valuable clean hard samples for better data utilization. Specifically, we first apply the
small-loss criterion to select a fixed portion of easy samples in each class from the training set.
We thus meticulously split the training set into a class-balanced easy subset and a hard subset.
To identify clean hard samples, we utilize the easy subset to hallucinate hard features as anchors.
Specifically, an anchor is made by fusing features from two randomly selected easy samples, where
the fusion can effectively increase the complexity of visual patterns to mimic hard samples. The
hallucinated anchors are then used to select their surrounding real hard samples (Fig. 1(c)). Finally,
following the SSL training paradigm, the selected clean hard samples together with the easy subset
are treated as the labeled data, and the remaining samples are treated as the unlabeled data, for
training the classifier. Extensive experiments are conducted on synthetic IDN datasets created from
CIFAR-10 (Krizhevsky & Hinton, 2009) and the real-world CIFAR-10N/100N (Wei et al., 2021b)
and Clothing1M (Xiao et al., 2015) datasets to evaluate and compare our method with the SoTA
NLL methods DivideMix (Li et al., 2020) and TSCSI (Zhao et al., 2022). On CIFAR-10 with
40% Classification-based label noise, we achieve an average test accuracy of 92.47%, surpassing
the result of 84.18% reported by TSCSI (Table 2). On CIFAR-10N with the Worst noise pattern,
we achieve an average test accuracy of 93.52%, outperforming DivideMix which reaches 92.56%
(Table 3). These results show that our framework achieves significant performance improvement in
learning from both synthetic and real-world IDN datasets.

The contributions of this paper are summarized in the following:

• We propose to split the training dataset into easy and hard subsets, in addition to the di-
mension of samples with clean vs. noisy labels, for better data utilization under noisy label
training.

• We propose a novel anchor hallucination and hard sample selection framework to identify
clean hard samples from the hard subset for improved NLL performance.

• By training the model using the identified easy and clean hard samples, our framework
achieves significant performance improvement in learning from both synthetic and real-
world IDN datasets.
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2 RELATED WORKS

In the literature on NLL, there are two prevalent types of label noise that are frequently considered
and deliberated in the context of visual classification (Frenay & Verleysen, 2014; Song et al., 2022),
namely the Instance-Independent Noise (IIN) and Instance-Dependent Noise (IDN). For IIN, the
mislabeling probability of an image belonging to a particular class to another class is solely depend-
ing on the pair of classes involved. This probability is independent of the visual content contained
within the image sample. Examples of IIN include symmetric and asymmetric noise patterns pro-
posed in (Patrini et al., 2017), which have been widely adopted in related fields. In contrast to IIN,
recent works (Chen et al., 2021; Xia et al., 2020; Zhang et al., 2021; Wei et al., 2021b) argue that
the real-world noise patterns are more likely to depend on the visual content, and start to deal with
the task of learning from IDN. Various studies suggest different approaches to synthetic IDN in or-
der to characterize the noise behavior in the real world (Chen et al., 2021; Xia et al., 2020; Zhang
et al., 2021). Beyond synthetic IDN, (Wei et al., 2021b) collect multiple human-annotated noisy
labels on the widely used CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) to validate
IDN in real-world human labeling. They further released CIFAR-10N and CIFAR-100N as two
human-annotated IDN benchmarks.

Learning from IIN. Various NLL approaches have been proposed to learn from IIN labels, includ-
ing the design of noise-robust loss functions (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Wang
et al., 2019; Amid et al., 2019; Ma et al., 2020; Lyu & Tsang, 2020), loss correction (Patrini et al.,
2017; Hendrycks et al., 2018; Wang et al., 2020; Xia et al., 2019; Yao et al., 2020), label correc-
tion (Zheng et al., 2020; Wang et al., 2021; Kye et al., 2022; Yi & Wu, 2019; Zheng et al., 2020),
and sample selection (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018; Han et al., 2018; Yu et al.,
2019; Wei et al., 2020a). Recent prominent studies in the field for IIN further combine the sample
selection approach with the semi-supervised learning (SSL) paradigm, which has led to remarkable
progress (Li et al., 2020; Nishi et al., 2021; Li et al., 2021a; Karim et al., 2022; Yao et al., 2021). The
majority of them resort to the small-loss criterion and consider samples with small training losses as
clean samples. Next, an off-the-shelf SSL algorithm (Berthelot et al., 2019; Sohn et al., 2020) can
be applied by treating those selected samples as labeled data and the remaining ones as unlabeled
data. However, those works tend to overfit to a small training subset of easy samples selected based
on the small-loss criterion (Chen et al., 2021; Wang et al., 2022b), which makes it difficult for them
to fully utilize the critical labeling information contained in clean hard samples near the decision
boundary. Despite their success on various IIN benchmarks, it is not clear how they perform under
the IDN assumption.

