Training Language Models to Generate Quality Code
with Program Analysis Feedback

Feng Yao'* Zilong Wang'* Liyuan Liu?> Junxia Cui' Li Zhong' Xiaohan Fu!
Haohui Mai® Vish Krishnan! Jianfeng Gao®? Jingbo Shang!

lyc San Diego, 2Microsoft Research, >CausalFlow Inc.

{fengyao, zlwang, jshang}@ucsd.edu, {lucliu, jfgao}@microsoft.com

Abstract

Code generation with large language models (LLMs), often termed vibe coding,
is increasingly adopted in production but fails to ensure code quality, particularly
in security (e.g., SQL injection vulnerabilities) and maintainability (e.g., missing
type annotations). Existing methods, such as supervised fine-tuning and rule-based
post-processing, rely on labor-intensive annotations or brittle heuristics, limiting
their scalability and effectiveness. We propose REAL, a reinforcement learning
framework that incentivizes LLMs to generate production-quality code using pro-
gram analysis-guided feedback. Specifically, REAL integrates two automated
signals: (1) program analysis detecting security or maintainability defects and (2)
unit tests ensuring functional correctness. Unlike prior work, our framework is
prompt-agnostic and reference-free, enabling scalable supervision without manual
intervention. Experiments across multiple datasets and model scales demonstrate
that REAL outperforms state-of-the-art methods in simultaneous assessments of
functionality and code quality. Our work bridges the gap between rapid prototyping
and production-ready code, enabling LLMs to deliver both speed and quality.

100

Base-0.5B Base-3B Base-7B
Base model: Qwen2.5-Coder-Instruct v## Real-0.5B Real-3B Real-7B
Real is our method
84.71 85.88
80
2
g 9941
32 61.59 % 62.04
> E .
£ 6 6087 / 58.82
©
c
2 % 52.41
Q
c
S
: %
1
J 39.63
g % %
© / /
s / / 27.06 g’og
2 .
20 % 20.00% %
% 10.98 10.98 % % 9.83 10.79
366 /2 /2 501 /2
0 >
SecCodePLT+ SafeSQL APPS+

Benchmarks

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1 Introduction

Large language models (LLMs) have revolutionized code generation, enabling rapid workflows collo-
quially termed vibe coding. Coding assistants like Copilot [GitHub, 2021]], Cursor, and Windsurf [Xu
et al.}2022]) exemplify this shift, with developers increasingly relying on LLMs to automate tasks
from prototyping to production, highlighting the critical need to ensure code quality.

In production settings, code quality extends beyond functional correctness to encompass: security
(e.g., resistance to injection attacks or misuse of unsafe functions) and maintainability (e.g., proper
type annotations, consistent style, and modular structure). These properties are crucial for long-term
reliability and team collaboration. However, LLMs are known to generate code that is syntactically
plausible but flawed in subtle or dangerous ways [Yang et al., 2024, [Wan et al., 2024]].

Existing methods improve code quality either through supervised fine-tuning on large corpora of
manually curated, vulnerability-free code [He et al.,2024]| or by applying rule-based post-processing
at inference to enforce security constraints [Fu et al.| 2024] Nazzal et al.| 2024]]. The former incurs
high annotation costs, while the latter depends on hand-crafted constraints specific to each coding
task. Both strategies exhibit limited scalability and effectiveness in real-world production scenarios.

We introduce REAL (Reinforcement rEwards from Automated program analysis), a reinforcement
learning framework that trains LLMs to generate quality code through program analysis-guided feed-
back. Unlike prior methods that either teach LLMs to mimic human-verified code examples or correct
their outputs post hoc with brittle heuristics, REAL employs verifiable and reference-free reward
signals to incentivize quality code generation with minimal human efforts. As illustrated in Figure[T}
REAL’s compound reward combines: (1) program analysis—based detection of vulnerabilities in
security or maintainability, and (2) unit-test—based verification of functional correctness.

To demonstrate REAL’s efficacy, we evaluate it across multiple benchmarks spanning diverse pro-
duction scenarios, assessing code quality along two key dimensions. (1) For security evaluation,
we augment SecCodePLT dataset [[Yang et al.,|2024] with a program analysis-based detector built
by us that effectively identifies 17 Common Weakness Enumerations (CWEs) § [A.1] resulting in
an enhanced benchmark we term SecCodePLT+. To enable fine-grained evaluation of high-impact
vulnerabilities, we additionally introduce SafeSQL, a targeted dataset featuring realistic database
query tasks susceptible to SQL injection attacks. (2) For maintainability assessment, we augment
APPS dataset [Hendrycks et al.| 2021]] to APPS+ with comprehensive static analysis, including type
checking, unreachable code detection, and function signature verification for Python code.

Policy Gradient

?

QTask Description v Generated Program *@
po ! [cur = sqlite3.connect (DB) .cursor () | <+
i Count the number of { o"oﬁ. !min = input('Min?'); max = input('Max?') | |'| ”
{ items in DB with a price 4 O+@>| | Q- "SELECT COUNT(*) FROM items \ i Advantage
within the range specified O\‘O,. H WHERE price <= {max} \ {
} by the user’s inputs. .
; Y P Policy Model

i AND price >= {min}" E A
{ curfxecute Q) . : Hybrid Reward
* \ :

\

e - (- . -)
Vulnerablllty Detector (via Program Analysis) Functlonahty Verifier (ia unit Tests)
Example: SQL Injection Detector T
e T [Tainted Analysis ! Unit Tests eg min-max—outpuy) |
£ """" 5}»{max ,min} 1. User inputs as taint src.9 @ Test 1: $2.5~$10—3 \ D
:]) | Reward: ¢ . Lt I :

3 (ﬁ --4;-{max, min, Q}2 Propagate tointed var. £ pass or Fail +] @ Test 2: $3~$1-0 -+
@}chr .execute (Q) 3. SQL exec. as sink. ¥ ! PN T B %generated
i : {(D) Testn:$7-$1002107 | Lo |
Convert the program into a Control Flow Graph (CFG) and conduct , # passed tests
L Taint Analysis to detect SQL injection vulnerabilities.) L Reward: 7 ioul osts)

Figure 1: Overview of the REAL framework. Given a coding task, the LLM policy generates a
candidate program, which is then evaluated along two automated axes: (1) Vulnerability Detector
applies program analysis to flag security and maintainability defects, (2) Functionality Verifier runs
unit tests to assess correctness. The two reward signals are averaged and fed into a policy-gradient
update, steering the LLM toward high-quality, functionally correct code with minimal human effort.

