
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Action Mapping for Reinforcement Learning in
Continuous Environments with Constraints

Anonymous authors
Paper under double-blind review

Keywords: Action masking, constrained MDPs, continuous action space, deep reinforcement
learning

Summary
Deep reinforcement learning (DRL) has had success across various domains, but apply-

ing it to environments with constraints remains challenging due to poor sample efficiency and
slow convergence. Recent literature explored incorporating model knowledge to mitigate these
problems, particularly using models that assess the feasibility of proposed actions. However,
integrating feasibility models efficiently into DRL pipelines in environments with continuous
action spaces is non-trivial. We propose a novel DRL training strategy utilizing action map-
ping that leverages feasibility models to streamline the learning process. By decoupling the
learning of feasible actions from policy optimization, action mapping allows DRL agents to
focus on selecting the optimal action from a reduced feasible action set. We demonstrate that
action mapping significantly improves training performance in constrained environments with
continuous action spaces, especially with imperfect feasibility models.

Contribution(s)
1. In this paper, we develop and implement the action mapping (AM) framework for DRL to

efficiently incorporate feasibility models during training. In AM, the training is split into
two steps. First, a feasibility policy is trained to generate all feasible actions given a state
by leveraging the feasibility model. Second, an objective policy learns to select the optimal
action among these pretrained feasible actions.
Context: The AM framework was originally conceptualized by Theile et al. (2024). How-
ever, they only focussed on the feasibility policy, omitting the objective policy and thus
leaving its practical benefits in DRL unexplored. In this paper, we refine their feasibility
policy training and formulate the training procedure for the objective policy.

2. Using perfect and approximate feasibility models with AM-PPO and AM-SAC implementa-
tions, we demonstrate AM’s effectiveness in constrained environments. Empirical compari-
son with Lagrangian methods and action replacement, resampling, and projection highlights
superior performance, especially with approximate models.
Context: While action replacement, resampling, and projection utilize the feasibility mod-
els, the Lagrangian methods are model-free and thus have an innate disadvantage. However,
they were added to also compare with model-free approaches.

3. Additionally, we showcase AM’s ability to express multi-modal action distributions, en-
hancing exploration and learning performance.
Context: Commonly, the output of a DRL policy is parameterizing a single-mode Gaus-
sian, which can be disadvantageous when there are disconnected sets of feasible actions.
AM allows the agent to effectively produce multi-mode Gaussians in the action space, al-
lowing it to explore actions in disconnected sets of feasible actions.

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

Action Mapping for Reinforcement Learning in
Continuous Environments with Constraints

Anonymous authors
Paper under double-blind review

Abstract

Deep reinforcement learning (DRL) has had success across various domains, but ap-1
plying it to environments with constraints remains challenging due to poor sample ef-2
ficiency and slow convergence. Recent literature explored incorporating model knowl-3
edge to mitigate these problems, particularly using models that assess the feasibil-4
ity of proposed actions. However, integrating feasibility models efficiently into DRL5
pipelines in environments with continuous action spaces is non-trivial. We propose a6
novel DRL training strategy utilizing action mapping that leverages feasibility models7
to streamline the learning process. By decoupling the learning of feasible actions from8
policy optimization, action mapping allows DRL agents to focus on selecting the op-9
timal action from a reduced feasible action set. We demonstrate that action mapping10
significantly improves training performance in constrained environments with continu-11
ous action spaces, especially with imperfect feasibility models.12

1 Introduction13

Deep Reinforcement learning (DRL) has emerged as a powerful tool across numerous application14
domains, ranging from robotics (Funk et al., 2022) and autonomous system (Trumpp et al., 2024)15
to game-playing (Vinyals et al., 2019) and other decision-making tasks (Bayerlein et al., 2021).16
The ability of DRL to learn complex behaviors through trial and error makes it highly promising17
for solving challenging problems. Despite the potential of DRL, its application is limited by poor18
sample efficiency and challenges in handling constraints that frequently arise in real-world tasks.19
Such constraints, such as safety requirements or physical limits, complicate the exploration and20
learning processes (Achiam et al., 2017).21

In many constrained environments, it is essential to prevent the agent from selecting actions that22
could violate certain constraints. Therefore, it has been proposed to utilize feasibility models that23
assess the feasibility of proposed actions at a given state. Their application is straightforward in24
discrete action spaces, where infeasible actions can simply be masked out, preventing the agent from25
choosing them (Huang & Ontañón, 2020). Action masking has been successfully applied in various26
discrete action space problems, such as vehicle routing (Nazari et al., 2018), autonomous driving27
scenarios (Krasowski et al., 2020), and task scheduling (Sun et al., 2024). However, integrating28
feasibility models becomes significantly more challenging in continuous action spaces, as actions29
cannot be directly masked out.30

Several methods have been proposed for integrating feasibility models in continuous action spaces.31
Action replacement substitutes infeasible actions with predefined feasible ones (Srinivasan et al.,32
2020), while action resampling rejects invalid actions and samples new ones until a feasible ac-33
tion is found (Bharadhwaj et al., 2020). Another approach is action projection, which projects the34
agent’s chosen action onto the nearest feasible one (Cheng et al., 2019). While these methods of-35
fer solutions, they often introduce inefficiencies or increase the computational cost of learning and36
decision-making, particularly in complex environments.37

1

Under review for RLC 2025, to be published in RLJ 2025

Inspired by the simplicity of action masking in discrete action spaces, Theile et al. (2024) proposed38
action mapping, a framework to address inefficiencies when incorporating feasibility models in con-39
tinuous action spaces. In their framework, a feasibility policy is pretrained to generate all feasible40
actions by leveraging the feasibility model. This feasibility policy creates a state-dependent repre-41
sentation of feasible actions, enabling an objective policy to focus solely on optimizing the task’s42
objective. While this concept shows promise, Theile et al. (2024) only focussed on the feasibility43
policy, omitting the objective policy and thus leaving its practical benefits in DRL unexplored. In this44
paper, we refine their feasibility policy training and formulate the training procedure for the objective45
policy. We further demonstrate its implementation in safe RL, achieving significant improvements46
in both sample efficiency and constraint satisfaction compared to other safe RL methods.47

Importantly, our focus is not on ensuring guaranteed constraint satisfaction. Instead, the primary48
objective is to leverage prior knowledge encapsulated in (potentially imperfect) feasibility models49
as an inductive bias to accelerate and improve the performance of DRL training. To that end, we50
test our approach in two constrained environments: (i) A robotic arm end-effector pose positioning51
task with obstacles using a perfect feasibility model, and (ii) a path planning environment with con-52
stant velocity and non-holonomic constraints, for which an approximate feasibility model is used.53
The experiments show that our action mapping approach outperforms Lagrangian approaches (Ha54
et al., 2020; Ray et al., 2019) and an action projection approach, especially in scenarios with an55
approximate feasibility model.56

Our work bridges the gap between the conceptual framework of action mapping and its practical57
implementation in constrained environments, leading to the following contributions:58

• Development and implementation of the action mapping framework for DRL to efficiently incor-59
porate feasibility models during training.60

• Demonstration of action mapping’s (AM) effectiveness in constrained environments using perfect61
and approximate feasibility models with AM-PPO and AM-SAC implementations.62