Learning from IDN. Recently in NLL, there has been a growing interest in IDN, and various meth-
ods have been proposed (Chen et al., 2021; Xia et al., 2020; Zhang et al., 2021; Zhu et al., 2021;
Cheng et al., 2022; Xia et al., 2021; Zhao et al., 2022; Wang et al., 2022a). Several of them com-
bat IDN by estimating the noise transition matrix (Cheng et al., 2022; Berthon et al., 2021; Jiang
et al., 2022), which usually requires additional information or achieves mediocre performance on
real-world data. Other methods resort to the selection-based method combining with SSL similar
to recent works for IIN (Zhao et al., 2022; Xia et al., 2021; Wang et al., 2022a), and have reached
state-of-the-art results on several IDN benchmarks. However, how to effectively identify and utilize
valuable clean hard samples remains an unsolved challenge. Our work belongs to this research line
but focuses more on reclaiming the lost information contained in clean hard samples through novel
hard anchor hallucination and hard sample selection techniques, as will be detailed in the following
sections.

3 THE PROPOSED METHOD

In this paper, we focus on the noisy label learning problem for image classification. The input is
a noisy training set D = {(xn, ỹn)}, where xn denotes the n-th image, and ỹn ∈ {1, 2, ..., C}
denotes the corresponding label of C classes. The label ỹn may not be equivalent to the real ground
truth label denoted by yn, which is not observable during training. Our goal is to train an image
classification model on D that can perform well on a clean test set. Specifically, we hallucinate hard
anchors in the feature space to identify valuable clean hard samples to support model training. To this
end, we divide a Convolutional Neural Network (CNN) model into two parts: (1) a convolutional-
based feature extractor fθ with parameter θ for extracting a d-dimensional feature from an input
image; and (2) a fully-connected (FC)-based linear classifier gρ with parameter ρ that maps a d-

3



Under review as a conference paper at ICLR 2024

Figure 2: Our NLL learning framework consists of two main training phases, namely the classi-
fication phase and the hallucinator training phase. The classification phase consists of four steps:
(1) easy sample selection, (2) hard anchor hallucination, (3) hard sample selection, and (4) semi-
supervised learning. The hallucinator model is updated in the hallucinator training phase.

dimensional feature vector to a C-dimensional probability vector. We also design a hallucinator
module hϕ with parameter ϕ that maps two d-dimensional feature vectors of two real samples to a
d-dimensional feature vector representing the hallucinated anchor (more details in § 3.2).

As illustrated in Fig. 2, our NLL training framework consists of two major iterative training phases:
the classification phase and the hallucinator training phase. In the classification phase, we fix hϕ

and optimize the CNN model (fθ and gρ) using the following four steps: (1) easy sample selec-
tion (§ 3.1), (2) hard anchor hallucination (§ 3.2), (3) hard sample selection (§ 3.3), and (4) semi-
supervised learning, which updates the feature extractor and the classifier (§ 3.4). In the hallucinator
training phase, we fix the CNN model (fθ and gρ) and only update hϕ according to a loss term
derived from hallucinated anchors. We detail each step and loss in the following sections.

3.1 EASY SAMPLE SELECTION

Our method starts with selecting easy samples—the samples with simple patterns and clean labels—
to support the subsequent hard anchor hallucination and hard sample selection processes. As DNNs
are known to learn simple patterns much faster than complicated ones (Arpit et al., 2017), we select
easy samples based on the classification loss distribution during training. Specifically, we follow the
works of (Li et al., 2020; Karim et al., 2022; Wang et al., 2022b) to calculate the cross-entropy loss
of each sample (xn, ỹn) ∈ D, and then use a two-component Gaussian Mixture Model (GMM) to
fit the loss distribution over all training samples. The probability of each sample belonging to the
Gaussian component with a smaller mean is used as a measurement of the easiness score ωn for
each sample.

We then select a fixed portion of samples with top-P% easiness scores to form the easy subset,
where P is tuned as a hyperparameter based on a small clean validation set. We control the value of
P to ensure that the easy subset is sufficient in number while still containing clean samples for the
data hallucination purpose. We further constrain the easy subset to be balanced among all classes
to secure sufficient sample numbers for each class. The number of samples for the j-th class in the
easy subset is given by

Mj = min

(⌈
|D| × P%

C

⌉
, Nj

)
, (1)

where Nj denotes the total number of samples of the j-th class inD. Based on the above procedure,
we obtain a class-balanced easy subset consisting of easy training samples, and also a hard subset
consisting of the remaining unselected samples. We further utilize the feature extractor fθ to embed
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both easy and hard samples into the feature space. The derived easy and hard feature subsets are
denoted as Se and Sh, respectively, for subsequent use in our method.