In addition to code quality evaluation, we assess functional correctness using unit tests. To provide
a holistic evaluation, we introduce a composite metric that jointly measures both functionality and
quality. This resolves a critical gap: structurally sound code that fails functionally should not be
prioritized. By integrating both objectives, our evaluation reflects the real-world needs, where code
quality and functionality are inseparable. Extensive experiments across diverse benchmarks and
model sizes demonstrate that REAL consistently outperforms state-of-the-art baselines, confirming
its scalability and effectiveness in delivering reliable and production-quality code generation. To
summarize, our contribution are three-fold:

* We propose REAL, a novel reinforcement learning framework that integrates program analysis as
automated feedback, enabling LLMs to generate quality code with minimal manual intervention.

* We contribute three datasets for quality code generation: (1) SecCodePLT+, enhancing [Yang et al.|
2024] with detectors for 17 CWEs, (2) APPS+, augmenting [Hendrycks et al., 2021]] with static
analysis for maintainability, and (3) SafeSQL, a targeted dataset for SQL injection vulnerabilities.

* We design a holistic evaluation protocol that jointly prioritizes functionality and code quality,
resolving the oversight of prior work that treats these objectives independently.

2 Problem Formulation

In this section, we first formalize the concept of quality code we investigate in this paper (§ [2.1),
then outline the existing paradigms and their limitations that motivate our work (§[2.2)), and finally
introduce our task formulation and holistic evaluation protocol for quality code generation (§ 2.3).

2.1 Quality Code: Beyond Functional Correctness

In real-world production, quality code should be both functionally correct and vulnerability resistant.
In this work, we concentrate on two classes of vulnerabilities that critically impact production code:

* Security Vulnerabilities. These include exploits such as SQL injection and Cross-Site Request
Forgery (CSRF), corresponding to entries in the Common Weakness Enumeration (CWE) [MITRE|
2024]. These vulnerabilities pose significant risks and critical threats in production environments.

* Maintainability Vulnerabilities. In dynamically typed languages (e.g., Python), the absence of
explicit type information, unreachable code paths, or inconsistent function signatures often leads to
latent bugs, runtime errors, and degrade long-term code reliability and maintainability.

2.2 Limitations of Existing Approaches

Existing methods for quality code generation have primarily targeted reducing security vulnerabilities,
with limited attention to maintainability aspects. We further identify some other critical limitations in
both their evaluation protocols and methodological frameworks as follows.

First, prior work suffers from incomplete evaluation protocols, manifesting in three key shortcomings:

* Quality-Functionality Isolation. Code quality and functionality are evaluated separately using
disjoint datasets [He et al.,[2024] or omitting functionality entirely [Bhatt et al., 2023, failing to
capture real-world production requirements of satisfying both criteria at the same time.

* Single-Vulnerability Assumption. Evaluations by default assume each coding problem contains
only one vulnerability type and rely on this false premise for methodology design [Fu et al.,[2024],
ignoring production scenarios where the code can involve multiple defects simultaneously.

* Limited Detection Paradigms. Existing evaluations rely on two constrained strategies: (1)
Unreliable static analyzers like CodeQL [GitHub, 2019], which we found unexpectedly ineffective
for SecCodePLT+, and (2) Handcrafted unit tests [[Yang et al., 2024, which inherently have limited
coverage and do not support maintainability issues (e.g., type checking).

Second, existing methods for quality code generation follow two paradigms with inherent trade-offs:

* Over-Reliance on Human Annotations. Data-driven approaches like supervised finetuning
heavily depend on extensive human annotations of vulnerability-free code examples, which are
labor-intensive, costly, and impractical for scaling [He and Vechev, 2023 |[He et al., 2024].

2Our code and datasets are released at https://github.com/yaof20/Real..git

https://github.com/yaof20/ReaL.git

* Presumption of Vulnerability Knowledge. Training-free methods enforce predefined rules for
each coding problem (e.g., filtering code with insecure patterns) that inherently presume prior
knowledge of potential vulnerabilities [Fu et al., 2024, Nazzal et al.| 2024]. This creates a paradox:
avoiding known vulnerabilities renders generation redundant, while unknown ones evade detection.

2.3 Investigation Setup

Task Formulation. We investigate quality code generation in two scenarios: (1) security-sensitive
tasks requiring robust mitigation of vulnerabilities (e.g., generating database queries resistant to SQL
injection shown in Figure[I), and (2) maintainability-aware tasks demanding adherence to structural
best practices (e.g., Python code with type annotations). These scenarios reflect real-world demands
where code must simultaneously achieve functional correctness and defect resistance.

Holistic Evaluation. Our protocol addresses prior evaluation limitations through three principles:
(1) jointly assess quality-functionality: we evaluate code on quality and functionality simultaneously,
(2) detect multiple vulnerabilities: we detect multiple security vulnerabilities and maintainability
issues via program analysis (§ [3.1), and (3) propose unified metrics: we introduce holistic metrics
that prioritize functionality and quality jointly (detailed in § [4.)).

3 Methodology

In this section, we propose REAL to address the limitations discussed in § [2.2) by integrating program
analysis as feedback in model training. We first present the development of our vulnerability detector—
the program analysis tool tailored for code quality (§ B.1)), and then describe how its outputs are
combined with functionality unit tests to form a hybrid reward for reinforcement learning (§ [3.2).

3.1 Vulnerability Detector

As noted in § 2.1} quality code extends beyond functional correctness to vulnerability resistance.
While correctness can be validated with unit tests, vulnerability detection is significantly more
challenging: unit tests offer limited coverage and are expensive to craft for each problem. In contrast,
program analysis provides a scalable and general solution, capable of identifying a broad range of
issues without task-specific design. To leverage this, we develop dedicated vulnerability detectors
based on program analysis techniques, targeting both security and maintainability.

Security Vulnerability. It encompasses a wide spectrum of weaknesses in software development.
In REAL, we target a total of 18 CWEs (§ covered by SecCodePLT+ and SafeSQL, such as
path traversal, command injection, and cross-site scripting. We develop static analysis to identify
vulnerabilities in the code. On a high level, most of the analysis follows the tactics of information
flow analysis [Myers, | 1999]: it systematically checks whether there exists a code path where sensitive
information or unsanitized inputs (i.e., sources) go to undesired destinations (i.e., sinks).

