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ABSTRACT

Graph Neural Networks (GNNs) with equivariant properties have emerged as
powerful tools for modeling complex dynamics of multi-object physical systems.
However, their generalization ability is limited by the inadequate consideration of
physical inductive biases: (1) Existing studies overlook the continuity of transi-
tions among system states, opting to employ several discrete transformation layers
to learn the direct mapping between two adjacent states; (2) Most models only ac-
count for first-order velocity information, despite the fact that many physical sys-
tems are governed by second-order motion laws. To incorporate these inductive
biases, we propose the Second-order Equivariant Graph Neural Ordinary Differ-
ential Equation (SEGNO). Specifically, we show how the second-order continuity
can be incorporated into GNNs while maintaining the equivariant property. Fur-
thermore, we offer theoretical insights into SEGNO, highlighting that it can learn
a unique trajectory between adjacent states, which is crucial for model generaliza-
tion. Additionally, we prove that the discrepancy between this learned trajectory of
SEGNO and the true trajectory is bounded. Extensive experiments on complex dy-
namical systems including molecular dynamics and motion capture demonstrate
that our model yields a significant improvement over the state-of-the-art baselines.

1 INTRODUCTION
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Figure 1: Learned trajectories of models with dif-
ferent inductive bias. All models can map input
to output. However, discrete and first-order con-
tinuous models fail to learn the true intermediate
states due to the lack of considering continuity and
second-order laws.

Equivariant Graph Neural Networks (Equiv-
GNNs) (Satorras et al., 2021; Han et al., 2022b;
Brandstetter et al., 2021; Huang et al., 2022;
Wu et al., 2024) have emerged as essential tools
for simulating the multi-object physical system,
i.e., N-body systems, which is relevant to nu-
merous fundamental scientific domains, includ-
ing molecular dynamics (Karplus & McCam-
mon, 2002), protein folding (Gligorijević et al.,
2021), robot motion planning/control (Siciliano
et al., 2009). Specifically, given the input state,
they learn to predict the output state after a
specific timestep. To achieve these, Equiv-
GNNs model the whole system as a geometric
graph, which treats physical objects as nodes,
and physical relations as edges, and encode the
symmetry into a message-passing network to
ensure their outputs are equivariant with respect
to any translation/orientation/reflection of the
inputs. Such property makes them well-suited
for learning the unknown dynamics of complex physical systems that cannot be described analyti-
cally (Han et al., 2022a;b).
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Learning to model such interacting systems is challenging. Given the vast parameter space of GNNs
and finite observations of transitions of system states, there would exist multiple solutions that satisfy
observed data (Curry & Morgan, 2006). Therefore, learning the real dynamic function from these
solutions is crucial to model generalization ability Gruver et al. (2022). Though Equiv-GNNs (Han
et al., 2024) have partially addressed this challenge by eliminating models that lack symmetry, ex-
isting Equiv-GNNs have yet to incorporate sufficient physical inductive bias to model the physical
dynamics.

In particular, two essential inductive biases have not been well investigated in this field. First, exist-
ing models (Satorras et al., 2021; Brandstetter et al., 2021) are composed of a sequence of discrete
state transformation layers, which learn a direct-mapping between adjacent states with discrete tra-
jectories. We refer to them as discrete models. They are inconsistent with the continuous nature
of system trajectories and fail to learn correct intermediate states. Second, most models only ac-
count for first-order information. Many physical dynamical systems, such as Newton’s equations of
motion, are governed by second-order laws (Norcliffe et al., 2020). Therefore, these methods learn
incomplete representations of the system’s state and fail to capture the underlying dynamics of the
physical systems. In Figure 1, we illustrate the comparison of learned trajectories of models with
different types of inductive bias.

In this work, we take a deep insight into the continuity and second-order inductive bias in Equiv-
GNNs and propose a framework dubbed Second-order Equivariant Graph Neural Ordinary Dif-
ferential Equation (SEGNO1). Different from previous models that use Equiv-GNNs to fit discrete
kinematic states, SEGNO introduces Neural Ordinary Differential Equations (Neural ODE) to ap-
proximate a continuous trajectory between two observed states. Furthermore, to better estimate the
underlying dynamics, SEGNO is built upon second-order motion equations to update the position
and velocity of the physical systems. Theoretically, we prove the uniqueness of the learned latent tra-
jectory of SEGNO and further provide an upper bound on the discrepancy between the learned and
the actual latent trajectory. Meanwhile, we prove that SEGNO can maintain equivariance properties
identical to the backbone Equiv-GNNs. This property offers the flexibility to adapt various back-
bones in SEGNO to suit different downstream tasks in plug-and-play manner. We conduct extensive
experiments on both synthetic and real-world physical systems. Our results reveal that SEGNO has
a better generalization ability over the state-of-the-art baselines and second-order inductive bias is
beneficial to learn complex multi-object dynamics.

2 BACKGROUND

N-body System We study N-body systems (Kipf et al., 2018; Huang et al., 2022) with a set of
N particles P = {Pi}Ni=1. At time t, the state of each particle in the system is represented by:
1. geometric features including the position vector q(t)

i ∈ R3 and the velocity vector q̇(t)
i ∈ R3;

2. non-geometric features such as mass or charge, denoted by hi ∈ Rd; 3. spatial connection
with others, where an edge eij is constructed via geometric distance cutoff or physical interaction
(e.g., chemical bonds) and the edge attributes (e.g., object distances, bond type) are denoted by aij .
For simplicity, we denote (q(t), q̇(t)) and (h, e = {eij},a = {aij}) as dynamic and static state
information at system level correspondingly. In this work, we focus on dynamical systems that can
be formulated as:

q̈(t) =
d2q(t)

dt2
= f(q(t),h), (1)

where q̈(t) is the acceleration at time t. Given a trajectory q2 with the initial system states
(q(t0), q̇(t0)) at time t0 and static states (h, e,a), our goal is to predict the subsequent position
q(t1) within a fixed time interval T = t1 − t0.

E(3) Equivariance In 3-dimensional Euclidean space, the laws of physics remain invariant re-
gardless of E(3) transformations, including translation, rotation, and reflection. Formally, a func-
tion F : X×P → Y , where X,Y ⊂ R3, is E(3)-equivariant, if for any transformation o ∈ E(3),

F(o ◦ x, · · · ) = o ◦ F(x, · · · ), x ∈ X. (2)
1SEGNO is also a musical term in Italian meaning “sign”, marking the beginning or end of a musical repeat.
2To avoid ambiguity, q(t)

i denotes the position of the i-th particle at time t, whereas q denotes the trajectory
over the entire time interval.
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Equivarant GNNs In general, given the system state at time t0, a modern Equiv-GNN ηθ with
parameters θ directly predicts q(t1) by leveraging several message passing layers on an interaction
graph. To maintain brevity and avoid ambiguity, we omit the temporal superscript t here since the
predictions at different times share the same model ηθ. Specifically, each layer of ηθ computes

mij = µ(qi, qj , q̇i, q̇j ,hi,hj , aij), q′
i, q̇

′
i,h

′
i = ν(qi, q̇i,hi,

∑
j∈Ni

mij), (3)

where µ and ν are the edge message function and node update function, respectively, mij defines
the message between node i and j. Ni collects the neighbors of node i. The prediction is obtained
by applying several iterations of message passing. To construct equivariant layers, µ and ν could be
both equivariant (e.g., SEGNN (Brandstetter et al., 2021)) or alternatively, µ is equivariant and ν is
invariant (e.g., EGNN (Satorras et al., 2021) and GMN (Huang et al., 2022)).

3 SEGNO FRAMEWORK

In this section, we introduce how the proposed SEGNO works and its equivariant properties. In our
dynamic systems, we incorporate the ODE formulation to model the latent continuous trajectory
with initial system states (q(t0), q̇(t0)). The position q(t0+t′) for any t′ ∈ [0, T ] is calculated as

ϕt′,g(q
(t0)) := q(t0+t′) = q(t0) +

∫ t0+t′

t0

(
q̇(t0) +

∫ t

t0

f(q(m),h) dm
)
dt

= q(t0) +

∫ t0+t′

t0

g(q(t),h) dt,

(4)

where g represents a mapping from the trajectory to its first-order derivative q̇(t). In this vein, we
can denote q(t1) as ϕT,g(q

(t0)). Note that most physical dynamical systems follow the second-order
motion law. The velocity q̇(t0+t′) for any t′ ∈ [0, T ] can further be computed as

ψt′,g,f (q
(t0)) := q̇(t0+t′) = g(q(t0),h) +

∫ t0+t′

t0

f(q(t),h) dt. (5)

To incorporate the second-order inductive bias, SEGNO parameterizes the acceleration function

q̈
(t)
θ = fθ(q

(t),h), (6)

where fθ, an approximation of f , represents an Equiv-GNN with parameters θ which computes:

m
(t)
ij = µ(q

(t)
i , q

(t)
j ,hi,hj , aij), q̈

(t)
θ,i ,hi = ν(q

(t)
i ,hi,

∑
j∈Ni

m
(t)
ij ), (7)

where µ and ν are determined by this Equiv-GNN backbone. Let qθ denote the approximated
trajectory generated by SEGNO satisfying the initial conditions q(t0)