3.2 HARD ANCHOR HALLUCINATION

After easy sample selection, we obtain an easy subset Se that contains features corresponding to
training samples with simple visual patterns and possible clean labels. Then, we leverage Se to
hallucinate hard anchors by fusing easy features to hallucinate complex visual patterns. Specifically,
given an easy feature (su, ỹu) ∈ Se, we first randomly choose another easy feature (sv, ỹv) ∈ Se
from a different class, i.e., ỹv ̸= ỹu. We then concatenate su and sv as the input to the hallucinator
hϕ to produce the hallucinated anchor sa = hϕ(su, sv), with its label assigned as the same label of
su, i.e., ỹa = ỹu. Next, we explain how we encourage sa to become a hard anchor with a desired
class that would be useful in the subsequent hard sample selection step.

First, to encourage sa to be hard, we optimize the hallucinator hϕ by regularizing the closeness
between sa and both su and sv . Specifically, we define the closeness loss based on the cosine
distances between features as Lclo = −λp ⟨sa, su⟩ − (1 − λp) ⟨sa, sv⟩, where λp ∈ [0.5, 1.0] is
a hyperparameter controlling the difficulty level of sa, and ⟨·, ·⟩ computes the cosine similarity
between its arguments. By minimizing Lclo, the hallucinated anchor sa will be encouraged to reside
in the area between su and sv in the feature space, and thus share visual patterns from both classes
ỹv and ỹu.

Second, to ensure that sa belongs to the desired class, we follow the work of (Zhang & Wang, 2021)
and define a classification loss using its target label ỹa = ỹu. The overall hallucination loss Lhal is
calculated as:

Lhal = Lclo +H(sa, ỹu), (2)

where H(·, ·) computes the cross-entropy loss. By minimizing Eq. equation 2, the hallucinator is
encouraged to hallucinate an anchor sa = hϕ(su, sv) with complex visual patterns that are close to
the decision boundary between classes ỹu and ỹv , while still residing on the side toward ỹu. For a
single easy feature su, we generate multiple hallucinated anchors by sampling different sv . Those
hallucinated anchors form a hallucinated anchor subset Shal, which plays an essential role in the
following hard sample selection step.

3.3 HARD SAMPLE SELECTION

In this step, we utilize the hallucinated anchors in Shal to select clean hard samples from the real hard
feature subset Sh for better data utilization. In the feature space, we treat all hallucinated anchors in
Shal as candidates for representing their nearest real hard samples in Sh. A hallucinated anchor is
considered to be representative to a real hard feature if they are close enough in the feature space,
as illustrated in Fig. 3. Given a hallucinated anchor sa ∈ Shal, we thus adopt the cosine similarity
⟨·, ·⟩ as the measurement and find its nearest real hard feature by sr = argmaxsn∈Sh

⟨sa, sn⟩.
For simplicity, we directly use ⟨sa, sr⟩ to indicate the representative score, and consider sa to be
a valid representative of sr if ⟨sa, sr⟩ is greater than a threshold λconf , which can be tuned as a
hyperparameter based on a small clean validation set.

Based on the above procedure, we simply identify a hard feature in Sh to be clean if it is surrounded
by at least one valid representative. Such clean hard features are collected to form the clean hard
subset Sch, and the remaining features form the noisy hard subset Snh . Note that a clean hard feature
might be surrounded by multiple valid representatives. For each sc ∈ Sch, we further collect at most
K of its surrounding valid representatives, and obtain its corrected label by majority vote.

Our hard sample selection process enables the extraction of valuable information contained in the
hard samples, which can be incorporated for model training to ultimately improve model perfor-
mance. By using hallucination to assist in the selection of clean hard samples, we ensure that the
model can learn robust representations that capture the underlying structure of the dataset.

3.4 SEMI-SUPERVISED LEARNING

After the hard sample selection step, we combine the derived clean hard subset Sch with the easy
subset Se to form the labeled dataset Slabeled = Sch∪Se, and leave all remaining noisy hard features
to form the unlabeled dataset Sunlabeled = Snh . Following (Li et al., 2020) and (Li et al., 2021a), we
adopt the classic SSL method MixMatch (Berthelot et al., 2019) on the newly formed Slabeled and
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Figure 3: Illustration of hard sample selection. See text for explanation.

Table 1: Classification accuracy (%) on CIFAR-10 with ParT-Dependent (PTD) label noise (Xia
et al., 2020) across different noise ratios. The result of the baseline methods are taken from the(Zhao
et al., 2022). The best results are in bold and the second best are underlined.

