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Abstract—Backdoor attacks on deep neural networks work by
injecting them with a malicious behavior during training. Such
behavior can then be activated at test-time using cleverly-crafted
triggers. Defending against backdoors is key in machine learning
security in order to safeguard the trust between model providers
and users. This paper demonstrates the open problem of back-
door defense performance against a representative selection of
backdoor attacks, with a main focus on input purification (a
valuable defense category in black-box contexts where all DNN
inputs are preprocessed in the hope of erasing a potential trigger).
We show that current defenses are adversary-aware and dataset-
dependent. They typically focus on patch-based attacks and
simpler image classification datasets. This brittleness when using
stand-alone defenses highlights the cat-and-mouse game currently
affecting the backdoor literature. In this context, we propose
a two-defense strategy using existing methods as a palliative
solution while waiting for future developments.

Index Terms—backdoor attack, backdoor defense, security.

I. INTRODUCTION

The rise of deep learning during the 2010s has revolu-
tionized many industries like biometrics or natural language
processing. However, the ballooning costs of training and
deploying increasingly large deep neural networks (DNN) have
led developers to rely on third-party solutions to bootstrap
their needs [1]. This scenario leads to new security risks
among which backdoor attacks feature prominently. Backdoors
involve an attacker able to manipulate a DNN’s training such
that it carries a malicious and stealthy behavior that can be
activated during inference time using some trigger pattern [2].

Defenses quickly followed as backdoor risk damages the
trust between the many parties involved in the growing ma-
chine learning economy [1]. Such defenses typically fall into
two groups: detection and/or removal. The former methods
use statistical tests to detect a backdoor in a DNN [3] or
its inputs [4], whereas the latter methods do not assume this
detection capability. Instead, removal methods try to erase
backdoors at the DNN (e.g. via fine-tuning [5]) or input level,
also called input purification (e.g. cleaning suspicious areas
and therefore potential triggers from an image [6]).

This paper first demonstrates the limited scope of state-
of-the-art input purification defenses given a broad range
of backdoor attacks and/or tasks (e.g. face recognition). We
highlight that the current defense literature unfortunately fits
an adversary-aware context. This weakness especially matters

in a black-box context, i.e., when the defender cannot access
a DNN’s weights but can query it via an API. Secondly, we
show that this problem also affects other types of backdoor
defenses: backdoor detection and input filtering (which differs
from input purification). We thus demonstrate that considering
defenses as stand-alone solutions is a brittle approach for any
defender to follow. Given such an open problem that defenders
must face while waiting for stronger defenses, we finally
contribute an easy albeit imperfect workaround: mixing two
existing defenses can help palliate their existing limitations.

We organize the paper as follows: Section II covers the
literature, Section III describes our methodology, Section IV
showcases our experiments, Section V demonstrates our de-
fense mixing strategy, and Section VI concludes our paper.

II. BACKGROUND

A. Backdoor attack methods

Backdoor attacks comprise techniques that inject a ma-
licious behavior into a DNN during training, which can
then be exploited at their inference stage. They differ from
adversarial examples [1], which only target the latter stage.
Therefore, a backdoor is designed to be stealthy (i.e., to evade
human and/or machine detection) and involves a trigger pattern
stamped or blended in a test-time benign input to activate it [2].

1) Data poisoning: Data poisoning is the most common
DNN backdoor method [1] where an attacker gains access to
a DNN training dataset (e.g., by providing a poisoned dataset
to a victim or inserting tainted images during data collection).
When training on poisoned data, a DNN learns to associate a
trigger with incorrect outcomes predefined by the attacker.

Formally, consider a classification dataset X × Y where
X ⊂ RC×H×W is an image domain (with C, H , and W
an image’s channels, width, and height) and Y = {1, · · · , κ}
is a set of classes. Let’s denote fθ : X → Y , a DNN approxi-
mation function with parameters θ that predicts for an image
x ∈ X a corresponding label y = fθ(x) ∈ Y . An attacker
equipped with a poisoning function P : X × Y → X × Y
performs data poisoning such that, given a benign dataset
Dcl

train = {(xcl
i , y

cl
i )}ni=1 ⊂ X × Y:

P({xcl
i , y

cl
i }) = {T (xcl

i ),F(ycli )} = {xpo
i , ypoi } (1)