Take SQL injection as an example. It arises when unsanitized user inputs are directly embedded
into database queries, allowing attackers to execute arbitrary SQL statements. To detect such issues,
the detector transforms the program into Static Single Assignment (SSA) form [Aho et al.,[2006] to
analyze control flow and data dependencies. It treats user inputs and database APIs as sources and
sinks, then traverses the control flow graph to identify data flows connecting unsanitized inputs to APIs
without proper sanitation. In Figure[I] a path connects the user inputs (max, min) to the database
API (cur.execute(-)) without safeguards such as parameterized queries, indicating a vulnerability.
Compared to other tools [GitHub| 2019, PyCQA| 2014} [Bearer} |2021]] that emphasize precisions,
REAL’s analysis focuses more on soundness (i.e., identifying vulnerabilities more comprehensively)
to guide the RL process to generate codes that are easier to reason about. We find that REAL’s
context-insensitive, flow-sensitive analysis is sufficient for detecting vulnerabilities, which is typically
short and self-contained. REAL currently uses heuristics to conservatively identify sanitation and
applies the same analysis principles to other types of vulnerability.

Maintainability Vulnerability. Beyond security vulnerabilities, we also address main-
tainability requirements essential to modern software development, where generated code

must follow strict standards to ensure long-term reliability.

Such requirements

in-

clude, but are not limited to, enforcing proper type annotations throughout the codebase,

eliminating unused or redundant code segments,
and following consistent naming conventions
across modules and functions. To assess main-
tainability, we use MyPy [Lehtosalo, 2025], a
static analysis tool for Python that inspects the
abstract syntax tree and performs type infer-
ence to detect missing annotations, type mis-
matches, implicit conversions, and other quality
issues—without executing the code. We apply

Ve

Task: Convert the temperature between scales
def foo(T: str, from scale: str, to_scale: str):
res = None
if from scale == "C" and to_scale == "F":
return (T * 9/5) + 32
elif from scale == "K" and to_scale == "F":
return (T - 273.15) * 9/5 + 32
else:
return None
Function is missing a return type annotation [no-untyped-def]
Unsupported operand types for / ("str" and "int") [operator]

~N

Unsupported operand types for - ("str" and "float") [operator]
. J

Figure 2: Maintainability issues detected by MyPy

MyPy to model-generated code to extract rich
signals that guide reinforcement learning toward
producing maintainable code.

3.2 Reinforcement Learning with Hybrid Rewards

REAL incorporates both code quality and functionality rewards into the reinforcement learning
framework, guiding the model to generate code that is both correct and vulnerability resistant.

Motivation. While our vulnerability detectors can automatically identify defects and provide feed-
back during training, optimizing for code quality alone leads to reward hacking. In early experiments
on the PurpleLLaMA dataset [Bhatt et al., 2023]], the model learned to produce trivial outputs—such
as empty code or comments—that maximize quality scores while lacking functionality. This failure
mode underscores the need to jointly optimize for both code quality and functionality during training.
To this end, we introduce REAL, a reinforcement learning framework with hybrid rewards that
balances these two objectives, promoting code that is both safe and functionally meaningful.

Framework. We adopt Proximal Policy Optimization (PPO) [Schulman et al., |2017] as our re-
inforcement learning algorithm, following a standard framework guided by our enhanced reward
design. In REAL, candidate programs are generated by the policy model, i.e., j = my(z), where 7y
is the policy parameterized by 6, and x represents the problem description. The generated programs
y are then evaluated from two perspectives: code quality and functional correctness.

* Quality Reward. We pass the generated candidate program gy through our curated vulnerability
detector to check whether it is safe in terms of security or maintainability. We denote the reward
provided by the detector as 7quality

1, if no vulnerabilities are detected

Toualiy = Detector(q) = :
quality (9) {07 otherwise

where Detector () is a binary reward function that assigns a positive reward only when the generated
program ¢ passes the vulnerability checks without any detected security or maintainability issues.

* Functionality Reward. we follow prior work and use unit tests as a verifiable reward signal
for functionality [|Guo et al., 2025]]. Correctness evaluates the functionality of each specific task,
making it hard to develop universal detectors similar to those for security and maintainability.
Finally, we measure the pass rate of the unit tests as our functionality reward:

N
1 .
Tfunction = N Zl 1 {f?} (lnpi) = OUti}

where N is the total number of unit tests, 1{ f;(inp,, out;)} denotes whether the candidate program
{ generates ground truth result out; against the i-th unit test inp, as expected.

* Hybrid Reward. Taking both vulnerability concerns and functional correctness into account, our
final hybrid reward is formulated as,

Thybrid = @ Tquality + (1 — Q) Tfunction

where a € [0, 1] is a weighting coefficient that controls the trade-off between code quality and
functionality. If the policy model 7y fails to generate runnable code (e.g., due to syntax errors,
runtime exceptions, etc.), we assign a penalty reward of —1.

After obtaining the hybrid reward, we estimate the advantage using Generalized Advantage Estimation
(GAE) and update the policy model with the PPO clipped loss to ensure stable learning. This process
iteratively improves the model’s ability to generate quality yet functional code.

4 Experiment

In this section, we verify the effectiveness of REAL in both security-sensitive and maintainability-
aware tasks. We first introduce the experimental setup (§ [4.1)), then present comparative results (§ {.2)
and ablation studies (§ @.3) to validate our design choices, and conclude with a case study (§ {.4).

4.1 Experiment Settings

We evaluate REAL across three curated code generation benchmarks that cover a broad range of
security-sensitive and maintainability-aware coding problems. Each task requires the model to
generate functionally correct code while meeting specific quality constraints.

Table 1: Overview of the benchmarks. Task/solution lengths are averaged value measured in tokens.

Dataset Train Size Test Size Task Length Solution Length Scenario Source
SecCodePLT+ 655 164 224 128 Security-Sensitive Enriched
SafeSQL 339 85 337 203 Security-Sensitive Constructed
APPS+ 2,038 519 373 152 Maintainability-Aware Enriched

Benchmarks. Given the scarcity of benchmarks for evaluating the overall quality of generated
code, we curate the benchmarks used in our experiments by extending existing datasets or evolving
data with large language models [Luo et al., |2024]]. Specifically, we employ SecCodePLT+ and
SafeSQL to study security vulnerabilities, and APPS+ to study maintainability concerns. The details
of these datasets are described below, and summary statistics are provided in Tablem

* SecCodePLT+: We enhance the original SecCodePLT [Yang et al.,|2024] dataset by integrating
dedicated vulnerability detectors (§ for each associated CWE category, resulting in a unified
and comprehensive evaluation platform for assessing security risks in code generation.

» SafeSQL: We construct SafeSQL dataset by evolving seed programs using GPT-4.1 [OpenAl,
2025]], focusing on SQL injection vulnerabilities. Each task involves generating code that constructs
SQL queries resistant to injection attacks while retrieving correct results from a given database.