Method PTD 20% PTD 40%
Co-teaching (Han et al., 2018) 88.87±0.24 73.00±1.24
Co-teaching+ (Yu et al., 2019) 89.80±0.28 73.78±1.39
JoCoR (Wei et al., 2020a) 88.78±0.15 71.64±3.09
DivideMix (Li et al., 2020) 93.33±0.14 95.07±0.11
CAL (Zhu et al., 2021) 92.01±0.75 84.96±1.25
TSCSI (Zhao et al., 2022) 93.68±0.12 94.97±0.09
Ours 94.26±0.19 95.28±0.10

Sunlabeled. We apply weak augmentations on the input images from both Slabeled and Sunlabeled
to generate two different augmented images for every input image. The pseudo label for data from
Sunlabeled is the average of the predictions across those two augmented samples. The label in
Slabeled is also regularized by averaging between the label and the predictions across augmented
samples.

After obtaining the refined pseudo labels, we then perform state-of-the-art SSL training, with the
loss for the classification phase given by:

LSSL = LCE + λMSE LMSE , (3)

where LCE is the cross-entropy loss for the labeled data, LMSE is the mean squared error for the
unlabeled data, and λMSE is a hyperparameter set through validation. By minimizing equation 3,
the classifier fθ ◦ gρ would become more robust as more critical labeling information from the clean
hard samples now involved in the training process.

3.5 ITERATIVE MODEL TRAINING

To prevent the hallucinator hϕ from degeneration, i.e., always producing identical hallucinated an-
chors sa regardless of the input pair (su, sv), we adopt an iterative training procedure, as illustrated
in Fig. 2. After the warm-up training stage, we start the iterative training stage, which consists of
two training phases. In the classification phase, we freeze the hallucinator hϕ and train the feature
extractor fθ and the linear classifier gρ jointly using the updated labeled and unlabeled training sub-
set as derived according to § 3.1, 3.2, 3.3. In the hallucinator training phase, we freeze fθ and gρ,
and train hϕ using Eq. equation 2. The two phases are performed iteratively until sufficient epochs
are reached.

4 EXPERIMENTS

4.1 DATASETS AND IDN NOISE GENERATION

We follow previous NLL works on learning from datasets with IDN labels (Xia et al., 2020; Chen
et al., 2021; Zhu et al., 2021; Zhao et al., 2022) to conduct the experiments on both synthetic and
real-world IDN datasets, which are described below.

Synthetic IDN datasets. We conduct experiments on synthetic IDN datasets created from the
CIFAR-10 dataset (Krizhevsky & Hinton, 2009), which contains 50,000 training images and 10,000
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Table 2: Classification accuracy (%) on CIFAR-10 with classification-based label noise Chen et al.
(2021) across different noise ratios. Results of the baseline methods are taken from Zhao et al.
(2022). The best results are in bold and the second best are underlined.

Method 10% 20% 40%
Forward Patrini et al. (2017) 91.06±0.02 86.35±0.11 71.12±0.47
Co-teaching Han et al. (2018) 91.22±0.25 87.28±0.20 78.82±0.47
GCE Zhang & Sabuncu (2018) 90.97±0.21 86.44±0.23 76.71±0.39
DAC Thulasidasan et al. (2019) 90.94±0.09 86.16±0.13 74.80±0.32
DMI Xu et al. (2019) 91.26±0.06 86.57±0.16 77.81±0.85
SEAL Chen et al. (2021) 91.32±0.14 87.79±0.09 82.98±0.05
TSCSI Zhao et al. (2022) 91.39±0.08 88.36±0.11 84.18±0.40
Ours 93.68±0.47 92.98±0.11 92.47±0.41

test images from 10 clean-annotated classes. We considered two approaches in generating IDN
noises: 1) Part-dependent label noise (PTD) (Xia et al., 2020), which is generated according to a
combination of multiple noise transition matrices of different parts of an image; 2) Classification-
based label noise (Chen et al., 2021), which is generated by averaging the collected softmax outputs
during training using a standard CNN trained on all the training data for multiple epochs.

Real-world IDN datasets. To evaluate the effectiveness of our method on real-world IDN datasets,
we conducted experiments using the CIFAR-10N/100N (Wei et al., 2021b) and Clothing1M (Xiao
et al., 2015) datasets. CIFAR-10N/100N were generated from CIFAR-10/100 by collecting labels
from three human annotations for each training image through Amazon Mechanical Turk. The three
noisy labels for each image are denoted as Random 1/2/3, and are further aggregated by majority
vote (denoted as Aggregate) and by random selection of one wrong label if there is any (denoted
as Worst). The Clothing1M dataset contains over 1 million training images of 14 different types
of clothing collected online, with labels extracted from the surrounding text of images. We use the
14K clean validation set for hyperparameter tuning and the 10K clean test set to evaluate the model
performance. These IDN datasets present real-world scenarios with various noise sources and thus
provide a suitable testbed for comparing our method with the SoTA.

