
Value Gradient Guidance for Flow Matching Alignment

Zhen Liu1† Tim Z. Xiao2* Carles Domingo-Enrich3* Weiyang Liu4 Dinghuai Zhang3,5†

1The Chinese University of Hong Kong (Shenzhen) 2University of Tübingen
3Microsoft Research 4The Chinese University of Hong Kong 5Mila – Quebec AI Institute

*Equal contribution †Corresponding author vgg-flow.github.io

Matching

Optimal
Control

Euler Step

Number of Finetuning Steps

Figure 1: Left: Illustration of our proposed VGG-Flow algorithm. The velocity field is trained to match the
value gradient field obtained from the optimal control problem. The value gradient field is parametrized as
the reward gradient field of the one-step Euler prediction plus a learnable residual field. Right: Evolution of
samples (with fixed seeds and prompts) during the course of finetuning on the reward model of Aesthetic Score.

Abstract

While methods exist for aligning flow matching models – a popular and effective
class of generative models – with human preferences, existing approaches fail to
achieve both adaptation efficiency and probabilistically sound prior preservation.
In this work, we leverage the theory of optimal control and propose VGG-Flow, a
gradient-matching–based method for finetuning pretrained flow matching models.
The key idea behind this algorithm is that the optimal difference between the
finetuned velocity field and the pretrained one should be matched with the gradient
field of a value function. This method not only incorporates first-order information
from the reward model but also benefits from heuristic initialization of the value
function to enable fast adaptation. Empirically, we show on a popular text-to-
image flow matching model, Stable Diffusion 3, that our method can finetune flow
matching models under limited computational budgets while achieving effective
and prior-preserving alignment.

1 Introduction

Flow matching models [1, 36, 38] are one of the most effective methods in modeling high-dimensional
real-world continuous distributions and widely used for the generation of images [17], videos [65], 3D
objects [39, 40, 69, 78], etc. These models, compared to diffusion models that rely on simulation with
stochastic differential equations (SDEs), are trained to sample with deterministic ordinary differential
equations (ODEs) of which sampling paths are often straighter and easier to model.

Similar to the motivations for performing alignment for diffusion models [6, 19], it is natural to
finetune flow matching models with reward models so that the generated samples are more aligned

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://vgg-flow.github.io/

with human preferences. While existing methods have already achieved fast, effective, diversity-
preserving and prior-preserving alignment for diffusion models through gradient-matching-based
approaches, the ODE sampling paths of flow matching models pose challenges in applying these
methods. The key challenge is that, with flow matching models, one typically has access to neither
a reference path (unless one has access to the large-scale pretraining dataset) nor the probability
flow. Since it is non-trivial to obtain the probability flow and to incorporate the learned prior from
base models for flow matching models, it is harder to align flow matching models in an efficient yet
probabilistic way.

To address this issue, we take inspiration from the theory of optimal control and consider a relaxed
objective: we optimize the target reward but with the accumulated cost-to-go defined as the ℓ2
distance between the velocity fields of the finetuned model and the base model. The optimal solution
of this optimization program is described by the Hamilton-Jacobi-Bellman (HJB) equation and can
be shown in our formulation equivalent to two conditions: a gradient matching condition that the
residual velocity field matches the gradient of the value function, and a value consistency condition
that ensures correct estimation of value functions. In light of this result, we propose our finetuning
method, dubbed VGG-Flow (short for Value Gradient Guidance for Flow Matching Alignment),
that finetunes the flow matching model via “matching with value gradient guidance”—the difference
between the velocity fields of the finetuned model and the base model is expected to be the gradient
of the value function—while the value function can be solved with a consistency equation. Such a
formulation allows us not only to directly propagate the reward gradient to the matching target through
the value consistency equation in an amortized and memory-efficient way but also to use a heuristic
initialization of the value gradient for fast convergence. We empirically show that VGG-Flow can
effectively and robustly finetune large flow matching models like Stable Diffusion 3 [17] within
limited computational resources.

To summarize, our contributions are

• With a relaxed objective, we leverage the HJB equation from optimal control theory to propose
VGG-Flow, an efficient and effective alignment method for flow matching models that matches the
residual velocity field with the guidance signal of value function gradient.

• We propose to parametrize the value gradients with a forward-looking technique, which eases the
difficulty in learning accurate value gradients in limited time and thus accelerates convergence.

• We empirically demonstrate the effectiveness of VGG-Flow on a large-scale text-to-image flow
matching model, Stable Diffusion 3, and show that VGG-Flow achieves better reward convergence,
sample diversity, and prior preservation compared to other alignment baselines.

2 Related Work

General alignment strategies. Since large generative models are typically trained on uncurated
massive datasets, their sample distributions are typically far from human preferences. A common
approach to solve this problem is through reinforcement learning from human feedback (RLHF) [45],
in which one first trains a reward model from human preference datasets and later finetunes a
generative model with reinforcement learning methods such that it samples from this reward model.
In the alignment of large language models, it is common to use simple policy gradient methods
such as PPO [56] and GRPO [57]. While they are general enough to be applicable to continuous
generative models, they can be less efficient because they do not leverage the differentiable nature of
both reward models and generative models. Similar to traditional RL [73] methods, the framework of
generative flow networks (GFlowNets) [4, 46, 74, 75, 76], which are highly correlated with soft RL
methods, can be used to finetune diffusion models [41, 71, 72, 77]. Alternatively, one may simple
reward-reweight methods [18, 19, 34] for the same purpose. It is also under exploration to perform
test-time scaling on diffusion models via methods like sequential Monte Carlo [27, 58], parallel
tempering [28], and search [42] without any model finetuning.

Differentiable RLHF for continuous foundation generative models. Diffusion models and flow
matching models, commonly used to build foundation models in the continuous domain, exhibit
different properties due to their differentiable and sequential sampling process. For diffusion models,
since each sampling step is stochastic (probably excluding the last step), one may finetune these
models using stochastic optimal control [61] which typically requires extra steps for learning surrogate
functions. A recent work inspired by the framework of generative flow networks [41] builds a gradient-
informed finetuning strategy that efficiently aligns diffusion models with gradient-matching-like

2

losses in a probabilistic way. For flow matching models, these approaches are not applicable because
they require the transitions to be stochastic. One way that applies to both diffusion models and flow
matching models is to treat the sampling process as a computational graph with which we directly
optimize differentiable rewards [12, 70]. However, such a strategy by design fails to align with the
target distribution but only aims to find some modes in the distribution. More principled approaches
for aligning flow matching models include the recent method of Adjoint Matching [15], which by
turning flow matching models into equivalent SDEs computes a gradient matching target for the
velocity field with an adjoint ODE. Solving such an ODE is however expensive, especially in cases
of foundation models where accurate adjoint ODE solving requires smaller time steps in ODE solver.

Optimal control and machine learning. Optimal control (OC) is concerned with steering systems
subject to random fluctuations so as to minimize a given cost. OC methods, including the subset
of stochastic optimal control (SOC), have been employed in a broad range of areas, including the
simulation of rare events in molecular dynamics [24, 25, 30, 80], modeling in finance and economics
[21, 47], stochastic filtering and data assimilation [43, 54], tackling nonconvex optimization problems
[10], management of power systems and energy markets [3, 50], robotic control [23, 60], analysis of
mean-field games [9], optimal transport theory [63, 64], the study of backward stochastic differential
equations [8], and large-deviation principles [20]. Relevant and recent applications of SOC in
machine learning include performing reward fine-tuning of diffusion and flow matching models
[15, 41, 61, 77] and conditional sampling of diffusion processes [13, 48, 66]. There is also a growing
literature on SOC methods for sampling from unnormalized densities, as an alternative to MCMC
methods [2, 5, 7, 11, 26, 62, 79]. Additionally, there have been a string of methodological works
exploring deep learning loss functions for SOC [14, 16, 44].

3 Preliminaries

3.1 Flow Matching Models

Flow matching models are a class of generative models that are trained to generate samples sequen-
tially following some reference paths. Specifically, one generates samples x1 with a flow matching
model by simulating a trajectory from an initial state x0 ∼ N (0, I) with the dynamics ẋ = vθ(x, t).
The velocity field vθ(x, t) is learned with the flow matching loss:

L(θ) = Ex1∼D,t∼Uniform[0,1] ∥vθ(xt, t)− u(xt|x1)∥2 (1)

where u(xt|x1) is a reference conditional velocity field. A popular choice is u(xt|x1) = (1− t)xt +
tx1, adopted by a variant called rectified flows [38].

The probability flow p(x, t) corresponding to the velocity field v(x, t) satisfies the so-called continuity
equation:

∂

∂t
p(x, t) +∇ ·

(
p(x, t)v(x, t)

)
= 0. (2)

Since a flow matching model is modeled as an ordinary differential equation (ODE), one may use
any ODE solver to generate samples, including the simplest Euler sampler: xt+∆t = xt +∆tv(xt, t)
where ∆t is the step size.