• Empirical comparison with Lagrangian methods and action replacement, resampling, and projec-63
tion, highlighting superior performance, especially with approximate models.64

• Showcasing action mapping’s ability to express multi-modal action distributions, enhancing ex-65
ploration and learning performance.66

2 Preliminaries67

2.1 State-wise Constrained Markov Decision Process68

A state-wise constrained Markov Decision Process (SCMDP) (Zhao et al., 2023) can be defined69
through the tuple (S,A,R, {Ci}∀i,P, γ,S0, µ), in which S and A are the state and action space.70
The reward function R : S × A → R defines the immediate reward received for performing a71
specific action in a given state. A transition function P : S × A → P(S) describes the stochastic72
evolution of the system, with P(S) defining a probability distribution over the state space. The73
discount factor γ ∈ [0, 1] weighs the importance of immediate and future rewards. Additionally, a74
set of initial states S0 and an initial state distribution µ = P(S0) are provided. When following a75
stochastic policy π : S → P(A), the expected discounted cumulative reward is defined as76

J(π) = E

[∞∑
t=0

γtR(st, at) | s0 ∼ µ, at ∼ π(·|st), st+1 ∼ P(·|st, at)

]
. (1)

In contrast to a regular MDP (Sutton, 2018), in an SCMDP, a set of cost functions {Ci}∀i is defined,77
in which Ci : S × A × S → R, such that every transition is associated with a cost value. In a78
CMDP (Altman, 2021), the expected discounted cumulative cost for each cost function Ci needs79
to be bounded by a wi ∈ R. In an SCMDP, the cost functions are required to be bounded for80
each transition individually, which is a stricter constraint. With all possible trajectories τπ(s) when81

2

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

following π starting from a state s, the SCMDP optimization problem is formulated as82

π∗ =argmax
π∈Π

J(π)

s.t. Ci(st, at, st+1) ≤ wi, ∀i,∀(st, at, st+1) ∼ τπ(s0),∀s0 ∈ S0. (2)

The optimization requires that each cost function Ci is bounded by wi for each transition83
(st, at, st+1) ∼ τπ(s0) along all possible trajectories of π starting from all possible initial states84
in S0.85

2.2 Feasibility Models86

Given the individual cost functions for a transition, a joint cost function can be defined as87

C(st, at, st+1) =
∑
∀i

max {0; Ci(st, at, st+1)− wi} , (3)

which is 0 if no cost function exceeds its bound and otherwise the sum of the violations. With the88
joint cost function, a policy-dependent trajectory cost can be defined as89

Cτ (s;π) = max
(st,at,st+1)∼τπ(s)

C(st, at, st+1) (4)

that expresses the highest joint cost of any transition (st, at, st+1) along all possible trajectories,90
starting from some s and following π. It is 0 if no cost function exceeds its bound.91

A feasibility model G : S ×A → R defines the cost violation of the transition induced by applying92
action at at state st, plus the cost violation of the most feasible policy from the next state. Formally,93
we define it as94

G(st, at) = max
st+1∼P(·|st,at)

[
C(st, at, st+1) + min

π∈Π
Cτ (st+1;π)

]
, (5)

with the maximization over all possible next states. A Boolean version of the feasibility model95
g : S ×A → B can be defined as96

g(st, at) = (G(st, at) == 0), (6)

where “==” denotes Boolean equality. It indicates whether all possible transitions induced by at97
at st are feasible and whether a policy exists such that a cost violation can be avoided from any98
possible st+1.99

3 Related Research100

The majority of the safe RL literature focuses on discrete actions through action masking (Huang101
& Ontañón, 2020), often through shielding (Alshiekh et al., 2018). Action projection is usually102
proposed to incorporate feasibility models for continuous action spaces. Donti et al. (2021) propose103
DC3 to perform action projection through gradient descent on a feasibility model, while Cheng et al.104
(2019) use control barrier functions. When the feasible action space is known and can be described105
as a convex polytope, a limiting assumption, Stolz et al. (2024) introduce a similar concept to action106
mapping that also improves performance.107

Learning-based approaches incorporate constraints directly into the RL process, often using tech-108
niques like Lagrangian optimization or dual frameworks. CMDPs (Altman, 2021) introduce cu-109
mulative cost constraints, while Constrained Policy Optimization (CPO) Achiam et al. (2017) ex-110
tends trust-region policy optimization by ensuring monotonic improvement under safety constraints.111
Bharadhwaj et al. (2020) propose conservative safety critics that reject unsafe actions during explo-112
ration and resamples from the actor, while Srinivasan et al. (2020) replaces the unsafe action with113

3

Under review for RLC 2025, to be published in RLJ 2025

a null action. Penalized PPO (P30) (Zhang et al., 2022) further incorporates constraint penalties,114
and Lagrangian PPO (Ray et al., 2019) and feasible actor-critic (Ma et al., 2021) use Lagrangian115
multipliers to balance reward maximization and constraint satisfaction.116

Combining model-based and learning approaches, learned feasibility models are often used to per-117
form action projection. Dalal et al. (2018) learn a linear approximation of the cost function and118
perform action projection using the linear model. Chow et al. (2019) learn a Lyapunov function and119
perform action or parameter projection. Zhang et al. (2023) use DC3 with a learned safety critic,120
using it for iterative gradient descent-based action projection. Further approaches to safe RL can be121
found in surveys by Gu et al. (2022b) and Zhao et al. (2023).122

While recent works have primarily focused on action projection methods when incorporating feasi-123
bility models, we propose a novel method that describes a mapping instead of a projection, which124
we show can improve learning performance.125

Besides the safe RL perspective, action mapping is also related to the research in action representa-126
tion learning. In action representation, a continuous latent action representation of large (discrete)127
action spaces is learned (Chandak et al., 2019). It has been extended to learn representation of se-128
quences of actions (Whitney et al., 2020), mixed discrete and continuous actions (Li et al., 2022), or129
specifically for offline RL (Gu et al., 2022a). Action mapping can be thought of as finding an action130
representation for the state-dependent set of feasible actions.131

4 Action Mapping Methodology132

Figure 1: Architecture of action mapping.

If a feasibility model g from (6) can be derived for133
an environment, the question is how to use it effi-134
ciently in RL. The intuition of action mapping is to135
first learn all feasible actions through interactions136
with g and subsequently train a policy through in-137
teractions with the environment to choose the best138
action among the feasible ones. By allowing the ob-139
jective policy to choose only among feasible actions,140
the SCMDP is effectively transformed into an un-141
constrained MDP, as illustrated in Fig. 1. Since unconstrained MDPs are generally easier to solve142
than SCMDPs–primarily due to reduced exploration complexity–action mapping can drastically im-143
prove training performance. In the following, the time index is dropped from st and at for improved144
readability.145

Formally, given g, the state-dependent set of feasible actionsA+
s ⊆ A contains all actions for which146

g(s, a) = 1. To learn all feasible actions, a feasibility policy is defined as147

πf : S × Z → A+
s , (7)

which is a generator that generates feasible actions for a given state. The latent space Z , with the148
same cardinality as the action spaceA, allows the policy πf to generate multiple feasible actions for149
the same state. A perfect feasibility policy is a state-dependent surjective map from Z to A+

s , as it150
is able to generate all feasible actions without generating infeasible ones. With a perfect feasibility151
policy, the latent space Z is an action representation of the set of feasible actions.152

