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Abstract
Equivariant Transformers such as Equiformer have demonstrated the efficacy of ap-1

plying Transformers to the domain of 3D atomistic systems. However, they are still2

limited to small degrees of equivariant representations due to their computational3

complexity. In this paper, we investigate whether these architectures can scale well4

to higher degrees. Starting from Equiformer, we first replace SOp3q convolutions5

with eSCN convolutions to efficiently incorporate higher-degree tensors. Then,6

to better leverage the power of higher degrees, we propose three architectural7

improvements – attention re-normalization, separable S2 activation and separable8

layer normalization. Putting this all together, we propose EquiformerV2, which9

outperforms previous state-of-the-art methods on the large-scale OC20 dataset by10

up to 15% on forces, 5% on energies, offers better speed-accuracy trade-offs, and11

2ˆ reduction in DFT calculations needed for computing adsorption energies.12

1 Introduction13

In recent years, machine learning (ML) models have shown promising results in accelerating and14

scaling high-accuracy but compute-intensive quantum mechanical calculations by effectively ac-15

counting for key features of atomic systems, such as the discrete nature of atoms, and Euclidean16

and permutation symmetries [1–10]. By bringing down computational costs from hours or days to17

fractions of seconds, these methods enable new insights in many applications such as molecular18

simulations, material design and drug discovery. A promising class of ML models that have enabled19

this progress is equivariant graph neural networks (GNNs) [5, 11–18].20

Equivariant GNNs treat 3D atomistic systems as graphs, and incorporate inductive biases such21

that their internal representations and predictions are equivariant to 3D translations, rotations and22

optionally inversions. Specifically, they build up equivariant features of each node as vector spaces23

of irreducible representations (or irreps) and have interactions or message passing between nodes24

based on equivariant operations such as tensor products. Recent works on equivariant Transformers,25

specifically Equiformer [17], have shown the efficacy of applying Transformers [19, 20], which26

have previously enjoyed widespread success in computer vision [21–23], language [24, 25], and27

graphs [26–29], to this domain of 3D atomistic systems.28

A bottleneck in scaling Equiformer as well as other equivariant GNNs is the computational complexity29

of tensor products, especially when we increase the maximum degree of irreps Lmax. This limits these30

models to use small values of Lmax (e.g., Lmax ď 3), which consequently limits their performance.31

Higher degrees can better capture angular resolution and directional information, which is critical32

to accurate prediction of atomic energies and forces. To this end, eSCN [18] recently proposes33

efficient convolutions to reduce SOp3q tensor products to SOp2q linear operations, bringing down the34

computational cost from OpL6
maxq to OpL3

maxq and enabling scaling to larger values of Lmax (e.g.,35

Lmax up to 8). However, except using efficient convolutions for higher Lmax, eSCN still follows36

SEGNN [15]-like message passing network design, and Equiformer has been shown to improve upon37

SEGNN. Additionally, this ability to use higher Lmax challenges whether the previous design of38

equivariant Transformers can scale well to higher-degree representations.39
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Figure 1: Overview of EquiformerV2. We highlight the differences from Equiformer [17] in red. For (b),
(c), and (d), the left figure is the original module in Equiformer, and the right figure is the revised module in
EquiformerV2. Input 3D graphs are embedded with atom and edge-degree embeddings and processed with
Transformer blocks, which consist of equivariant graph attention and feed forward networks. “b” denotes
multiplication, “‘” denotes addition, and

ř

within a circle denotes summation over all neighbors. “DTP”
denotes depth-wise tensor products used in Equiformer. Gray cells indicate intermediate irreps features.

In this paper, we are interested in adapting eSCN convolutions for higher-degree representations40

to equivariant Transformers. We start with Equiformer [17] and replace SOp3q convolutions with41

eSCN convolutions. We find that naively incorporating eSCN convolutions does not result in better42

performance than the original eSCN model. Therefore, to better leverage the power of higher43

degrees, we propose three architectural improvements – attention re-normalization, separable S244

activation and separable layer normalization. Putting this all together, we propose EquiformerV2,45

which is developed on the large and diverse OC20 dataset [30]. Experiments on OC20 show that46

EquiformerV2 outperforms previous state-of-the-art methods with improvements of up to 15% on47

forces and 5% on energies, and offers better speed-accuracy trade-offs compared to existing invariant48

and equivariant GNNs. Additionally, when used in the AdsorbML algorithm [10] for performing49

adsorption energy calculations, EquiformerV2 achieves the highest success rate and 2ˆ reduction in50

DFT calculations to achieve comparable adsorption energy accuracies as previous methods.51

2 Related Works52

SE(3)/E(3)-Equivariant GNNs. Equivariant neural networks [5, 7, 11–18, 31–38] use equivariant53

irreps features built from vector spaces of irreducible representations (irreps) to achieve equivariance54

to 3D rotation [11–13]. They operate on irreps features with equivariant operations like tensor55

products. Previous works differ in equivariant operations used in their networks and how they56

combine those operations. TFN [11] and NequIP [5] use equivariant graph convolution with linear57

messages built from tensor products, with the latter utilizing extra equivariant gate activation [12].58