3.2 Optimal Control

In optimal control theory, we aim to find an optimal control signal u∗(x, t) under a known time-
varying dynamics ẋ = f(x, u∗, t) with the initial state x(0) = x0 such that a cost functional is
minimized. The standard control objective is defined as

argmin
u

J [u], J [u] ≜
∫ T

0

L(x(t), u(t), t) dt+Φ(x(T)), (3)

where Φ(·) is the terminal cost and L(x, u, t) is the running cost.

The Hamilton-Jacobi-Bellman (HJB) equation is indeed the continuous counterpart of the Bellman
equation in the discrete domain, where the transitions are defined by a graph instead of a dynamical
system ẋ = v(x, t). The solution of this optimal control problem satisfies the HJB equation:

−∂V

∂t
(x, t) = min

u

[
L(x, u, t) +∇V (x, t)⊤f(x, u, t)

]
, (4)

3

Algorithm 1 VGG-Flow algorithm

Require: Pretrained flow matching model vbase(x, t), given reward function r(x1), value gradient
model gϕ(x, t) parameterized by Equation 16.

Ensure: Finetuned flow matching model vθ(x, t)
Initialize flow matching model vθ ← vbase.
while Stopping criterion not met do

Collect trajectories {xt}t via solving the current neural ODE ẋt = vθ(xt, t).
Update value gradient model gϕ(x, t) with loss Lconsistency(ϕ) + αLboundary(ϕ).
Update velocity field model vθ(x, t) with loss Lmatching(θ).

end while

in which V (x, t) is the value function or the minimal cost-to-go from state x at time t:

V (x, t) = min
u

{∫ T

t

L(x(s), u(s), s) ds+Φ(x(T)) | x(t) = x

}
. (5)

4 Method
4.1 Gradient Matching for Aligning Flow Matching Models

Given a reward function r(·), we want to train our generative model to achieve high reward scores for
the generated samples and also to preserve the prior distribution of the pretrained model. We can then
define the following formulation for training a flow matching model dxt = vθ(xt, t) dt, t ∈ [0, 1]
that transforms a standard Gaussian distribution p0 = N (0, I) to a target distribution pθ.

We start with the following optimal control formulation for flow matching alignment problems

min
θ

Ex0∼p0,ẋt=vθ(xt,t)

[
λ

2

∫ 1

0

∥ṽθ(xt, t)∥2 dt− r(x1)

]
, vθ(xt, t) ≜ vbase(xt, t) + ṽθ(xt, t), (6)

where ṽθ = vθ − vbase is the residual velocity field and λ is the reward multiplier/temperature. With
such relationship, we interchangeably use vθ and ṽθ to denote the parameterized flow matching model.
This program can be interpreted as a control problem where we want to find a deterministic control
parameterized by ṽ that minimizes the expected cost of the system, which is defined as the sum of the
terminal reward function r(x1) and the running cost (i.e., regularization term) λ

2

∫ 1

0
∥ṽ(xt, t)∥2 dt.

Remark 1 (Connection to Equation 3). In our reward funeting setup, the control u from the general
optimal control formulation in Section 3.2 is denoted as v and the terminal time T is set to 1.
Our dynamics here is ẋ = f(x, v, t) ≜ v(x, t), the running cost is defined as in L(x, v, t) ≜
λ
2 ∥v(x, t)− vbase(x, t)∥2, the terminal cost is Φ(x(T)) ≜ −r(x1), T = 1, and the value function is
V (x, t) ≜ minv

∫ 1

t
λ
2 ∥v(xs, s)− vbase(xs, s)∥2 ds− r(x1) for a dynamic starting with xt = x.

The corresponding HJB equation for the above objective is:

∂tV (x, t) + min
ṽ

[
∇V (x, t) ·

(
vbase(x, t) + ṽ(x, t)

)
+

λ

2
∥ṽ(x, t)∥2

]
= 0, (7)

With the first-order condition of the minimization program of ṽ in the HJB equation, we obtain the
following optimal control law:

(Value Gradient Matching) ṽ⋆(x, t) = − 1

λ
∇V (x, t). (8)

This optimal control law can be interpreted as a gradient matching criterion, where the residual
velocity field ṽ⋆(x, t) should match value function gradient ∇V (x, t) at state x at time t. If an
oracle value function is provided, then alignment of the flow matching model can simply be achieved
through a “gradient matching” loss between the residual velocity field and the oracle value gradient.

4.2 Solving HJB Equation with Value Gradient Guidance

With the optimal control law (Equation 8), the HJB equation reduces to

(Value Consistency)
∂

∂t
V (x, t) =

1

2λ
∥∇V (x, t)∥2 −∇V (x, t) · vbase(x, t). (9)

4

While we could in principle solve this equation by parametrizing V (x, t) with a neural net, it is better
that we directly parametrize∇V (x, t) since it is considerably more effective and robust, as shown
in diffusion model and energy-based model literature [55, 59]. With gϕ(x, t) ≜ ∇Vϕ(x, t), we may
write the equivalent gradient-version HJB equation by taking gradients on both sides:

∂

∂t
gϕ =

1

λ
[∇gϕ]T gϕ − [∇gϕ]T vbase(x, t)− [∇vbase(x, t)]

T gϕ (10)

= [∇gϕ]T
(
1

λ
gϕ − vbase(x, t)

)
− [∇vbase(x, t)]

T gϕ (11)

with the boundary condition gϕ(x, 1) = −∇r(x) at terminal time.

With β = 1/λ, we write the following set of losses to update value function gradient model gϕ(x, t):

Lconsistency(ϕ) = Ex0∼N (0,I),ẋt=v(xt,t)

∥∥∥∥ ∂

∂t
gϕ + [∇gϕ]T

(
vbase − βgϕ

)
+ [∇vbase]

T gϕ

∥∥∥∥2 , (12)

Lboundary(ϕ) = Ex0∼N (0,I),ẋt=v(xt,t) ∥gϕ(x1, 1) +∇r(x1)∥2 . (13)

In practice, this consistency loss based on Equation 9 can be efficiently implemented with finite
difference methods and Jacobian-vector products in PyTorch.

Furthermore, with a decently learned value gradient model that captures the optimal control, we
regress our residual velocity field to it to learn our flow matching model vθ:

Lmatching(θ) = Ex0∼N (0,I),ẋt=v(xt,t) ∥ṽθ(xt, t) + βgϕ(xt, t)∥2 . (14)

Notice that we only use this objective to update θ, not ϕ. This makes the total training objective Ltotal

Ltotal(θ, ϕ) = Lmatching(θ) + Lconsistency(ϕ) + αLboundary(ϕ), (15)

where α is a coefficient to tune the importance of boundary condition loss in the training.

Efficient parametrization of value function gradients. Solving the consistency equation for the
value function gradient model gϕ(x, t) can take a non-trivial amount of time. For flow matching
models, especially variants like rectified flows, the value of xt can be well approximated by the
reward of the single-Euler-step prediction x̂1 = x̂1(xt, t) ≜ xt+(1− t) ·stop-gradient(v(xt, t)),
in which the stop gradient operation is inspired by DreamFusion [49] and helps improve results.
Therefore, we propose to parametrize gϕ(x, t) with

gϕ(x, t) ≜ −ηt · stop-gradient (∇xt
r(x̂1(xt, t))) + νϕ(xt, t) (16)

where ηt is a positive weighting scalar and νϕ(xt, t) is a learnable error correction term which is
supposed to be close to zero when t→ 1.

Putting everything together. At each training step, our VGG-Flow algorithm simulates trajectories
ẋt = vθ(xt, t) with an ODE solver, and use the obtained trajectory data to update the value gradient
model gϕ and velocity field model vθ. We summarize the proposed method in Algorithm 1.

5 Experiments

5.1 Experiment Settings

Base model. Throughout the paper, we consider the popular open-sourced text-conditioned flow
matching model Stable Diffusion 3 [17] and a 20-step Euler solver to sample trajectories.

Reward model. We consider three reward models learned from large-scale human preference
datasets: Aesthetic Score [33], Human Preference Score (HPSv2) [67, 68], and PickScore [32].

Prompt dataset. For Aesthetic Score, we use a set of simple animal prompts used in the original
DDPO paper [6]; for HPSv2, we consider photo+painting prompts from the human preference dataset
(HPDv2) [67]; for PickScore, we use the prompt set in the Pic-a-Pick dataset [32].