* APPS+: We construct APPS+ by filtering and verifying a subset of APPS [Hendrycks et al.,|2021]],
then augmenting it with a maintainability checker (§ [3.I). The benchmark evaluates whether
models can solve algorithmic problems while producing clear, maintainable, and robust code.

Evaluation. We evaluate REAL along two key dimensions: functionality and quality. For each
dimension, we report the Pass Rate as the metric, representing the percentage of tasks that pass all
the unit tests or pass the vulnerability detector, respectively. To jointly assess both dimensions, we
compute the Pass Rate by requiring the generated code to meet both criteria simultaneously.

Baselines. For the security-sensitive scenario, we consider two categories of state-of-the-art secure
code generation methods: (1) Data-driven methods, including SVEN [He and Vechev, |2023|] and
SafeCoder [He et al.}[2024]], which finetune LLMs on curated vulnerability-free code, and a supervised
finetuning (SFT) baseline trained directly on ground-truth safe solutions from our dataset. (2) Training-
free methods, such as CodeGuard+[Fu et al.| [2024], which constrains decoding to favor secure
outputs, and PromSec|Nazzal et al., [2024]], which refines prompts using GAN-based feedback. For
the maintainability-aware scenario, where no existing methods target maintainable code generation,
we introduce: (1) a prompt-based baseline that explicitly instructs the model to generate maintainable
code, and (2) an SFT baseline trained on ground-truth maintainable solutions. All methods use
Qwen2.5-Coder-Instruct [[Hui et al., 2024] as the backbone, evaluated at 0.5B, 3B, and 7B scales.

4.2 Quantitative Results

We evaluate the performance of REAL and baseline methods across both security-sensitive and
maintainability-aware scenarios. The results are summarized in Table [2|and Table [3| respectively.

Table 2: Performance comparison of REAL and baseline models on security-sensitive tasks across
different model scales. (Bold indicates the best performance; underline indicates the second-best.)

SecCodePLT+ SafeSQL
Params Method Function Quality Func.-Qual. Function Quality Func.-Qual.

Vanilla 0.1280 0.3598 0.0366 04118 0.5412 0.2000

SafeCoder 0.1524 0.3963 0.0488 0.3412 0.8824 0.3294

SVEN 0.1707 0.3780 0.0549 0.3176 0.8824 0.3059

0 CodeGuard+ 0.0732 0.5061 0.0061 0.3176 0.4471 0.0824
5B PromSec 0.1341 0.3537 0.0366 03529 0.7412 0.2235
SFT 0.8720 0.5061 0.4573 0.5765 0.8706 0.5527

REAL 0.5854 0.7988 0.3963 0.7647 0.8941 0.6941

Vanilla 0.2805 0.3354 0.1098 0.6000 0.4588 0.2706
SafeCoder 0.3476 0.4146 0.1585 0.4824 0.8706 0.4471

SVEN 0.3476 0.4024 0.1646 0.4471 0.9294 0.4353

3 CodeGuard+ 0.2927 0.3963 0.1280 0.5882 0.4824 0.2471
3B PromSec 0.2134 0.4146 0.0854 0.2000 0.9647 0.1882
SFT 0.8902 0.5061 0.4573 0.7529 0.9176 0.6824

REAL 0.7378 0.8476 0.6037 0.8471 1.0000 0.8471

Vanilla 0.2988 0.3902 0.1098 0.6471 0.8824 0.5882
SafeCoder 0.3293 0.3902 0.1402 0.4706 0.8941 0.4353

SVEN 0.3171 0.4024 0.1280 0.5059 0.9176 0.4706

7B CodeGuard+ 0.2988 0.3476 0.1098 0.6353 0.8824 0.5647
PromSec 0.2195 0.4878 0.0976 0.0941 0.8588 0.0824

SFT 0.8659 0.5122 0.4634 0.8118 0.8941 0.7294

REAL 0.7561 0.8293 0.6159 0.8588 1.0000 0.8588

Security-Sensitive Scenario. The results in Table [2] highlight three key findings. First, REAL
consistently achieves the best overall performance on the SafeSQL benchmark across all model
sizes, outperforming all baselines in functionality, security quality, and joint metrics. Second, on
SecCodePLT+, REAL leads in security quality and joint metrics at the 3B and 7B scales. However,
at the 0.5B scale, supervised finetuning (SFT) slightly outperforms REAL. This gap is relatively
small and can be attributed to the limited capacity of the 0.5B model—reinforcement learning often
requires a reasonably strong base model. Third, training-free methods like CodeGuard+ and PromSec
perform poorly across most metrics, highlighting the limitations of decoding-time interventions for
secure code generation. Overall, REAL demonstrates strong scalability and a robust balance between
functionality and security, validating the its effectiveness in security-sensitive tasks.

Maintainability-Aware Scenario. According to Table[3] REAL achieves the best overall perfor-
mance across all metrics and model sizes. It surpasses both prompt-based and supervised finetuning
(SFT) baselines in functionality, maintainability quality, and their joint measurement. The improve-
ments are especially clear in the joint metrics, where REAL significantly outperforms all alternatives,
demonstrating its effectiveness in generating not
only correct but also clean and maintainable code.
Furthermore, REAL scales well with model size—

Table 3: Performance comparison of REAL and
baselines on maintainability-sensitive tasks.

delivering consistent gains in both functionality Method APPS+
and joint performance as the model capacity in- Function Quality Func.-Qual.
creases from OSB tO 7B Vanilla 0.1965 0.2177 0.0501
PromptEng 0.1888 0.1888 0.0597
These results collectively demonstrate the ef- 058 SFT 02274 0.7476 0.1888
fectiveness of REAL across a wide range of REAL 0.3064 0.9557 0.2909
real-world production scenarios, including both Vanilla 04990 0.1407 0.0983
Ly o3 : : Tituo PromptEng 0.4913 0.1946 0.1272
]saecquyyﬂsensn;ve .ar}d m;lmtamablltlty awar::1 taslés. 3B gpr 04586 08189 0.4046
Yy Jomntly Opunizing 1or correctness and code REAL 0.5549 0.9268 0.5241
quality through reinforcement learning with pro- -
lysis feedback. REAL istently i Vanilla 0.5896 0.1580 0.1079
gram analysis Ieedback, consistently 1m- PromptEng 0.5645 0.2312 0.1599
proves performance across all metrics and model 7B SFT 05260 0.8690 0.4663
sizes—outperforming strong baselines without REAL 0.6667 0.9229 0.6204

sacrificing either dimension significantly.

Table 5: Comparison of training strategies using functionality-only, quality-only, and hybrid rewards
in both security-sensitive and maintainability-aware scenarios. (Bold indicates the best performance;
underline indicates the second-best.)