4.2 BASELINES AND IMPLEMENTATION DETAILS

We compare our framework with recent SoTA NLL works, including those focusing on IIN datasets
such as DivideMix (Li et al., 2020), and those focusing on IDN datasets such as TSCSI (Zhao et al.,
2022). It is worth noting that both DivideMix and TSCSI employ two networks in a co-training
fashion for model ensemble, whereas our framework only trains a single network in most of our
experiment settings except on Clothing1M. For CIFAR-10 with IDN and the CIFAR-10N/100N
datasets, we follow previous works (Wei et al., 2021b; Zhao et al., 2022) and adopt ResNet-34
network (He et al., 2016) as our classifier f ◦ g, and a simple two-layer Multi-Layer Perceptron
(MLP) as our hallucinator h. We evaluate our method on a clean testing set and report the best
testing accuracy on average over three runs. As for Clothing1M, we adopt an ImageNet-pretrained
ResNet-50 network as per the prior works (Li et al., 2020; Zhao et al., 2022) while also implementing
h as a two-layer MLP. We also adopt the same procedures as those used in DivideMix to select easy
samples(GMM-based selection without class balancing) for better comparison. During training, we
use the 14K clean validation set to choose the best model, which is applied to the 10K clean test to
get the test accuracy. More implementation details can be found in the supplementary materials.

4.3 QUANTITATIVE RESULTS

Results on PTD label noise. Table 1 shows experimental results on the CIFAR-10 datasets with
PTD noise (Xia et al., 2020). Our proposed method achieves significant performance improvement
compared to prior state-of-the-art methods under both 20% and 40% noise ratios. Our model also
shows robustness against the increasing noise rate under PTD.

Results on classification-based label noise. Table 2 lists the performance comparisons on the
CIFAR-10 datasets with classification-based label noise (Chen et al., 2021) under different noise
levels. The classification-based label noise is considered challenging due to its originating from
a classification model (Zhao et al., 2022). Across all levels of label noise, our method consis-
tently demonstrates significantly superior performance compared to previous methods. Notably, our
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Table 3: Classification accuracy (%) on CIFAR-10N/100N (Wei et al., 2021b) across different noise
settings. Results of the baseline methods are taken from (Wei et al., 2021b). The best results are in
bold and the second best are underlined.

CIFAR-10N CIFAR-100N
Method Random1 Random2 Random3 Worst Noisy
Co-teaching+ (Yu et al., 2019) 89.70±0.27 89.47±0.18 89.54±0.22 83.26±0.17 57.88±0.24
ELR+ (Liu et al., 2020) 94.43±0.41 94.20±0.24 94.34±0.22 91.09±1.60 66.72±0.07
Positive-LS (Lukasik et al., 2020) 89.80±0.28 89.35±0.33 89.82±0.14 82.76±0.53 55.84±0.48
F-Div (Wei & Liu, 2020) 89.70±0.40 89.79±0.12 89.55±0.49 82.53±0.52 57.10±0.65
DivideMix (Li et al., 2020) 95.16±0.19 95.23±0.07 95.21±0.14 92.56±0.42 71.13±0.48
Negative-LS (Wei et al., 2021a) 90.29±0.32 90.37±0.12 90.13±0.19 82.99±0.36 58.59±0.98
CORES (Cheng et al., 2020) 94.45±0.14 94.88±0.31 94.74±0.03 91.66±0.09 55.72±0.42
VolMinNet (Li et al., 2021b) 88.30±0.12 88.27±0.09 88.19±0.41 80.53±0.20 57.80±0.31
CAL (Zhu et al., 2021) 90.93±0.31 90.75±0.30 90.74±0.24 85.36±0.16 61.73±0.42
PES (Bai et al., 2021) 95.06±0.15 95.19±0.23 95.22±0.13 92.68±0.22 70.36±0.33
Ours 95.21±0.05 95.31±0.10 95.25±0.17 93.52±0.49 70.79±0.06

Table 4: Classification accuracy (%) on Clothing1M. We report our baseline DivideMix on average
over three runs using their official code. Results of other methods are from (Zhao et al., 2022). The
best results are in bold and the second best are underlined.