Metrics. We follow previous works [15, 41] and compute the variance of latent features (both
DreamSim features [22] and CLIP features [29, 53]) extracted from a batch of generated images (we
use a batch of size 16) to measure sample diversity. To measure the degree of prior preservation, we

5

Pretrained
Reward = 6.09

VGG-Flow
Reward = 7.75

ReFL
Reward = 7.59

DRaFT
Reward = 7.46

AM
Reward = 7.23

VGG-Flow-PMP

Reward = 7.86

Figure 2: Comparison on samples generated by models finetuned with different methods. All models are finetuned
with a maximum of 400 update steps and for fair qualitative comparison we pick the model checkpoints that
yield the best rewards without significant collapsing in image semantics (as ReFL and DRaFT are more prone to
overfitting). For each set of images produced by each method, we display their average reward on the left.

Method

Aesthetic Score HPSv2 PickScore

Reward
(↑)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Reward
(↑, 10−1)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Reward
(↑)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Base (SD3) 5.99 ± 0.01 23.12 ± 0.15 212 ± 5 2.80 ± 0.05 22.42 ± 0.29 558 ± 2 21.81 ± 0.02 27.81 ± 0.10 589 ± 5

ReFL 10.00 ± 0.31 5.59 ± 1.33 1338 ± 191 3.87 ± 0.01 14.08 ± 0.55 1195 ± 21 23.19 ± 0.05 17.71 ± 0.77 997 ± 15

DRaFT 9.54 ± 0.14 7.78 ± 0.60 1518 ± 111 3.76 ± 0.02 15.05 ± 1.23 1177 ± 29 23.00 ± 0.08 19.03 ± 0.92 968 ± 26

AM 6.87 ± 0.17 22.34 ± 2.39 465 ± 93 3.59 ± 0.03 14.11 ± 0.26 1246 ± 24 22.78 ± 0.04 19.70 ± 1.08 1033 ± 59

VGG-Flow-PMP 7.52 ± 0.16 11.17 ± 1.67 1170 ± 213 3.57 ± 0.05 15.36 ± 0.06 1195 ± 5 22.10 ± 3.61 16.78 ± 1.13 1148 ± 47

VGG-Flow 8.24 ± 0.07 22.12 ± 0.17 375 ± 25 3.86 ± 0.03 18.40 ± 1.12 1161 ± 19 23.21 ± 0.05 20.93 ± 0.98 1058 ± 31

Table 1: Comparison between the models finetuned with our proposed method VGG-Flow and the baselines.
All models are finetuned with 400 update steps. Since there are inherent trade-offs between reward and other
metrics, the values at the final update step do not fully capture the differences between methods. We therefore
refer readers to the Pareto front comparisons in Figs. 6, 8, and 10 for a more comprehensive evaluation.

compute the per-prompt FID score between image sets generated by the finetuned model and the base
model and use the average per-prompt FID score as the prior preservation metric.

Baselines. We consider two types of baselines: the generic ones that rely on direct reward maximiza-
tion with truncated computation graphs, including ReFL [70] and DRaFT [12], and the adjoint-based
Adjoint Matching method [15]. Specifically, ReFL samples a trajectory and take the truncated com-
putational graph stop-gradient(xt)→ xt+∆t with a randomly sampled time step t. The model
is finetuned to maximize the reward r(x̂1(xt, t)) of the single-step prediction x̂1(xt, t). Similarly,
DRaFT truncate the full inference computational graph at some random time step 1 − K∆t and
perform backpropagation on this length K graph with the differentiable reward signal r(x1). For
optimal-control-based baselines, we consider adjoint matching [15], which finetunes flow matching
model under stochastic settings (details in Appendix A.1). Additionally, we consider a variant

6

Prompt: A cat with bunny ears.

Prompt: Footage of an astronaut in a tropical beach.

Prompt: Cute cats in conceptual art style.
Pretrained VGG-Flow ReFL DRaFT AM VGG-Flow-PMP

Figure 3: Qualitative results on HPSv2.

Prompt: A surfing steampunk giraffe in a rainforest.

Prompt: Flying horses with wings, at sunset at the Lower Galilee.

Prompt: An anthropomorphic white rabbit, male wizard face, dressed in black and white, fine art, award-winning, intricate, elegant, sharp focus,
cinematic lighting, highly detailed, digital painting, 8k concept art, art by guweiz and z. w. gu, masterpiece, trending on artstation, 8k.

Pretrained VGG-Flow ReFL DRaFT AM VGG-Flow-PMP

Figure 4: Qualitative results on PickScore.

of VGG-Flow which, derived with the Pontryagin’s Maximum Principle [35, PMP], follow an
adjoint-matching-like algorithm but with slightly different evolution equations (Appendix A.1).

Experiment settings and implementation details. We use LoRA parametrization [31] on attention
layers of the finetuned flow matching model with a LoRA rank of 8. The value gradient network
in VGG-Flow is set to be a scaled-down version of the Stable Diffusion-v1.5 U-Net, initialized
with tiny weights in the final output layers. Since Stable Diffusion 3 is a latent flow matching
model, the reward for a sampled image x1 is r(decode(x1)) where decode(·) is the VAE decoder
of the Stable Diffusion 3 model. This decoder is always frozen and we only finetune the LoRA
parameters. For all experiments, we use 3 random seeds. For Aesthetic Score, HPSv2 and PickScore
experiments, we set the default inverse temperature terms β = 1/λ to 5e4, 3e7 and 5e5, respectively;

7

VGG-Flow DRaFT ReFL AM VGG-Flow-PMP

0 100 200 300 400
Update Step

6

8

10

R
ew

ar
d

0 100 200 300 400
Update Step

0.0

0.1

0.2

0.3

D
re

am
Si

m
 D

iv
er

si
ty

0 100 200 300 400
Update Step

0.00

0.05

0.10

0.15

0.20

C
LI

P
D

iv
er

si
ty

0 100 200 300 400
Update Step

0

500

1000

1500

2000

FI
D

Figure 5: Convergence curves of different metrics for different methods throughout the finetuning process on
Aesthetic Score. Finetuning with our proposed VGG-Flow converges faster than the non-gradient-informed
methods and with better diversity- and prior-preserving capability.

6 7 8 9 10

Reward

0.05

0.10

0.15

0.20

0.25

D
re

am
Si

m
 D

iv
er

si
ty

Diversity vs. Reward, Aesthetic Score

VGG-Flow
DRaFT
ReFL
AM
VGG-Flow-PMP

6 7 8 9 10

Reward

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

C
LI

P
D

iv
er

si
ty

CLIP Similarity vs. Reward, Aesthetic Score

VGG-Flow
DRaFT
ReFL
AM
VGG-Flow-PMP

6 7 8 9 10

Reward

200

400

600

800

1000

1200

1400

1600

Fr
ec

he
t I

nc
ep

tio
n

D
is

ta
nc

e

FID vs. Reward, Aesthetic Score

VGG-Flow
DRaFT
ReFL
AM
VGG-Flow-PMP

Figure 6: Trade-offs between reward, diversity preservation and prior preservation for different reward finetuning
methods on Aesthetic Score. Dots represent the evaluation results of models checkpoint saved after every 5
iterations of finetuning, where ones with greater reward, greater diversity scores and smaller FID scores are
considered better.

for all ablation studies with Aesthetic Score, we set β = 1e4. We set the boundary loss coefficient
α to 10000 for all experiments. We use an effective batch size of 32 for all methods, and only
use on-policy samples without any replay buffer. For VGG-Flow, we sub-sample the collected
trajectories by uniformly splitting each into 5 bins and then taking one transition out of each; we
also clip the computed reward gradients in Eqn. 16 at the 80th percentile of the gradient norms of
the corresponding training batches. For ReFL, we sample the truncation time step between 15 and
20. We follow prior work [51, 70] use ReLU(r(x)) as the reward model for both ReFL and DRaFT
for stable training. For experiments on adjoint matching (AM), we use 4 GPUs for each run and set
the inverse temperature β to 5× 103, 3× 105, 1× 104 for Aesthetic, HPS, PickScore, respectively,
based on the same hyperparameter choosing protocol from [15]. All AM experiments use float32
computation and drop samples that result in too large gradient norms.

5.2 Results

General experiments. We show in Figure 2 the visualization of samples produced by both the base
model and the models finetuned on Aesthetic Score. As ReFL and DRaFT finetuning can easily lead
to reward hacking, we perform early stopping and pick the model checkpoints without major loss
of image semantics and with the highest reward values possible. Compared to ReFL and DRaFT,
out proposed VGG-Flow produces higher rewards with better preservation of semantic prior from
the base Stable Diffusion 3 model. Our method also works well on other reward models, including
HPSv2 and PickScore, as shown in Figure 3 and 4. To further illustrate the advantage of our method
and the tradeoffs between reward convergence and other metrics, we present quantitative results in
Table 1, Figure 5 and Figure 6. Specifically, we observe that VGG-Flow achieves comparable speed
with respect to direct reward maximization methods (ReFL and DRaFT) but better maintains sample
diversity (measured by DreamSim and CLIP diversity score) and base model prior (measure by FID
score). We observe that ReFL and DRaFT on Aesthetic Score easily achieves reward values close
to 9, of which value typically indicates complete forgetting of base model prior [12]. Furthermore,
the Pareto front figures of reward values, diversity scores and FID scores show that our VGG-Flow
achieves better diversity/FID scores at the same level of reward values – demonstrating that our
VGG-Flow outperforms the baselines even if we perform early stopping.