F(ycli ) = ypo ∈ Y, ypo ̸= ycli , (2)
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where xcl is a clean datum, altered with a trigger function T
to yield the poisoned datum xpo, and ycl is a clean label that
the attacker flips to the target label ypo via the function F . By
altering a portion β ∈ (0, 1] (i.e. the poisoning rate) of Dcl

train,
the attacker yields a poisoned dataset Dpo

train. A DNN trained
on Dpo

train becomes backdoored with a high likelihood.
2) Local backdoors: Backdoor attacks may use patch-based

triggers [2]. These patches are localized in a target input and
are either handcrafted by the attacker [2] or optimized to target
a specific model or dataset [1], [7]. These patches are typically
defined by both their appearance and location [8] such that:

T (xcl) = (1−M)⊗ xcl +M ⊗ t,

where M is a binary mask indicating a trigger t’s location in
an input x, and ⊗ is the element-wise multiplication. Recent
work [9] looks into decorrelating a backdoor patch from its
location (e.g. by randomly drawing M during training).

3) Watermark backdoors: Backdoors also make use of dif-
fuse patterns, handcrafted or learned as well, that are blended
over an input given a blending ratio α ∈ (0, 1) such that:

T (xcl) = (1− α) · xcl + α · t.

For instance, Chen et al. [10] blend a cartoon or a random
pattern into an image, and Barni et al. [11] use a sine wave.

4) Other backdoor types: Prior works also expand beyond
the binary framework of local vs. watermark backdoors. For
instance, WaNet [12] uses imperceptible image warping as
a trigger, whereas IADBA [7] uses a sparse trigger pattern.
Overall, the breadth of attacks underscore the need for robust
defenses that can defend against all possible types.

B. Backdoor defense methods

1) Backdoor detection: A defender designs a binary test
to detect a backdoor, deriving a metric and corresponding
threshold to filter out DNNs or data (i.e. input filtering). For
instance, Neural Cleanse [3] detects a backdoor by assessing
each class predicted by a DNN: it reconstructs potential
triggers and computes anomaly indexes to flag backdoored
classes. Meanwhile, STRIP [13] filters out test-time inputs that
display a low entropy when superposed with other inputs.

2) Backdoor removal: When detection is not achievable, a
defender may instead suppress backdoors at the DNN [5] or
data level [6]. At the DNN level, methods like DeepSweep [5]
fine-tune a model to erase potential backdoors. Meanwhile,
input purification defenses preprocess all test-time data to (1)
clean suspicious areas (e.g. BDMAE [6]) or (2) transform
them as a whole to cause a trigger-backdoor mismatch (e.g.
ShrinkPad [8]). Defenses like DeepSweep perform removal at
both levels. Alongside fine-tuning a DNN, it also refines a data
augmentation policy applied to test-time inputs.

3) Other defense types: Defenses also fit multiple groups.
For instance, whether a defense is white-box or black-box.
White-box defenses like DeepSweep [5] require some access
to a DNN’s internals, e.g. its weights, whereas black-box ones
like BDMAE [6] only need a DNN’s inputs and outputs.

C. Contributions and prior work

Section IV first focuses on assessing the effectiveness of
input purification defenses (i.e. data-level removal). Such
methods matter as they are easily portable to multiple DNNs
and datasets, making them attractive to any defender. However,
they are typically evaluated using patch-based attacks [6]. Such
a setting indicates an adversary-aware defender, a threat model
that cannot be assumed in real-life. In this context, we expand
the evaluation of these defenses to watermark-based attacks.
To the best of our knowledge, we are the first to explicitly
focus on assessing input purification beyond patch triggers.
Secondly, if we observe that input purification is currently
limited in scope and effectiveness, we also highlight that other
backdoor defense categories do not offer better prospect.
This reinforces the problem that existing defenses have yet to
catch up with existing attacks, especially when working out-
side the domain of their attacker-aware design. Furthermore,
we identify that existing defenses tend to be dependent on
the characteristics of the underlying dataset. In this context,
we demonstrate in Section V a simple mitigation policy to
palliate some of the existing shortcomings shown in this paper:
using two defenses in tandem.