SEGNN [15] introduces non-linearity to messages passing [1,39] with equivariant gate activation, and59

the non-linear messages improve upon linear messages. SE(3)-Transformer [14] adopts equivariant60

dot product attention [19] with linear messages. Equiformer [17] improves upon previously mentioned61

equivariant GNNs by combining MLP attention and non-linear messages. Equiformer additionally62

introduces equivariant layer normalization and regularizations like dropout [40] and stochastic63

depth [41]. However, the networks mentioned above rely on compute-intensive SOp3q tensor64

products to mix the information of vectors of different degrees during message passing, and therefore65

they are limited to small values for maximum degrees Lmax of equivariant representations. SCN [42]66

proposes rotating irreps features based on relative position vectors and identifies a subset of spherical67

harmonics coefficients, on which they can apply unconstrained functions. They further propose68

relaxing the requirement for strict equivariance and apply typical functions to rotated features during69

message passing, which trades strict equivariance for computational efficiency and enables using70

higher values of Lmax. eSCN [18] further improves upon SCN by replacing typical functions with71

SOp2q linear layers for rotated features and imposing strict equivariance during message passing.72
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However, except using more efficient operations for higher Lmax, SCN and eSCN mainly adopt73

the same network design as SEGNN, which is less performant than Equiformer. In this work, we74

propose EquiformerV2 which includes all the benefits of the above networks by incorporating eSCN75

convolutions into Equiformer and adopts three additional architectural improvements.76

Invariant GNNs. Prior works [4, 8, 43–51] extract invariant information from 3D atomistic graphs77

and operate on the resulting graphs augmented with invariant features. Their differences lie in78

leveraging different geometric features such as distances, bond angles (3 atom features) or dihedral79

angles (4 atom features). SchNet [43] models interaction between atoms with only relative distances.80

DimeNet series [4,46] use triplet representations of atoms to incorporate bond angles. SphereNet [48]81

and GemNet [50, 51] further include dihedral angles by considering quadruplet representations.82

However, the memory complexity of triplet and quadruplet representations of atoms do not scale83

well with the number of atoms, and this requires additional modifications like interaction hierarchy84

used by GemNet-OC [51] for large datasets like OC20 [30]. Additionally, for the task of predicting85

DFT calculations of energies and forces on the large-scale OC20 dataset, invariant GNNs have been86

surpassed by equivariant GNNs recently.87

3 Background88

3.1 SEp3q{Ep3q-Equivariant Neural Networks89

We discuss the relevant background of SEp3q{Ep3q-equivariant neural networks here. Please refer90

to Sec. A in appendix for more details of equivariance and group theory.91

Including equivariance in neural networks can serve as a strong prior knowledge, which can therefore92

improve data efficiency and generalization. Equivariant neural networks use equivariant irreps features93

built from vector spaces of irreducible representations (irreps) to achieve equivariance to 3D rotation.94

Specifically, the vector spaces are p2L` 1q-dimensional, where degree L is a non-negative integer. L95

can be intuitively interpreted as the angular frequency of the vectors, i.e., how fast the vectors rotate96

with respect to a rotation of the coordinate system. Higher L is critical to tasks sensitive to angular97

information like predicting forces [5, 18, 42]. Vectors of degree L are referred to as type-L vectors,98

and they are rotated with Wigner-D matrices DpLq when rotating coordinate systems. Euclidean99

vectors r⃗ in R3 can be projected into type-L vectors by using spherical harmonics Y pLqp r⃗
||r⃗||

q. We100

use order m to index the elements of type-L vectors, where ´L ď m ď L. We concatenate multiple101

type-L vectors to form an equivariant irreps feature f . Concretely, f has CL type-L vectors, where102

0 ď L ď Lmax and CL is the number of channels for type-L vectors. In this work, we mainly103

consider CL “ C, and the size of f is pLmax ` 1q2 ˆ C. We index f by channel i, degree L, and104

order m and denote as f pLq

m,i .105

Equivariant GNNs update irreps features by passing messages of transformed irreps features between106

nodes. To interact different type-L vectors during message passing, we use tensor products, which107

generalize multiplication to equivariant irreps features. Denoted as b
L3

L1,L2
, the tensor product uses108

Clebsch-Gordan coefficients to combine type-L1 vector f pL1q and type-L2 vector gpL2q and produces109

type-L3 vector hpL3q:110

hpL3q
m3

“ pf pL1q b
L3

L1,L2
gpL2qqm3 “

L1
ÿ

m1“´L1

L2
ÿ

m2“´L2

C
pL3,m3q

pL1,m1qpL2,m2q
f pL1q
m1

gpL2q
m2

(1)

where m1 denotes order and refers to the m1-th element of f pL1q. Clebsch-Gordan coefficients111