Effect of reward temperature. We conduct an ablation study on Aesthetic Score with different
β ∈ {5000, 10000, 50000} and show in Figure 11 the effect of reward temperature. We observe that
for all reward temperatures, the reward smoothly increases at a speed proportional to β. The sample
diversity and prior preservation capability are generally worse with greater β values. Greater β values
also leads to worse trade-off on FID vs. reward but no significant difference in diversity vs. reward.

8

VGG-Flow DRaFT ReFL AM VGG-Flow-PMP

0 100 200 300 400
Update Step

0.25

0.30

0.35

0.40

R
ew

ar
d

0 100 200 300 400
Update Step

0.10

0.15

0.20

0.25

D
re

am
Si

m
 D

iv
er

si
ty

0 100 200 300 400
Update Step

0.10

0.12

0.14

0.16

0.18

0.20

C
LI

P
D

iv
er

si
ty

0 100 200 300 400
Update Step

400

600

800

1000

1200

1400

FI
D

Figure 7: Convergence of different metrics for different methods throughout the finetuning process on HPSv2.

0.28 0.30 0.32 0.34 0.36 0.38

Reward

0.12

0.14

0.16

0.18

0.20

0.22

0.24

D
re

am
Si

m
 D

iv
er

si
ty

DreamSim vs. Reward, HPSv2

VGG-Flow
DRaFT
ReFL
AM
VGG-Flow-PMP

0.28 0.30 0.32 0.34 0.36 0.38

Reward

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

C
LI

P
D

iv
er

si
ty

CLIP Similarity vs. Reward, HPSv2

VGG-Flow
DRaFT
ReFL
AM
VGG-Flow-PMP

0.28 0.30 0.32 0.34 0.36 0.38

Reward

600

700

800

900

1000

1100

1200

1300

Fr
ec

he
t I

nc
ep

tio
n

D
is

ta
nc

e

FID vs. Reward, HPSv2

VGG-Flow
DRaFT
ReFL
AM
VGG-Flow-PMP

Figure 8: Trade-offs between metrics for different reward finetuning methods (experiments on HPSv2).

VGG-Flow DRaFT ReFL AM VGG-Flow-PMP

0 100 200 300 400
Update Step

21.0

21.5

22.0

22.5

23.0

23.5

R
ew

ar
d

0 100 200 300 400
Update Step

0.10

0.15

0.20

0.25

0.30

0.35

D
re

am
Si

m
 D

iv
er

si
ty

0 100 200 300 400
Update Step

0.125

0.150

0.175

0.200

0.225
C

LI
P

D
iv

er
si

ty

0 100 200 300 400
Update Step

400

600

800

1000

1200

1400

FI
D

Figure 9: Convergence of different metrics for different methods throughout the finetuning process on PickScore.

21.25 21.50 21.75 22.00 22.25 22.50 22.75 23.00 23.25

Reward

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

D
re

am
Si

m
 D

iv
er

si
ty

DreamSim vs. Reward, PickScore

VGG-Flow
ReFL
DRaFT
AM
VGG-Flow-PMP

21.25 21.50 21.75 22.00 22.25 22.50 22.75 23.00 23.25

Reward

0.14

0.16

0.18

0.20

0.22

C
LI

P
D

iv
er

si
ty

CLIP Similarity vs. Reward, PickScore

VGG-Flow
ReFL
DRaFT
AM
VGG-Flow-PMP

21.8 22.0 22.2 22.4 22.6 22.8 23.0 23.2

Reward

600

700

800

900

1000

1100

Fr
ec

he
t I

nc
ep

tio
n

D
is

ta
nc

e

FID vs. Reward, PickScore

VGG-Flow
ReFL
DRaFT
AM

Figure 10: Trade-offs between metrics for different reward finetuning methods (experiments on PickScore).

1/ =5e4 1/ =1e4 1/ =5e3

0 100 200 300 400
Update Step

6

7

8

R
ew

ar
d

0 100 200 300 400
Update Step

0.20

0.21

0.22

0.23

0.24

0.25

D
re

am
Si

m
 D

iv
er

si
ty

0 100 200 300 400
Update Step

0.10

0.12

0.14

C
LI

P
D

iv
er

si
ty

0 100 200 300 400
Update Step

200

300

400

FI
D

Figure 11: Evolution of metrics for different reward temperature (experiments on Aesthetic Score). Higher
temperature β leads to faster convergence but with less diversity and less prior preservation.

Effect of η schedule. We observe that by setting ηt = t, the convergence speed is faster than our
default choice of quadratic schedule ηt = t2 (Fig. 13 and 14). Both schedule yields nearly identical
trade-offs between metrics, which not only suggest that relative independence of the final performance
of trained models on the choice of the parameterization of the learned value gradient model.

Effect of transition subsampling rate. We also investigate if a lower subsampling rate, with which
the variance of estimated parameter gradients are lower, leads to better performance. In Fig. 15
and 16, we observe that there is no significant difference between subsampling rates of 25% and 50%.

9

6.0 6.5 7.0 7.5 8.0

Reward
0.205

0.210

0.215

0.220

0.225

0.230

0.235

0.240

0.245

D
re

am
Si

m
 D

iv
er

si
ty

DreamSim vs. Reward, Aesthetic Score

1/ =5e4
1/ =1e4
1/ =5e3

6.0 6.5 7.0 7.5 8.0

Reward

0.10

0.11

0.12

0.13

0.14

C
LI

P
D

iv
er

si
ty

CLIP Similarity vs. Reward, Aesthetic Score

1/ =5e4
1/ =1e4
1/ =5e3

6.0 6.5 7.0 7.5 8.0

Reward

200

225

250

275

300

325

350

375

400

Fr
ec

he
t I

nc
ep

tio
n

D
is

ta
nc

e

FID vs. Reward, Aesthetic Score

1/ =5e4
1/ =1e4
1/ =5e3

Figure 12: Trade-offs between metrics for different reward temperatures (experiments on Aesthetic Score).

6 Discussions

HJB vs. PMP. Another way to characterize the optimal control is through Pontryagin’s Maximum
Principle [35, PMP]. With the control formulation in Section 3.2, we can define the Hamiltonian
H(x, u, t, a) ≜ L(x, u) + af(x, u, t) and the adjoint state (also known as co-state) a(t) that satisfies

ȧ(t) = −∇xH(x(t), u(t)) s.t. a(T) = ∇Φ(x(T)), ẋ = f(x, u, t). (17)

Essentially, the PMP states that the optimal control u∗ satisfies u∗(t) =
argmaxu H(x∗(t), u, t, a∗(t)), where x∗ and a∗ are the solutions to equation 17 for the op-
timal control u∗. With the cost functional and dynamics in our setting (Equation 3), we have
ȧ = −2∇[∥v − vbase∥2 + vTa] and ṽθ(x, t) + a(t) = 0. By comparing it with Equation 8, we have
a(t) = ∇V (xt, t) for any trajectory xt∈[0,1] from the dynamics ẋ = v(x, t). While mathematically
equivalent, solving this adjoint equation not only requires the expensive (and often unaffordable)
computation of ∇H multiple times per trajectory but also is prone to accumulated errors in solving
the adjoint equation. In contrast, our HJB-based method is more efficient and robust because it 1)
solves for ∇V in an amortized approach with the forward-looking parametrization of ∇V and 2)
allows for efficient transition subsampling. See Section A.1 for more details.

Connection with adjoint matching. Adjoint matching [15] reaches a matching objective similar to
the one in the above PMP discussion. However, their framework is based on stochastic optimal control
instead of deterministic optimal control. While the stochastic setting allows them to sample from
a simple tilted distribution pbase(x) exp r(x), their algorithm requires modifying the flow matching
ODE into an SDE with equal marginals. Our proposed algorithm fine-tunes directly the ODE
dynamics with deterministic control. Computationally, adjoint matching relies on solving the adjoint
ODE, which requires taking one backward pass through the model for each time step. VGG-Flow
relies on the value function gradient model of current step and is thus more computationally tractable.