To perform our experiments, we first rely on four in-
put purification defenses: BDMAE [6], DeepSweep [5],
Februus [14], and ShrinkPad [8] (see Section III-D for further
detail on the defenses used in this paper). We chose the
first method for yielding recent state-of-the-art results [6] and
the latter three for being representative of the broader input
purification literature [1]. We further motivate our choice by
having an even split between white-box (DeepSweep, Februus)
and black-box methods (BDMAE, ShrinkPad). For our second
topic, we additionally cover two ubiquitous detection defenses:
Neural Cleanse [3] (model level) and STRIP [13] (input level).

III. EXPERIMENTAL SETUP

A. Threat model

We consider a defender who gains access to a backdoored
DNN in either a white or black-box scenario and must thwart
backdoor attackers. The defender has three levels of control
depending on the backdoor defense’s requirements. Beyond
an access to a DNN’s test-time inputs and outputs (for BD-
MAE [6], Neural Cleanse [3], ShrinkPad [8], and STRIP [13]),
the defender has access to a DNN’s weights and its validation
data for DeepSweep [5] or to its activations for Februus [14].

B. Experimental setup

We use 3 datasets: CIFAR10, CASIA-Webface (abbr. CA-
SIA), and CelebA. The latter two are curated to retain the
identities with the most elements (see dataset info in Table I).

We train ResNet-18 DNNs on CIFAR10 and ResNet-50
DNNs on CASIA and CelebA (see Table IV). Training,
validation, and test splits are 75%, 10% and 15%. ResNet-18s
are trained for 100 epochs, using the Adam optimizer with
an initial learning rate lr = 0.01 (divided by 10 at epochs
33, 75, and 90). Training data is augmented with: random
crop, random rotation, and color jitter. ResNet-50s are trained
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TABLE I
DETAILS OF DATASETS AND CLASSIFIERS

Dataset #Classes Input Size #Images DNN
CIFAR10 10 3 x 32 x 32 50,000 ResNet-18
CASIA 200 3 x 112 x 112 51,341 ResNet-50a

CelebA 467 3 x 112 x 112 13,000 ResNet-50a
aPretrained on full CASIA-Webface using ArcFace loss.

TABLE II
ATTACKS COVERED IN THIS PAPER

Patch & Others
Name Ref. Type
BadNets [2] patch
BadNets (Dynamic) patch
Chen et al. (glasses) [10] patch
IADBA [7] other (sparse)
WaNet [12] other (warping)

Watermarks
Name Ref.
Chen et al. (cartoon) [10]Chen et al. (noise)
ISSBA [15]
Refool [16]
SIG [11]

for 200 epochs, using Adam with lr = 0.01 (divided by 10
every 50 epochs). Training data is augmented with a random
horizontal flip. Training differs only for WaNet [12] (see
Section III-C) where we follow the paper’s own regimen [12].

C. Backdoor attacks

This paper covers 2 variants of BadNets [2], 3 variants
of Chen et al. [10], SIG [11], WaNet [12], IADBA [7],
ISSBA [15], and Refool [16] (see Table II). These 10 backdoor
attacks are representative of the overall backdoor literature [1]:
3 of them use patches, 5 watermarks, and 2 other types of
triggers. BadNets, Chen et al., SIG and WaNet use handcrafted
triggers, whereas IADBA, ISSBA and Refool use optimized
ones. IADBA and ISSBA leverage an input-specific generative
approach, whereas Refool refines a dictionary of triggers built
from an out-of-distribution dataset.

Each attack covered in this paper is all-to-one, i.e., all
classes are backdoored such that an input altered with T
maps to a single, attacker-specified target class ypo (randomly
drawn before training). We train backdoored DNNs starting
from their benign pretrained versions and use a poisoning
ratio β = 0.05. For BadNets [2], we use the 3x3 RGB pattern
provided by [6]. For Chen et al. [10], we use its three canonical
variants (i.e. a pink glasses patch, a cartoon image provided by
the authors, and a uniformly drawn noise pattern). The glasses
patch is only used on CASIA and CelebA.

D. Backdoor defenses

This paper covers 6 defenses: 4 input purifications, 1 back-
door detection, and 1 input filtering methods (see Table III).