C
pL3,m3q

pL1,m1qpL2,m2q
are non-zero only when |L1 ´ L2| ď L3 ď |L1 ` L2| and thus restrict output112

vectors to be of certain degrees. We typically discard vectors with L ą Lmax, where Lmax is a113

hyper-parameter, to prevent vectors of increasingly higher dimensions. In many works, message114

passing is implemented as equivariant convolutions, which perform tensor products between input115

irreps features xpL1q and spherical harmonics of relative position vectors Y pL2qp r⃗
||r⃗||

q.116

3.2 Equiformer117

Equiformer [17] is an SEp3q/Ep3q-equivariant GNN that combines the inductive biases of equivari-118

ance with the strength of Transformers [19, 22]. First, Equiformer replaces scalar node features with119

equivariant irreps features to incorporate equivariance. Next, it performs equivariant operations on120

these irreps features and equivariant graph attention for message passing. These operations include121
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tensor products and equivariant linear operations, equivariant layer normalization [52] and gate122

activation [12, 34]. For stronger expressivity in the attention compared to typical Transformers,123

Equiformer uses non-linear functions for both attention weights and message passing. Additionally,124

Equiformer incorporates regularization techniques common in Transformers applied to other domains,125

e.g., dropout [40] to attention weights [53] and stochastic depth [54] to the outputs of equivariant126

graph attention and feed forward networks. Please refer to the Equiformer paper [17] for more details.127

3.3 eSCN Convolution128

While tensor products are necessary to interact vectors of different degrees, they are compute-intensive.129

To reduce the complexity, eSCN convolutions [18] are proposed to use SOp2q linear operations for130

efficient tensor products. We provide an outline and intuition for their method here, and please refer131

to Sec. A and their work [18] for mathematical details.132

A traditional SOp3q convolution interacts input irreps features xpLiq
mi and spherical harmonic projec-133

tions of relative positions Y pLf q
mf pr⃗ijq with an SOp3q tensor product with Clebsch-Gordan coefficients134

C
pLo,moq

pLi,miq,pLf ,mf q
. The projection Y

pLf q
mf pr⃗ijq becomes sparse if we rotate the relative position vector135

r⃗ij with a rotation matrix Dij to align with the direction of L “ 0 and m “ 0, which corresponds to136

the z axis traditionally but the y axis in the conventions of e3nn [55]. Concretely, given Dij r⃗ij aligned137

with the y axis, Y pLf q
mf pDij r⃗ijq ‰ 0 only for mf “ 0. If we consider only mf “ 0, CpLo,moq

pLi,miq,pLf ,mf q
138

can be simplified, and C
pLo,moq

pLi,miq,pLf ,0q
‰ 0 only when mi “ ˘mo. Therefore, the original expression139

depending on mi, mf , and mo is now reduced to only depend on mo. This means we are no longer140

mixing all integer values of mi and mf , and outputs of order mo are linear combinations of inputs141

of order ˘mo. eSCN convolutions go one step further and replace the remaining non-trivial paths142

of the SOp3q tensor product with an SOp2q linear operation to allow for additional parameters of143

interaction between ˘mo without breaking equivariance. To summarize, eSCN convolutions achieve144

efficient equivariant convolutions by first rotating irreps features based on relative position vectors145

and then performing SOp2q linear operations on the rotated features. The key idea is that the rotation146

sparsifies tensor products and simplifies the computation.147

4 EquiformerV2148

Starting from Equiformer [17], we first use eSCN convolutions to scale to higher-degree representa-149

tions (Sec. 4.1). Then, we propose three architectural improvements, which yield further performance150

gain when using higher degrees: attention re-normalization (Sec. 4.2), separable S2 activation151

(Sec. 4.3) and separable layer normalization (Sec. 4.4). Figure 1 illustrates the overall architecture of152

EquiformerV2 and the differences from Equiformer.153

4.1 Incorporating eSCN Convolutions for Efficient Tensor Products and Higher Degrees154

The computational complexity of SOp3q tensor products used in traditional SOp3q convolutions155

during equivariant message passing scale unfavorably with Lmax. Because of this, it is impractical for156

Equiformer to use beyond Lmax “ 1 for large-scale datasets like OC20 [30] and beyond Lmax “ 3157

for small-scale datasets like MD17 [56–58]. Since higher Lmax can better capture angular information158

and are correlated with model expressivity [5], low values of Lmax can lead to limited performance159

on certain tasks such as predicting forces. Therefore, we replace original tensor products with eSCN160

convolutions [18] for efficient tensor products, enabling Equiformer to scale up Lmax to 6 or 8 on161

the large-scale OC20 dataset.162

Equiformer uses equivariant graph attention for message passing. The attention consists of depth-163

wise tensor products, which mix information across different degrees, and linear layers, which mix164

information between channels of the same degree. Since eSCN convolutions mix information across165

both degrees and channels, we replace the SOp3q convolution, which involves one depth-wise tensor166

product layer and one linear layer, with a single eSCN convolutional layer, which consists of a167

rotation matrix Dij and an SOp2q linear layer as shown in Figure 1b.168

4.2 Attention Re-normalization169

Equivariant graph attention in Equiformer uses tensor products to project node embeddings xi and xj ,170

which contain vectors of different degrees, to scalar features f p0q

ij and applies non-linear functions to171

f
p0q

ij for attention weights aij . The node embeddings xi and xj are obtained by applying equivariant172
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Figure 2: Illustration of different activation functions. G
denotes conversion from vectors to point samples on a
sphere, F can typically be a SiLU activation or MLPs,
and G´1 is the inverse of G.