θ = q(t0), q̇
(t0)
θ = q̇(t0). Then,

following Eq. 4, the predicted position of SEGNO at time t1 can be represented by

ϕT,gθ (q
(t0)) = q

(t1)
θ = q(t0) +

∫ t0+T

t0

gθ(q
(t),h) dt

= q
(t0)
θ +

∫ t0+T

t0

(
q̇
(t0)
θ +

∫ t

t0

fθ(q
(m),h) dm

)
dt

= q
(t0)
θ +

∫ t0+T

t0

ψt,gθ,fθ (q
(t0)
θ ) dt,

(8)

where gθ, a parameterized version of g, is determined by the integral of the GNN fθ in Eq. 4.
Since it is infeasible to directly calculate the integration in ϕT,gθ (q

(t0)) and ψT,gθ,fθ (q
(t0)
θ ) with

parameterized gθ, fθ, in SEGNO, we utilize an ODE solver to generate a discrete trajectory that
serves as an approximation of the latent continuous trajectory. Specifically, we divide the entire
time interval T into τ equal sub-intervals with timestep ∆t = T/τ . We then denote Ψ∆t,g,f and
Φ∆t,g as the numerical integrators that approach ψ∆t,g,f and ϕ∆t,g using the following equations

q̇
(t+∆t)
θ = gθ(q

(t+∆t)
θ ,h) = Ψ∆t,gθ,fθ (q

(t)
θ ) = q̇

(t)
θ + G1(fθ(q

(t)
θ ,h),∆t),

q
(t+∆t)
θ = Φ∆t,gθ (q

(t)
θ ) = q

(t)
θ + G2(Ψ∆t,gθ,fθ (q

(t)
θ ),∆t),

(9)
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where G1 and G2 are the increment functions that approximate the increment of a continuous integral
given the initial value of the integrand and the integration width ∆t. For instance, with the increment
functions G1(x, y) = G2(x, y) = x× y, the numerical integrators become the Euler integrators

q̇
(t+∆t)
θ = q̇

(t)
θ + fθ(q

(t)
θ )∆t, q

(t+∆t)
θ = q

(t)
θ + q̇

(t+∆t)
θ ∆t. (10)

For approximation, SEGNO composites τ integrator Φ∆t,gθ as a Neural ODE solver following

q
(t1)
θ = ϕT,gθ (q

(t0)) := Φ∆t,gθ ◦ · · · ◦ Φ∆t,gθ (q
(t0)) = (Φ∆t,gθ )

τ (q(t0)). (11)

As a result, SEGNO offers a way to reuse existing Equiv-GNNs to build second-order Neural ODEs.

However, a natural question arises: does a Neural ODE solver compromise the equivariance of
backbone GNNs? To address this question, we show that the equivariance property of backbone
GNNs could be maintained in SEGNO.

Proposition 3.1. Suppose the backbone GNN fθ of SEGNO is O(3)-equivariant and translation-
invariant, and the integrators’ increment function G1,G2 are O(3)-equivariant, then the output tra-
jectory qθ is E(3)-equivariant.

The proof and example illustrations are provided in Appendix A.1, where we show that the general
numerical integrators including symplectic Euler, Velocity Verlet, and Leapfrog satisfy Proposi-
tion 3.1. Meanwhile, since Equiv-GNNs such as EGNN (Satorras et al., 2021) and GMN (Huang
et al., 2022) are built upon O(3)-equivariant and translation-invariant functions, SEGNO would
preserve the same equivariant property as the backbone GNNs.

4 SEGNO ANALYSIS

Besides equivariance, another essential problem is how SEGNO learns from observed system states.
In this section, we examine the approximation quality of SEGNO.

4.1 SOLUTION UNIQUENESS

It is known that continuous dynamics have a unique solution under specific continuous conditions,
according to Picard’s existence theorem (Coddington et al., 1956).

Lemma 4.1. For the system q̈(t) = f(q(t),h), with given initial position q(t0) and velocity q̇(t0), if
f is Lipschitz continuous, then this system has a unique solution q(t) over the interval t ∈ [t0, t1].

The proof is provided in Appendix A.2. In addition, under the SEGNO framework, we can obtain
the following results:

Proposition 4.2. Given the same conditions as in Lemma 4.1, if the realistic measurement on q(t1)

is given, there exists a fθ∗ obtained by minimizing the discrepancy between q
(t1)
θ∗ and q(t1), such

that fθ∗(q
(t)
θ∗ ,h) = f(q(t),h) holds over the interval t ∈ [t0, t1].

The detailed proof is given in Appendix A.3. This proposition remarks that SEGNO can be trained
in line with prior studies (Satorras et al., 2021; Brandstetter et al., 2021). That is, given t0 and t1
as the input and target timesteps, SEGNO is trained to minimize the discrepancy between the exact
and approximated positions:

Ltrain =
∑

s∈Dtrain

||q(t1)
θ,s − q(t1)

s ||2, (12)

where Dtrain denotes the training set. With a slight abuse of notation, here we denote q
(t1)
θ,s , q

(t1)
s as

the model prediction and actual position of trajectory s. If our learned model adequately approxi-
mates the system, Proposition 4.2 shows that it becomes possible for SEGNO to recover the latent
trajectories of [t0, t1] between input and output system states via Neural ODE. In contrast, in the ab-
sence of continuous constraints, multiple discrete trajectories can exist between the input and output,
making it challenging for discrete models to accurately learn the underlying dynamic functions.
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4.2 APPROXIMATION ABILITY

In this section, we theoretically show that SEGNO is capable of learning a trajectory that remains
bounded to the real solution. To achieve this, we first derive the boundness of the learned second-
order derivative fθ. Existing theoretical findings (Zhu et al., 2022) have illustrated that training
using Neural ODE solvers results in a bounded approximation of their first-order derivatives. In this
work, we generalize this theorem to the second-order Neural ODE employed with Euler integrator.

4.2.1 BOUND OF ACCELERATION

To begin with, we first introduce relevant notations. Let B(p, r) ⊂ R3 denotes a real ball of radius
r > 0 centered at p ∈ R3, for a subset K ⊂ R3 and an analytic function η, we define

B(K, r) =
⋃
p∈K

B(p, r), ||η||K = sup
p∈K

||η(p)||∞. (13)

We denote a set of points on the exact trajectory associated with the time increment interval [a, b] as

V b
a = {ϕt′,g(q(t0))|a ≤ t′ ≤ b}. (14)

Given the time interval T = t1 − t0 uniformly partitioned into τ sub-intervals of timestep ∆t (i.e.,
t0 < t0 +∆t < · · · < t1), the following theorem holds:
Theorem 4.3. For r1, r2 > 0, the ODE solver is τ compositions of an Euler Integrator Φ∆t,gθ with
∆t = T/τ , and we denote the supremum norm of the approximation error for the ODE solver within
B(V 2T

0 , r1) as
L2T
0 :=

1

T
||(Φ∆t,gθ )

τ − ϕT,g||B(V 2T
0 ,r1).

Suppose that the target f and the learned fθ are analytic and bounded by m2 on B(V 2T
0 , r2), and

the target g and the learned gθ are analytic and bounded by m1 on B(V 2T
0 , r1). Then, there exist

constants T0 such that, if 0 < T < T0, ∀t ∈ [t0, t1],

||fθ(q(t),h)− f(q(t),h)||∞ ≤ O(∆t+
L2T
0

∆t
).

The proof is reported in Appendix A.4. The assumption that the true f, g and the learned fθ, gθ are
analytic and bounded within specific balls is valid and grounded in real-world physical observations.
Concretely, the trajectories of most dynamic physical systems exhibit smoothness, implying that
there are no sudden changes in velocity or acceleration. This smooth property ensures that the
system behaves in a physically realistic and predictable manner, which is a widely employed practice
in control theory and dynamic systems analysis (Zhu et al., 2022).

4.2.2 BOUND OF TRAJECTORY

Based on Theorem 4.3, we can now analyze the error introduced by the Euler integrator. We in-
troduce two metrics common in classical numerical analysis, namely, local and global truncation
error (Poli et al., 2020). The local truncation error ϵt+∆t of SEGNO is defined as:

ϵt+∆t = ||q(t+∆t) − q(t) − q̇(t)∆t− fθ(q
(t),h)∆t2||2, (15)

which represents the error for a single timestep. The global truncation error Et+k∆t is defined as:

Et+k∆t = ||q(t+k∆t) − q
(t+k∆t)
θ ||2, (16)

which denotes the error accumulated in the first k steps. Then we have
Corollary 4.4. Given the same conditions as in Theorem 4.3, if our learned model adequately
approximates the system and gθ and fθ satisfy the Lipschitz continuity, then, ∀t ∈ [t0, t1] and
k = 1, · · · , τ , the local truncation error ϵt+∆t and the global truncation error Et+k∆t are the order
of O(∆t2) and O(∆t), respectively.