Method Co-teaching JoCoR DivideMix CAL TSCSI Ours
(Han et al., 2018) (Wei et al., 2020b) (Li et al., 2020) (Zhu et al., 2021) (Zhao et al., 2022)

Accuracy 69.21 70.30 74.40±0.08 74.17 75.40 74.62±0.14

Table 5: Ablation analysis on CIFAR-10 with 40% classification-based noise (Chen et al., 2021).

Easy sample selection Hard sample correction Test accuracy
- - 86.24±0.90
✓ - 89.77±1.45
✓ ✓ 92.47±0.41

method exhibits remarkable resistance to higher levels of label noise (40%) on classification-based
label noise, while other methods suffer substantial performance degradation.

Results on CIFAR-N. Table 3 shows performance comparisons on the CIFAR-10N/CIFAR-100N
datasets (Wei et al., 2021b). Our method consistently outperforms other methods on CIFAR-10N
with all the noise settings of Random 1,Random 2, Random 3, and Worst. Notably, our method
achieves comparable performance compared to DivideMix (Li et al., 2020) on CIFAR-100N while
only training a single network. This demonstrates the efficacy of our method in learning from real-
world IDN datasets.

Results on Clothing1M. Table 4 shows performance comparisons on the Clothing1M dataset.
Our method achieves competitive results compared with TSCSI and is superior to DivideMix and
other methods. Since our method adopts similar strategies with DivideMix in easy sample selec-
tion (§ 3.1), the superior performance compared to DivideMix indicates the effectiveness of our
hallucination-based hard sample selection (§ 3.2 and § 3.3) in learning from such a large-scale IDN
dataset.

Ablation study. To evaluate the effectiveness of each design component, we conducted an ablation
analysis of our proposed framework on the CIFAR-10 dataset with 40% classification-based IDN.
We compared the performance of three different settings: (1) vanilla GMM selection-based method,
which is essentially DivideMix (Li et al., 2020) without co-training and model ensemble, (2) our
method with only the easy sample selection stage as described in § 3.1, and (3) our method with both
stages of easy sample selection and hard sample correction in § 3.3. Table 5 presents the comparison
results. As can be seen from the table, the design of each of the two stages contributes to the
performance improvement of our framework. Notably, the easy sample selection stage contributed

8
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Figure 4: The t-SNE visualization for the hallucinated samples. We use darker colors to denote
the hallucinated samples and lighter colors for real ones. Note that most of the hallucinated samples
are distributed around the decision boundary.

the most to the performance boost, indicating the importance of obtaining a class-balanced easy
subset for effective model training. The second stage of hard sample selection further improved the
performance to the SoTA level of 92.47%. This validates and confirms our proposal that information
contained in hard samples is valuable for the model to learn a robust representation.

4.4 VISUALIZATION AND ANALYSIS

To demonstrate the effectiveness of our proposed method, We show the t-SNE (van der Maaten &
Hinton, 2008) visualization results for both the projected feature space and the real image examples
with corrected labels.

Visualization for hard anchor hallucination. Fig. 4 presents the t-SNE visualization (van der
Maaten & Hinton, 2008) of our hallucination on the CIFAR-10 dataset with 40% classification-
based label noise in various training epochs. For simplicity, we limit the display to 25 hallucinated
and 500 real samples for each class randomly sampled from D. The colors of darker hues indi-
cate the hallucinated anchors with pseudo-labels that match the corresponding lighter shades. As
observed from the t-SNE plot, the features of hallucinated anchors for each class align with the
corresponding cluster of real features, which usually disperse around the decision boundary. This
demonstrates that our hallucinated anchors can effectively mimicking the desired hard samples with
appropriate pseudo-labels, which can facilitate the subsequent hard sample selection for improved
decision boundary training. We provide additional visualization on the hard anchors in the appendix.

5 CONCLUSIONS

In this paper, we present a novel framework to tackle the underestimation of hard samples in classic
selection-based Noisy-Label Learning (NLL) methods. By leveraging easy samples to hallucinate
the hard anchors, our approach captures crucial information from hard samples in the presence of
instance-dependent noise. We demonstrated the effectiveness of our model on several benchmark
datasets, achieving superior performance compared to state-of-the-art methods. We believe that
our work offers a fresh perspective on the significance of hard samples in training models under
label noise, a factor frequently overlooked by conventional NLL methods. We show that leveraging
the critical labeling information in clean hard samples can enhance the robustness of the decision
boundary. Other domains may also benefit from our proposal, such as active learning, which also
focuses on leveraging the information of the data effectively.

Limitations. Our framework identifies clean hard samples through hard sample hallucination, with
the assumption that the selected easy feature subset Se (and hence the hallucination subset Shal)
covers all classes of interested. As a result, the proposed hallucination process might not work well
for highly imbalanced datasets.