Limitations. Since our method relies on a relaxed objective, the finetuned distribution approximates
the ideal KL-regularized distribution well only in the case of a relatively small λ. Implementation-
wise, we use finite differences to approximate the first-order gradients of the value gradient estimator
and disable all second-order gradients during backpropagation, which inevitably leads to biases.
Furthermore, our method suffers from the same challenge of exploration-exploitation tradeoff as in
common reinforcement learning settings. As we aim for fast convergence within limited computa-
tional resources, our hyperparameter settings are in theory more prone to mode collapse. Furthermore,
we do not explore better architecture designs, which is shown important for efficient and stable
finetuning of foundation models [37, 52].

7 Conclusion

We propose VGG-Flow, an efficient and robust method for performing alignment of flow matching
models with some reward model. By leveraging a relaxed objective and the HJB equation in optimal
control theory, we derive a gradient matching method that allows us to finetune flow matching models
with probabilistic guarantees and memory-efficient computation. We empirically demonstrate the
effectiveness of our VGG-Flow on Stable Diffusion 3, a popular large-scale text-conditioned flow
matching model, with common image-input reward functions. As for broader impact, we point out
that improving the alignment of flow matching models enhances their ability to reliably follow human
instructions, contributing to the development of more trustworthy and controllable AI systems that
can better serve societal needs in education, healthcare, and decision support.

10

References
[1] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A

unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023. 1

[2] Michael S Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler. arXiv
preprint arXiv:2410.02711, 2024. 3

[3] Andrea Belloni, Luigi Piroddi, and Maria Prandini. A stochastic optimal control solution to
the energy management of a microgrid with storage and renewables. In American Control
Conference (ACC), 2016. 3

[4] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, 2023. 2

[5] Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-
based generative modeling. Transactions on Machine Learning Research, 2024. 3

[6] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. In ICLR, 2024. 1, 5

[7] Denis Blessing, Julius Berner, Lorenz Richter, and Gerhard Neumann. Underdamped diffusion
bridges with applications to sampling. In ICLR, 2025. 3

[8] René Carmona. Lectures on BSDEs, stochastic control, and stochastic differential games with
financial applications, volume 1. SIAM, 2016. 3

[9] René Carmona, François Delarue, et al. Probabilistic Theory of Mean Field Games with
Applications I-II. Springer, 2018. 3

[10] Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and Guillaume Carlier. Deep
relaxation: partial differential equations for optimizing deep neural networks. Research in the
Mathematical Sciences, 2018. 3

[11] Junhua Chen, Lorenz Richter, Julius Berner, Denis Blessing, Gerhard Neumann, and Anima
Anandkumar. Sequential controlled langevin diffusions. In ICLR, 2025. 3

[12] Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion
models on differentiable rewards. In ICLR, 2024. 3, 6, 8

[13] Alexander Denker, Francisco Vargas, Shreyas Padhy, Kieran Didi, Simon Mathis, Vincent
Dutordoir, Riccardo Barbano, Emile Mathieu, Urszula Julia Komorowska, and Pietro Lio. Deft:
Efficient finetuning of conditional diffusion models by learning the generalised h-transform.
arXiv preprint arXiv:2406.01781, 2024. 3

[14] Carles Domingo-Enrich. A taxonomy of loss functions for stochastic optimal control. arXiv
preprint arXiv:2410.00345, 2024. 3

[15] Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint
matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal
control. In ICLR, 2025. 3, 5, 6, 8, 10, 17, 18, 19

[16] Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky T. Q. Chen.
Stochastic optimal control matching. In NeurIPS, 2024. 3

[17] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion
English, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified
flow transformers for high-resolution image synthesis. In ICML, 2024. 1, 2, 5

[18] Jiajun Fan, Shuaike Shen, Chaoran Cheng, Yuxin Chen, Chumeng Liang, and Ge Liu. Online
reward-weighted fine-tuning of flow matching with wasserstein regularization. In ICLR, 2025. 2

[19] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. In NeurIPS, 2023. 1, 2

11

[20] Jin Feng and Thomas G Kurtz. Large deviations for stochastic processes. Number 131.
American Mathematical Soc., 2006. 3

[21] Wendell H Fleming and Jerome L Stein. Stochastic optimal control, international finance and
debt. Journal of Banking & Finance, 28(5):979–996, 2004. 3

[22] Stephanie Fu, Netanel Y Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. Dreamsim: learning new dimensions of human visual similarity using synthetic
data. In NeurIPS, 2023. 5

[23] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk. High-dimensional stochastic optimal
control using continuous tensor decompositions. International Journal of Robotics Research,
2018. 3

[24] Carsten Hartmann, Ralf Banisch, Marco Sarich, Tomasz Badowski, and Christof Schütte.
Characterization of rare events in molecular dynamics. Entropy, 16(1):350–376, 2014. 3

[25] Carsten Hartmann and Christof Schütte. Efficient rare event simulation by optimal nonequi-
librium forcing. Journal of Statistical Mechanics: Theory and Experiment, 2012(11):P11004,
2012. 3

[26] Aaron Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram,
Brandon Wood, Daniel Levine, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng
Liu, and Ricky T. Q. Chen. Adjoint sampling: Highly scalable diffusion samplers via adjoint
matching. arXiv preprint arXiv:2504.11713, 2025. 3

[27] Jiajun He, José Miguel Hernández-Lobato, Yuanqi Du, and Francisco Vargas. Rne: plug-and-
play diffusion inference-time control and energy-based training, 2025. 2

[28] Jiajun He, Paul Jeha, Peter Potaptchik, Leo Zhang, José Miguel Hernández-Lobato, Yuanqi
Du, Saifuddin Syed, and Francisco Vargas. Crepe: Controlling diffusion with replica exchange,
2025. 2

[29] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In EMNLP, 2021. 5

[30] Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Bernd Ensing, and Max Welling. Stochastic
optimal control for collective variable free sampling of molecular transition paths. In NeurIPS,
2023. 3

[31] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR,
2022. 7

[32] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation. In NeurIPS, 2023.
5

[33] LAION. Laion aesthetic score predictor. https://laion.ai/blog/laion-aesthetics/,
2024. Accessed: 2024-09-27. 5

[34] Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter
Abbeel, Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models
using human feedback. arXiv preprint arXiv:2302.12192, 2023. 2

[35] Daniel Liberzon. Calculus of variations and optimal control theory: a concise introduction.
Princeton university press, 2011. 7, 10

[36] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In ICLR, 2023. 1

[37] Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In ICLR, 2024.
10

12

https://laion.ai/blog/laion-aesthetics/

[38] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In ICLR, 2023. 1, 3

[39] Zhen Liu, Yao Feng, Michael J. Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu.
Meshdiffusion: Score-based generative 3d mesh modeling. In ICLR, 2023. 1

[40] Zhen Liu, Yao Feng, Yuliang Xiu, Weiyang Liu, Liam Paull, Michael J. Black, and Bernhard
Schölkopf. Ghost on the shell: An expressive representation of general 3d shapes. In ICLR,
2024. 1

[41] Zhen Liu, Tim Z. Xiao, Weiyang Liu, Yoshua Bengio, and Dinghuai Zhang. Efficient diversity-
preserving diffusion alignment via gradient-informed gflownets. In ICLR, 2025. 2, 3, 5

[42] Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan
Yang, Yandong Li, Tommi Jaakkola, Xuhui Jia, and Saining Xie. Inference-time scaling for
diffusion models beyond scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025. 2

[43] Sanjoy K Mitter. Filtering and stochastic control: A historical perspective. IEEE Control
Systems Magazine, 16(3):67–76, 1996. 3

[44] Nikolas Nüsken and Lorenz Richter. Solving high-dimensional Hamilton–Jacobi–Bellman pdes
using neural networks: perspectives from the theory of controlled diffusions and measures on
path space. Partial differential equations and applications, 2:1–48, 2021. 3

[45] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. In NeurIPS, 2022. 2

[46] Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic
generative flow networks. In UAI, 2023. 2

[47] Huyên Pham. Continuous-time stochastic control and optimization with financial applications,
volume 61. Springer Science & Business Media, 2009. 3

[48] Jakiw Pidstrigach, Elizabeth Baker, Carles Domingo-Enrich, George Deligiannidis, and Nikolas
Nüsken. Conditioning diffusions using malliavin calculus. In ICML, 2025. 3

[49] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. In ICLR, 2023. 5

[50] Warren B. Powell and Stephan Meisel. Tutorial on stochastic optimization in energy—part i:
Modeling and policies. IEEE Transactions on Power Systems, 31(2):1459–1467, 2016. 3

[51] Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
image diffusion models with reward backpropagation. arXiv preprint arXiv:2310.03739, 2023.
8

[52] Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian
Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning.
In NeurIPS, 2023. 10

[53] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021. 5

[54] Sebastian Reich. Data assimilation: The Schrödinger perspective. Acta Numerica, 28:635–711,
2019. 3