Figure 3: Illustration of how statistics are calculated
in different normalizations. “std” denotes standard
deviation, and “RMS” denotes root mean square.

layer normalization [17] to previous outputs. We note that vectors of different degrees in xi and xj173

are normalized independently, and therefore when they are projected to the same degree, the resulting174

f
p0q

ij can be less well-normalized. To address the issue, we propose attention re-normalization and175

introduce one additional layer normalization (LN) [52] before non-linear functions. Specifically,176

given f
p0q

ij , we first apply LN and then use one leaky ReLU layer and one linear layer to calculate177

zij “ aJLeakyReLUpLNpf
p0q

ij qq and aij “ softmaxjpzijq “
exppzijq

ř

kPNpiq exppzikq
, where a is a learnable178

vector of the same dimension as f p0q

ij .179

4.3 Separable S2 Activation180

The gate activation [12] used by Equiformer applies sigmoid activation to scalar features to obtain181

non-linear weights and then multiply irreps features of degree ą 0 with non-linear weights to add182

non-linearity to equivariant features. The activation, however, only accounts for the interaction from183

vectors of degree 0 to those of degree ą 0 and could be sub-optimal when we scale up Lmax.184

To better mix the information across degrees, SCN [42] and eSCN [18] propose to use S2 activa-185

tion [59]. The activation first converts vectors of all degrees to point samples on a sphere for each186

channel, applies unconstrained functions F to those samples, and finally convert them back to vectors.187

Specifically, given an input irreps feature x P RpLmax`1q
2

ˆC , the output is y “ G´1pF pGpxqqq,188

where G denotes the conversion from vectors to point samples on a sphere, F can be typical SiLU189

activation [60, 61] or typical MLPs, and G´1 is the inverse of G.190

While S2 activation can better mix vectors of different degrees, we find that directly replacing the191

gate activation with S2 activation results in training instability (row 3 in Table 1a). To address the192

issue, we propose separable S2 activation, which separates activation for vectors of degree 0 and193

those of degree ą 0. Similar to gate activation, we have more channels for vectors of degree 0. As194

shown in Figure 2c, we apply a SiLU activation to the first part of vectors of degree 0, and the second195

part of vectors of degree 0 are used for S2 activation along with vectors of higher degrees. After S2196

activation, we concatenate the first part of vectors of degree 0 with vectors of degrees ą 0 as the197

final output and ignore the second part of vectors of degree 0. Additionally, we also use separable S2198

activation in point-wise feed forward networks (FFNs). Figure 2 illustrates the differences between199

gate activation, S2 activation and separable S2 activation.200

4.4 Separable Layer Normalization201

As mentioned in Sec. 4.2, equivariant layer normalization used by Equiformer normalizes vectors of202

different degrees independently, and when those vectors are projected to the same degree, the projected203

vectors can be less well-normalized. Therefore, instead of performing normalization to each degree204

independently, we propose separable layer normalization (SLN), which separates normalization for205

vectors of degree 0 and those of degrees ą 0. Mathematically, let x P RpLmax`1q
2

ˆC denote an input206

irreps feature of maximum degree Lmax and C channels, and x
pLq

m,i denote the L-th degree, m-th order207

and i-th channel of x. SLN calculates the output y as follows. For L “ 0, yp0q “ γp0q ˝

´

xp0q
´µp0q

σp0q

¯

`208

βp0q, where µp0q “ 1
C

řC
i“1 x

p0q

0,i and σp0q “

b

1
C

řC
i“1px

p0q

0,i ´ µp0qq2. For L ą 0, ypLq “ γpLq ˝209

´

xpLq

σpLą0q

¯

, where σpLą0q “

b

1
Lmax

řLmax

L“1

`

σpLq
˘2

and σpLq “

c

1
C

řC
i“1

1
2L`1

řL
m“´L

´

x
pLq

m,i

¯2

.210
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γp0q, γpLq, βp0q P RC are learnable parameters, µp0q and σp0q are mean and standard deviation of211

vectors of degree 0, σpLq and σpLą0q are root mean square values (RMS), and ˝ denotes element-212

wise product. The computation of yp0qcorresponds to typical layer normalization. We note that the213

difference between equivariant layer normalization and SLN lies only in ypLq with L ą 0 and that214

equivariant layer normalization divides xpLq by σpLq, which is calculated independently for each215

degree L, instead of σpLą0q, which considers all degrees L ą 0. Figure 3 compares how µp0q, σp0q,216

σpLq and σpLą0q are calculated in equivariant layer normalization and SLN.217

4.5 Overall Architecture218

Here, we discuss all the other modules in EquiformerV2 and focus on the differences from Equiformer.219

Equivariant Graph Attention. Figure 1b illustrates equivariant graph attention after the above220

modifications. As described in Sec. 4.1, given node embeddings xi and xj , we first concatenate them221

along the channel dimension and then rotate them with rotation matrices Dij based on their relative222

positions or edge directions r⃗ij . The rotation enables reducing SOp3q tensor products to SOp2q223

linear operations, and we replace depth-wise tensor products and linear layers between xi, xj and fij224

with a single SOp2q linear layer. To consider the information of relative distances ||r⃗ij ||, in the same225

way as eSCN [18], we transform ||r⃗ij || with a radial function to obtain distance embeddings and then226

multiply distance embeddings with concatenated node embeddings before the first SOp2q linear layer.227