SecCodePLT+ SafeSQL APPS+
Method
etho Function Quality Func.-Qual. Function Quality Func.-Qual. Function Quality Func.-Qual.
Vanilla 0.1280 0.3598 0.0366 0.4118 0.5412 0.2000 0.1965 0.2177 0.0501
W/ TFunction 0.7317 0.1402 0.0854 0.7765 0.0471 0.0235 0.2505 0.1734 0.0751
0.5B y/ rguaiity 0.0732 0.9268 0.0732 0.3529 1.0000 0.3529 0.0443 0.9981 0.0443
REAL 0.5854 0.7988 0.3963 0.7647 0.8941 0.6941 0.3064 0.9557 0.2909
Vanilla 0.2805 0.3354 0.1098 0.6000 0.4588 0.2706 0.4990 0.1407 0.0983
W/ TFunction 0.7683 0.2805 0.2073 0.8588 0.0824 0.0588 0.5607 0.1464 0.1137
3B W/ rquaiiry 0.1585 0.9024 0.1220 0.5529 1.0000 0.5529 0.4663 0.9383 0.4432
REAL 0.7378 0.8476 0.6037 0.8471 1.0000 0.8471 0.5549 0.9268 0.5241
Vanilla 0.2988 0.3902 0.1098 0.6471 0.8824 0.5882 0.5896 0.1580 0.1079
W/ TFunction 0.7805 0.3476 0.2866 0.8706 0.0588 0.0353 0.6667 0.1503 0.1214
B W/ rquty 0.3415 0.8354 0.2866 0.6353 1.0000 0.6353 0.5645 0.9441 0.5414
REAL 0.7561 0.8293 0.6159 0.8588 1.0000 0.8588 0.6667 0.9229 0.6204

To further validate generalization, we trained Table 4: Performance comparison of REAL on
REAL on APPS+ and evaluated it on an unseen the unseen benchmark, HumanEval.
benchmark, HumanEval [Chen et al.,[2021]]. The HumanEval

result is shown in Table REAL 7p achieves Method
substantial improvements compared to the base-
line across all metrics despite not being trained on
HumanEval, demonstrating strong generalization.

Functionality = Quality Func.-Qual.

Vanilla 0.7927 0.2561 0.2317
REAL 0.8476 0.9573 0.8171

4.3 Ablation Study

In this section, we analyze the impact of key design choices in our proposed REAL framework,
focusing on (1) the hybrid reward balancing code quality and functionality, (2) the weighting
hyperparameter in the hybrid reward, and (3) program analysis versus unit tests for quality supervision
during reinforcement learning.

Hybrid Reward vs. Single Reward Our proposed REAL framework incorporates a hybrid reward
that combines correctness unit tests (for functionality) with program analysis (for quality). To better
understand the contribution of each component, we conduct an ablation study where we isolate the
reward signal to either functionality-only (unit tests) or quality-only (program analysis), keeping the
overall training pipeline unchanged. The results are presented in Table 3]

* We observe that when using only the functionality reward, the model achieves strong functional
correctness but suffers from a notable decline in security quality. Conversely, when using only the
quality reward, the model generates safer code but at the expense of reduced functional correctness.
In both cases, the combined metric drops significantly, indicating a lack of balance.

* In contrast, adopting the hybrid reward leads to a substantial improvement in the joint functionality-
quality metric. While there is a slight trade-off in each individual dimension compared to their
respective single-reward counterparts, the hybrid approach enables the model to achieve a balanced
optimization. This balance results in significantly better overall performance, demonstrating that
our method effectively harmonizes the competing objectives of functionality and quality.

Sensitivity to Hybrid Reward Weight ¢ In the hybrid reward of REAL, we balance the quality
reward and functionality reward with a hyperparameter ¢, where rnypria = & Tquatity + (1 — @) Tfunction-
To probe its sensitivity, we swept a over {0,0.3,0.5,0.7, 1.0} on SecCodePLT+ and SafeSQL. As
shown in Figure 3] we observe a clear trade-off: optimizing solely for functionality or for quality
tends to harm the other. A low « (favoring functionality) leads to poor quality scores, whereas a
high o (favoring quality) degrades functional correctness. Both extremes result in reduced joint
pass rates. In contrast, moderate values (e.g., « = 0.3 ~ 0.5) achieve a more desirable balance,
yielding the strongest overall performance across model scales and datasets. These findings validate
our hybrid reward design, demonstrating that our RL framework can flexibly optimize multiple
objectives through careful tuning the value of a.

Function Quality Func-Qual

O = —

0.0 03 05 07 10 0.0 03 05 07 1.0 0.0 03 05 07 1.0
Alpha Value Alpha Value Alpha Value

SecCodePLT+ + 0.5B SecCodePLT++3B —8— SecCodePLT+* 7B SafeSQL +0.5B —#— SafeSQL+3B —e— SafeSQL*7B

Figure 3: Ablation study on the value of o on SecCodePLT+ and SafeSQL datasets.

Table 6: Comparison of training with program analysis—based rewards (REAL) versus safety unit
tests across different model sizes on the SecCodePLT+ and SafeSQL datasets. REAL consistently
outperforms unit test—based training across functionality, security quality, and their conjunction.
(Bold indicates the best performance.)

SecCodePLT+ SafeSQL

Function Quality Func.-Qual. Function Quality Func.-Qual.

#Params 7T quality

0.5B w/ Safety Unit Tests 0.4573 0.3415 0.1341 0.4588 0.8235 0.3882
i w/ Detector (REAL) 0.5854 0.7988 0.3963 0.7647 0.8941 0.6941
3B w/ Safety Unit Tests 0.6524 0.4634 0.2439 0.8235 0.8824 0.7412

w/ Detector (REAL) 0.7378 0.8476 0.6037 0.8471 1.0000 0.8471
7B w/ Safety Unit Tests 0.6341 0.4695 0.3171 0.8471 0.8941 0.7647
w/ Detector (REAL) 0.7561 0.8293 0.6159 0.8588 1.0000 0.8588

Program Analysis vs. Unit Test While our REAL framework uses program analysis as feedback
to train models for generating quality code, prior work has explored using unit tests to evaluate
security properties [Yang et al., 2024} Dai et al.,2025]]. Although not originally intended for training,
these unit tests can also be repurposed as reward signals in reinforcement learning. To assess the
effectiveness of our design choice, we compare these two reward strategies: (1) using safety unit tests,
and (2) using our program analysis—based detector. We conduct experiments on the SecCodePLT+
and SafeSQL datasets, both of which provide safety unit tests for each coding problem—allowing
for a fair comparison. As illustrated in Table [6] models trained with our program analysis—based
feedback consistently outperform those trained with unit tests across functionality, quality, and their
conjunction, demonstrating the robustness and scalability of our approach across all model sizes.