[55] Tim Salimans and Jonathan Ho. Should EBMs model the energy or the score? In Energy Based
Models Workshop - ICLR 2021, 2021. 5

[56] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 2

13

[57] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024. 2

[58] Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown,
and Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025. 2

[59] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021. 5

[60] Evangelos Theodorou, Freek Stulp, Jonas Buchli, and Stefan Schaal. An iterative path integral
stochastic optimal control approach for learning robotic tasks. IFAC Proceedings Volumes,
44(1):11594–11601, 2011. 18th IFAC World Congress. 3

[61] Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia,
Nathaniel Lee Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-
tuning of continuous-time diffusion models as entropy-regularized control. arXiv preprint
arXiv:2402.15194, 2024. 2, 3

[62] Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets
variational inference: Controlled monte carlo diffusions. In ICLR, 2024. 3

[63] C. Villani. Topics in Optimal Transportation. Graduate studies in mathematics. American
Mathematical Society, 2003. 3

[64] C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg, 2008. 3

[65] Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
models. arXiv preprint arXiv:2503.20314, 2025. 1

[66] Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical
and asymptotically exact conditional sampling in diffusion models. In NeurIPS, 2024. 3

[67] Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng
Li. Human preference score v2: A solid benchmark for evaluating human preferences of
text-to-image synthesis. arXiv preprint arXiv:2306.09341, 2023. 5

[68] Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score:
Better aligning text-to-image models with human preference. In CVPR, 2023. 5

[69] Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. In
CVPR, 2025. 1

[70] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
In NeurIPS, 2024. 3, 6, 8

[71] Taeyoung Yun, Dinghuai Zhang, Jinkyoo Park, and Ling Pan. Learning to sample effective and
diverse prompts for text-to-image generation. In CVPR, 2025. 2

[72] Dinghuai Zhang, Ricky TQ Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio.
Diffusion generative flow samplers: Improving learning signals through partial trajectory
optimization. In ICLR, 2024. 2

[73] Dinghuai Zhang, Aaron Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, and Ricky
T. Q. Chen. Latent state marginalization as a low-cost approach for improving exploration. In
ICLR, 2023. 2

[74] Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling
Pan. Let the flows tell: Solving graph combinatorial problems with gflownets. In NeurIPS,
2023. 2

14

[75] Dinghuai Zhang, Jie Fu, Yoshua Bengio, and Aaron Courville. Unifying likelihood-free
inference with black-box sequence design and beyond. In ICLR, 2022. 2

[76] Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and
Yoshua Bengio. Generative flow networks for discrete probabilistic modeling. In ICML, 2022.
2

[77] Dinghuai Zhang, Yizhe Zhang, Jiatao Gu, Ruixiang Zhang, Joshua M. Susskind, Navdeep Jaitly,
and Shuangfei Zhai. Improving GFlownets for text-to-image diffusion alignment. Transactions
on Machine Learning Research, 2025. 2, 3

[78] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei
Yang, Lan Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating
high-quality 3d assets. ACM Transactions on Graphics (TOG), 2024. 1

[79] Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for
sampling. In ICLR, 2022. 3

[80] Wei Zhang, Han Wang, Carsten Hartmann, Marcus Weber, and Christof Schütte. Applications
of the cross-entropy method to importance sampling and optimal control of diffusions. SIAM
Journal on Scientific Computing, 36(6):A2654–A2672, 2014. 3

15

Appendix

Table of Contents
A Theoretical Connections between Optimal Control Formulations 17

A.1 Deriving adjoint matching from Pontryagin’s maximum principle 17
A.2 The adjoint method vs. adjoint matching for deterministic optimal control . . . 17

B Bounds of Resulted Distributions 20
B.1 Bounding the Wasserstein-2 Distance . 20
B.2 Bounding the KL Divergence . 21

C Experiment Details 22
C.1 Finite difference for value consistency . 22
C.2 More implementation details . 22

D Additional Figures 23

E Evolution of Generated Samples 24

F More Generated Samples 25

16

A Theoretical Connections between Optimal Control Formulations

A.1 Deriving adjoint matching from Pontryagin’s maximum principle

For a general dynamical system ẋ = f(x, u, t) and control problem minu
∫ T

0
L(x(t), u(t), t) dt+

Φ(x(T)), we can define the Hamiltonian H(x, u, t, a) ≜ L(x, u) + af(x, u, t) and the adjoint state
a(t) that satisfies ȧ(t) = −∇H and a(T) = ∇Φ(x(T)). The Pontryagin’s maximum principle
(PMP) states that the optimal control u∗ satisfies u∗(t) = argmaxu H(x∗(t), u, t, a∗(t)).

For our flow matching model ẋt = vθ(xt, t) setup and the control formulation in Remark 1, we have

min
θ

Eẋt=vθ(xt,t)

[
λ

2

∫ 1

0

∥vθ(xt, t)− vbase(xt, t)∥2 − r(x1)

]
dt (18)

H(x, vθ, t, a) =
λ

2
∥vθ(x, t)− vbase(x, t)∥2 + a⊤vθ(x, t). (19)

ȧ(x, t) = −λ

2
∇x

(
∥vθ(x, t)− vbase(x, t)∥2 + a(x, t)⊤vθ(x, t)

)
, (20)

with the terminal constraint a(x1, 1) = −∇r(x1). In order to solve v∗ = argmaxv H(x, v, t, a),
with such quadratic form we have

v∗ = vbase −
a

λ
⇒ ṽ +

a

λ
= 0. (21)

Therefore, we can have an intuitive algorithm following the common practice of solving PMP:

1. Solve forward ODE, ẋt = vθ(xt, t), x0 ∼ N (0, I), to obtain {xt}1t=0;
2. Solve backward ODE in Equation 20, ȧ = −∇H, a(x1, 1) = −∇r(x1), to obtain {at}1t=0;
3. Update velocity field vθ by minimizing matching loss

L(θ) =
∫
∥λṽθ(xt, t) + at∥2 dt. (22)

This is already very similar to the adjoint matching algorithm proposed in [15] (but for stochastic
control settings), where the authors obtain their algorithm from a different derivation and slightly
different assumptions.

Comparing this Equation 21 with Equation 8, we can easily get

a(x, t) = ∇V (x, t), (23)

which, maybe not that surprisingly, indicates adjoint matching and VGG-Flow share the same vector
matching objective (Equation 22 and Equation 8). They differ in the way of how to obtain the
matching target (either at or ∇V).

A.2 The adjoint method vs. adjoint matching for deterministic optimal control

Here we give a more general discussion between the adjoint method (for open-loop control) and
adjoint matching (for closed-loop control) in the deterministic control setting.

A.2.1 Open-loop vs closed-loop formulations of deterministic optimal control

Consider the deterministic control problem in equation 3 with a quadratic cost and affine control.
That is, L(x, u, t) = 1

2∥u∥
2
Q(t) + f(x, t), where Q(t) ∈ Rd×d is a positive-definite matrix, and

∥u∥2Q = u⊤Qu, and the drift is fdrift(x, u, t) = b(x, t) + u. Hence, the control problem reads

min
u:[0,T]→Rd

J [u] ≜
∫ T

0

(
1

2
∥u(t)∥2Q(t) + f(Xt, t)

)
dt+Φ(XT), (24)

s.t. Ẋt = b(Xt, t) + u(t), X0 ∼ x0. (25)

This is an open-loop control problem, because the control u(t) does not depend explicitly on the state
Xt. Note however that since both the starting point and the dynamics are deterministic, given the

17

function u : [0, t] → Rd, it is possible to determine the state Xt, and hence u(t) can be defined to
depend implicitly on Xt.

Alternatively, consider the control problem

min
u:Rd×[0,T]→Rd

J̃ [u] ≜
∫ T

0

(
1

2
∥u(Xt, t)∥2Q(t) + f(Xt, t)

)
dt+Φ(XT), (26)

s.t. Ẋt = b(Xt, t) + u(Xt, t), X0 ∼ x0. (27)

In this case, u is a function that depends explicitly on the state Xt, which makes this a closed-loop
control problem.

In general, closed-loop control problems are more general than open-loop problems, but in our case
both problems are actually equivalent because the deterministic dynamics and initial conditional
make it possible to make u(t) depend on Xt implicitly. In other words, for any open-loop control
u : [0, T]→ Rd, we can define a closed-loop control ũ : Rd× [0, T]→ Rd by setting ũ(x, t) = u(t).
And for any closed-loop control ũ : Rd × [0, T] → Rd, we can define an open-loop control
u : [0, T]→ Rd by setting u(t) = u(Xt, t), where X = (Xs)s∈[0,t] satisfies the ODE in equation 27.