The proof is reported in Appendix A.5. Corollary 4.4 shows that for the prediction of τ -th itera-
tion, its error depends on the chosen ∆t. These statements imply that SEGNO can be trained by
minimizing Eq. 12 and generalize to other timesteps.

Though there exist studies (Sanchez-Gonzalez et al., 2020; Bishnoi et al., 2022) that employ accel-
erations to train models, we remark that SEGNO is different from them and better. As Theorem 4.3
states, we aim to learn the instantaneous acceleration of each timestep by minimizing the position
discrepancy, while previous works use the average acceleration to train the model and then adopt
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semi-implicit Euler method to update the next state as well. The average acceleration is computed
from the observed trajectory (i.e., q̈(t1) = q(t2) − 2q(t1) + q(t0)). Thus, we can find that their local
truncation error is O(T ) even if their loss is zero, while that of SEGNO is O(∆t2)(T = τ∆t).
SEGNO theoretically achieves lower error without the need to obtain average acceleration by differ-
entiating future positions.

True trajectory
Mean predicted trajectory
Predicted trajectory

Sampled ground truth state
Latent intermediate state
Variance of predicted states

EGNN SEGNO

𝒕𝟏	

𝒕𝟎	

𝒕𝟏	

𝒕𝟎.𝟓	

𝒕𝟎.𝟓	

𝒕𝟎	

Figure 2: Illustration of learned trajectories
from EGNN (left) and SEGNO (right). They
are trained to predict the positions of N-
body charged systems after 1000ts (See Sec-
tion 5.1). The green, red, and dotted grey
lines are the true, average, and predicted tra-
jectories. t0, t1 is the observed states. t0.5 is
the predicted latent state The blue area de-
notes the variance.

Empirical verification To verify our theoretical
findings, we train multiple models of EGNN (Sator-
ras et al., 2021) and SEGNO with EGNN backbone,
utilizing different random seeds on a 3-body sys-
tem with two adjacent states q(t0), q(t1). We derive
the intermediate state q(t0.5) from their intermediate
layers/iterations, which serve as estimations of la-
tent motion trajectories between the two states. In
Figure 2, we visualize all predicted trajectories (in
dotted grey line), the mean trajectory (in red line),
and the mean and variance of predicted states. We
can observe that EGNN predictions exhibit high er-
ror (red circle) and large variance (blue area) at the
intermediate state q(t0.5), indicating that the discrete
models are incapable of learning the underlying real
dynamics from observed system states. Conversely,
the learned trajectory of SEGNO demonstrates a sig-
nificantly lower error and small variance. The ad-
ditional numerical comparisons are shown in Ap-
pendix C.1.

5 EXPERIMENTS

Datasets To validate the effectiveness of SEGNO, we first evaluate it on two simulated N-body
systems, namely Charged particles and Gravity particles, which are driven by electromagnetic (Kipf
et al., 2018) and gravitational forces (Brandstetter et al., 2021) between each pair of particles, re-
spectively. Subsequently, we compare our model with state-of-the-art models in two challenging
datasets: (1) MD22 (Chmiela et al., 2023) which includes the trajectories of seven large and dif-
ferent types of molecules generated via molecular dynamics simulation; (2) CMU motion cap-
ture (CMU, 2003), which contains various trajectories of human motions in real-world. Note that
all these dataset are symmetric, N-body systems and MD22 are E(3)-equivariant, and CMU motion
capture is E(2)-equivariant3.

Baselines We compare SEGNO with various models: (1) Equivariant models including Radial
Field (Köhler et al., 2019), TFN (Thomas et al., 2018), SE(3) Transformer (Fuchs et al., 2020),
EGNN (Satorras et al., 2021), GMN (Huang et al., 2022), SEGNN (Brandstetter et al., 2021); (2)
Non-equivariant models including GNN, Linear model, and Graph Neural Ordinary Differential
Equation (GDE) (Poli et al., 2019).

5.1 SIMULATED N-BODY SYSTEM

Implementation details We build upon the experimental setting presented in (Satorras et al.,
2021) where the task is to estimate all particle positions after a fixed timestep. Each system consists
of 5 particles, each with initial positions, velocities, and attributes like positive/negative charge or
mass. The graph is fully connected and the initial velocity norm is provided as additional input
node features. We employ EGNN (Satorras et al., 2021) as the GNN backbone (fθ) of SEGNO
in these settings. For each system, besides the common setting (Satorras et al., 2021; Brandstet-
ter et al., 2021) with 1000 timesteps (1000 ts), we introduce two extra targets—1500 ts and 2000
ts—which render the learning of latent trajectories more challenging. Other settings including the
hyper-parameters are introduced in Appendix B.

3Symmetry is partially broken by gravity.
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Table 1: Mean squared error (×10−2) of the N-body system. Bold font indicates the best result
and underline is the strongest baseline. Results averaged across 5 runs. We report both mean and
standard deviation in the table.

Method Charged Gravity
1000 ts 1500 ts 2000 ts 1000 ts 1500 ts 2000 ts

Linear 6.830± 0.016 20.012± 0.029 39.513± 0.061 7.928± 0.001 29.270± 0.003 58.521± 0.003

GNN 1.077± 0.004 5.059± 0.250 10.591± 0.352 1.400± 0.071 4.691± 0.288 10.508± 0.432

GDE 1.285± 0.074 4.026± 0.164 8.708± 0.145 1.412± 0.095 2.793± 0.083 6.291± 0.153

TFN 1.544± 0.231 11.116± 2.825 23.823± 3.048 3.536± 0.067 37.705± 0.298 73.472± 0.661

SE(3)-Tr. 2.483± 0.099 18.891± 0.287 36.730± 0.381 4.401± 0.095 52.134± 0.898 98.243± 0.647

Radial Field 1.060± 0.007 12.514± 0.089 26.388± 0.331 1.860± 0.075 7.021± 0.150 16.474± 0.033

EGNN 0.711± 0.029 2.998± 0.089 6.836± 0.093 0.766± 0.011 3.661± 0.055 9.039± 0.216

GMN 0.824± 0.032 3.436± 0.156 7.409± 0.214 0.620± 0.043 2.801± 0.194 6.756± 0.427

SEGNN 0.448± 0.003 2.573± 0.053 5.972± 0.168 0.471± 0.026 2.110± 0.044 5.819± 0.335

SEGNO 0.433± 0.013 1.858± 0.029 4.285± 0.049 0.338± 0.027 1.362± 0.077 4.017± 0.087

Table 2: Ablation studies (×10−2) on simulated N-body systems. Results averaged across 5 runs.

Order Continuity Charged Gravity
1000 ts 1500 ts 2000 ts 1000 ts 1500 ts 2000 ts

First Discrete 0.798± 0.099 2.215± 0.058 4.996± 0.148 0.466± 0.027 2.342± 0.424 5.501± 0.294

Second Discrete 0.738± 0.026 2.125± 0.051 4.948± 0.198 0.362± 0.010 2.249± 0.591 5.343± 0.263

First Continuous 0.537± 0.045 1.977± 0.056 4.405± 0.159 0.352± 0.024 1.468± 0.040 4.895± 0.102

Second Continuous 0.433± 0.013 1.858± 0.029 4.285± 0.049 0.338± 0.027 1.362± 0.077 4.017± 0.087

Results Table 1 depicts the overall results of all models on two datasets. It is evident that SEGNO,
equipped solely with EGNN, outperforms all baselines across all datasets and settings. Specifically,
compared to the best baseline SEGNN, the average error improvement (×10−2) on Charged and
Gravity datasets is 0.805 and 0.894 respectively, demonstrating significant improvement. Addition-
ally, as timesteps increase, the performances of baselines largely drop while SEGNO still can model
the latent trajectory. Thus, SEGNO’s performance improvement becomes more pronounced. For
example, compared to the best baseline SEGNN, the relative improvement in Gravity datasets in-
creases from 28.24% at 1000 time steps to 35.45% at 1500 time steps, demonstrating the strong
generalization ability of SEGNO.

5.1.1 ABLATION STUDY

In this section, we conduct several ablation experiments on simulated N-body systems to scrutinize
our model design, and provide empirical validation for our theoretical findings.

Physical inductive biases in SEGNO To validate the effect of inductive biases incorporated in
SEGNO, we construct three variants of SEGNO, each featuring a unique combination of physical
inductive biases. Table 2 reports the results where the term ‘First’ indicates that the model employ
fθ to parameterize velocity rather than accelerations. ‘Discrete’ implies that SEGNO does not share
the parameters across iterations, akin to discrete models. The original version of SEGNO is denoted
as ‘Second’ and ‘Continuous’. From Table 2, we can observe that across all scenarios, continuous
models consistently surpass discrete models and the second-order bias consistently enhances the
performance of first-order models. These findings serve to corroborate the efficacy of SEGNO’s
construction and further emphasize the significant advantages of integrating physical inductive bi-
ases into the learning process of dynamics.