4.4 Case Study

In Figure] we illustrate the code generated by REAL at different training stages of reinforcement
learning with hybrid rewards on the SafeSQL benchmark. We observe that the individual reward com-
ponents within the hybrid reward framework converge at different rates, with the code quality reward
saturating earlier than the unit test-based correctness reward. In this example, the task requires the
model to correctly interpret the constraints described in the task prompt and construct an appropriate
SQL query to retrieve the desired results from the database. At the initial stage, the generated code
is vulnerable and incorrect. It suffers from a SQL injection vulnerability by directly incorporating
user inputs into the SQL query through string formatting without proper sanitization. Additionally,
the semantics of the query are problematic, as the task specifies the use of an OR condition for the
price constraint rather than an AND condition. As training progresses, the model gradually learns
to satisfy the security requirement but the constructed query remains semantically incorrect.
The generated code adopts parameterized queries, leveraging the implicit sanitization provided by the
sqlite3 library (e.g., cursor.execute(query, (room_type, ...))).In parameterized execu-
tion, placeholders (i.e., ?) are used in the SQL query, and the corresponding user inputs are safely
injected through the provided parameters, automatically handling escaping and preventing injection
attacks (e.g., escaping special characters and enforcing correct data types). By the final phase of
training, the model successfully learns to both generate a correct SQL query while securely us-
ing parameterized execution. Notably, the hybrid reward further guides the model to apply explicit
input sanitization by enforcing proper type conversion (e.g., max_price = float(input(...))),

Write a Python script that takes room type, check-in date, check-out date, and max price as input, then generates a SQL query to find reservations
, , or price less than or equal to the max price.

Generated Code at Global Step 0 (initial Generated Code at Global Step 160 Generated Code at Global Step 400 (final)
conn = sqlite3.connect(...) conn = sglite3.connect(...) conn = sglite3.connect(...)

cursor = conn.cursor() cursor = conn.cursor() cursor = conn.cursor()

max_price = input("Enter the maximum
price (float): ") max_price = input("Enter the maximum price max_price = float(input("Enter a maximum
(float): ") price they are willing to pay: "))

query = £"""
SELECT * FROM reservations Construct the SOL query Construct the SOL quer

WHERE room_type = '{room_type}' query = f"SELECT * FROM reservations WHERE query = f"SELECT * FROM reservations WHERE
AND check_in_date >= '{check_in_date}' room_type = ? AND check_in date >= ? AND room type = ? AND check_in_date >= ? AND
AND check_out_date <= '{check_out_date}" check_out_date <= ? AND price <= 2" check_out_date <= ? OR price <= 2"

AND price <= {max_price}

y with the

xecute the quer u puts xecute the query
cursor.execute (query) ecute (query, (room_type, xecute (query, (room_type,
check_in_date, check_out_date, max_price)) check_in_date, check_out_date, max_p:

\ A A

Figure 4: Examples of code generated by REAL (sp at different training stages on SafeSQL with
hybrid rewards. Initially, the model produces incorrect and insecure code, misinterpreting "or" as AND
and directly incorporating unsanitized user inputs. Later on, it adopts parameterized execution (using
7 placeholders in the query with separate parameter binding) to implicitly address vulnerabilities.
Finally, it corrects the query logic and explicitly sanitizes user inputs with proper type conversion
(using float (-) to enforce correct type conversion of the input).

further demonstrating the effectiveness of our proposed REAL in producing high-quality, secure code
and enabling a seamless, confident vibe coding experience.

5 Related Work

Secure Code Generation Existing secure code generation methods generally follow two paradigms:
(1) Data-driven approaches apply supervised fine-tuning to train LLMs on large corpora of secure
code [He et al., 2024, |[Yang et al., |2024]], under the assumption that mimicking “clean” code is
sufficient for generalization. While effective against known vulnerabilities, these methods struggle
with novel defects and require extensive human annotation. (2) Training-free approaches rely on
rule-based post-processing, either enforcing security constraints during decoding [Fu et al.,[2024] or
using feedback or in-context examples to iteratively refine prompts [Nazzal et al.| 2024, [Zhang et al.|
2024]. However, such heuristics are task-specific, brittle to unseen vulnerabilities, and vulnerable to
vulnerability-aware leakage, where models exploit patterns in the rules to evade detection. Some
recent work explores reinforcement learning to fix vulnerabilities, but these methods still depend
on ground-truth code for each problem and define rewards based on semantic equivalence to those
references—thus still requiring costly annotations [[Islam et al.|[2024]. In contrast, our method does
not rely on ground-truth annotations or prior knowledge of specific vulnerabilities.

Reinforcement Learning for Code Generation Reinforcement learning has recently shown to be
highly effective in improving model capabilities in tasks that come with "verifiable rewards" such
as math and coding [Guo et al.| 2025 |[OpenAlL [2025]]. For code generation, reward signals can be
determined by executing the candidate code against unit tests or testcases [Le et al., 2022, Yang
et al., 2024 Yu et al.| [2024] |Gehring et al.| [2025] |Wei et al.| [2025]]. Since the availability of unit
tests may be limited in practice, [Li et al., 2024]] explores generating unit tests for specific coding
tasks automatically in scale. In addition to unit tests derived rewards, [Dou et al., 2024]] incorporates
compiler feedback to address the challenge of long code sequence, while [Xie et al., |2025] explores
using LLM themselves as a critic to improve the code generation. However, these work all focus on
enhancing the functionality/correctness of the generation, but not code quality.

6 Conclusion

We presented REAL, a reinforcement learning framework that leverages program analysis to guide
LLM:s toward generating quality code that is both functionally correct and vulnerability resistant. By
integrating feedback from program analysis and functionality verification, REAL enables scalable
training without relying on human-written references or handcrafted rules. Extensive experimental
results demonstrate the effectiveness of REAL. While our current vulnerability detectors are designed
to prioritize soundness and generality, they rely on heuristic approximations and do not yet cover the
full breadth of CWE types. In the future, we will explore more robust and comprehensive detectors
to expand coverage, enabling even more reliable feedback for large-scale training.

10

References

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA, 2006. ISBN
0321486811.

Bearer. Bearer: Static application security testing (sast) tool. https://github.com/Bearer/
bearer, 2021. Accessed: 2025-05-15.