For input purification defenses, we select ShrinkPad [8],
DeepSweep [5], Februus [14], and BDMAE [6]. ShrinkPad
applies a simple transformation (i.e. shrinking and padding)
to test-time inputs forwarded to a DNN to damage incoming
triggers. DeepSweep resembles ShrinkPad but fits a white-
box setting that involves fine-tuning a suspicious DNN while
refining a data augmentation pipeline that will be applied
to test-time inputs. Meanwhile, Februus and BDMAE follow
a generative approach where suspicious areas in test-time
inputs are erased and then reconstructed via an inpainting
generative adversarial network (GAN) or masked autoencoder
(MAE). For backdoor detection, we use the ubiquitous Neural

TABLE III
DEFENSES COVERED IN THIS PAPER

Name Ref. Type Access required
BDMAE [6] input purification black-box
DeepSweep [5] model & input purification white-box
Februus [14] input purification white-box
Neural Cleanse [3] backdoor detection black-box
ShrinkPad [8] input purification black-box
STRIP [13] input filtering black-box

TABLE IV
CLEAN DATA ACCURACY (CDA) AND ATTACK SUCCESS RATE (ASR)

OF MODELS AND ATTACKS CONSIDERED IN THIS PAPER

Backdoor CIFAR10 CASIA CelebA
CDA ASR CDA ASR CDA ASR

Benign 93.2% n.a. 93.6% n.a. 87.6% n.a.
BadNets 93.4% 99.8% 92.0% 100% 86.9% 100%
BadNets (Dyn.) 93.7% 99.1% 92.2% 100% 86.8% 99.8%
Chen et al. (glasses) n.a. n.a. 91.9% 100% 86.2% 100%
Chen et al. (cartoon) 93.8% 99.2% 91.7% 100% 86.8% 100%
Chen et al. (noise) 93.4% 99.6% 92.5% 100% 86.7% 100%
IADBA 88.5% 99.9% 86.7% 98.4% 81.2% 99.6%
ISSBA 89.9% 99.3% 90.9% 100% 83.6% 97.8%
Refool 92.6% 60.8% 91.4% 98.1% 84.7% 89.7%
SIG 93.6% 99.9% 92.3% 100% 86.8% 100%
WaNet 94.0% 94.8% 92.4% 92.9% 85.3% 85.1%

Cleanse [3] defense to verify our intuition that backdoor
detection is not always feasible. Finally, we use STRIP [13]
to give us insights into input filtering.

For the input purification defenses, we lift from the authors’
described setups. ShrinkPad [8] uses a 12.5% shrinking ratio.
DeepSweep [5] performs a 10-epoch fine-tuning and uses the
authors’ specified data augmentation transforms. Februus [14]
uses a mask size of 0.8 and the GradCam++ method targeting
the ’layer.3’ of the ResNet models. BDMAE [6] uses the
authors’ MAE-base model. For Neural Cleanse [3], we use
the authors’ anomaly index threshold of 2. We test 9 ran-
dom classes alongside the backdoored class for CASIA and
CelebA. We then report whether the backdoored class is found
alongside potential false positives on benign classes. Finally,
for STRIP [13], we compute a threshold value on held-out
validation data such that the false rejection rate of benign
inputs is FRR = 1% (results are then reported on test data).

E. Metrics

For the input purification defenses, we compare a DNN’s
clean data accuracy (CDA) and backdoor attack success rate
(ASR) against their sanitized versions (SDA and SASR),
obtained after applying the corresponding defenses on benign
and backdoored test-time data. For Neural Cleanse [3], we
check whether a backdoored class is flagged with or without
false positives on benign classes. For STRIP [13], we provide
the false acceptance (FAR) and false rejection (FRR) rates,
computed on backdoored and benign test-time data respec-
tively (thresholds are computed on validation data).

IV. RESULTS

A. Input purification defenses

Table V reports the sanitized clean data accuracy (SDA)
and the sanitized attack success rate (SASR) when applying
a defense (the color coding is arbitrary and meant to help
browsing the table).
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TABLE V
INPUT PURIFICATION RESULTS

(GREEN INDICATES SDA IS LESS THAN 10 POINTS LOWER THAN CDA
AND ASR < 30%, RED IF SDA IS MORE THAN 10 POINTS LOWER THAN

CDA AND ASR > 30%, ORANGE OTHERWISE).