1 5 10 15
 times

0.0

0.1

0.2

M
SE

N-body system
Gravity
Charged

Figure 3: Effects of iteration
number τ .

Effects of iteration times τ We further investigate the impact
of the iteration number τ in SEGNO to empirically verify Corol-
lary 4.4. Given that the target time interval T remains constant, a
larger iteration number τ indicates a smaller interval ∆t. The re-
sults are displayed in Figure 3. It is obvious that superior outcomes
can be attained by opting for a smaller interval ∆t. Additionally,
the performance would not increase after reaching a sufficient num-
ber of iterations, which is approximately 10 for both datasets. As
per Theorem 4.3, the plateau in performance improvement can be
attributed to learning errors which is related to the representative
ability of GNN backbone in SEGNO.
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Table 3: Mean squared error (×10−3) on MD22 dataset. Bold font indicates the best result and
Underline is the strongest baseline. Results averaged across 3 runs.

Molecule Type # Atom TFN RF EGNN GMN SEGNO
Ac-Ala3-NHMe Protein 42 1.434± 0.716 1.340± 0.072 0.539± 0.101 0.960± 0.157 0.418± 0.038

DHA Lipid 56 0.577± 0.075 1.487± 0.068 0.782± 0.035 0.453± 0.125 0.370± 0.020

AT-AT Nucleic acid 60 1.407± 0.894 1.270± 0.067 0.583± 0.053 0.568± 0.016 0.440± 0.096

Stachyose Carbohydrate 87 – 2.069± 0.074 0.629± 0.073 0.583± 0.039 0.548± 0.006

AT-AT-CG-CG Nucleic acid 118 – 2.596± 1.282 0.609± 0.031 0.581± 0.099 0.394± 0.033

Buckyball Catcher Supramolecule 148 – 0.440± 0.013 0.554± 0.093 0.309± 0.092 0.199± 0.020

Double-walled Nanotube Supramolecule 370 – 0.382± 0.001 0.349± 0.261 0.321± 0.065 0.225± 0.008

Table 4: Mean squared error (×10−2) on CMU motion capture dataset. Bold font indicates the best
result and Underline is the strongest baseline. Results averaged across 3 runs.

Model TFN SE(3)-Tr. RF EGNN GMN SEGNO Abs. Imp.
30 ts 24.932± 1.023 24.655± 0.870 149.459± 0.750 24.013± 0.462 16.005± 0.386 14.462± 0.106 1.543
40 ts 49.976± 1.664 44.279± 0.355 306.311± 1.100 39.792± 2.120 38.193± 0.697 22.229± 1.489 15.964
50 ts 73.716± 4.343 68.796± 1.159 549.476± 3.461 50.930± 2.675 47.883± 0.599 29.264± 0.946 18.619

5.2 MOLECULAR DYNAMIC

Implementation details We use the atomic number and initial velocity norm as input node fea-
tures. Two atoms are neighbors if their distance is less than a threshold. Our goal is to predict
atom positions after 10 data frames. We run experiments on NVIDIA RTX A6000 GPU. TFN and
SE(3)-Transformer run out of memory, thus we omit results of SE(3)-Transformer and part of TFN
results. We use EGNN (Satorras et al., 2021) as the GNN backbone (fθ) of SEGNO. Other settings
including the hyper-parameters are introduced in Appendix B.

Results Table 3 summarizes the results of all models. It is evident that SEGNO outperforms the
baselines across 7 molecules, even on the Double-walled Nanotube comprising 370 atoms, support-
ing the general effectiveness of encoding physical inductive biases. It is worth noting that SEGNO
utilizes GMN as its backbone. In comparison to the original GMN, the errors are considerably di-
minished in all instances. The average relative improvement of SEGNO over GMN on 7 molecules
is 15.6%. Such results demonstrate the effectiveness of enhancing physical inductive biases on
equivariant GNNs in empirical applications.

5.3 CMU MOTION CAPTURE

Implementation details CMU Motion Capture (CMU, 2003) contains the trajectories of human
motion under several scenarios. Following previous studies (Kipf et al., 2018), we focus on the
walking motion of a single object (subject #35). The goal of this task is to predict the data frame
after 30 timesteps. Similar to N-body systems, we broaden our assessment scope to include scenarios
with intervals of 40 ts and 50 ts, in addition to the default settings with 30 ts. We use GMN as the
backbone of SEGNO. The norm of velocity and the coordinates of the gravity axis (z-axis) are set
as node features to represent the motion dynamics. Note that the human body operates through
joint interactions, two joints are 1-hop neighbors if they are connected naturally and we augment the
edges with 2-hop neighbors. Other settings are introduced in Appendix B.

Results Table 4 reports the performance of SEGNO and various compared models. We can ob-
serve that SEGNO outperforms all baseline models by a significant margin across all scenarios.
Notably, the improvements are more pronounced in long-term simulations, with SEGNO achieving
18.619 × 10−2 lower MSE than the runner-up model GMN. To gain further insights into the supe-
rior performance of SEGNO, we illustrate the predicted motion of GMN and SEGNO in Figure 4.

Figure 4: Visualization of Motion Capture with 50 ts. Left to Right: initial position, GMN, SEGNO
(all in blue). Ground truths are in red.
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Interestingly, it can be observed that the predictions of GMN appear to lag behind the ground truths,
while SEGNO demonstrates a closer match. This discrepancy may be attributed to the lack of con-
straints imposed by modeling latent trajectories. We provide more visualizations in Appendix C.8.

6 RELATED WORK

Graph neural networks (Li et al., 2019; Tang et al., 2022; Gao et al., 2023; Tang et al., 2023)
have shown promising performance in learning complex physical dynamics. IN (Battaglia et al.,
2016), NRI (Kipf et al., 2018), and HRN (Mrowca et al., 2018) are pioneer works that model
physical objects and relations as graphs and learn their interaction and evolution. Recently, re-
searchers have taken into account the underlying physical symmetry of systems. TFN (Thomas
et al., 2018) and SE(3) Transformer (Fuchs et al., 2020) employ spherical harmonics to construct
models with 3D rotation equivariance in the Euclidean group for higher-order geometric represen-
tations. LieConv (Finzi et al., 2020a) and LieTransformer (Hutchinson et al., 2021) leverage the Lie
convolution to extend equivariance on Lie groups. SEGNN (Brandstetter et al., 2021) proposes to
use steerable vectors and their equivariant transformations to represent and process node features.
In addition to these methods, a series of studies (Satorras et al., 2021; Huang et al., 2022; Schütt
et al., 2021; Wang & Chodera, 2023) apply scalarization techniques to introduce equivariance into
the message-passing process in GNNs. Nevertheless, these methods model dynamics in physical
systems solely by learning direct mappings between discrete states. They ignore the second-order
and continuous nature of observed trajectories, leading to suboptimal generalization performance.

Another research line (Thangamuthu et al., 2022) leverages ODE and Hamiltonian mechanics to
capture the interactions in the systems such as Lagrangian Neural Networks (LNN) (Finzi et al.,
2020b; Lutter et al., 2019; Bhattoo et al., 2023), Hamiltonian neural networks (HNN) (Greydanus
et al., 2019), and Neural ODE (Chen et al., 2018; Gruver et al., 2022; Norcliffe et al., 2020). Recent
studies have also enhanced these methods with GNNs. GDE (Poli et al., 2019) and HOGN (Sanchez-
Gonzalez et al., 2019) combine GNNs with a differentiable ODE integrator. GNODE (Bishnoi et al.,
2022) incorporates a graph-based Neural ODE with additional inductive biases, such as Newton’s
third law. Compared with these works, we provide theoretical insights that show a second-order
Graph Neural ODE can obtain bounded error of instantaneous acceleration and position through
minimizing position discrepancy. These findings are further validated in complex applications in-
cluding molecular and human motion dynamics. In particular, GNS (Sanchez-Gonzalez et al., 2020;
Pfaff et al., 2021) also optimizes models via accelerations. However, they only learn the average
accelerations that are calculated from the observed trajectories. In contrast, our study focuses on
learning instantaneous accelerations and we show it theoretically achieves lower errors than GNS.
Furthermore, it is worth mentioning that GNS does not consider equivariance, which is a critical in-
ductive bias that captures symmetries in physical systems. We provide an experimental comparison
between them in Appendix C.2.

Besides the above studies, a series of works have combined GNNs and the first-order Neural ODE
to learn multi-agent systems (e.g., social networks), including CG-ODE (Huang et al., 2021), LG-
ODE (Huang et al., 2020), and HOPE (Luo et al., 2023). However, due to the application difference,
they do not consider equivariance and focus on historical state encoding. Thus, they are hard to
extend to our task where equivariance and second-order information are vital.