Thus, finding the solution to the open-loop problem in equations 24-25 is equivalent to finding the
solution to the closed-loop problem in equations 26-27. As we see next, the former formulation
naturally gives rise to the adjoint matching loss for deterministic optimal control, while the latter
yields the basic adjoint matching loss, which is simply a reformulation of the adjoint method.

A.2.2 Solving the closed-loop problem: the adjoint method for deterministic optimal control

Using an argument similar to the one used in [15, Prop. 2] for stochastic optimal control, we can
derive the continuous-time version of the basic adjoint matching loss for deterministic control:

Proposition 2 (Basic adjoint matching for deterministic control). Consider the adjoint ODE

d

dt
a(t;X,u)=−

[
(∇Xt

(b(Xt, t)+u(Xt, t)))
⊤
a(t;X,u)+∇Xt

(
f(Xt, t)+

1

2
∥u(Xt, t)∥2

)]
,

(28)
a(1;X,u) = ∇Φ(X1). (29)

Suppose that the control u : Rd × [0, T]→ Rd is parameterized by θ, and let J̃ [u] be the closed-loop
control objective in equation 26. Then, the gradient∇θJ̃ [u] is equal to the gradient of this loss:

LBasic−Adj−Match(u) :=
1

2

∫ 1

0

∥∥u(Xt, t) +Q(t)−1/2a(t;X, ū)
∥∥2 dt,

X s.t. Ẋt = b(Xt, t) + ū(Xt, t), ū = stop-gradient(u),
(30)

where ū = stop-gradient(u) means that the gradients of ū with respect to the parameters θ of the
control u are artificially set to zero.

Proof. The proof mirrors the proof of [15, Prop. 2]. If we define the adjoint state

a(t,X, u) = ∇Xt

(∫ T

0

(
1

2
∥u(Xt, t)∥2Q(t) + f(Xt, t)

)
dt+Φ(XT)

)
, (31)

where X is a solution of Ẋt = b(Xt, t) + u(Xt, t), (32)

we have that a(t,X, u) satisfies the adjoint ODE in equations 28-29. In analogy with equation 32 of
[15], we have that

d

dθ
J̃ [u] =

1

2

∫ T

0

∂

∂θ
∥u(Xt, t)∥2Q(t) dt+

∫ T

0

∂u(Xt, t)

∂θ

⊤
a(t,X, u) dt, (33)

18

where d
dθ and ∂

∂θ denote the total and partial derivatives with respect to θ. Completing the square, we
have that

1

2

∂

∂θ
∥u(Xt, t)∥2Q(t) +

∂u(Xt, t)

∂θ

⊤
a(t,X, u)

=
1

2

∂

∂θ

(
u(Xt, t)

⊤Q(t)1/2Q(t)1/2u(Xt, t)
)
+

∂u(Xt, t)

∂θ

⊤
Q(t)1/2Q(t)−1/2a(t,X, ū)

=
1

2

∂

∂θ
∥u(Xt, t) +Q(t)−1/2a(t,X, u)∥2Q(t)

(34)

where Q(t)1/2 is defined as the matrix with the same eigenvectors as Q(t) and eigenvalues equal to
the square root of the eigenvalues of Q(t), and ū = stopgrad(u). Notice adjoint a does not depend
on θ. Plugging equation 34 into equation 33, we can finally rewrite the gradient as the gradient of
LBasic−Adj−Match.

A.2.3 Solving the open-loop problem: the adjoint matching loss for deterministic optimal
control

Proposition 3 (Adjoint matching for deterministic control). Consider the lean adjoint ODE:

d

dt
ã(t;X)=−

[
(∇Xt

b(Xt, t))
⊤
ã(t;X)+∇Xt

f(Xt, t)
]
, (35)

ã(1;X) = ∇Φ(X1). (36)

Suppose that the control u : [0, T]→ Rd is parameterized by θ, and let J [u] be the open-loop control
objective in equation 26. Then, the gradient∇θJ [u] is equal to the gradient of this loss:

LAdj−Match(u) :=
1

2

∫ 1

0

∥∥u(t) +Q(t)−1/2ã(t;X)
∥∥2 dt,

X s.t. Ẋt = b(Xt, t) + ū(t), ū = stop-gradient(u),
(37)

where ū = stop-gradient(u) means that the gradients of ū with respect to the parameters θ of the
control u are artificially set to zero.

Proof. The proof mirrors the proof of [15, Prop. 2], and the proof of our Prop. 2. If we define the
adjoint state

a(t,X) = ∇Xt

(∫ T

0

(
1

2
∥u(t)∥2Q(t) + f(Xt, t)

)
dt+Φ(XT)

)
, (38)

where X is a solution of Ẋt = b(Xt, t) + u(t), (39)

we have that a(t,X) satisfies the adjoint ODE in equations 28-29. Note that unlike in Prop. 2,
the control u(t) does not depend on the state Xt, which simplifies expressions substantially as
∇Xt

u(t) = 0. In analogy with equation 32 of [15] and our equation 33, we have that

d

dθ
J [u] =

1

2

∫ T

0

∂

∂θ
∥u(t)∥2Q(t) dt+

∫ T

0

∂u(t)

∂θ

⊤
a(t,X) dt, (40)

and completing the square as in equation 34, we obtain that 1
2

∂
∂θ∥u(t)∥

2
Q(t) +

∂u(t)
∂θ

⊤
a(t,X) =

1
2

∂
∂θ∥u(t) +Q(t)−1/2a(t,X)∥2Q(t). Plugging this equality into equation 40 concludes the proof.

19

B Bounds of Resulted Distributions

B.1 Bounding the Wasserstein-2 Distance

We first analyze the relationship between our objective of VGG-Flow and the 2-Wasserstein distance
(W2). We show that our objective minimizes a strong upper bound on W2(p1, q1).

Let p0 = q0 be the initial distribution. Consider the two flows, coupled by their initial condition:

ẋt = vθ(xt, t), x0 ∼ p0 =⇒ xt ∼ pt
ẏt = vbase(yt, t), y0 = x0 ∼ q0 =⇒ yt ∼ qt

By definition, the squared W2 distance is the minimum expected squared distance over all possible
couplings. Our choice of x0 = y0 is one such coupling, so it provides an upper bound:

W2(pt, qt)
2 ≤ E[∥xt − yt∥2]

Proposition 4 (W2 Bound via Grönwall’s Inequality). Assume the base vector field vbase is L-
Lipschitz in x. Then the W2 distance is bounded by the L2 FM loss:

W2(p1, q1)
2 ≤ C

∫ 1

0

Ept
[∥ṽθ(xt, t)∥2] dt

where C = e2L+1 is a constant.

Proof. Let ∆t = xt − yt and u(t) = E[∥∆t∥2]. We have u(0) = E[∥x0 − y0∥2] = 0. The time
derivative is ∆̇t = vθ(xt, t)− vbase(yt, t). Let ṽθ(x, t) = vθ(x, t)− vbase(x, t).

d

dt
∥∆t∥2 = 2⟨∆t, ∆̇t⟩

= 2⟨∆t, [vθ(xt, t)− vbase(xt, t)] + [vbase(xt, t)− vbase(yt, t)]⟩
= 2⟨∆t, ṽθ(xt, t)⟩+ 2⟨∆t, vbase(xt, t)− vbase(yt, t)⟩

We apply the Cauchy-Schwarz inequality to the first term and the L-Lipschitz condition to the second:

d

dt
∥∆t∥2 ≤ 2∥∆t∥∥ṽθ(xt, t)∥+ 2∥∆t∥(L∥∆t∥)

Using Young’s inequality (2ab ≤ a2 + b2) on the first term gives:

d

dt
∥∆t∥2 ≤ (∥∆t∥2 + ∥ṽθ(xt, t)∥2) + 2L∥∆t∥2 = (2L+ 1)∥∆t∥2 + ∥ṽθ(xt, t)∥2

Taking the expectation and letting b(t) = Ept
[∥ṽθ(xt, t)∥2], we have the differential inequality:

u̇(t) ≤ (2L+ 1)u(t) + b(t)

By the integral form of Grönwall’s inequality, which states that if

u̇(t) ≤ au(t) + b(t) with u(0) = 0, then u(t) ≤
∫ t

0

ea(t−s)b(s)ds

Applying this with a = (2L+ 1), the solution at t = 1 is:

u(1) ≤
∫ 1

0

e(2L+1)(1−s)b(s)ds ≤ e2L+1

∫ 1

0

b(s)ds

Since W2(p1, q1)
2 ≤ u(1), we arrive at the bound:

W2(p1, q1)
2 ≤ e2L+1

∫ 1

0

Ept
[∥ṽθ(xt, t)∥2] dt (41)

This result confirms that our objective is a theoretically sound one for minimizing an upper bound on
the W2 distance.