Given a feasibility policy πf , an objective policy153

πo : S → P(Z) (8)

can be trained to find the state-dependent optimal latent value distribution. Through the map πf , the154
overall policy155

π = πf ◦ πo : S → P(A+
s) (9)

thus learns the optimal distribution over the feasible actions.156

4

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

Fig. 1 shows the action mapping architecture. It illustrates that a perfect feasibility policy πf trans-157
forms the state-wise constrained environment with transition function P into an unconstrained envi-158
ronment with transition function Pf with action space Z . The following describes how to train the159
feasibility and objective policies.160

4.1 Feasibility Policy161

To train the feasibility policy, we use the approach from Theile et al. (2024). The parameterized162
feasibility policy πθf with parameters θ aims to be a state-dependent surjective map from the latent163
space Z to the set of feasible actions A+

s , to allow the objective policy to choose among all feasible164
actions. When sampling z ∼ U(Z), i.e., uniformly from the latent space, πθf becomes a generator165
with a conditional probability density function (pdf) qθ(a|s). Since πθf is task-independent, this166
generator should generate all feasible actions equally likely without any bias toward any specific167
feasible action. Therefore, the target of qθ(a|s) is a uniform distribution in the feasible action space,168
i.e., U(A+

s).169

This uniform target distribution is given through the feasibility model g as170

p(a|s) = g(s, a)

Z(s)
, with Z(s) =

∫
A
g(s, a′)da′ (10)

where Z(s) is a partition function, effectively indicating the volume of feasible actions given a state.171
The objective of the feasibility policy is then minθ D(p(·|s)||qθ(·|s)), with a divergence measure D.172

Since qθ and p are not available in closed form, both need to be approximated. The distribution of173
the policy can be approximated through a kernel density estimate (KDE) based on N samples from174
qθ(·|s) as175

q̂θσ(a|s) =
1

N

∑
ai∼qθ(·|s)

kσ(a− ai), (11)

with a kernel k with bandwidth σ. To explore the feasibility of actions outside the support of qθ,176
Gaussian noise is added to the sampled actions as177

a∗i = ai + ϵi, ϵi ∼ N (0, σ′), (12)

which is equivalent to sampling from the KDE with bandwidth σ′ as a∗i ∼ q̂θσ′(·|s). Theile et al.178
(2024) propose to sample multiple actions per support point of the KDE, which our experiments179
showed to be unnecessary. The distribution q̂θσ′ with σ′ ≥ σ is a proposal distribution used for the180
divergence estimate. Using these samples, the target distribution can be estimated as181

p̂(a|s) = g(s, a)

Ẑ(s)
, with Ẑ(s) =

1

N

∑
a∗i ∼q̂θσ′ (·|s)

g(s, a∗i)

q̂θσ′(a∗i |s)
, (13)

where the partition function is approximated using Monte-Carlo importance sampling. Using the182
approximation q̂θσ , the samples a∗i from the proposal distribution q̂θσ′ , and the approximation of the183
target distribution p̂, the gradient of the Jensen-Shannon divergence can be approximated as184

∂

∂θ
DJS(p || qθ) ≈

1

2N

∑
a∗i ∼q̂θσ′

q̂θσ(a
∗
i)

q̂θσ′(a∗i)
log

(
2q̂θσ(a

∗
i)

p̂(a∗i) + q̂θσ(a
∗
i)

)
∂

∂θ
log q̂θσ(a

∗
i), (14)

dropping the dependency on s for readability. Theile et al. (2024) showed the Jensen-Shannon185
divergence yields the best compromise between reaching all actions, even in disconnected sets of186
feasible actions, and minimizing the probability of generating infeasible actions. An algorithm and187
implementation details in the context of DRL are provided in Appendix A.188

5

Under review for RLC 2025, to be published in RLJ 2025

4.2 Objective Policy189

Algorithm 1 AM Training Procedure

1: Initialize πϕo , and Qψ (AM-SAC) or Vψ (AM-PPO)
2: Initialize buffer D ← {}
3: Load or pretrain πθf using Algorithm 2
4: s← env.reset()
5: for 1 to Interaction Steps do
6: µ, σ ← πϕo (s) ▷ Get policy parameters
7: x ∼ N (·|µ, σ) ▷ Sample from Gaussian
8: z ← tanh(x) ▷ Squash into latent space
9: a← πθf (s, z) ▷ Map to action space

10: V̂s ← Vψ(s) ▷ for AM-PPO
11: logπ ← logN (x|µ, σ)− log(1− z2) ▷ for AM-PPO
12: s′, r, d← env.step(a)

13: D ← D ∪

{
(s, z, r, s′, d), for AM-SAC
(s, z, logπ, V̂s, r, s′, d), for AM-PPO

14: s← s′ if ¬d else env.reset()
15: if D is ready for training then
16: if AM-SAC then πϕo ,Q

ψ ← SAC train step
17: if AM-PPO then πϕo ,V

ψ ← PPO train epoch, D ← {}

Algorithm 1 shows our pro-190
posed training procedure for191
AM-SAC based on Soft Actor-Critc192
(SAC) (Haarnoja et al., 2018) and193
AM-PPO using Proximal Policy194
Optimization (PPO) (Achiam et al.,195
2017). For both algorithms, the196
objective policy πϕo parameterizes197
a Gaussian from which a value x198
is sampled (lines 6-7). Since the199
Gaussian is not bounded, we squash200
it using a tanh yielding the latent201
value z (line 8). The latent z is202
then mapped to an action a using203
πϕf (line 9). If using AM-PPO,204

the state-value estimate V̂s and205
the log-likelihood of the latent are206
gathered (lines 10-11). For the207
log-likelihood, a term is added to208
compensate for the squashing effect.209
Using the action a, the environment steps to the next state s′, yielding reward r and a termination210
flag d (line 12), and the collected experience tuples are stored in the buffer D (line 13). The211
experience tuples do not contain the action a but solely the latent z.212

When the buffer is full (AM-PPO) or the buffer has sufficient samples for a batch (AM-SAC), the213
agent is trained (line 15). For AM-SAC, a standard SAC training step is performed in which the214
critic is updated to estimate the state-latent value, and the actor maximizes the critic’s output with215
an added entropy term (line 16). For AM-PPO (line 17), the agent is trained on the full buffer as216
done in PPO, with the critic updated to predict the state value and the actor through standard policy217
optimization on the latent distribution. In AM-PPO, the buffer is reset after training.218

In principle, πθo could be trained on the actions a instead of the latent z. However, this leads to prob-219
lems in AM-PPO and AM-SAC. In AM-PPO, it would be challenging to estimate the log-likelihood220
of an action a given the log-likelihood of latent z. While πϕf is trained to map uniformly into the221
set of feasible actions, it is neither perfect nor strictly bijective, and the log-likelihood for a would222
require approximations, e.g., through KDEs. This is costly and likely creates ill-posed gradients for223
the training of πθo . In AM-SAC, if training Qψ(s, a), the policy gradient for πθo could propagate224
through πϕf . While this is tractable, Qψ(s, a) is not trained on infeasible actions and thus likely225
yields arbitrary gradients near the feasibility border, preventing πθo from jumping between discon-226
nected sets of feasible actions. Additionally, the entropy in the action space is difficult to assess,227
similar to the log-likelihood. Preliminary experiments on training AM-SAC on a, with entropy in228
the latent space, showed no advantage compared with standard SAC training.229