We split the outputs fij of the first SOp2q linear layer into two parts. The first part is scalar features228

f
p0q

ij , which only contains vectors of degree 0, and the second part is irreps features f pLq

ij and includes229

vectors of all degrees up to Lmax. As mentioned in Sec. 4.2, we first apply an additional LN to f
p0q

ij230

and then follow the design of Equiformer by applying one leaky ReLU layer, one linear layer and a231

final softmax layer to obtain attention weights aij . As for value vij , we replace the gate activation232

with separable S2 activation with F being a single SiLU activation and then apply the second SOp2q233

linear layer. While in Equiformer, the message mij sent from node j to node i is mij “ aij ˆ vij ,234

here we need to rotate aij ˆ vij back to original coordinate frames and the message mij becomes235

D´1
ij paij ˆ vijq. Finally, we can perform h parallel equivariant graph attention functions given fij .236

The h different outputs are concatenated and projected with a linear layer to become the final output237

yi. Parallelizing attention functions and concatenating can be implemented with “Reshape”.238

Feed Forward Network. As illustrated in Figure 1d, we replace the gate activation with separable239

S2 activation. The function F consists of a two-layer MLP, with each linear layer followed by SiLU,240

and a final linear layer.241

Embedding. This module consists of atom embedding and edge-degree embedding. The former is242

the same as that in Equiformer. For the latter, as depicted in the right branch in Figure 1c, we replace243

original linear layers and depth-wise tensor products with a single SOp2q linear layer followed by a244

rotation matrix D´1
ij . Similar to equivariant graph attention, we consider the information of relative245

distances by multiplying the outputs of the SOp2q linear layer with distance embeddings.246

Radial Basis and Radial Function. We represent relative distances ||r⃗ij || with a finite radial basis247

like Gaussian radial basis functions [43] to capture their subtle changes. We transform radial basis248

with a learnable radial function to generate distance embeddings. The function consists of a two-layer249

MLP, with each linear layer followed by LN and SiLU, and a final linear layer.250

Output Head. To predict scalar quantities like energy, we use one feed forward network to251

transform irreps features on each node into a scalar and then perform sum aggregation over all nodes.252

As for predicting forces acting on each node, we use a block of equivariant graph attention and treat253

the output of degree 1 as our predictions.254

5 OC20 Experiments255

Our experiments focus on the large and diverse OC20 dataset [30] (Creative Commons Attribution256

4.0 License), which consists of 1.2M DFT relaxations for training and evaluation, computed with the257

revised Perdew-Burke-Ernzerhof (RPBE) functional [62]. Each structure in OC20 has an adsorbate258

molecule placed on a catalyst surface, and the core task is Structure-to-Energy-Forces (S2EF), which259

is to predict the energy of the structure and per-atom forces. Models trained for the S2EF task are260

evaluated on energy and force mean absolute error (MAE). These models can in turn be used for261

performing structure relaxations by using the model’s force predictions to iteratively update the262

atomic positions until a relaxed structure corresponding to a local energy minimum is found. These263

6



Attention
Re-normalization Activation Normalization Epochs forces energy

1 ✗ Gate LN 12 21.85 286
2 ✓ Gate LN 12 21.86 279
3 ✓ S2 LN 12 didn’t converge
4 ✓ Sep. S2 LN 12 20.77 285
5 ✓ Sep. S2 SLN 12 20.46 285
6 ✓ Sep. S2 LN 20 20.02 276
7 ✓ Sep. S2 SLN 20 19.72 278
8 eSCN baseline 12 21.3 294

(a) Architectural improvements. Attention re-normalization
improves energies, and separable S2 activation (“Sep. S2”)
and separable layer normalization (“SLN”) improve forces.

eSCN EquiformerV2

Lmax Epochs forces energy forces energy
6 12 21.3 294 20.46 285
6 20 20.6 290 19.78 280
6 30 20.1 285 19.42 278
8 12 21.3 296 20.46 279
8 20 - - 19.95 273

(b) Training epochs. Training for more epochs
consistently leads to better results.

eSCN EquiformerV2

Lmax forces energy forces energy
4 22.2 291 21.37 284
6 21.3 294 20.46 285
8 21.3 296 20.46 279

(c) Degrees Lmax. Higher degrees
are consistently helpful.

eSCN EquiformerV2

Mmax forces energy forces energy
2 21.3 294 20.46 285
3 21.2 295 20.24 284
4 21.2 298 20.24 282
6 - - 20.26 278

(d) Orders Mmax. Higher orders
mainly improve energy predictions.

eSCN EquiformerV2

Layers forces energy forces energy
8 22.4 306 21.18 293
12 21.3 294 20.46 285
16 20.5 283 20.11 282

(e) Number of blocks. Adding
more Transformer blocks can help
both force and energy predictions.