Defense Attacks CIFAR10 CASIA CelebA
SDA SASR SDA SASR SDA SASR

ShrinkPad

BadNets 91.7% 5.3% 67.9% 0.1% 70.8% 1.1%
BadNets (Dyn.) 92.1% 33.6% 66.7% 66.2% 70.9% 78.9%
Chen et al. (glasses) n.a. n.a. 67.2% 73.1% 66.2% 92.8%
Chen et al. (cartoon) 92.1% 13.2% 72.8% 95.7% 71.4% 96.1%
Chen et al. (noise) 90.8% 10.0% 67.3% 78.8% 72.5% 73.1%
IADBA 86.6% 1.1% 71.5% 39.1% 63.9% 38.8%
ISSBA 89.3% 85.2% 1.2% 99.6% 63.5% 98.1%
Refool 88.9% 65.5% 46.3% 96.0% 66.4% 91.1%
SIG 91.0% 94.0% 69.2% 98.9% 71.9% 99.9%
WaNet 33.0% 99.2% 52.4% 95.8% 25.1% 98.1%

DeepSweep

BadNets 93.4% 1.2% 86.0% 0.0% 70.7% 0.4%
BadNets (Dyn.) 92.5% 85.7% 81.3% 0.1% 80.2% 19.8%
Chen et al. (glasses) n.a. n.a. 86.6% 77.6% 82.1% 100%
Chen et al. (cartoon) 92.5% 28.2% 83.7% 50.8% 79.9% 77.1%
Chen et al. (noise) 91.9% 72.6% 86.5% 1.9% 74.2% 7.6%
IADBA 88.8% 1.3% 86.9% 14.7% 80.5% 1.3%
ISSBA 93.3% 27.9% 83.7% 0.0% 76.7% 0.0%
Refool 92.3% 26.2% 79.0% 0.2% 79.1% 64.4%
SIG 93.0% 93.3% 75.5% 0.2% 77.2% 80.2%
WaNet 91.5% 11.3% 92.8% 0.1% 86.6% 0.0%

Februus

BadNets 90.3% 1.1% 89.6% 0.0% 82.3% 0.8%
BadNets (Dyn.) 91.6% 1.8% 89.7% 13.3% 84.0% 72.8%
Chen et al. (glasses) n.a. n.a. 90.6% 100% 82.8% 100%
Chen et al. (cartoon) 90.9% 97.1% 90.4% 100% 84.6% 100%
Chen et al. (noise) 91.3% 99.5% 90.1% 100% 83.6% 100%
IADBA 85.9% 2.4% 82.0% 74.4% 77.5% 47.8%
ISSBA 90.0% 93.7% 89.5% 100% 79.2% 95.9%
Refool 89.7% 55.8% 82.1% 96.6% 81.1% 90.4%
SIG 90.8% 100% 91.0% 100% 84.7% 100%
WaNet 91.2% 18.2% 90.5% 77.4% 86.1% 63.6%

BDMAE

BadNets 94.0% 1.2% 90.6% 0.0% 82.1% 0.3%
BadNets (Dyn.) 93.1% 0.7% 90.2% 0.3% 82.9% 1.0%
Chen et al. (glasses) n.a. n.a. 90.3% 100% 82.0% 100%
Chen et al. (cartoon) 92.7% 97.5% 90.5% 100% 82.9% 100%
Chen et al. (noise) 92.5% 97.1% 90.4% 95.2% 81.3% 97.0%
IADBA 88.9% 0.5% 83.7% 33.9% 74.6% 23.0%
ISSBA 90.2% 99.1% 90.1% 85.5% 81.4% 97.0%
Refool 92.4% 59.4% 89.5% 90.1% 80.5% 87.1%
SIG 93.4% 99.8% 91.2% 100% 83.2% 100%
WaNet 93.6% 17.9% 91.8% 59.0% 80.0% 69.2%

On CIFAR10, ShrinkPad is an effective black-box de-
fense against local or sparse patterns, i.e. BadNets [2] and
IADBA [7], as well as against the Chen et al. [10] watermarks.
However, ShrinkPad is demonstrably not adapted to defending
against any backdoors on the CASIA and CelebA datasets as
we observe important drops in accuracy on clean data (see
SDA in Table V). This failure arises from the characteristic
of face recognition DNNs needing to infer on well-aligned
faces, which ShrinkPad breaks. Additionally, ShrinkPad does
not result in a drop in ASR against watermark triggers on
CASIA and CelebA. A stronger set of transforms may be
required to cause a trigger-backdoor mismatch albeit at a
higher SDA cost. Finally, we note a generally lower SDA
in the case of WaNet [12] and a catastrophic SDA decrease
in the case of ISSBA [15] on CASIA. Here, we surmise that
fine, e.g. warping-based, attacks may cause DNNs to be much
more brittle to spatial transformations. This warrants further
exploration that is however outside the scope of this paper.