Consequently, training πθo and, in AM-SAC, Qψ on the latent space is more straightforward to230
implement and yields better results. A primary advantage of training on the latent space is that231
disconnected sets of feasible actions are very close in the latent space, allowing policy gradient and232
policy optimization algorithms to jump between the sets. Additionally, a single modal Gaussian233
in the latent space can be mapped to a multi-modal distribution in the action space, allowing for234
better exploration and decreasing the chance of being trapped in local optima. Fig. 5 highlights and235
discusses the exploration benefit. Overall, as shown in Fig. 1, the idea is to convert the SCMDP into236
an unconstrained MDP. Therefore, from the perspective of πθo and Qψ , the environment is given by237
Pf (s

′|s, z) = P(s′|s, πf (s, z)).238

6

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

5 Experiment Setup239

5.1 Applications240

We define two different RL environments, shown in Figs. 2 and 3, with continuous state and action241
spaces to demonstrate how action mapping can be implemented and to evaluate its performance242
compared with common approaches. The first experiment is a robotic arm end-effector pose tracking243
task with multiple obstacles. This task was designed so that a perfect feasibility model can be derived244
and a feasible null action exists. The second experiment is a path planning problem with constant245
velocity and non-holonomic constraints, which can be found using fixed-wing aircraft. Since a246
fixed-wing aircraft cannot stop or turn around instantaneously, deriving a perfect feasibility model247
is extremely challenging. Therefore, we utilize that environment to showcase action mapping’s248
performance using approximate feasibility models. In both environments, the episode is terminated249
when a constraint is violated, which exacerbates the challenge for DRL.250

5.1.1 Robotic Arm End-effector Pose251

Figure 2: Robotic arm end-effector pose
environment with obstacles in gray and
the target pose to the left.

In this environment, visualized in Fig. 2, the agent is a252
purely kinematic robot arm, neglecting inertia, loosely253
replicating a 7 DOF Franka Research 3 robotic arm254
(Franka-Robotics, 2024). Given a starting pose, the agent255
needs to move the joints such that its end-effector reaches256
a target pose without colliding with obstacles. The obsta-257
cles are represented by spheres, and the collision shape of258
the robot arm is defined by a series of capsules that can be259
seen as a pessimistic safety hull. The obstacles are sam-260
pled using rejection sampling to avoid intersections with261
the start and end configuration.262

State space. The state contains the 7 joint angles of the robot arm, the target pose (rotation +263
translation from the origin), and the parameters of up to 20 spherical obstacles.264

Action space. The action is defined as a delta of the joint angles.265

Constraints. The agent is not allowed to exceed its joint limits or predefined maximum cartesian266
velocities of each joint. No part of the robot arm is allowed to collide with any of the obstacles.267

Reward function. The reward function is a weighted sum of the decrement of the distance and268
angle of the end-effector pose to the target pose.269

Feasibility model. The feasibility model performs a one-step prediction and evaluates the constraint270
functions on joint limits, joint Euclidean velocities, and obstacle collision.271

In this scenario, the feasibility model is perfect, and a feasible replacement action exists (no move-272
ment). We train different PPO configurations and compare their performance in the next section.273

5.1.2 Non-holonomic Path Planning with Constant Velocity274

This environment contains an agent that needs to collect targets while avoiding obstacles. The agent275
can be thought of as a fixed-wing aircraft that needs to maintain a constant velocity, and its turns276
cannot exceed a maximum curvature. The airplane in Fig. 3 is for visualization purposes only; the277
agent’s dimensions are assumed to be integrated into the obstacles.278

State space. The state space contains 30 randomly sampled rectangular obstacles and 10 randomly279
placed and sized circular targets. Additionally, the agent has a position and current velocity.280

Action space. The agent parameterizes 2D cubic Bezier curves, which are anchored at the agent’s281
position and starting in the agent’s current direction, yielding a 5D action space. The splines are282
followed for a constant time, after which a new spline is generated by the agent.283

7

Under review for RLC 2025, to be published in RLJ 2025

Figure 3: Spline-based path planning
environment with constant velocity and
non-holonomic constraints.

Constraints. The agent is not allowed to collide with any284
obstacle or leave the squared area. While following the285
spline for a constant following time, the induced curva-286
ture must not exceed a curvature bound, and the agent287
must not reach the end of the spline.288

Reward function. The agent receives a reward of 0.1289
when a target is collected and an additional reward of 1.0290
when all targets are collected.291

Feasibility model. The approximate feasibility model292
generates 64 points along the spline and locally as-293
sesses collisions with obstacles, whether a point is out294
of bounds, and whether the local curvature exceeds the295
curvature bound. Additionally, it adds the Euclidean dis-296
tances between the points to estimate the length of the spline. The spline length needs to be within297
length bounds.298

The idea behind the spline-based action space is to express a multi-step action with reduced dimen-299
sionality. Through this multi-step action, the feasibility model can assess whether a feasible path300
exists within a time horizon, effectively expressing a short horizon policy that minimizes the future301
trajectory cost in the second term of (5). Therefore, the minimum length of the generated spline302
for the feasibility model is set to a multiple of the distance traveled per time step (a factor of 2.5303
in this experiment). The maximum length of a spline is defined to bound the action space (3.5 in304
the experiment), yielding a look-ahead of around two timesteps. We train different SAC configu-305
rations and compare their performance in the next section. Our neural network architectures and306
hyperparameters for these environments are presented in Appendix B.307

5.2 Comparison308

Given a feasibility model G from (5) or its Boolean-valued version g from (6), the three common309
approaches to utilize it are action replacement, resampling, and projection. These approaches are310
described in more detail in Appendix C.1. They each offer distinct trade-offs in terms of compu-311
tational cost and feasibility guarantees, and our experiments explore their performance in different312
settings.313

Additionally to these methods utilizing feasibility models, we compare with model-free Lagrangian314
methods “Lagrangian SAC” (Ha et al., 2020) and “Lagrangian PPO” (Ray et al., 2019). In these315
methods, a safety critic is trained to estimate the expected cumulative cost or, in our case, the ex-316
pected probability of constraint violation, and a policy aims to maximize a Lagrangian dual problem.317
The two algorithms are described in more detail in Appendix C.2.318

6 Results319

6.1 Robot Arm320

To demonstrate the training performance in the robotic arm environment, Figs. 4a and 4b show the321
cumulative return and constraint violations throughout training. It can be seen that the baseline PPO322
agent learns robustly, continuously increasing performance, even though showing high failure rates.323
The Lagrangian PPO shows better constraint satisfaction with similar objective performance. In324
contrast, action replacement and resampling appear to hamper performance. PPO with action re-325
placement struggles to learn anything in the beginning, presumably because most proposed actions326
are replaced with the null action. Therefore, its failure rate is constant at zero. PPO with action re-327
sampling first learns faster than PPO but then exhibits instability, likely due to the wrong estimation328
of the policy ratio in the PPO objective.329

8

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

0 20000 40000 60000 80000 100000
Interaction steps in thousands

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
m

ul
at

iv
e

re
wa

rd

(a) Robot arm – Return

0 20000 40000 60000 80000 100000
Interaction steps in thousands

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu
m

ul
at

iv
e

re
wa

rd

AM-PPO
AM-PPO + Replacement
PPO
Lagrangian PPO
PPO + Replacement
PPO + Resampling
PPO + Projection