Table 1: Ablation results with EquiformerV2. We report mean absolute errors for forces in meV/Å and energy in
meV, and lower is better. All models are trained on the 2M subset of OC20 [30], and errors are averaged over the
four validation splits of OC20. The base model setting is marked in gray .

relaxed structure and energy predictions are evaluated on the Initial Structure to Relaxed Structure264

(IS2RS) and Initial Structure to Relaxed Energy (IS2RE) tasks. The “All” split of OC20 contains265

134M training structures spanning 56 elements, and “MD” split consists of 38M structures. We first266

conduct ablation studies on EquiformerV2 trained on the smaller S2EF-2M subset (Sec. 5.1). Then,267

we report the results of training on S2EF-All and S2EF-All+MD splits (Sec. 5.2). Additionally, we268

investigate the performance of EquiformerV2 when used in the AdsorbML algorithm [10] (Sec. 5.3).269

Please refer to Sec. B and C for details of models and training.270

5.1 Ablation Studies271

Architectural Improvements. In Table 1a, we ablate the three proposed architectural changes –272

attention re-normalization, separable S2 activation and separable layer normalization. First, with273

attention re-normalization (row 1 and 2), energy errors improve by 2.4%, while force errors are about274

the same. Next, we replace the gate activation with S2 activation used in SCN [42] and eSCN [18],275

but that does not converge (row 3). Instead, using the proposed separable S2 activation (row 4),276

where we have separate paths for invariant and equivariant features, converges to 5% better forces277

albeit hurting energies. Similarly, replacing equivariant layer normalization with separable layer278

normalization (row 5) further improves forces by 1.5%. Finally, these modifications enable training279

for longer without overfitting (row 7), further improving forces by 3.6% and recovering energies to280

similar accuracies as Index 2. Overall, our modifications improve forces by 10% and energies by281

3%. Note that simply incorporating eSCN convolutions into Equiformer (row 1) and using higher282

degrees does not result in improving over the original eSCN baseline (row 8), and that the proposed283

architectural changes are necessary.284

Scaling of Parameters. In Tables 1c, 1d, 1e, we systematically vary the maximum degree Lmax, the285

maximum order Mmax, and the number of Transformer blocks and compare with equivalent eSCN286

variants. There are several key takeaways. First, across all experiments, EquiformerV2 performs287

better than its eSCN counterparts. Second, while one might intuitively expect higher resolution288

features and larger models to perform better, this is only true for EquiformerV2, not eSCN. For289

example, increasing Lmax from 6 to 8 or Mmax from 3 to 4 degrades the performance of eSCN on290

energy predictions but helps that of EquiformerV2. In Table 1b, we show that longer training regimes291

are crucial. Increasing the training epochs from 12 to 30 with Lmax “ 6 improves force and energy292

predictions by 5% and 2.5%, respectively.293

Comparison of Speed-Accuracy Trade-offs. To be practically useful for atomistic simulations294

and material screening, models should offer flexibility in speed-accuracy tradeoffs. We compare295

these trade-offs for EquiformerV2 with prior works in Figure 4a. Here, the speed is reported as the296

number of structures processed per GPU-second during inference and measured on V100 GPUs.297
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Throughput S2EF validation S2EF test IS2RS test IS2RE test

Training Samples / Energy MAE Force MAE Energy MAE Force MAE AFbT ADwT Energy MAE
set Model GPU sec. Ò (meV) Ó (meV/Å) Ó (meV) Ó (meV/Å) Ó (%) Ò (%) Ò (meV) Ó

O
C

20
A

ll

CGCNN [44] - 590 74.0 608 73.3 - - -
SchNet [43] - 549 56.8 540 54.7 - 14.4 764
ForceNet-large [63] 15.3 - 33.5 - 32.0 12.7 49.6 -
DimeNet++-L-F+E [4] 4.6 515 32.8 480 31.3 21.7 51.7 559
SpinConv [49] 6.0 371 41.2 336 29.7 16.7 53.6 437
GemNet-dT [50] 25.8 315 27.2 292 24.2 27.6 58.7 400
GemNet-XL [8] 1.5 - - 270 20.5 30.8 62.7 371
GemNet-OC [51] 18.3 244 21.7 233 20.7 35.3 60.3 355
SCN L=8 K=20 [42] - - - 244 17.7 40.3 67.1 330
eSCN L=6 K=20 [18] 2.9 - - 242 17.1 48.5 65.7 341
EquiformerV2 (λE “ 2) 1.8 236 15.7 229 14.8 53.0 69.0 316

O
C

20
A

ll+
M

D

GemNet-OC-L-E [51] 7.5 239 22.1 230 21.0 - - -
GemNet-OC-L-F [51] 3.2 252 20.0 241 19.0 40.6 60.4 -
GemNet-OC-L-F+E [51] - - - - - - - 348
SCN L=6 K=16 (4-tap 2-band) [42] - - - 228 17.8 43.3 64.9 328
SCN L=8 K=20 [42] - - - 237 17.2 43.6 67.5 321
eSCN L=6 K=20 [18] 2.9 243 17.1 236 16.2 50.3 66.7 327
EquiformerV2 (λE “ 2) 1.8 230 14.6 227 13.8 55.4 69.8 311
EquiformerV2 (λE “ 4) 1.8 227 15.0 219 14.2 54.4 69.4 309

Table 2: OC20 results on S2EF validation and test splits, and IS2RS and IS2RE test splits when trained on
OC20 S2EF-All or S2EF-All+MD splits. Throughput is reported as the number of structures processed per
GPU-second during training and measured on V100 GPUs. λE is the coefficient of the energy loss.