Manish Bhatt, Sahana Chennabasappa, Cyrus Nikolaidis, Shengye Wan, Ivan Evtimov, Dominik
Gabi, Daniel Song, Faizan Ahmad, Cornelius Aschermann, Lorenzo Fontana, et al. Purple llama
cyberseceval: A secure coding benchmark for language models. arXiv preprint arXiv:2312.04724,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shih-Chieh Dai, Jun Xu, and Guanhong Tao. A comprehensive study of 1lm secure code generation.
arXiv preprint arXiv:2503.15554, 2025.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

Yanjun Fu, Ethan Baker, Yu Ding, and Yizheng Chen. Constrained decoding for secure code
generation, 2024. URL https://arxiv.org/abs/2405.00218.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning,
2025. URL https://arxiv.org/abs/2410.02089,

GitHub. Codeql: Semantic code analysis engine. https://codeql.github.com/, 2019. Accessed:
2025-05-15.

GitHub. Github copilot: Your ai pair programmer. https://github.blog/
2021-06-29-github-copilot-ai-pair-programmer/, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adversarial
testing. In ACM CCS, 2023. URL https://arxiv.org/abs/2302.05319,

Jingxuan He, Mark Vero, Gabriela Krasnopolska, and Martin T. Vechev. Instruction tuning for secure
code generation. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
MgTzMaYHvG.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurlPS, 2021.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Nafis Tanveer Islam, Mohammad Bahrami Karkevandi, and Peyman Najafirad. Code security
vulnerability repair using reinforcement learning with large language models. arXiv preprint
arXiv:2401.07031, 2024.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning, 2022. URL
https://arxiv.org/abs/2207.01780.

11

https://github.com/Bearer/bearer
https://github.com/Bearer/bearer
https://arxiv.org/abs/2405.00218
https://arxiv.org/abs/2410.02089
https://codeql.github.com/
https://github.blog/2021-06-29-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-github-copilot-ai-pair-programmer/
https://arxiv.org/abs/2302.05319
https://openreview.net/forum?id=MgTzMaYHvG
https://openreview.net/forum?id=MgTzMaYHvG
https://arxiv.org/abs/2207.01780

Jukka Lehtosalo. Mypy: Optional static typing for python. https://mypy-lang.org/, 2025.
Version accessed: May 2025.

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. Acecoder: An effective prompting technique
specialized in code generation. ACM Transactions on Software Engineering and Methodology, 33
(8):1-26, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024.

MITRE. Common weakness enumeration (cwe). MITRE Corporation, 2024. URL https://cwe.
mitre.org/index.html, Accessed: 2025-05-14. Version 2025a.

Andrew C. Myers. Jflow: practical mostly-static information flow control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’99, pages
228-241, New York, NY, USA, 1999. Association for Computing Machinery. ISBN 1581130953.
doi: 10.1145/292540.292561. URL https://doi.org/10.1145/292540.292561.

Mahmoud Nazzal, Issa Khalil, Abdallah Khreishah, and NhatHai Phan. Promsec: Prompt
optimization for secure generation of functional source code with large language models
(Ilms). In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 24, pages 22662280, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400706363. doi: 10.1145/3658644.3690298. URL
https://doi.org/10.1145/3658644.3690298,

OpenAl Gpt-4.1, 2025. https://openai.com/index/gpt-4-1/.

PyCQA. Bandit: Security linter for python source code. https://github.com/PyCQA/bandit,
2014. Accessed: 2025-05-15.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shengye Wan, Cyrus Nikolaidis, Daniel Song, David Molnar, James Crnkovich, Jayson Grace,
Manish Bhatt, Sahana Chennabasappa, Spencer Whitman, Stephanie Ding, Vlad Ionescu, Yue Li,
and Joshua Saxe. Cyberseceval 3: Advancing the evaluation of cybersecurity risks and capabilities
in large language models, 2024. URL https://arxiv.org/abs/2408.01605.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing 1lm reasoning via
reinforcement learning on open software evolution, 2025. URL https://arxiv.org/abs/2502,
18449,

Zhihui Xie, Liyu Chen, Weichao Mao, Jingjing Xu, Lingpeng Kong, et al. Teaching language models
to critique via reinforcement learning. arXiv preprint arXiv:2502.03492, 2025.

Frank Xu et al. Windsurf: Empowering developers with ai-assisted code completion. arXiv preprint
arXiv:2212.10943, 2022.

Yu Yang, Yuzhou Nie, Zhun Wang, Yuheng Tang, Wenbo Guo, Bo Li, and Dawn Song. Seccodeplt:
A unified platform for evaluating the security of code genai, 2024. URL https://arxiv.org/
abs/2410.11096.

Zishun Yu, Yunzhe Tao, Liyu Chen, Tao Sun, and Hongxia Yang. B-coder: Value-based deep
reinforcement learning for program synthesis, 2024. URL https://arxiv.org/abs/2310,
03173.

Boyu Zhang, Tianyu Du, Junkai Tong, Xuhong Zhang, Kingsum Chow, Sheng Cheng, Xun Wang,
and Jianwei Yin. Seccoder: Towards generalizable and robust secure code generation. arXiv
preprint arXiv:2410.01488, 2024.

12

https://mypy-lang.org/
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/3658644.3690298
https://openai.com/index/gpt-4-1/
https://github.com/PyCQA/bandit
https://arxiv.org/abs/2408.01605
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2410.11096
https://arxiv.org/abs/2410.11096
https://arxiv.org/abs/2310.03173
https://arxiv.org/abs/2310.03173

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Section 1 clearly state the paper’s contributions and scope, in-
troducing REAL as a reinforcement learning framework that uses program analysis feedback
to generate quality code.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 2 discusses limitations of existing approaches and addresses the
limitations of the REAL framework.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [NA]
Justification: This paper proposes a practical system without theoretical proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details about the implementation of REAL,
the datasets used, and the evaluation protocol in Sections 3 and 4, making the results
reproducible.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: According to Section A.2, the authors implement REAL based on the VeRL
framework, which is publicly available. The datasets and implementation details are de-
scribed thoroughly.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 and Appendix A.2 specify training details including model architec-
ture, hyperparameters, training procedures, and evaluation criteria needed to understand the
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow the same protocol as in our baseline methods, e.g., SafeCoder,
SVEN, CodeGuard+.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section A.2 mentions the experiments were conducted on a server with 8

NVIDIA H100 GPUs and provides details about batch size, learning rate, and other training
parameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research focuses on improving code quality and security, which aligns
with the NeurIPS Code of Ethics by promoting safer and more reliable software systems.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses positive impacts in terms of improving code security and
maintainability, while acknowledging challenges in REAL-world deployment in Sections 1
and 2.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describes program analysis-based safeguards to detect security
vulnerabilities in Section 3.1, and how these are integrated into the reinforcement learning
framework.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the original sources for datasets, models, and frame-
works used, including SecCodePLT, APPS, and the Qwen2.5-Coder-Instruct model.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

17

13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces three new datasets: SecCodePLT+, SafeSQL, and APPS+,
with documentation of their construction and statistics provided in Section 4.1.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects, as
it focuses on computational methods for code generation.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects or require IRB approval.