7 CONCLUSION

In this work, we address the generalization problem of learning N-body systems and introduce
SEGNO, which incorporates the equivariant property from GNN backbones and second-order phys-
ical inductive bias. We theoretically prove the uniqueness and boundedness of the trajectories in-
ferred by SEGNO and empirically demonstrate the potential of SEGNO by applying it to a wide
range of physical systems. Extensive ablation studies have further substantiated the generalization
ability of SEGNO. For future works, we are interested in (1) extending our framework to solve
stochastic (Salvi et al., 2022) and partial differential equations (Fortunato et al., 2022; Strönisch
et al., 2023; Cao et al., 2023; Xue et al., 2023); (2) jointly considering trajectory forecasting and
static tasks such as molecular property (Satorras et al., 2021) or force field predictions (Batzner
et al., 2022); (3) integrating more sophisticated physical principles through advanced techniques
such as pre-training (Rong et al., 2020; Cheng et al., 2023; Jiao et al., 2023), prompt tuning (Sun
et al., 2023) or the utilization of large language models (Li et al., 2023).
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Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for multi-
body systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019.

Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang. Semi-supervised
graph classification: A hierarchical graph perspective. In WWW, pp. 972–982, 2019.

Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A
survey of graph meets large language model: Progress and future directions. arXiv preprint
arXiv:2311.12399, 2023.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In ICML, 2023.

11

https://openreview.net/forum?id=SHbhHHfePhP


Published as a conference paper at ICLR 2024

Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model
prior for deep learning. In ICLR, 2019.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B Tenenbaum,
and Daniel LK Yamins. Flexible neural representation for physics prediction. arXiv preprint
arXiv:1806.08047, 2018.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai Ko-
rnbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second
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A PROOFS

Note that hhh is identical for both real and learned systems. Unless otherwise specified, we omit hhh in
the following discussions.

A.1 PROOF OF PROPOSITION 3.1

According to the constraints of the initial conditions, the initial position q
(t0)
θ is E(3)-equivariant

and the initial velocity q̇
(t0)
θ is O(3)-eqivariant and translation-invariant. Given that backbone GNN

fθ are O(3)-equivariant and translation-invariant, and G1 is O(3)-equivariant, for any translation
vector b ∈ R3, orthogonal matrix A ∈ R3×3 and t′ ∈ [0,∆t], we have

Ψt′,gθ,fθ (Aq
(t0)
θ + b) = gθ(Aq

(t0)
θ + b) + G1(fθ(Aq

(t0)
θ + b), t′)

= Agθ(q
(t0)
θ ) + G1(Afθ(q

(t)
θ ), t′)

= Aq̇
(t0)
θ +AG1(fθ(q

(t0)
θ ), t′)

= Aq̇
(t0+t′)
θ = AΨ∆t,gθ,fθ (q

(t0)
θ ).

(17)

Thus, Ψt′,gθ,fθ (q
(t0)
θ ) is proved to be O(3)-equivariant and translation-invariant. Note that G2 is

O(3)-equivariant, then, for q(t0+t′)
θ , we have

Φt′,gθ (Aq
(t0)
θ + b) = Aq

(t0)
θ + b+ G2(Ψt′,gθ,fθ (Aq

(t0)
θ + b), t′)

= Aq
(t0)
θ + G2(AΨt′,gθ,fθ (q

(t0)
θ ), t′) + b

= Aq
(t0)
θ +AG2(Ψt′,gθ,fθ (q

(t0)
θ ), t′) + b

= Aq
(t0+t′)
θ + b.

(18)

Therefore, q
(t0+t′)
θ = Φt′,gθ (q

(t0)
θ ) is E(3)-equivariant. Note that the composition of E(3)-

equivariant functions is still E(3)-equivariant. For any time t ∈ [t0, t1], q
(t)
θ , which is generated

via iteratively calling integrator Φt′,gθ (Eq. 11) with suitable t′ ∈ [0,∆t], is E(3)-equivariant. Over-
all, the approximated trajectory qθ is E(3)-equivariant.

In real-world applications, the assumption of this proposition is generally satisfied. In terms of the
equivariance of backbone GNN fθ, for example, if fθ is EGNN whose message passing is defined
by

m
(t)
ij = ϕe

(
||q(t)

θ,i − q
(t)
θ,j ||

2,hi,hj , aij

)
, q̈

(t)
θ,i =

1

N − 1

∑
j∈Ni

(q
(t)
θ,i − q

(t)
θ,j)ϕq(m

(t)
ij ).

h
(t+∆t)
i = h

(t)
i + ϕh(h

(t)
i ,

∑
j∈Ni

m
(t)
ij ).

(19)

Here ϕq denotes Multi-Layer Perceptron (MLP) whose output is a scalar and the output of ϕe, ϕh are
vectors. The non-geometric features are updated via skip connections. Analogous to neural ODE
methods, the model parameters are shared among all iterations. By (Satorras et al., 2021), it can be
easily shown that fθ is O(3)-equivariant and translation-invariant.

In addition, the increment functions G1,G2 of several widely used numerical integrators for motion
dynamics are O(3)-equivariant, ensuring that the approximated trajectory is E(3)-equivariant. For
example, a symplectic Euler integrator computes

q(t+∆t) = q(t) + q̇(t+∆t)∆t, q̇(t+∆t) = q̇(t) + q̈(t)∆t, (20)

where G1(x, y) = G2(x, y) = x× y is O(3)-equivariant. It is straightforward to show that

Aq̇(t) +Aq̈(t+∆t)∆t = Aq̇(t+∆t), Aq(t) + b+Aq̇(t+∆t)∆t = Aq(t+∆t) + b. (21)

This property also holds for Velocity Verlet

q(t+∆t) = q(t) + q̇(t)∆t+
1

2
q̈(t)∆t2, q̇(t+∆t) = q̇(t) +

1

2
(q̈(t) + q̈(t+∆t))∆t, (22)
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and Leapfrog

q(t+∆t) = q(t) + q̇(t)∆t+
1

2
q̈(t)∆t2, q̇(t+∆t) = q̇(t) + q̈(t+∆t)∆t. (23)

The proof is the same as symplectic Euler.

A.2 PROOF OF LEMMA 4.1

We first prove the uniqueness of the solution in our dynamic system. The key to this proof is to
convert the high-order non-linear ODE to a first-order non-linear ODE. Let’s define a new variable
Q(t) = (q̇(t), q(t)) and Q̇(t) as its first-order derivative with respect t. Then in terms of this new
variable, the second-order non-linear ODE becomes

Q̇(t) = (F (Q(t)), G(Q(t))), (24)

where F (Q(t))) = f(q(t)) and G(Q(t)) = q̇(t). Furthermore, let’s define H(Q(t)) =
(F (Q(t)), G(Q(t))), and Eq. 24 is reformatted as

Q̇(t) = H(Q(t)), Q(t0) = (q̇(t0), q(t0)), (25)

which is exactly a first-order non-linear ODE with a known initial condition. Note that G and f
are both Lipschitz continuous, thus H is Lipschitz continuous. Then, based on Picard’s existence
theorem (Coddington et al., 1956), the aforementioned non-linear ODE has a unique solution Q(t),
∀t ∈ [t0, t1]. Subsequently, our system has a unique solution q(t), ∀t ∈ [t0, t1].

A.3 PROOF OF PROPOSITION 4.2

Due to the uniqueness of the solution, if the realistic measurement q(t1) is given, then the trajectory
q(t) is fully determined over the time interval [t0, t1]. Under SEGNO framework, we define the
discrepancy between q

(t1)
θ and q(t1) as

d(q
(t1)
θ , q(t1)) = ||q(t1)

θ − q(t1)||p = ||(Φ∆t,gθ )
τ (q(t0))− ϕT,g(q

(t0))||p, (26)

where || · ||p represents the p-norm. According to Eq. 9, Φ∆t,gθ is fully determined by fθ. Without
loss of generality, we take SEGNO with Euler integrators as an example. Given the known initial
position and velocity, along with neural ODE update scheme in SEGNO, we can convert Eq. 26 to
the following form

d(q
(t1)
θ ,q(t1)) = ||q(t1)

θ − q(t1)||p

= ||
τ−1∑
k=0

(

∫ t0+(k+1)∆t

t0+k∆t

(q̇(t0+k∆t) +

∫ t

t0+k∆t

f(q(m))dm)dt− (q̇
(t0+k∆t)
θ ∆t+ fθ(q

(t0+k∆t)
θ )∆t2)||p

= ||
τ−1∑
k=0

D(q̇(t0+k∆t), f(q(t0+k∆t)), q̇
(t0+k∆t)
θ , fθ(q

(t0+k∆t)
θ ))||p,

(27)
where D(·) denotes the discrepancy function. Considering that there are no sudden changes in
velocity or acceleration for a smooth trajectory, with sufficiently small ∆t, we can approximate
D(·) as follows

D(q̇(t0+k∆t), f(q(t0+k∆t)), q̇
(t0+k∆t)
θ , fθ(q

(t0+k∆t)
θ ))

≈ (q̇(t0+k∆t) − q̇
(t0+k∆t)
θ )∆t+ (f(q(t0+k∆t))− fθ(q

(t0+k∆t)
θ )∆t2

≈
k∑

i=0

(f(q(t0+i∆t))− fθ(q
(t0+i∆t)
θ )∆t2.