(a) Trade-offs between inference speed
and validation force MAE.

(b) Trade-offs between training cost and
validation force MAE.

Figure 4: EquiformerV2 offers better accuracy trade-offs both in terms of inference speed as well as training
cost compared to prior works. All models in this analysis are trained on the S2EF-2M split.

For the same force MAE as eSCN, EquiformerV2 is up to 1.6ˆ faster, and for the same speed298

as eSCN, EquiformerV2 is up to 8% more accurate. Compared to GemNet-OC [51] at the same299

speed, EquiformerV2 is 5% more accurate. Comparing to the closest available EquifomerV2 point,300

GemNet-dT [50] is 1.25ˆ faster but 30% worse. Overall, EquiformerV2 clearly offers a better trade-301

off between speed and accuracy. In similar spirit, we also study the training cost of EquiformerV2302

compared to prior works in Figure 4b, and find that it is substantially more training efficient.303

5.2 Main Results304

Table 2 reports results on the test splits for all the three tasks of OC20, averaged across the in-305

distribution, out-of-distribution adsorbates, out-of-distribution catalysts, and out-of-distribution both306

subsplits. Models are trained on either OC20 S2EF-All and S2EF-All+MD splits. All test results are307

computed via the EvalAI evaluation server1. EquiformerV2 outperforms all previous models across308

all tasks, improving by 4% on S2EF energy MAE, by 15% on S2EF force MAE, by 5% absolute on309

IS2RS Average Forces below Threshold (AFbT), and by 4% on IS2RE energy MAE. In particular,310

the improvements in force predictions are significant. Going from SCN [42] to eSCN [18], S2EF311

test force MAE improves from 17.2 meV/Å to 16.2 meV/Å , largely due to replacing approximate312

equivariance in SCN with strict equivariance in eSCN during message passing and scaling to higher313

degrees. Similarly, by scaling up the degrees of representations in Equiformer [17], EquiformerV2314

further improves force MAE to 13.8 meV/Å, more than doubling the gain of going from SCN to315

eSCN. These better force predictions also translate to higher IS2RS test AFbT, which is computed316

via DFT single-point calculations to check if the DFT forces on the predicted relaxed structures are317

close to zero. A 5% improvement on AFbT is a strong step towards replacing DFT with ML.318

5.3 AdsorbML Results319

Lan et al. [10] recently proposed the AdsorbML algorithm, wherein they show that recent state-of-the-320

art GNNs (e.g. SCN [42]) can achieve more than 1000ˆ speedup over DFT relaxations at computing321

1eval.ai/web/challenges/challenge-page/712
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k “ 1 k “ 2 k “ 3 k “ 4 k “ 5

Model Success Speedup Success Speedup Success Speedup Success Speedup Success Speedup

SchNet [43] 2.77% 4266.13 3.91% 2155.36 4.32% 1458.77 4.73% 1104.88 5.04% 892.79
DimeNet++ [4] 5.34% 4271.23 7.61% 2149.78 8.84% 1435.21 10.07% 1081.96 10.79% 865.20
PaiNN [34] 27.44% 4089.77 33.61% 2077.65 36.69% 1395.55 38.64% 1048.63 39.57% 840.44
GemNet-OC [51] 68.76% 4185.18 77.29% 2087.11 80.78% 1392.51 81.50% 1046.85 82.94% 840.25
GemNet-OC-MD [51] 68.76% 4182.04 78.21% 2092.27 81.81% 1404.11 83.25% 1053.36 84.38% 841.64
GemNet-OC-MD-Large [51] 73.18% 4078.76 79.65% 2065.15 83.25% 1381.39 85.41% 1041.50 86.02% 834.46
SCN-MD-Large [42] 77.80% 3974.21 84.28% 1989.32 86.33% 1331.43 87.36% 1004.40 87.77% 807.00
EquiformerV2 (λE “ 4) 85.41% 4001.71 88.90% 2012.47 90.54% 1352.08 91.06% 1016.31 91.57% 815.87

Table 3: AdsorbML results with EquiformerV2 (λE “ 4) trained on S2EF-All+MD from Table 2.

adsorption energies within a 0.1eV margin of DFT results with an 87% success rate. This is done322

by using OC20-trained models to perform structure relaxations for an average 90 configurations323

of an adsorbate placed on a catalyst surface, followed by DFT single-point calculations for the324

top-k structures with lowest predicted relaxed energies, as a proxy for calculating the global energy325

minimum or adsorption energy. We refer the reader to the AdsorbML paper [10] for more details.326

We benchmark AdsorbML with EquiformerV2, and Table 3 shows that it improves over SCN by327

a significant margin, with 8% and 5% absolute improvements at k “ 1 and k “ 2, respectively.328

Moreover, EquiformerV2 at k “ 2 is more accurate at adsorption energy calculations than all the329

other models even at k “ 5, thus requiring at least 2ˆ fewer DFT calculations.330