Future work. A thorough investigation and evaluation of the proposed framework on larger real-
world datasets will preferably generate new insights to improve the current solution. We also plan
to integrate the proposed framework into other domains beyond image classification to enhance the
generalizability of our work.
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APPENDIX

A IMPLEMENTATION DETAILS

Table 6 shows the hyperparameter settings for different datasets in our experiment. We train our
models separately on (1) CIFAR-10 dataset with synthetic Instance Dependent Noise (IDN), (2) the
CIFAR-10N, (3) CIFAR-100N, and (4) Clothing1M datasets. The training process of our model
spanned 200 epochs using SGD with an initial learning rate of 0.02, a momentum of 0.9, a weight
decay parameter of 0.0005, and a batch size of 128. The number of warm-up epochs is set as 10 for
CIFAR-10 and 30 for CIFAR-100. At epoch 120, we divide the learning rate by 10. The P% portion
of easy sample selection is set to 0.4, 0.7, and 0.8 for Classification-based label noise with 10% and
40% noise ratios and CIFAR-100N, respectively. For the PTD label noise with both 20% and 40%
noise ratios and for CIFAR-10N, we set P% as 0.6. The hard sample selection threshold λconf is set
as 0.95 for CIFAR-10N, and 0.8 for both 40% Classification-based label noise and CIFAR100-N.
For 10% Classification-based label noise and all the noise ratios in PTD, λconf is set as 0.97. As for
λmse, we simply follow the value suggested in DivideMix (Li et al., 2020). We evaluate our method
on a clean testing set and report the best testing accuracy on the average of three different trials.

For Clothing1M, we train the model for 80 epochs using SGD with an initial learning rate of 0.02,
a momentum of 0.9, a weight decay parameter of 0.001, and a batch size of 32. The number of
warm-up epochs is set as 1. At epoch 40, we divide the learning rate by 10. The threshold of GMM-
based easy sample selection is set to 0.5, and the hard sample selection threshold λconf is set as 0.9.
We again follow DivideMix (Li et al., 2020) and set λconf = 0. During training, we use the 14K
clean validation set to choose the best model, which is applied to the 10K clean test to get the test
accuracy.

Throughout all experiments, the difficulty level λp is fixed at 0.6, and the maximum number of valid
representatives for each real hard sample (K) is set as 3.

Table 6: Hyperparameter settings.

Dataset CIFAR-10 CIFAR-10N CIFAR-100N Clothing1M
Noise type C-based 10/20% C-based 40% PTD-20% PTD-40% Random 1/2/3 Worst Noisy

Total epochs 200 200 200 200 300 200 200 80
Warm-up epochs 10 10 10 10 10 10 30 1
Init. learning rate 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.02
SGD Momentum 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 1e-3
Batch size 128 128 128 128 128 128 128 32

λp 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
K 3 3 3 3 3 3 3 3
P% 0.4 0.7 0.6 0.6 0.8 0.6 0.8 0.7
λconf 0.97 0.8 0.97 0.97 0.95 0.95 0.8 0.9
λmse 0 25 25 25 0 25 150 0

B HYPERPARAMETER ANALYSIS

We conduct additional experiments on CIFAR-10 with 40% classification-based noise to examine
the effect of the two hyperparameters: the threshold for easy sample selection (P% in § 3.1) and the
threshold for hard sample selection (λconf in § 3.3).

Table 7: Hyperparameter analysis of the fixed proportion of easy sample selection P% on CIFAR-10
with 40% Classification-based noise and λconf = 0.8.

P% 0.3 0.4 0.5
Test Acc. 90.38±0.51 92.47±0.41 92.38±0.14
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Table 8: Hyperparameter analysis of the hard sample selection threshold λconf on CIFAR-10 with
40% Classification-based noise and P% = 0.4.

λconf 0.7 0.8 0.9
Test Acc. 91.12±0.76 92.47±0.41 91.53±1.18

Threshold for easy sample selection. In step 1 (§ 3.1), we select a fixed portion of samples with top-
P% easiness scores to form the easy feature subset Se for the subsequent hard anchor hallucination
and hard sample selection processes. Intuitively, with a larger P , Se would have sufficient samples
for each class, but might include more noisy samples. In Table 7, we show the test accuracy of the
model trained on CIFAR-10 with 40% classification-based noise, with P% ∈ {0.3, 0.4, 0.5} and a
fixed λconf = 0.8. We can observe that the model’s performance deteriorates when P% = 0.3,
as the easy subset Se might not contain sufficient samples for all classes. On the other hand, when
P% surpasses a certain threshold (e.g., 0.4), the model consistently achieves high performance and
shows less sensitivity to the size of Se, indicating the robustness of the proposed framework.