(28)

Note that Lemma 4.1 guarantees the uniqueness of target trajectory as well as its acceleration. There-
fore, according to the aforementioned analysis, SEGNO tends to let fθ(q

(t0+k∆t)
θ ) approximate the

unique accelaration f(q(t0+k∆t)) via minimizing position loss. Then, under the assumption of
widely used universal approximation theorem (Hornik et al., 1989), there exists a fθ∗ such that
fθ∗(q

(t)
θ∗ ,h) = f(q(t),h), ∀t ∈ [t0, t1].
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A.4 PROOF OF THEOREM 4.3

The proof sketch is as follows: We first revisit the core definitions pertaining to neural ODE in
SEGNO and introduce its variant with Euler integrator, then derive the bound for first-order approx-
imation error ||gθ−g||∞, and finally extend the results to the second-order case ||fθ−f ||∞ to finish
the proof.

A.4.1 EULER INTEGRATOR IN SEGNO

As mentioned in Eq. 10, the Euler integrator Φ∆t,gθ , as mentioned in Eq. 20, approaches ϕ∆t,gθ via

gθ(q
(t+∆t)
θ ) = gθ(q

(t)
θ ) + fθ(q

(t)
θ )∆t,

Φ∆t,gθ (q
(t)
θ ) = q

(t)
θ + gθ(q

(t+∆t)
θ )∆t.

(29)

Considering Eq. 11 and 12, it is straightforward to reframe our learning objective in the context of a
neural ODE:

Ltrain =
∑

s∈Dtrain

||q(t1)
θ,s − q(t1)

s ||2 =
∑

s∈Dtrain

||(Φ∆t,gθ )
τ (q(t0)

s )− ϕT,g(q
(t0)
s )||2. (30)

A.4.2 APPROXIMATION ERROR OF fθ

In our dynamical system, gθ and g are entirely determined by fθ and f respectively. Thus, we first
establish the boundedness of ||gθ − g||∞, then demonstrate the approximation error of ||fθ − f ||∞.

Lemma A.1. For q(t0) ∈ R3 as the initial position of a trajectory, ra, rb, T, τ > 0 and k ∈ Z+,
a given ODE solver that is τ compositions of an Euler Integrator Φ∆t,gθ with ∆t = T/τ , a set of
points on exact trajectory associated with time increment interval [k∆t, T + k∆t] as

V T+k∆t
k∆t = {ϕt′,g(q(t0))|k∆t ≤ t′ ≤ T + k∆t}, (31)

, and denote

LT+k∆t
k∆t =

1

T
||(Φ∆t,gθ )

τ − ϕT,g||B(V T+k∆t
k∆t ,ra)

, (32)

and suppose that g and gθ are analytic and bounded by m within B(V T+k∆t
k∆t , ra + rb), the union of

complex balls centered at q ∈ V T+k∆t
k∆t with radius ra+rb. Then, there exist constants T0 andC that

depends on ra/m, rb/m, τ , and Φ∆t,gθ , such that, if 0 < T < T0, ∀t ∈ [t0 + k∆t, t0 + T + k∆t],

||gθ(q(t))− g(q(t))||∞ ≤ Cm∆t+
e

e− 1
LT+k∆t
k∆t , (33)

where e is the base of the natural logarithm.

Proof. This result can be directly derived from Theorem 3.1, 3.2 and Corollary 3.3 in (Zhu et al.,
2022) via replacing the integrator from Runge-Kutta integrator with Euler integrator since Euler
integrator has been proven to satisfy the prerequisites of theorems in Appendix B.2 in (Zhu et al.,
2022).

Since B(V T
0 , r1) ⊂ B(V 2T

0 , r1), per our assumption, then g and gθ are both analytic and bounded
by m1 in B(V T

0 , r1). To utlize Lemma A.1, we set k = 0 and T = t1 − t0. With suitable r1 and
m1, we have T < T0 and, ∀t ∈ [t0, t1],

||gθ(q(t))− g(q(t))||∞ ≤ C1m1∆t+
e

e− 1
LT
0 , (34)

where LT
0 = 1

T ||(Φ∆t,gθ )
τ − ϕT,g||B(V T

0 ,r1) and C1 is a control constant.

To establish the connection between g and f , we only focus on the first time step ∆t instead of the
entire time interval T . Recall that g is obtained by integrating f , we have

ψ∆t,g,f (q
(t0)) = g(q(t0+∆t)) = g(q(t0)) +

∫ t0+∆t

t0

f(q(t)) dt, (35)
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as the flow map for the first-order derivative of the exact trajectory in a single step. As defined in
Eq. 29, its corresponding Euler integrator has the form

gθ(q
(t0+∆t)
θ ) = Ψ∆t,gθ,fθ (q

(t0)) = gθ(q
(t0)
θ ) + fθ(q

(t0)
θ )∆t. (36)

Note that B(V T
0 , r2) ⊂ B(V 2T

0 , r2), f and fθ are both analytic and bounded by m2 in B(V T
0 , r2).

In lemma A.1, we substitute ϕ∆t,gθ by Ψ∆t,gθ,fθ and set T = ∆t with τ = 1 and k = 0, then the
corresponding loss becomes

LT
0,1 =

1

∆t
||Ψ∆t,gθ,fθ − ψ∆t,g,f ||B(V ∆t

0 ,r2)

= sup
q∈B(V ∆t

0 ,r2)

1

∆t
||Ψ∆t,gθ,fθ (q)− ψ∆t,g,f (q)||∞

=
1

∆t
||Ψ∆t,gθ,fθ (q

∗)− ψ∆t,g,f (q
∗)||∞

=
1

∆t
||gθ(q̃(t0+∆t)

θ )− g(q̃(t0+∆t))||∞,

(37)

where q∗ denote the point that maximizes the Eq. 37 and q̃(t) is another trajectory with q̃(t0) = q∗

because q∗ ∈ V ∆t
0 may not holds. For both q̃(t) and qt, the actual position and estimation from

SEGNO at t0 +∆t have the form

q̃(t0+∆t) = q̃(t0) +

∫ t0+∆t

t0

g(q̃(t)) dt,

q̃
(t0+∆t)
θ = q̃(t0) + gθ(q̃

(t0))∆t+ fθ(q̃
(t0))∆t2,

q
(t0+∆t)
θ = q(t0) + gθ(q

(t0))∆t+ fθ(q
(t0))∆t2.

(38)

Then, with suitable ∆t and r1, g(q̃(t0+∆t)), gθ(q̃
(t0+∆t)
θ ) and gθ(q

(t0+∆t)
θ ) are bounded bym1 since

q̃(t0+∆t), q̃
(t0+∆t)
θ , q

(t0+∆t)
θ ∈ B(VT , r1). Given such, the aforementioned loss is transformed into

LT
0,1 ≤ 1

∆t

[
||gθ(q̃(t0+∆t)

θ )− gθ(q̃
(t0+∆t))||∞ + ||gθ(q̃(t0+∆t))− gθ(q

(t0+∆t))||∞

+ ||gθ(q(t0+∆t))− g(q(t0+∆t))||∞ + ||g(q(t0+∆t))− g(q̃(t0+∆t))||∞
]

≤ 1

∆t
(6m1 + C1m1∆t+

e

e− 1
LT
0 ).

(39)

Subsequently, given that ∆t < T < T0, we have, ∀t ∈ [t0, t0 +∆t],

||fθ(q(t))− f(q(t))||∞ ≤ C2m2∆t+
e

e− 1
LT
0,1,

≤ C2m2∆t+
e

e− 1

[ 1

∆t
(6m1 + C1m1∆t+

e

e− 1
LT
0 )

]
,

≤ C2m2∆t+ (
e

e− 1
)2
LT
0

∆t
+

e

e− 1
(
6m1

∆t
+ C1m1),

≤ O(∆t+
LT
0

∆t
).

(40)

To extend the boundness up to t1, we can easily utilize Lemma A.1 with different k = 1, · · · , τ − 1
(Eq. 34) to repeat the above derivation, and obtain, ∀t ∈ [t0 + k∆t, t0 + (k + 1)∆t],

||fθ(q(t))− f(q(t))||∞ ≤ O(∆t+
LT+k∆t
k∆t

∆t
), (41)

where LT+k∆t
k∆t = 1

T ||(Φ∆t,gθ )
τ − ϕT,g||B(V T+k∆t

k∆t ,r1)
. Therefore, ∀t ∈ [t0, t1],

||fθ(q(t))− f(q(t))||∞ ≤ sup
k=0,··· ,τ−1

O(∆t+
LT+k∆t
k∆t

∆t
)

≤ O(∆t+
L2T
0

∆t
),

(42)

where L2T
0 = 1

T ||(Φ∆t,gθ )
τ − ϕT,g||B(V 2T

0 ,r1) and it concludes the proof.
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A.5 PROOF OF COROLLARY 4.4

A.5.1 LOCAL TRUNCATION ERROR

We use Taylor series expansion to approximate the trajectory at time t+∆t as

q(t+∆t) = q(t) + g(q(t))∆t+
1

2
f(q(t))∆t2 +O(∆t3). (43)

Then the local truncation error ϵt+∆t, ∀t ∈ [t0, t1], equals to

ϵt+∆t = ||q(t+∆t) − q(t) − g(q(t))∆t− fθ(q
(t))∆t2||2

= ||q(t) + g(q(t))∆t+
1

2
f(q(t))∆t2 +O(∆t3)

− q(t) − g(q(t))∆t− fθ(q
(t))∆t2||2

= ||1
2
f(q(t))∆t2 − fθ(q

(t))∆t2 +O(∆t3)||2

= ||1
2
(f(q(t))− fθ(q

(t)))∆t2 − 1

2
fθ(q

(t))∆t2 +O(∆t3)||2

≤ ||1
2
(f(q(t))− fθ(q

(t)))∆t2||2 + ||1
2
fθ(q

(t))∆t2||2 +O(∆t3)

≤
√
3∆t2

2
||f(q(t))− fθ(q

(t)))||∞ + ||1
2
m2∆t

2||2 +O(∆t3)

≤
√
3∆t2

2
O(∆t+

2L2T
0

∆t
) +O(∆t2).