6 Conclusion331

In this work, we investigate how equivariant Transformers can be scaled up to higher degrees of332

equivariant representations. We start by replacing SOp3q convolutions in Equiformer with eSCN333

convolutions, and propose three architectural improvements to better leverage the power of higher334

degrees – attention re-normalization, separable S2 activation and separable layer normalization.335

With these modifications, we propose EquiformerV2, which outperforms state-of-the-art methods on336

the S2EF, IS2RS, and IS2RE tasks on the OC20 dataset, improves speed-accuracy trade-offs, and337

achieves the best success rate when used in AdsorbML.338

Broader Impacts. EquiformerV2 achieves more accurate approximation of quantum mechanical339

calculations and demonstrates one further step toward replacing DFT force fields with machine340

learned ones. By demonstrating its promising results, we hope to encourage the community to make341

further progress in applications like material design and drug discovery than to use it for adversarial342

purposes. Additionally, the method only facilitates identification of molecules or materials of specific343

properties, and there are substantial hurdles from their large-scale deployment. Finally, we note344

that the proposed method is general and can be applied to different problems like protein structure345

prediction [64] as long as inputs can be modeled as 3D graphs.346

Limitations. Although EquiformerV2 improves upon state-of-the-art methods on the large and347

diverse OC20 dataset, we acknolwdge that the performance gains brought by scaling to higher degrees348

and the proposed architectural improvements can depend on tasks and datasets. For example, the349

increased expressivity may lead to overfitting on smaller datasets like QM9 [65, 66] and MD17 [56–350

58]. However, the issue can be mitigated by pre-training on large datasets like OC20 [30] and351

PCQM4Mv2 [67] optionally via denoising [68] and then finetuning on smaller datasets.352
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[53] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention502

networks,” in International Conference on Learning Representations (ICLR), 2018. 4503

[54] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic504

depth,” in European Conference on Computer Vision (ECCV), 2016. 4505

[55] M. Geiger, T. Smidt, A. M., B. K. Miller, W. Boomsma, B. Dice, K. Lapchevskyi, M. Weiler,506

M. Tyszkiewicz, S. Batzner, D. Madisetti, M. Uhrin, J. Frellsen, N. Jung, S. Sanborn, M. Wen,507

J. Rackers, M. Rød, and M. Bailey, “e3nn/e3nn: 2022-04-13,” Apr. 2022. 4508

[56] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R. Müller,509

“Machine learning of accurate energy-conserving molecular force fields,” Science Advances,510

vol. 3, no. 5, p. e1603015, 2017. 4, 9511

[57] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, “Quantum-chemical512

insights from deep tensor neural networks,” Nature Communications, vol. 8, jan 2017. 4, 9513

[58] S. Chmiela, H. E. Sauceda, K.-R. Müller, and A. Tkatchenko, “Towards exact molecular514

dynamics simulations with machine-learned force fields,” Nature Communications, vol. 9, sep515

2018. 4, 9516

[59] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical CNNs,” in International Confer-517

ence on Learning Representations (ICLR), 2018. 5518

[60] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network function519

approximation in reinforcement learning,” arXiv preprint arXiv:1702.03118, 2017. 5520

[61] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” arXiv preprint521

arXiv:1710.05941, 2017. 5522

[62] B. Hammer, L. B. Hansen, and J. K. Nørskov, “Improved adsorption energetics within density-523

functional theory using revised perdew-burke-ernzerhof functionals,” Phys. Rev. B, 1999. 6524

12



[63] W. Hu, M. Shuaibi, A. Das, S. Goyal, A. Sriram, J. Leskovec, D. Parikh, and C. L. Zit-525

nick, “Forcenet: A graph neural network for large-scale quantum calculations,” arxiv preprint526

arxiv:2103.01436, 2021. 8527

[64] J. H. Lee, P. Yadollahpour, A. Watkins, N. C. Frey, A. Leaver-Fay, S. Ra, K. Cho, V. Gligorijevic,528

A. Regev, and R. Bonneau, “Equifold: Protein structure prediction with a novel coarse-grained529

structure representation,” bioRxiv, 2022. 9530

[65] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld, “Quantum chemistry structures531

and properties of 134 kilo molecules,” Scientific Data, vol. 1, 2014. 9532

[66] L. Ruddigkeit, R. van Deursen, L. C. Blum, and J.-L. Reymond, “Enumeration of 166 billion533

organic small molecules in the chemical universe database gdb-17,” Journal of Chemical534

Information and Modeling, vol. 52, no. 11, pp. 2864–2875, 2012. PMID: 23088335. 9535

[67] M. Nakata and T. Shimazaki, “Pubchemqc project: A large-scale first-principles electronic536

structure database for data-driven chemistry,” Journal of chemical information and modeling,537

vol. 57 6, pp. 1300–1308, 2017. 9538

[68] S. Zaidi, M. Schaarschmidt, J. Martens, H. Kim, Y. W. Teh, A. Sanchez-Gonzalez, P. Battaglia,539

R. Pascanu, and J. Godwin, “Pre-training via denoising for molecular property prediction,” in540

International Conference on Learning Representations (ICLR), 2023. 9541

542

13