0 20000 40000 60000 80000 100000
Interaction steps in thousands

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

tra
in

t v
io

la
tio

n

(b) Robot arm – Constraint violation

0 5000 10000 15000 20000 25000
Interaction steps in thousands

0.0

0.5

1.0

1.5

2.0

Cu
m

ul
at

iv
e

re
wa

rd

(c) Path planning – Return

0 5000 10000 15000 20000 25000
Interaction steps in thousands

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 so
lv

ed

AM-SAC
SAC
Lagrangian SAC
SAC + Resampling
SAC + Projection

0 5000 10000 15000 20000 25000
Interaction steps in thousands

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

tra
in

t v
io

la
tio

n

(d) Path planning – Constraint violation

Figure 4: Training curves for the two applications with the results for the robot arm environment
in (a)+(b) and for the path planning environment in (c)+(d). For each configuration, 3 agents were
trained, with the curves showing the median and the region between highest and lowest performance.
Both “Replacement” agents show no constraint violation in (b).

(a) a ∼ πθf (s, z)|z∼U(Z) (b) a ∼ πθf (s, z)|z∼πϕb
o (·|s)

(c) a ∼ πθf (s, z)|z∼πϕe
o (·|s)

Figure 5: Visualization of 256 generated actions of πθf for a given state (a) if z is sampled uniformly,
(b) if sampled from the distribution of πϕb

o , being an objective policy in the beginning of training,
and (c) if sampled from the distribution of πϕe

o which is the agent at the end of training.

PPO with action projection and action mapping (AM-PPO, AM-PPO + Replacement) learn signif-330
icantly faster with higher final performance than the model-free baselines. Action mapping yields331
slightly higher performance at the end of training, and it exhibits fewer constraint violations than332
action projection. Adding action replacement to action mapping yields the best performance with-333
out constraint violations. This application showed that action mapping and projection are both very334
beneficial with perfect feasibility models that are mostly convex, with action mapping having a335
slight edge. Since in this example a safe action exists, action replacement can always be added to336
guarantee constraint satisfaction and together with action mapping, it also improves performance.337
Additionally, an evaluation of training and inference times in Appendix F shows that projection is338
significantly more expensive than action mapping.339

6.2 Path Planning340

Before inspecting the training performance of the different approaches, Fig. 5 shows the inner work-341
ings of action mapping. Fig. 5a shows the output distribution of the pretrained feasibility policy πθf342
when sampling uniformly from the latent space Z . The feasibility policy is able to generate actions343
in both disconnected sets of feasible actions, with only minimal actions between. Figs. 5b and 5c344

9

Under review for RLC 2025, to be published in RLJ 2025

show how the objective policy can take advantage of this. At the beginning of training, the agent345
outputs a distribution with high entropy in the latent space, leading to a bi-modal distribution in the346
action space (Fig. 5b). After training, the agent’s output entropy is lower, and the resulting distri-347
bution in the action space usually collapses to a single mode (Fig. 5c). This visualization shows348
a crucial aspect of action mapping. It allows an objective policy to express multi-modal action349
distributions by only parameterizing a single Gaussian distribution in the latent space, which can350
significantly improve exploration.351

Inspecting the training performance of the different approaches in the path planning environment in352
Figs. 4c and 4d, it can be seen that SAC and SAC with resampling do not learn much. Their initial353
jump in performance occurs when the agent starts understanding the targets, but it usually fails to354
reach them because it does not learn to understand the obstacles. Therefore, both agents always355
end their episodes through a constraint violation. The Lagrangian SAC agent focuses only on not356
violating constraints, which leads to slightly better constraint satisfaction but completely inhibits357
the learning of the objective. In contrast, when the action projection agent learns to understand the358
targets, its performance jumps significantly higher. The reason is that when it tries to go straight to359
each target, action projection pushes it around the obstacles.360

The action mapping agent (AM-SAC) exhibits a higher initial performance jump, indicating that361
action mapping more successfully nudges the agent around obstacles. Additionally, in contrast to362
all other approaches, the action mapping agent has a second jump in performance and constraint363
satisfaction between 5M and 10M steps. This leap can be attributed to the objective policy’s under-364
standing of the obstacles and incorporating them into the plan instead of only being nudged around365
by the feasibility policy. This application shows that action mapping outperforms action projection366
with approximate feasibility models. Fig. A.2 in the appendix shows trajectory examples of the367
AM-SAC agent, highlighting the difficulty of that environment through the high variability of initial368
conditions. An evaluation of the dependence on the approximation accuracy of the feasibility model369
is shown in Appendix G. Additionally, as in the robotic arm example, training and inference times370
of action mapping are significantly faster than action projection, as shown in Appendix F.371

7 Conclusion and Future Work372

We proposed and implemented a novel DRL training strategy based on action mapping. Our results373
demonstrate that this approach performs exceptionally well, particularly when using approximate374
feasibility models. We highlighted how even approximate model knowledge can be effectively in-375
corporated into the DRL process to enhance training performance, emphasizing the potential to inte-376
grate domain-specific insights into DRL frameworks. We further show how action mapping allows377
the agent to express multi-modal action distributions, which can significantly improve exploration.378

The use of KDE introduces some distance between the generated actions and the boundary of fea-379
sible actions, which may result in conservative action selection. Furthermore, the feasibility policy380
πf does not completely eliminate the generation of infeasible actions and, therefore, does not pro-381
vide strict safety guarantees. Consequently, the learned πθf is not surjective and does not remove all382
constraints from the SCMDP, but still significantly relaxes the constraints.383

While the assumption of having a feasibility model may be too restrictive in general, we show that384
deriving one and utilizing action mapping can substantially improve learning performance. There-385
fore, we advocate for exploring the utilization of feasibility models in practical applications where386
model-free RL’s performance is insufficient.387

Future work will explore whether weight-sharing or initialization of parameters from πf to the actor388
and critic of the policy πo could lead to more efficient learning. Furthermore, spline-based path389
planning, which has shown promising results, warrants further investigation, particularly in robotic390
path planning scenarios. Lastly, expanding action mapping to utilize learned feasibility models391
could be explored to offer an alternative to common approaches like Lagrangian multipliers or action392
projection.393

10

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

References394

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In395
International conference on machine learning, pp. 22–31. PMLR, 2017.396

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and397
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI conference398
on artificial intelligence, volume 32, 2018.399

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.400

Harald Bayerlein, Mirco Theile, Marco Caccamo, and David Gesbert. Multi-uav path planning for401
wireless data harvesting with deep reinforcement learning. IEEE Open Journal of the Communi-402
cations Society, 2:1171–1187, 2021.403

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and Ani-404
mesh Garg. Conservative safety critics for exploration. arXiv preprint arXiv:2010.14497, 2020.405

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning406
action representations for reinforcement learning. In International conference on machine learn-407
ing, pp. 941–950. PMLR, 2019.408

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforce-409
ment learning through barrier functions for safety-critical continuous control tasks. In Proceed-410
ings of the AAAI conference on artificial intelligence, volume 33, pp. 3387–3395, 2019.411

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad412
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint413
arXiv:1901.10031, 2019.414

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval415
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.416