DeepSweep [5] is effective against a higher number of
backdoors than all other defenses (see Table V). However, we
observe some failures against watermark backdoors on more
complex datasets (e.g. ISSBA [15] and SIG [11] on CASIA).
Here, we point to Gu et al. [2] who note that local backdoor
patterns are typically learned by a few neurons, which are
likely to be modified by DeepSweep’s fine-tuning. We surmise
that, for watermarks, a backdoor is diffused along different
neuron pathways, making it harder to erase. Unfortunately, a

TABLE VI
NEURAL CLEANSE [3] RESULTS (TP+FP: THE BACKDOORED CLASS IS

FOUND BUT 1+ BENIGN CLASSES ARE ALSO FLAGGED; FN+FP: THE
BACKDOORED CLASS IS NOT FOUND BUT 1+ BENIGN CLASSES ARE

FLAGGED; FN: THE WORST CASE SCENARIO AS NO CLASS IS FLAGGED,
I.E. THE DNN MAY BE SEEN AS BENIGN).

Backdoor CIFAR10 CASIA CelebA
BadNets TP + FP TP + FP FN
BadNets (Dyn.) TP + FP FN + FP FN
Chen et al. (glasses) n.a. FN + FP FN + FP
Chen et al. (cartoon) FN + FP FN FN + FP
Chen et al. (noise) FN + FP FN FN
IADBA FN + FP FN TP + FP
ISSBA FN + FP FN + FP FN + FP
Refool FN + FP TP + FP FN
SIG FN + FP FN FN
WaNet FN + FP FN + FP FN + FP

downside to DeepSweep is its white-box nature.
Lastly, both Februus and BDMAE are effective against

patch-based backdoors like BadNets [2] and, for CIFAR10,
IADBA [7] and WaNet [12] (see Table V). We further note
that, when effective, BDMAE typically supersedes Februus in
SDA and SASR. This matters given BDMAE is a black-
box method. However, both methods fail against ISSBA [15],
Refool [16], and SIG [11] while having mixed results against
WaNet [12] on CASIA and CelebA. This indicates that current
input purification method do not generalize to the broader
scope of existing attacks and to more complex datasets.

Overall, input purification defenses appear to be adversary-
aware, requiring that attacks be patch-based to function. Ad-
ditionally, if a defense works against backdoor attacks on
CIFAR10, a common but simple dataset, they unfortunately
fail on more complex tasks (e.g. CASIA, see Table I).

B. Neural Cleanse

We observe three types of undesirable outcomes when
testing Neural Cleanse [3]:

1) fails to detect the backdoored class (false negative, FN),
2) detects the backdoored class but flags benign classes as

well (true positive + false positive(s), TP+FP),
3) fails to detect the backdoored class but does benign

classes (false negative + false positive(s), FN + FP).
Neural Cleanse yields false positives on benign classes in a

majority of cases, regardless of the results on the backdoored
class (see Table VI). Additionally, as dataset complexity rises
with CASIA and CelebA, we observe that Neural Cleanse
starts flagging backdoored models as benign. This unfortu-
nately would lead to their deployment by unsuspecting users
if they were only relying on this defense method.

These results demonstrate that Neural Cleanse fails against
increasingly complex backdoors and datasets, validating our
intuition set in Section III-A. This underscores the need for
data-based defenses like input purification methods.

C. Input filtering

We observe mixed results for STRIP [13] (see Table VII).
The best results are found against BadNets [2], Chen et
al. [10]’s watermark triggers, IADBA [7], and SIG [11] on CA-
SIA and CelebA. However, as illustrated against Refool [16],
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TABLE VII
STRIP RESULTS (TEST-TIME DATA FAR/FRR GIVEN THRESHOLDS

COMPUTED S.T. CLEAN VALIDATION DATA FRR = 1%, GREEN:
FAR ≤ 5.0%; ORANGE: OTHERWISE).