(44)

Here the last inequality is due to Theorem 4.3. If the learned model achieves a near-perfect approx-
imation of the true trajectory, resulting in a significantly diminished loss L2T

0 . Then, ∀t ∈ [t0, t1],

ϵt+∆t ≤ O(∆t2). (45)

A.5.2 GLOBAL TRUNCATION ERROR

Considering t ∈ [t0, t1] and k = 1, · · · , τ − 1, the boundness of the global truncation error can be
derived in a recursive way via

Et+(k+1)∆t = ||q(t+(k+1)∆t) − q
(t+(k+1)∆t)
θ ||2

= ||q(t+(k+1)∆t) − q
(t+k∆t)
θ − gθ(q

(t+k∆t)
θ )∆t− fθ(q

(t+k∆t)
θ )∆t2||2

= ||q(t+k∆t) − q
(t+k∆t)
θ + q(t+(k+1)∆t) − q(t+k∆t) − g(q(t+k∆t))∆t

− fθ(q
(t+k∆t))∆t2 + fθ(q

(t+k∆t))∆t2 − fθ(q
(t+k∆t)
θ )∆t2

+ g(q(t+k∆t))∆t− gθ(q
(t+k∆t))∆t

+ gθ(q
(t+k∆t))∆t− gθ(q

(t+k∆t)
θ )∆t||2

≤ Et+k∆t + ϵt+(k+1)∆t + ||fθ(q(t+k∆t))− fθ(q
(t+k∆t)
θ )||2∆t2

+
[
||gθ(q(t+k∆t))− gθ(q

(t+k∆t)
θ )||2 + ||g(q(t+k∆t))− gθ(q

(t+k∆t))||2
]
∆t.

(46)

Note that gθ and fθ satisfy the Lipschitz continuity, we have

||gθ(q(t+k∆t))− gθ(q
(t+k∆t)
θ )||2 ≤ Lg||q(t+k∆t) − q

(t+k∆t)
θ ||2 = Lg||Et+k∆t||2,

||fθ(q(t+k∆t))− fθ(q
(t+k∆t)
θ )||2 ≤ Lf ||q(t+k∆t) − q

(t+k∆t)
θ ||2 = Lf ||Et+k∆t||2,

(47)

where Lg and Lf denote Lipschitz constant for gθ and fθ respectively. Given that the learned model
achieves a near-perfect approximation of the true trajectory, by Lemma A.1 and Eq. 34, we obtain

||g(q(t+k∆t))− gθ(q
(t+k∆t))||2 ≤

√
3
[
C1m1∆t+

e

e− 1
L2T
0

]
≤ O(∆t). (48)

Thus, the global truncation error in Eq. 46 is transformed into

Et+(k+1)∆t ≤ (1 + Lg∆t+ Lf∆t
2)Et+k∆t +O(∆t2). (49)
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Figure 5: Example trajectories of 5-body charged system. From left to right, the number of positive
and negative charges are 1, 3, 0.

Figure 6: Example trajectories of 5-body gravity system. The system formed by gravitational force
can either aggregate (i.e., left) or disperse (i.e., right).

Note that the global truncation error for the first step Et+∆t, where k = 1, is exactly the local
truncation error ϵt+∆t mentioned in Eq. 44. Given that k ≤ τ , we can derive, ∀t ∈ [t0, t1] and
k = 1, · · · , τ ,

Et+k∆t ≤ (1 + Lg∆t+ Lf∆t
2)k−1O(∆t2) + · · ·+ (1 + Lg∆t+ Lf∆t

2)O(∆t2)

≤ O(τ∆t2) = O(
T

∆t
∆t2) = O(∆t).

(50)

B IMPLEMENTATION DETAILS

B.1 MORE DETAILS ON SIMULATED N-BODY SYSTEMS

N-body charged system We use the same N-body charged system code4 with previous
work (Satorras et al., 2021; Brandstetter et al., 2021). They inherit the 2D implementation of (Kipf
et al., 2018) and extend it to 3 dimensions. System trajectories are generated in 0.001 timestep and
unbounded with virtual boxes. The initial location is sampled from a Gaussian distribution (mean
µ = 0, standard deviation σ = 0.5), and the initial velocity is a random vector of norm 0.5. Ac-
cording to the charge types, three types of systems exist where the difference between the number
of positive and negative charges are 1, 3, and 0. Example trajectories of these three types of systems
are provided in Figure 5.

N-body gravity system The code5 of gravitational N-body systems is provided by (Brandstetter
et al., 2021). They implement it under the same framework as the above charged N-body systems.
System trajectories are generated in 0.001 timestep, using gravitational interaction and no boundary
conditions. Particle positions are initialized from a unit Gaussian, particle velocities are initialized
with a norm equal to one, random direction, and particle mass is set to one. The system formed

4https://github.com/vgsatorras/egnn
5https://github.com/RobDHess/Steerable-E3-GNN
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Figure 7: Molecular structures of MD22 dataset, which is borrowed from Fig.1 of original pa-
per (Chmiela et al., 2023).

by gravitational force can either aggregate or disperse. Example trajectories of these two types of
systems are provided in Figure 6.

Hyperparameter We empirically find that the following hyperparameters generally work well,
and use them across most experimental evaluations: Adam optimizer with learning rate 0.001, the
number of epochs 500, hidden dim 64, weight decay 1 × 10−12, and layer number 4. We set the
iteration time of SEGNO to 8. The representation degrees of SE(3)-transformer and TFN are set to
3 and 2. The number of training, validation, and testing sets are 3000, 2000, and 2000, respectively.

B.2 MORE DETAILS ON MD22

Molecules and Hyperparameter The molecular structures of MD22 are displayed in Figure 7,
which is borrowed from their paper (Chmiela et al., 2023). We use the following hyperparameters
across all experimental evaluations: Adam optimizer with learning rate 0.001, the number of epochs
5000 with early stopping 100, hidden dim 64, weight decay 1 × 10−12, and layer number 4. The
iteration time of SEGNO is searched from 4 to 6. The representation degrees of SE(3)-transformer
and TFN are set to 2. Due to the limited memory, the batch size of TFN is set to 10. The number of
training, validation, and testing sets are 500, 2000, and 2000, respectively. The threshold for graph
construction is set to 2.5 for all molecules.

B.3 MORE DETAILS ON MOTION CAPTURE

Hyperparameter We use the following hyperparameters across all experimental evaluations:
Adam optimizer with learning rate 0.001, the number of epochs 3000, hidden dim 64, weight decay
1 × 10−12, and layer number 4. The iteration time of SEGNO is set to 4. We adopt a random split
strategy introduced by Huang et al. (2022) where train/validation/test data contains 200/600/600
frame pairs.

C ADDITIONAL EXPERIMENTS

C.1 ACCURACY OF LEARNED LATENT TRAJECTORY

It is interesting to see how models learn the latent trajectory between the input and output states.
Accordingly, we train models on 1000ts on two datasets and make the test on shorter time steps
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Table 5: The generalization from long-term to short-term. All models are trained on 1000ts and
test on 250/500/750/1000 ts. Mean squared error (×10−2) and the standard deviation are reported.
Results averaged across 5 runs.