Priya L. Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with417
hard constraints. In International Conference on Learning Representations, 2021.418

Franka-Robotics. Franka documentation. https://frankaemika.github.io/docs/control_parameters.html,419
2024. Accessed: 2024-09-30.420

Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and Jan Peters. Learn2assemble with struc-421
tured representations and search for robotic architectural construction. In Conference on Robot422
Learning, pp. 1401–1411. PMLR, 2022.423

Pengjie Gu, Mengchen Zhao, Chen Chen, Dong Li, Jianye Hao, and Bo An. Learning pseudometric-424
based action representations for offline reinforcement learning. In Kamalika Chaudhuri, Stefanie425
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th426
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning427
Research, pp. 7902–7918. PMLR, 17–23 Jul 2022a. URL https://proceedings.mlr.428
press/v162/gu22b.html.429

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll.430
A review of safe reinforcement learning: Methods, theory and applications. arXiv preprint431
arXiv:2205.10330, 2022b.432

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world433
with minimal human effort. arXiv preprint arXiv:2002.08550, 2020.434

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy435
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-436
ence on machine learning, pp. 1861–1870. PMLR, 2018.437

11

https://frankaemika.github.io/docs/control_parameters.html
https://proceedings.mlr.press/v162/gu22b.html
https://proceedings.mlr.press/v162/gu22b.html
https://proceedings.mlr.press/v162/gu22b.html

Under review for RLC 2025, to be published in RLJ 2025

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient438
algorithms. arXiv preprint arXiv:2006.14171, 2020.439

Hanna Krasowski, Xiao Wang, and Matthias Althoff. Safe reinforcement learning for autonomous440
lane changing using set-based prediction. In 2020 IEEE 23rd International Conference on Intel-441
ligent Transportation Systems (ITSC), pp. 1–7. IEEE, 2020.442

Boyan Li, Hongyao Tang, YAN ZHENG, Jianye HAO, Pengyi Li, Zhen Wang, Zhaopeng Meng,443
and LI Wang. HyAR: Addressing discrete-continuous action reinforcement learning via hybrid444
action representation. In International Conference on Learning Representations, 2022. URL445
https://openreview.net/forum?id=64trBbOhdGU.446

Haitong Ma, Yang Guan, Shegnbo Eben Li, Xiangteng Zhang, Sifa Zheng, and Jianyu Chen. Feasi-447
ble actor-critic: Constrained reinforcement learning for ensuring statewise safety. arXiv preprint448
arXiv:2105.10682, 2021.449

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement450
learning for solving the vehicle routing problem. Advances in neural information processing451
systems, 31, 2018.452

OmniSafe Team. Omnisafe – lagrange algorithms. https://www.omnisafe.ai/en/453
latest/saferlapi/lagrange.html, 2022. Accessed: 2024-11-25.454

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement455
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.456

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-457
dimensional continuous control using generalized advantage estimation. arXiv preprint458
arXiv:1506.02438, 2015.459

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be460
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.461

Roland Stolz, Hanna Krasowski, Jakob Thumm, Michael Eichelbeck, Philipp Gassert, and Matthias462
Althoff. Excluding the irrelevant: Focusing reinforcement learning through continuous action463
masking. arXiv preprint arXiv:2406.03704, 2024.464

Binqi Sun, Mirco Theile, Ziyuan Qin, Daniele Bernardini, Debayan Roy, Andrea Bastoni, and Marco465
Caccamo. Edge generation scheduling for dag tasks using deep reinforcement learning. IEEE466
Transactions on Computers, 2024.467

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.468

Mirco Theile, Daniele Bernardini, Raphael Trumpp, Cristina Piazza, Marco Caccamo, and Alberto L469
Sangiovanni-Vincentelli. Learning to generate all feasible actions. IEEE Access, 2024.470

Raphael Trumpp, Ehsan Javanmardi, Jin Nakazato, Manabu Tsukada, and Marco Caccamo. Race-471
mop: Mapless online path planning for multi-agent autonomous racing using residual policy472
learning. arXiv preprint arXiv:2403.07129, 2024.473

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-474
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster475
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.476

William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware em-477
beddings. In International Conference on Learning Representations, 2020. URL https:478
//openreview.net/forum?id=BJgZGeHFPH.479

12

https://openreview.net/forum?id=64trBbOhdGU
https://www.omnisafe.ai/en/latest/saferlapi/lagrange.html
https://www.omnisafe.ai/en/latest/saferlapi/lagrange.html
https://www.omnisafe.ai/en/latest/saferlapi/lagrange.html
https://openreview.net/forum?id=BJgZGeHFPH
https://openreview.net/forum?id=BJgZGeHFPH
https://openreview.net/forum?id=BJgZGeHFPH

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Bo Yuan, Xueqian Wang, and Dacheng480
Tao. Penalized proximal policy optimization for safe reinforcement learning. arXiv preprint481
arXiv:2205.11814, 2022.482

Linrui Zhang, Qin Zhang, Li Shen, Bo Yuan, Xueqian Wang, and Dacheng Tao. Evaluating model-483
free reinforcement learning toward safety-critical tasks. In Proceedings of the AAAI Conference484
on Artificial Intelligence, volume 37, pp. 15313–15321, 2023.485

Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. State-wise safe reinforcement486
learning: A survey. arXiv preprint arXiv:2302.03122, 2023.487

13

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials488

The following content was not necessarily subject to peer review.489
490

Appendix491

A Feasibility Policy Training492

Algorithm 2 Feasibility Policy Pretraining, adapted from Theile et al. (2024)

1: Initialize πθf
2: for 1 to Feasibility Training Steps do
3: for k = 1 to K do
4: sf ← Generate partial state in Sf ▷ Only containing feasibility relevant information
5: zi ∼ U(Z), ∀i ∈ [1, N] ▷ Sample uniformly in latent space
6: ai ← πθf (sk, zi), ∀i ∈ [1, N] ▷ Map latents to actions for given state
7: a∗j ← aj + ϵj , ϵj ∼ N (0, σ′), ∀j ∈ [1, N] ▷ Add noise to actions to get samples
8: q̂j ← 1

N

∑N
i=1 kσ(a

∗
j − ai), ∀j ∈ [1, N] ▷ Evaluate KDE on samples

9: q̂′j ← 1
N

∑N
i=1 kσ′(a∗j − ai), ∀j ∈ [1, N] ▷ Evaluate proposal KDE on samples

10: rj ← g(sk, a
∗
j), ∀j ∈ [1, N] ▷ Evaluate feasibility model on samples

11: Ẑk ← 1
N

∑N
j=1

rj
q̂′j

▷ Estimate partition function

12: p̂j ← rj

Ẑk
, ∀j ∈ [1, N] ▷ Estimate target distribution at the samples

13: gk ← 1
2N

∑N
j=1

q̂j
q̂′j

log
(

2q̂j
q̂j+p̂j

)
∇θ log(q̂j) ▷ Compute the gradient of the JS loss

14: θ ← θ − αθ
1
K

∑K
k=1 gk ▷ Apply gradient

To determine how long the feasibility policy needs to be trained, the policy should be evaluated at493
regular intervals. This is necessary since the feasibility model is only evaluated on noisy samples494
(line 10), and thus, the result cannot be used to determine convergence. If the agent’s precision495
(i.e., the number of feasible actions among all generated actions) and the average distance between496
feasible actions (an indicator of recall, i.e., higher distance means covering more feasible actions)497
stabilizes, the agent has trained sufficiently. Note that the precision usually cannot and does not need498
to reach 100%, as the agent will always generate infeasible actions if the sets of feasible actions are499
disconnected. Additionally, the partial state generator may sometimes generate states for which no500
feasible action exists, as discussed in the following.501