Threshold for hard sample selection. In the step of hard sample selection (§ 3.3), we define clean
hard samples from the hard feature subset Sh based on the cosine similarity values between real hard
features and the hallucinated anchors. Specifically, an hallucinated anchor sa is defined as a valid
representative of a real hard feature sr if ⟨sa, sr⟩ ≥ λconf . Intuitively, a smaller λconf would result
in a larger size of selected clean hard subset Sch, but might introduce more noisy hard samples. In
Table 8, we show the test accuracy of the model trained on CIFAR-10 with 40% classification-based
noise, with λconf ∈ {0.7, 0.8, 0.9} and a fixed P% = 0.4. We observe that the model performance
exhibits notable variations based on the selection of different values for λconf . This implies that both
the quantity and quality of the selected clean hard samples Sch are crucial for the model performance
and the precise tuning of λconf is necessary.

C VISUALIZATION

Visualization for hard sample selection. Our hallucinator generates hard sample anchors in a
feature space that is not intuitive to observe. To demonstrate the efficacy of such hard anchor hallu-
cination and sample selection, we search for the nearest real samples in the feature space and take
them as visual substitutes. Fig. 5 shows such visualization results on CIFAR-10, where each com-
bination of the input easy sample pairs and their hallucination anchors are shown. Observe that our
hallucinator can effectively identify challenging samples with correct labels (as shown in the first
column) and rectify samples with incorrect labels (as evident in the fifth column). This experiment
provides additional evidence of the ability of our hallucinator to produce high-quality anchors and
reinforces the practical utility of our method.

Performance of noise correction. We show the overall noise rate and the label correction accuracy
of our method on the most challenging CIFAR-10 with 40% Classification-based noise during the
training in Fig. 6. The overall noise ratio decreased during training and our overall label correction
steadily achieve over 90% correction accuracy, which shows the effectiveness of our method.

Examples of hard samples in CIFAR-10. We present some of the hard examples from CIFAR-10
in Fig. 7. These samples exhibit notable difficulty as they often bear resemblance to other classes or
with hard visual patterns. For example, the background of the first sample could potentially lead to
a misclassification of ship.

D PSEUDO CODE FOR OUR MODEL TRAINING PROCEDURE

We provide the pseudo-code for our framework in Algorithm 1 for model training.
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Figure 5: Visual verification of the hard anchor selection process. The first two rows represent
the corresponding images for easy features su and sv sampled from Se, and the third row represents
the nearest image to the hallucinated anchor sa = hϕ(su, sv). The first column (violet box) shows
that sa successfully selects the correctly-labeled real hard sample (Truck). The fifth column (orange
box) shows that sa successfully corrects the label of an incorrectly-labeled real hard sample (Frog
to Deer).

Figure 6: The correction performance and noise curves. The left figure (a) shows the overall noise
rate gradually decreased during training. The right figure (b) is our overall correction accuracy.

Figure 7: Some hard examples in CIFAR-10. These samples are easily being confused with other
classes becuase of their hard visual patterns.
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Algorithm 1 The proposed training procedure.
Input: The training set D = {(xn, ỹn)}, number of class C, classification network fθ ◦ gρ, hallu-

cinator hϕ, easy selection threshold P%, hard sample selection threshold λconf , total training
epochs T , number of iterations Imax, number of warm-up epochs Twarm, learning rate η

Output: Trained model fθ ◦ gρ
1: for t = 1, 2, . . . , T do
2: if t ≤ Twarm then
3: Update (θ, ρ)← (θ, ρ)− η∇LCE

4: else
5: Freeze (θ, ρ) and un-freeze ϕ
6: Get easiness score ωn for all samples ∈ D from GMM
7: Get subsets of Se and Sh by Eq. (1)
8: Initialize Shal as an empty set
9: for iter = 1, 2, . . . , Imax do

10: Sample a mini-batch S from Se
11: Hallucinate anchors {sa} from S
12: Shal ← Shal ∪ {sa}
13: Obtain Lhal using {sa} and S by Eq. (2)
14: Update ϕ← ϕ− η∇Lhal

15: end for
16: Freeze ϕ and Un-freeze (θ, ρ)
17: Select Sch from Sh using Shal
18: Slabeled ← Se ∪ Sch
19: Sunlabeled ← Sh \ Sch
20: for iter = 1, 2, . . . , Imax do
21: Obtain LCE using Slabeled and Sunlabeled by Eq. (3)
22: Update (θ, ρ)← (θ, ρ)− η∇LCE

23: end for
24: end if
25: end for
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