Method Charged Gravity
250 ts 500 ts 750 ts 1000 ts Avg 250 ts 500 ts 750 ts 1000 ts Avg

GNN 73.40±9.60 31.79±5.28 12.86±2.81 0.826±0.08 29.72 181.9±26.1 90.33±15.5 30.66±12.3 0.746±0.05 75.93
GDE 92.65±25.0 43.94±10.9 12.20±23.2 0.652±0.05 37.36 136.0±135 56.80±60.6 12.21±14.8 0.588±0.58 51.39

EGNN 6.756±3.05 3.816±4.68 3.668±0.74 0.568±0.09 3.702 7.146±7.06 29.70±20.4 9.712±3.60 0.382±0.11 11.89
GMN 10.44±7.43 10.92±4.67 4.518±1.36 0.512±0.16 6.598 7.430±8.19 9.540±12.1 5.730±6.69 0.349±0.48 5.762

SEGNN 21.78±9.69 52.74±15.6 34.13±14.9 0.342±0.04 27.25 10.58±6.28 49.63±37.7 25.82±27.0 0.448±0.02 21.62
SEGNO 0.188±0.03 0.312±0.06 0.360±0.06 0.309±0.11 0.292 0.064±0.02 0.128±0.03 0.176±0.04 0.210±0.07 0.145

by performing SEGNO on the smaller τ step with the same ratio. For the baselines, we treat the
forward timestep of each hidden layer as the same and extract their object position information as
the prediction. Table 5 reports the mean and standard deviation of each setting. From Table 5 we
can observe that:

• Clearly, SEGNO outperforms all other baselines across all settings by a large margin. Notably,
when there is a lack of supervised signals at 250/500/750ts, the performance of all other baselines
decreases significantly. By contrast, SEGNO achieves similar results as in 1000ts, demonstrating
its robust generalization to short-term prediction.

• Another interesting point is that SEGNO’s error exhibits a distinct trend compared to other
baselines. While the errors of other baselines significantly increase with decreasing time steps,
SEGNO achieves even smaller errors with shorter time steps. This observation justifies our theo-
retical results that the error is bound by the chosen timestep.

• Additionally, the standard deviation of SEGNO is much smaller than that of other baselines, indi-
cating the numerical stability of SEGNO. This result further confirms our theoretical finding that
SEGNO can obtain a better latent trajectory between two discrete states.

C.2 COMPARISON WITH GNS

We conducted additional evaluations of GNS and SEGNO-avg., which are learned by minimizing
average acceleration, on two N-body systems. The results of these evaluations are presented in
Table 6. We can observe that SEGNO outperforms both GNS and SEGNO-avg. In all cases, show-
ing that training second-order neural odes on position loss outperforms training models on average
acceleration.

Table 6: Comparsion (×10−2) between SEGNO and GNS on simulated N-body systems. Results
averaged across 3 runs.

Method Charged Gravity
1000 ts 1500 ts 2000 ts 1000 ts 1500 ts 2000 ts

GNS 3.245± 0.068 11.689± 0.330 31.632± 0.206 4.204± 0.081 17.095± 0.136 50.275± 0.201

SEGNO-avg. 2.146± 0.079 10.145± 0.034 24.244± 0.212 1.431± 0.047 19.488± 0.978 54.370± 1.385

SEGNO 0.433± 0.013 1.858± 0.029 4.285± 0.049 0.338± 0.027 1.362± 0.077 4.017± 0.087

C.3 ROLLOUT COMPARISON ON N-BODY SYSTEMS

We evaluate the generalizability of models for rollout simulation. Specifically, we train all models
on 1000ts and use rollout to make the prediction for the longer time step (over 40 rollout steps,
indicating over 40000ts.). Figure 8 depicts the mean squared error of all methods on two datasets.
We can observe that all baselines experience numerical explosion due to error accumulation during
the rollout process, leading to a quick drop in prediction performance. In contrast, SEGNO demon-
strates an order-of-magnitude error improvement over other baselines. This numerical stability can
be attributed to the Neural ODE framework for modeling position and velocity.
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Figure 8: Mean squared error of rollout. Each rollout step is equal to 1000 ts. All models are trained
on 1000ts.

C.4 COMPARISON WITH PHYSICS-INFORMED GNNS

Following the experimental settings in (Thangamuthu et al., 2022), we thoroughly compare the
rollout position, energy, and momentum errors of SEGNO with those of GNODE (Bishnoi et al.,
2022) and HGNN (Thangamuthu et al., 2022) on N-body systems. GNODE and HGNN are trained
by minimizing acceleration and Hamilton respectively. The target timestep is set to 100ts. The
results are demonstrated in Table 7. We can observe that SEGNO consistently outperforms GNODE
and HGNN in rollout errors. Although SEGNO is only trained on the system positions, it achieves
comparable performance on energy and momentum errors with GNODE, which further validates its
effectiveness.

Table 7: Rollout position, energy, and momentum errors. All models are trained on 100ts.Results
averaged across 3 runs.

Method Charged Gravity
100 ts 500 ts 1000 ts 1500 ts 2000 ts 100 ts 500 ts 1000 ts 1500 ts 2000 ts

Rollout
HGNN 2.16 11.47 21.95 30.40 36.89 3.26 16.78 30.83 40.07 45.94

GNODE 0.36 5.41 14.05 21.61 27.39 0.32 6.42 17.53 26.17 32.16
SEGNO 0.06 4.26 12.26 19.42 25.08 0.04 5.62 16.84 25.71 31.82

Energy
HGNN 1.94 7.49 11.36 14.10 15.53 2.78 10.73 16.10 19.50 22.34

GNODE 0.82 5.82 10.87 14.07 15.78 0.68 7.46 14.40 18.39 20.85
SEGNO 0.79 5.74 9.93 12.66 14.05 0.11 7.38 13.58 16.94 18.89

Momemtum
HGNN 10.12 33.37 45.98 51.67 54.38 6.99 25.65 39.12 46.08 49.96

GNODE 4.17 28.65 43.97 50.84 54.06 2.35 21.43 36.93 44.92 49.19
SEGNO 2.17 28.39 43.81 50.46 53.54 0.75 21.40 36.88 44.65 48.42

C.5 COMPARISON WITH ADVANCED FORCE FIELD PREDICTION MODELS

For a more comprehensive evaluation, we add empirical comparison on the MD22 dataset with
NeuqIP (Batzner et al., 2022)6 and Allegro (Musaelian et al., 2023)7. Both models take atom po-
sitions and numbers as input and optimize the errors between geometric outputs (generally treated
as predicted forces) and true positions. We try our best to tune the models and the results are
demonstrated in Table 8. It can be observed both methods do not perform well in predicting the
time-dependent evolution of molecular dynamics, which is mainly attributed to the lack of dynamic
information.

6https://github.com/mir-group/nequip
7https://github.com/mir-group/allegro/tree/main
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Table 8: Comparison with equivariant GNNs in the domain of advanced force field prediction.
Mean squared error (×10−3) on MD22 dataset averaged across 3 runs are reported.

Molecule NequIP Allgero SEGNO
Ac-Ala3-NHMe 12.060± 0.220 11.785± 0.193 0.418± 0.038

DHA 13.275± 0.164 13.126± 0.121 0.370± 0.020

Stachyose 11.375± 0.104 11.164± 0.135 0.440± 0.096

AT-AT 9.178± 0.123 9.032± 0.125 0.548± 0.006

AT-AT-CG-CG 8.959± 0.066 8.866± 0.125 0.394± 0.033

Buckyball Catcher 5.418± 0.058 5.331± 0.077 0.199± 0.020

Double-walled Nanotube 3.852± 0.077 3.794± 0.022 0.225± 0.008

C.6 RUNTIME COMPARISON ON N-BODY SYSTEMS

We evaluate the running time of each model on N-body systems with Telsa T4 GPU and report the
average forward time in seconds for 100 samples. The results are listed in Table 9. We can observe
that SEGNO’s forward time (0.0227s) remains competitive compared to the best baseline SEGNN
(0.0315s), indicating its efficiency.

Table 9: Forward time in seconds for a batch size of 100 samples on a Tesla T4 GPU.
Linear GNN GDE TFN SE(3)-Tr. RF EGNN GMN SEGNN SEGNO
0.0002 0.0064 0.0088 0.0440 0.2661 0.0052 0.0126 0.0137 0.0315 0.0277

C.7 GENERALIZATION CAPABILITY TO LARGE SYSTEMS

In this part, we evaluate the generalizability of models for larger system sizes. Specifically, we
train all models on 5-body gravity systems and then test them on 10-body and 20-body gravity
systems. Table 10 shows their results. We compare three strong baselines, i.e., EGNN, GMN, and
SEGNN. The results show that the performance of all baselines significantly drops when testing on
larger systems. In contrast, SEGNO still demonstrates a marked improvement over other baselines,
especially on 20-body systems.

C.8 MORE RESULTS ON CMU MOTION CAPTURE

This section illustrates more visualizations of GMN and SEGNO on modeling object motions. From
Figure 9, we can observe that SEGNO is able to track the ground-truth trajectories accurately, which
is consistent with the performance in Table 4.
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Figure 9: Example snapshots of Motion Capture with 50 time steps. Top: Prediction of GMN.
Bottom: Prediction of SEGNO. Ground truth in red, and prediction in blue.

Table 10: The results on the larger systems. Mean squared error and the standard deviation are
reported. Results are averaged across 3 runs.

Method 10-Body 20-Body
EGNN 0.566± 0.316 1.985± 1.111

GMN 0.716± 0.314 1.323± 0.430

SEGNN 0.333± 0.036 3.937± 2.121

SEGNO 0.152± 0.021 0.850± 0.015
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