A.1 Partial State Generator502

For the feasibility policy training, a partial state generator and a parallelizable feasibility model503
g : Sf ×A → B are needed. In most environments, not all state variables are relevant for feasibility504
and can thus be omitted in the feasibility policy training (e.g., the end-effector pose target in the505
robot arm environment and the target regions in the path planning environment). Removing these506
variables from the state space yields the partial state space Sf .507

The state generator does not need to generate states with a distribution similar to a realistic state508
visitation from any policy. It is even preferential to generate more safety-critical partial states.509
Therefore, more obstacles can be generated, and the agent’s position can be sampled closer to these510
obstacles than when generating initial states for episodes.511

In the robotic arm environment, the state generator generates randomly placed spherical obstacles512
and a random joint configuration within the joint limits. The partial state is ready after removing513
obstacles that collide with the arm.514

14

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

In the path planning environment, the state generator similarly generates randomly placed rectangu-515
lar obstacles and a random position and velocity of the agent. After removing obstacles colliding516
with the position, the partial state is ready. Our experiments show that ensuring a feasible action517
exists for every generated state is unnecessary.518

B Neural Network Architecture and Hyperparameters519

+

M
H

A
K

 V
 Q

+

S
hared
M

LP

Cross-Attention
Objective

+

M
H

A
Q

 K
 V

S
hared
M

LP

+

Cross-Attention
Constraints

Action*

Latent

Multi Objective

Internal State

Objective

D
ense

D
ense

D
ense

+

S
hared
M

LP
S

hared
M

LP

+

+
D

ense

D
ense

D
ense

D
ense

Policy Parameters

(Q-)Value

Action

C x

L x

Actor Critic Feasibility
Policy* Only for Q-Value Critic

Fixed-Size
Inputs

Processing

Multi Constraints

P x

P x

Figure A.1: Generalized neural network architecture for the networks used in both experiments. The
different network types (πθo , Qψ , Vψ , πϕf) have different inputs and outputs indicated through the
coloring. As such, the feasibility policy does not process objective-related information, omitting
the second cross-attention. While all networks share the same structure, they do not share param-
eters. The Shared MLPs before the cross-attention are repeated P times, the cross-attention layers
are repeated C times, and the dense layer after them is repeated L times. The ∪ is a concatenation.
Layer-Normalization is added for all inputs to the Multi-Head Attention (MHA). The hyperparam-
eters are listed in Table A.1.

Both environments contain lists of elements, such as the obstacles in the robotic arm environment520
and the obstacles and targets in the path planning one. The agent needs to process these lists in-521
variantly to permutations. Therefore, we utilize attention, with its query given by the internal state522
representation of the agent, and key and value being the obstacles and targets alternatingly. All net-523
works, the actor, critic, and feasibility policy share the same architecture, with the exception that the524
feasibility policy does not process the objective-relevant inputs.525

C Comparison Baselines526

C.1 Feasibility Model-based527

Action Replacement. The feasibility model g is queried on a proposed action of the agent. If528
deemed feasible, the action is applied to the system. Otherwise, the action is rejected and replaced529
with a predefined feasible one. The feasible action is usually task-independent and does not con-530
tribute meaningfully to task completion. Additionally, it is often not trivial to derive a feasible531
action, such as in the path planning environment. Therefore, we only compare to action replacement532
in the robotic arm example, where the feasible action is to apply no motion to the arm.533

Action Resampling. Similar to action replacement, infeasible actions are rejected. Instead of re-534
placing them with a known feasible action, the stochastic agent is queried again to provide different535
actions. This resampling step is repeated until either a feasible action is found or a maximum num-536
ber of sampling steps is reached. The advantage is that it does not require a known feasible action.537
However, if the agent’s action distribution is too far from the feasible actions, resampling may fail538

15

Under review for RLC 2025, to be published in RLJ 2025

Table A.1: Hyperparameters for the AM-SAC and AM-PPO configurations.

Parameter AM-SAC AM-PPO

Total interaction steps 25, 000, 000 100, 000, 000
Memory/Rollout size 1, 000, 000 10, 000

Batch size 128 128
Discount factor (γ) 0.97 0.97

Actor learning rate (initial) 3 × 10−5 3 × 10−5

Actor learning rate decay rate - 0.0
Actor learning rate decay steps - 100, 000, 000

Critic learning rate (initial) 1 × 10−4 1 × 10−4

Critic learning rate decay rate - 0.0
Critic learning rate decay steps - 100, 000, 000

Entropy coefficient 0.0002 0.005
Soft update factor (τ) 0.005 -

Policy update delay 2048 -
Training steps per environment step 2/50 -

Number of parallel environments 50 50
Number of rollout epochs - 3
Advantage normalization - true

GAE lambda (λ) - 0.9
Clipping parameter (ϵ) - 0.2

Feasibility divergence samples (N) 1024 1024
Feasibility divergence sigma (σ) 0.1 0.1

Feasibility divergence sigma prime factor 2.0 1.0
Feasibility Training Steps 500, 000 1, 000, 000

Feasibility states per batch (K) 16 16

Feasibility learning rate 1 × 10−4 1 × 10−4

Layer Size 256 256
Num Dense Layers Pre Attention (P) 1 3

Num Cross-Attention Layers (C) 3 3
Num Heads in MHA 16 4

Key Dim in MHA 16 64
Num Dense Layers Post Attention (L) 3 3

to generate a feasible action within the allowed iterations, leading to high failure rates or inefficient539
learning. It further alters the actual likelihood of actions, which we show can destabilize the DRL540
training.541

Action Projection. In this approach, an optimization method finds the closest feasible action to the542
one proposed by the agent based on some distance metric. While action projection often yields better543
task performance by staying close to the agent’s intended action, it can introduce computational544
overhead since the optimization process must be repeated at every step. For example, Donti et al.545
(2021) propose iteratively minimizing G from (5) via gradient steps ∆aG(s, a). However, if G is546
not convex–which is often the case in practical scenarios–action projection may not yield a feasible547
solution, as the optimization process can get trapped in local minima. Furthermore, the actions548
are projected onto the boundary between feasible and infeasible actions. If the feasibility model549
is only approximate, the actions on the boundary may not be feasible, requiring more conservative550
approximate solutions. Specifically, in the path planning environment, a higher distance to obstacles551
and a tighter curvature bound had to be enforced.552

C.2 Model-free Lagrangian Algorithms553

To use Lagrangian algorithms, a safety critic QC(s, a) is trained that estimates the expected cumu-554
lative cost or probability of failure according to555

QC(s, a) = c(s, a) + γCEs′∼P(·|s,a)

[
min
a′∈A

QC(s
′, a′)

]
. (15)

For on-policy algorithms, the corresponding state cost-value is defined as556

VπC(s) = Ea∼π(·|s) [QC(s, a)] . (16)

16

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

For the Lagrangian SAC (Ha et al., 2020), the objective of the policy is the Lagrangian dual557

min
λ≥0

max
π

Es∼D,a∼π(·|s) [Q(s, a) + α log π(a|s)− λ(QC(s, a)− δC)] , (17)

with δC being a safety threshold that can be tuned.558

For the Lagrangian PPO (Ray et al., 2019), (based on the implementation by OmniSafe(OmniSafe559
Team, 2022)), the policy objective is the dual560

min
λ≥0

max
π

E(s,a)∼π

[
π(a|s)
πold(a|s)

(Aπ(s, a)− λAπC(s, a))

]
, (18)

in which the advantages A and AC are estimated using the generalized advantage estimation Schul-561
man et al. (2015). As in the standard PPO, the change in the ratio can be clipped with parameter ϵ.562
The hyperparameters used are listed in Tab. A.2.563

Table A.2: Hyperparameters for the Lagrangian SAC and Lagrangian PPO configurations that are
different from Tab. A.1.