Backdoor CIFAR10 CASIA CelebA
FAR FRR FAR FRR FAR FRR

BadNets 0.0% 6.7% 3.8% 2.6% 0.0% 2.8%
BadNets (Dyn.) 23.1% 5.7% 3.2% 2.5% 3.7% 2.2%
Chen et al. (glasses) n.a. n.a. 59.4% 1.7% 85.5% 2.6%
Chen et al. (cartoon) 2.4% 7.1% 2.3% 2.0% 7.1% 3.5%
Chen et al. (noise) 1.9% 7.6% 8.2% 2.7% 16.5% 1.4%
IADBA 94.5% 8.9% 34.5% 3.1% 95.8% 1.2%
ISSBA 98.7% 4.6% 50.6% 1.6% 34.6% 3.2%
Refool 99.2% 0.1% 100% 0.0% 100% 0.0%
SIG 5.0% 8.5% 1.6% 2.8% 7.4% 3.7%
WaNet 92.7% 8.9% 25.3% 3.5% 94.1% 2.5%

TABLE VIII
STRIP+BDMAE MIXED STRATEGY RESULTS ON CASIA (SAME COLOR

LEGEND AS TABLE V); TEST-TIME DATA FAR/FRR GIVEN THRESHOLDS
COMPUTED S.T. CLEAN VALIDATION DATA FRR = 1%.

Backdoor SDA SASR

BadNets 91.6% 0.0%
BadNets (Dyn.) 92.1% 0.0%
Chen et al. (glasses) 92.0% 59.4%
Chen et al. (cartoon) 91.0% 2.3%
Chen et al. (noise) 91.8% 7.4%
IADBA 84.1% 0.5%
ISSBA 90.7% 50.6%
Refool 91.1% 92.1%
SIG 92.3% 1.6%
WaNet 80.8% 13.1%

STRIP is yet another imperfect defense. STRIP’s computed
threshold is wrongly negative, a defense-breaking problem that
was also reported in another context in the original paper [13].

These mixed results underscore the hardness of reliably
filtering backdoored inputs (Neural Cleanse [3] fails in similar
settings). This highlights the needs for better defenses that
eschew using brittle binary tests.

V. A DOUBLE-EDGED SWORD: MIXING DEFENSES

The brittleness and task variability of backdoor defenses
is an open problem. Future work must expand defenders’
state-of-the-art capabilities to cover more complex, often
watermark-based triggers, especially in a black-box setting that
excludes methods like DeepSweep [5]. Nonetheless, defenders
are not powerless while waiting for future defenses. Here,
we make the simple observation that defenses are typically
assessed in isolation. To the best of our knowledge, mixing
them is a rarely covered idea than may yield substantial gains.

We empirically assess mixing two black-box methods: (1)
rejecting inputs with STRIP [13] then (2) purifying accepted
inputs with BDMAE [6]. We choose BDMAE as it is state-
of-the-art and STRIP as it is the input filtering method we
previously covered. To assess this strategy, we use CASIA as
it is both a complex task and displays the highest CDA and
SDA in our experiments in Section IV.

As illustrated in Table VIII, we show that mixing both
methods can lower a backdoor attack’s ASR, notably against
some previously unbeaten watermark triggers. For instance,
on SIG [15], we reduce the ASR to 1.6% versus 100% with
only BDMAE at the cost of only rejecting 2.8% of benign

test inputs. When one defense fails, the other picks up the
mantle. This demonstrates that different defenses can provide
a complementary protection against backdoor attacks at the
cost of rejecting an average 2 − 3% of benign inputs (we
note it may be unacceptable in some applications). This is a
noteworthy gain for such a simple workaround at the moment.

Future work may need explore which combinations of
defenses are effective in order to break the ongoing cat-and-
mouse game. The goal is to find, if not a stand-alone defense,
a mix that robustly performs on a variety of attacks and tasks.

VI. CONCLUSION

This paper demonstrates a blind spot in the backdoor
defense literature. Defenses lack robustness and generalization
in the face of harder, typically watermark-based, backdoor
attacks and more complex datasets. We highlight the need
for more robust, adversary-agnostic methods that go beyond
the current state-of-the-art (e.g. restriction to patch-based
attacks for input purification defenses). In the meantime, we
demonstrate that a defender may rely on a black-box defense
mixing strategy to better cover the range of attacks.
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