20

B.2 Bounding the KL Divergence

We now analyze the KL divergence. Unlike the W2 distance, the KL divergence is sensitive to
changes in density, which are governed by the divergence of the vector field.

The marginal densities satisfy the continuity equations (t ∈ (0, 1)):

∂tpt(x, t) = −∇ · (pt(x, t)vθ(x, t))
∂tqt(x, t) = −∇ · (qt(x, t)vbase(x, t))

Proposition 5 (KL Divergence Identity for ODEs). Assume the vector fields vθ, vbase and densities
pt, qt are sufficiently smooth and have sufficient decay at infinity such that all boundary terms from
integration by parts vanish. Then, the exact identity for the final KL divergence is:

DKL (p1∥q1) = −
∫ 1

0

Ept
[ṽθ(xt, t) · ∇ log qt] dt−

∫ 1

0

Ept
[∇ · ṽθ(xt, t)] dt,

where ṽθ = vθ − vbase.

Applying a bound to the first term (as we did for the W2 proof) gives the final inequality:

DKL (p1∥q1) ≤
1

2

∫ 1

0

Ept
[∥ṽθ(xt, t)∥2] dt︸ ︷︷ ︸

(A) L2 Value Gradient Matching Loss

+ C(p, q)︸ ︷︷ ︸
(B) Path-Dependent Term

−
∫ 1

0

Ept
[∇ · ṽθ(xt, t)] dt︸ ︷︷ ︸

(C) Divergence Term

(42)

where C(p, q) = 1
2

∫ 1

0
Ept

[∥∇ log qt∥2] dt is a functional that depends on both the target path qt and
the learned path pt.
Remark 6 (Justification for the L2 Proxy Objective). Equation 42 shows that the KL divergence
is bounded by the L2 value gradient matching loss (Term A), a path-dependent term (Term B),
and a divergence-dependent term (Term C). Term (B) depends on both the learned path pt and
the target path qt. It can be bounded, for example, if the target score function has a uniform
bound (i.e., ∥∇ log qt(x)∥ ≤ Mt for all x, t), which would imply Ept

[∥∇ log qt∥2] ≤ M2
t . The

primary challenge is that Term (A) and Term (C) are geometrically independent, and Term (C)
is computationally expensive to estimate. We therefore use the value gradient matching loss as a
computationally efficient proxy objective. We empirically justify this choice, as our finetuned models
produce high-quality samples. This success suggests that for our network architecture and problem
setup, minimizing Term (A) is sufficient, and the "missing" divergence term (Term C) is implicitly
regularized or remains small, likely due to the implicit bias of the neural network.

21

C Experiment Details

C.1 Finite difference for value consistency

Our value consistency loss requires the costly computation of second-order gradients during back-
propagation. To save memory and time, we instead use finite differences to approximate the terms
(with u = vbase − 1

λgϕ):

∂

∂t
gϕ(xt, t) ≈

gϕ(xt + ϵv(xt, t)·, t+ ϵ)− gϕ(xt, t)

ϵ
(43)(

[∇gϕ]T
(
vbase −

1

λ
gϕ

))
(xt,t)

≈
gϕ

(
xt + ϵ /∇[v(xt, t)], t

)
− gϕ

(
xt − ϵ /∇[v(xt, t)], t

)
2ϵ

(44)(
[∇vbase]

T gϕ

)
(xt,t)

≈
vbase

(
xt + ϵ /∇[gϕ(xt, t)], t

)
− vbase

(
xt − ϵ /∇[gϕ(xt, t)], t

)
2ϵ

(45)

where /∇(·) = stop-gradient(·). The stop gradient operations on nested function calls prevent
second-order gradients during backpropagation. Empirically, we find this approximation works well.

C.2 More implementation details

In our experiments, we choose ηt = t2 in Equation 16 if not otherwise specified. We use a CFG scale
of wCFG = 5.0 for all experiments, and the velocity fields of both the base and finetuned models are
CFG-composited as v(x, t; c) = (1 + wCFG)v(x, t; c) − wCFGv(x, t;∅). We stop the gradients on
v(x, t;∅) as we found this leads to faster convergence. We use the best learning rates (in terms of fast
yet stable reward convergence) for each method instead of a fixed ones, as we observe that methods
like ReFL and DRaFT can be unstable for very large learning rates. Specifically, we use 5e− 4 for
VGG-Flow on all reward models, 5e− 5 for VGG-Flow-PMP on HPSv2 and PickScore, and 1e− 4
for all others. We use the standard AdamW optimizer with β1 = 0.9, β2 = 0.999 and weight decay
1e− 2. We clip the norm of network update gradients to 1. We use bfloat16 computation for the flow
matching model but float32 for the reward model due to numerical precision issues.

22

D Additional Figures

quadratic schedule linear schedule

0 100 200 300 400
Update Step

6.0

6.5

7.0

7.5

8.0

R
ew

ar
d

0 100 200 300 400
Update Step

0.21

0.22

0.23

0.24

D
re

am
Si

m
 D

iv
er

si
ty

0 100 200 300 400
Update Step

0.11

0.12

0.13

0.14

C
LI

P
D

iv
er

si
ty

0 100 200 300 400
Update Step

200

220

240

260

FI
D

Figure 13: Evolution of metrics for different η schedule (experiments on Aesthetic Score). The linear schedule
of η leads to faster convergence.

6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6

Reward

0.210

0.215

0.220

0.225

0.230

0.235

D
re

am
Si

m
 D

iv
er

si
ty

DreamSim vs. Reward, Aesthetic Score

quadratic schedule
linear schedule

6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6

Reward

0.110

0.115

0.120

0.125

0.130

0.135

C
LI

P
D

iv
er

si
ty

CLIP Similarity vs. Reward, Aesthetic Score

quadratic schedule
linear schedule

6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6

Reward

210

220

230

240

250

260

Fr
ec

he
t I

nc
ep

tio
n

D
is

ta
nc

e

FID vs. Reward, Aesthetic Score

quadratic schedule
linear schedule

Figure 14: Trade-offs between metrics for different η schedule (experiments on Aesthetic Score).

Subsampling Rate=0.25 Subsampling Rate=0.5

0 100 200 300 400
Update Step

6.0

6.5

7.0

7.5

R
ew

ar
d

0 100 200 300 400
Update Step

0.22

0.23

0.24

D
re

am
Si

m
 D

iv
er

si
ty

0 100 200 300 400
Update Step

0.11

0.12

0.13

0.14

C
LI

P
D

iv
er

si
ty

0 100 200 300 400
Update Step

200

220

240

260

FI
D

Figure 15: Evolution of metrics for different transition subsampling rates (experiments on Aesthetic Score).

6.2 6.4 6.6 6.8 7.0 7.2 7.4

Reward

0.220

0.225

0.230

0.235

0.240

D
re

am
Si

m
 D

iv
er

si
ty

DreamSim vs. Reward, Aesthetic Score

Subsampling Rate=0.25
Subsampling Rate=0.5

6.2 6.4 6.6 6.8 7.0 7.2 7.4

Reward

0.115

0.120

0.125

0.130

0.135

C
LI

P
D

iv
er

si
ty

CLIP Similarity vs. Reward, Aesthetic Score

Subsampling Rate=0.25
Subsampling Rate=0.5

6.2 6.4 6.6 6.8 7.0 7.2 7.4

Reward

210

220

230

240

250

260

Fr
ec

he
t I

nc
ep

tio
n

D
is

ta
nc

e

FID vs. Reward, Aesthetic Score

Subsampling Rate=0.25
Subsampling Rate=0.5

Figure 16: Trade-offs between metrics for different transition subsampling rates (experiments on Aesthetic
Score).

23

E Evolution of Generated Samples

We show in Figure 17 that our method is more capable of preserving the prior from the base model
during the finetuning process.

Epoch 40 Epoch 150 Epoch 250

VGG-Flow

ReFL

DRaFT-LV

Pretrained

AM

VGG-Flow-PMP

Figure 17: The degradation of image quality of baselines, compared to the evolution sequence of results produced
by our method.

24

F More Generated Samples

VGG-Flow

ReFL

DRaFT

AM

VGG-Flow-PMP

Pretrained

Figure 18: More qualitative results on Aesthetic Score.

25

Prompt: A man and two dogs are riding a scooter.

Prompt: Two cats chill in the bathtub, one laying down.
.

Prompt: A street with cars lined with poles and wires.
VGG-Flow ReFL DRaFTPretrained AM VGG-Flow-PMP

Figure 19: More qualitative results on HPSv2.

Prompt: A tree with blue leaves on a blue hill.

Prompt: Axolotl in the style of minecraft.
.

Prompt: A black lab catching a tennis ball.
VGG-Flow ReFL DRaFTPretrained AM VGG-Flow-PMP

Figure 20: More qualitative results on PickScore.

26