18

paperswithcode.com/datasets

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Section 4.1 mentions that GPT-4.1 was used to evolve seed programs for
constructing the SafeSQL dataset, which is an integral part of their research methodology.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Appendix

A.1 CWE List

We provide a list of Common Weakness Enumerations (CWEs) we cover in the paper in § [A.T]

CWE ID CWE NAME CWE RISKY SCENARIOS

74 Improper Neutralization of The product constructs all or part of a command, data
Special Elements in Output Used structure, or record using externally-influenced input
by a Downstream Component from an upstream component, but it does not neutralize
(’Injection’) or incorrectly neutralizes special elements that could

modify how it is parsed or interpreted when it is sent to
a downstream component.

77 Improper Neutralization of The product constructs all or part of a command using
Special Elements used in a externally-influenced input from an upstream
Command (’Command component, but it does not neutralize or incorrectly
Injection’) neutralizes special elements that could modify the

intended command when it is sent to a downstream
component.

79 Improper Neutralization of Input ~ The product does not neutralize or incorrectly
During Web Page Generation neutralizes user-controllable input before it is placed in
(’Cross-site Scripting’) output that is used as a web page that is served to other

users.

89 Improper Neutralization of The product constructs all or part of an SQL command
Special Elements used in an SQL using externally-influenced input from an upstream
Command (’SQL Injection’) component, but it does not neutralize or incorrectly

neutralizes special elements that could modify the
intended SQL command when it is sent to a
downstream component. Without sufficient removal or
quoting of SQL syntax in user-controllable inputs, the
generated SQL query can cause those inputs to be
interpreted as SQL instead of ordinary user data.

94 Improper Control of Generation The product constructs all or part of a code segment
of Code ("Code Injection’) using externally-influenced input from an upstream

component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the
syntax or behavior of the intended code segment.

95 Improper Neutralization of The product receives input from an upstream
Directives in Dynamically component, but it does not neutralize or incorrectly
Evaluated Code ("Eval Injection’) neutralizes code syntax before using the input in a

dynamic evaluation call (e.g. eval).

200 Exposure of Sensitive The product exposes sensitive information to an actor
Information to an Unauthorized that is not explicitly authorized to have access to that
Actor information.

327 Use of a Broken or Risky The product uses a broken or risky cryptographic
Cryptographic Algorithm algorithm or protocol.

347 Improper Verification of The product does not verity, or incorrectly verifies, the
Cryptographic Signature cryptographic signature for data.

352 Cross-Site Request Forgery The web application does not, or can not, sufficiently
(CSRF) verify whether a well-formed, valid, consistent request

was intentionally provided by the user who submitted
the request.

502 Deserialization of Untrusted Data The product deserializes untrusted data without
sufficiently verifying that the resulting data will be
valid.

601 URL Redirection to Untrusted A web application accepts a user-controlled input that

Site ("Open Redirect’) specifies a link to an external site, and uses that link in a
Redirect. This simplifies phishing attacks.
770 Allocation of Resources Without The product allocates a reusable resource or group of

Limits or Throttling

resources on behalf of an actor without imposing any
restrictions on the size or number of resources that can
be allocated, in violation of the intended security policy
for that actor.

20

https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/95.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/347.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/770.html

CWE ID CWE NAME CWE RISKY SCENARIOS

862 Missing Authorization The product does not perform an authorization check
when an actor attempts to access a resource or perform
an action.

863 Incorrect Authorization The product performs an authorization check when an

actor attempts to access a resource or perform an action,
but it does not correctly perform the check. This allows
attackers to bypass intended access restrictions.

915 Improperly Controlled The product receives input from an upstream
Modification of component that specifies multiple attributes, properties,
Dynamically-Determined Object or fields that are to be initialized or updated in an object,
Attributes but it does not properly control which attributes can be

modified.

918 Server-Side Request Forgery The web server receives a URL or similar request from
(SSRF) an upstream component and retrieves the contents of

this URL, but it does not sufficiently ensure that the
request is being sent to the expected destination.

1333 Inefficient Regular Expression The product uses a regular expression with an
Complexity inefficient, possibly exponential worst-case
computational complexity that consumes excessive
CPU cycles.

A.2 TImplementation Details

We implement REAL based on the VeRL frameworkﬂ and conduct all experiments on a server
node equipped with 8 NVIDIA H100 GPUs. The backbone model used in our experiments is
Qwen?2.5-Coder-Instruct, with pretrained weights obtained from the public HuggingFace platfornﬂ

For reinforcement learning, we adopt the Proximal Policy Optimization (PPO) algorithm with a
hybrid reward design that balances functional correctness and code quality, focusing on both security
and maintainability. The policy model is initialized from the Qwen2.5-Coder-Instruct checkpoint
and fine-tuned using PPO with a learning rate of le-6, a batch size of 256, and a KL divergence
penalty coefficient of 1e-3 to ensure stable policy updates. Advantage estimates are computed using
Generalized Advantage Estimation (GAE) with a discount factor of 1.0 and a GAE lambda of 1.0. To
promote exploration, entropy regularization is applied, and hybrid rewards are normalized to further
stabilize training.

We curate the SafeSQL benchmark by constructing a diverse set of manually designed seed programs
covering common database query patterns and known security pitfalls. These seed programs are
further evolved with GPT 4.1P|using code mutation and transformation strategies inspired by [Luo
et al.| [2024]] , producing a comprehensive benchmark that captures a wide range of realistic and
challenging SQL generation scenarios.

*https://github.com/volcengine/verl
*https://huggingface.co/
https://openai.com/index/gpt-4-1/

21

https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/915.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/1333.html
https://github.com/volcengine/verl
https://huggingface.co/
https://openai.com/index/gpt-4-1/

	Introduction
	Problem Formulation
	Quality Code: Beyond Functional Correctness
	Limitations of Existing Approaches
	Investigation Setup

	Methodology
	Vulnerability Detector
	Reinforcement Learning with Hybrid Rewards

	Experiment
	Experiment Settings
	Quantitative Results
	Ablation Study
	Case Study

	Related Work
	Conclusion
	Appendix
	CWE List
	Implementation Details