Parameter AM-SAC AM-PPO

Discount factor cost γC 0.9 0 (Not needed)
Safety delta δC 0.05 -

Safety critic learning rate 1 × 10−4 1 × 10−4

Lagrangian mult. learning rate 0.01 0.01

D Robotic Arm Environment564

Table A.3: Parameters of the robotic arm environment.

Description Value

number of steps until timout flag is set 100
time duration of one timestep 0.5s

maximum number of obstacles after rejection sampling 20
number of obstacles before rejection sampling 30
maximum allowed cartesian speed of any joint 0.3 m/s

maximum angle change in one timestep 90°

Table A.4: DH parameters of the robotic arm (Franka-Robotics, 2024).

Joint a [m] d [m] α [rad] θ [rad]

Joint 1 0 0.333 0 θ1
Joint 2 0 0 −π

2 θ2
Joint 3 0 0.316 π

2 θ3
Joint 4 0.0825 0 π

2 θ4
Joint 5 -0.0825 0.384 −π

2 θ5
Joint 6 0 0 π

2 θ6
Joint 7 0.088 0 π

2 θ7
Flange 0 0.107 0 0

Table A.5: Robotic arm joint limits (Franka-Robotics, 2024).

Joint Lower Limit [rad] Upper Limit [rad]

Joint 1 -2.7437 2.7437
Joint 2 -1.7837 1.7837
Joint 3 -2.9007 2.9007
Joint 4 -3.0421 -0.1518
Joint 5 -2.8065 2.8065
Joint 6 0.5445 4.5169
Joint 7 -3.0159 3.0159

17

Under review for RLC 2025, to be published in RLJ 2025

E Path planning solved scenarios565

(a) (b) (c)

Figure A.2: Example trajectories of the AM-SAC agent solving random scenarios of the spline-
based path planning environment with non-holonomic constraints.

F Computation Comparison566

Table A.6: Timing measurements average for the different agent configurations in both environments
using the machine with specifications in Tab. A.7. Inference time mixed refers to deploying neural
network inference on the GPU while keeping projection on the CPU.

Robotic Arm Path Planning
PPO PPO + Proj. AM-PPO SAC SAC + Proj. AM-SAC

Training time [h] 11.6 23.5 16.8 (5.5 + 11.3) 13.0 22.0 16.3 (3.3 + 13.0)
Inference time CPU [ms] 3.25 8.23 5.18 5.63 11.96 7.66
Inference time GPU [ms] 0.87 7.17 1.45 1.33 10.91 2.28
Inference time Mixed [ms] - 6.70 - - 8.06 -

Tab. A.6 presents a comparison of training and inference times across different agent configurations567
in the robotic arm and path planning environments. The results are measured on the system described568
in Tab. A.7.569

In terms of training time, both environments exhibit similar trends. After pretraining the feasibility570
policy, the training time for the policy πo in the action mapping (AM) approaches with SAC and571
PPO is comparable to their respective baselines. However, the projection-based methods take sig-572
nificantly longer to train, as the projection step is computationally expensive and must be executed573
sequentially, which adds substantial overhead.574

Inference time results further highlight the efficiency of the proposed AM method. Since AM only575
introduces an additional neural network inference, and the network is relatively smaller (as it does576
not process the objective-relevant inputs such as target pose or list of targets), the increase in in-577
ference time is modest, approximately 50%. On the other hand, projection-based methods incur a578
much larger time overhead due to the sequential nature of the projection process, which limits the579
ability to fully utilize GPU acceleration. When comparing mixed projection (GPU for network in-580
ference, CPU for projection) with GPU-based AM, the projection approach is approximately three581
times slower.582

These results demonstrate the computational advantages of AM, particularly in scenarios where583
inference efficiency is crucial.584

18

Action Mapping for Reinforcement Learning in Continuous Environments with Constraints

Table A.7: Computer Specifications

Specification Details

CPU AMD Ryzen Threadripper PRO 7985WX (64 Cores, 5.1 GHz Boost)
RAM 512 GB DDR5 (4800 MT/s)
GPU NVIDIA GeForce RTX 4090 (24 GB VRAM)
Operating System Ubuntu 22.04.4 LTS

G Feasibility Model Approximation585

0 5000 10000 15000 20000 25000
Interaction steps in thousands

0.0

0.5

1.0

1.5

2.0

Cu
m

ul
at

iv
e

re
wa

rd

(a) Path planning – Return0 5000 10000 15000 20000 25000
Interaction steps in thousands

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 so
lv

ed

AM-SAC (128)
AM-SAC (64)
AM-SAC (32)
AM-SAC (16)
AM-SAC (8)
AM-SAC (4)
SAC

0 5000 10000 15000 20000 25000
Interaction steps in thousands

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

tra
in

t v
io

la
tio

n

(b) Path planning – Constraint violation

Figure A.3: Training curves of different AM-SAC in the path planning environment with different
numbers of feasibility evaluation points. For each configuration, 3 agents were trained.

The action space in the path planning environment utilizes splines to parameterize possible multi-586
step trajectories for which a cost as in (4) can be approximated. The cost is approximated in two587
ways. First, the spline length is bounded since it would require too many parameters to describe the588
entire trajectory. Therefore, the feasibility model can only determine if a feasible trajectory exists589
for the next few steps.590

The second approximation in the feasibility model is a numerical approximation of the violation of591
constraints along the spline. To facilitate the fast evaluation of the feasibility model, S equidistant592
points in parameter space are evaluated for constraint violation (outside environment, inside obsta-593
cle, local curvature exceeding maximum). Additionally, the length of the spline is approximated as594
the sum of Euclidean distances between these points. Therefore, the number of points S plays a595
significant role in the accuracy of the feasibility model.596

To assess the impact of the accuracy of the feasibility model on the learning progress of ac-597
tion mapping, we trained action mapping agents (πf and πo) using different numbers of S ∈598
{4, 8, 16, 32, 64, 128}, in which S = 64 corresponds to the results in Section 6.2. The results in599
Fig. A.3 show that higher values of S lead to better and more stable performance. With S = 4,600
AM-SAC performs only slightly better than SAC, but with more points, the performance jumps sig-601
nificantly. From S = 32 and above, the performance does not change significantly anymore. The602
computational cost of training πf is not very sensitive to S since the points can be evaluated in603
parallel. The training time of πf for S = 4 is approximately 20% faster than for S = 128.604

19

