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Abstract—Accurate, continuous monitoring of cardiac out-
put (CO) is crucial for effective resuscitation management in
hemorrhagic trauma, yet current gold-standard methods are
invasive and impractical in field settings. This study introduces
a fully non-invasive and wearable sensing-based approach utiliz-
ing electrocardiography (ECG), seismocardiography (SCG), and
photoplethysmography (PPG) signals, integrated with machine
learning algorithms, to enable stroke volume (SV) and CO
estimation without requiring baseline calibration or normaliza-
tion. This critical feature makes the model especially suitable
for casualty care scenarios where baseline measurements are
often unavailable. The proposed methodology was evaluated on a
porcine model (n=6) subjected to controlled hemorrhage and re-
suscitation protocols. Clinically-validated cardiovascular features
were used as inputs for regression models, including linear, ridge,
LASSO, random forest, and XGBoost regressors. Among these,
the LASSO demonstrated the best performance, achieving a high
correlation (R = 0.79) and a mean absolute percentage error
(MAPE) of 14.31%, well within clinically-acceptable limits for
non-invasive CO monitoring. The framework reliably tracked SV
trends crucial for clinical decision-making during resuscitation
scenarios. This work highlights the potential for intelligent, non-
invasive CO monitoring systems to improve clinical and trauma
care outcomes.

Index Terms—Hemodynamic monitoring, hypovolemia, resus-
citation, cardiac output, stroke volume, seismocardiogram

I. INTRODUCTION

Hemorrhage remains a leading cause of preventable death
in both military and civilian trauma scenarios [1]. Rapid
detection and management of blood loss are essential to
prevent complications such as absolute hypovolemia, a critical
condition marked by severely-reduced blood volume. Effective
hemorrhage resuscitation requires restoring adequate blood
volume (BV) and tissue perfusion, which depends on accurate
CO monitoring. However, direct and continuous measurement
of CO is rarely feasible outside of the highly-invasive methods
used in intensive care units (ICU) and operating rooms (OR).

In the absence of direct CO monitoring, blood pressure (BP)
is often used as a surrogate during resuscitation. However, BP
is an indirect and often unreliable indicator of circulating blood
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volume (BV), as it remains maintained near normal levels
through the body’s compensation mechanisms until the patient
reaches a critically decompensated state. This delay means that
BP only significantly drops once these compensatory systems
fail, increasing the risk of both under- and over-resuscitation.
This underscores the need for continuous, non-invasive, and
accurate methods for estimating CO to support data-driven
resuscitation decisions.

The current clinical gold standard for CO measurement (i.e.,
catheter-based thermodilution) is invasive, making it unsuit-
able for many emergency settings [2]. Recent advances in
wearable sensing technologies enable non-invasive continuous
monitoring of cardiovascular dynamics. Among non-invasive
options, although echocardiography and MRI provide accurate
cardiac output measurements, they are costly and unsuitable
for continuous monitoring. Moreover, impedance cardiography
(ICG) suffers from decreased accuracy in patients with high
body mass index (BMI), while photoplethysmography (PPG),
similar to ICG, faces challenges such as motion artifacts
and limited reliability in critical care settings [3]. In con-
trast, although electrocardiography (ECG), seismocardiogra-
phy (SCG), and PPG signals can each be affected by noise,
combining them in a multimodal approach with machine learn-
ing enables more robust, non-invasive, continuous estimation
of hemodynamic parameters, offering a promising strategy for
CO estimation [4].

Several studies have explored this direction. Roha et al.
[5] showed that ECG and PPG signals, utilizing 1-D CNN,
can indirectly estimate CO for individuals with hypertension
by first estimating SV and then multiplying it with HR,
outperforming direct CO and BP-based methods. Pastor et al.
[2] used PPG signals to classify CO as high or low with 88%
accuracy. Ke et al. [6] applied random forest and XGBoost
models using arterial pressure waveforms and demographic
data, achieving an MSE of 1.42 L/min for CO estimation.
Palanques-Tost et al. [7] used ICU datasets and a custom
CORE model, reporting a MAPE of 14%. Bikia et al. [8]
employed synthetic datasets and ensemble models to estimate
aortic pressure and CO with a normalized RMSE of 7.5%.

While prior studies have made significant progress toward
CO estimation, continuous estimation of CO using SCG sig-
nals remains limited in the literature. Although SCG has been
used for CO estimation in congenital heart disease populations



Fig. 1. Overview of the methodology: ECG, SCG, and PPG signals were recorded during baseline, hypovolemia, and resuscitation phases, with key features
extracted from each modality within a 100-beat cardiac output window. These features were used to train a machine learning model to estimate stroke volume,
which was combined with heart rate to calculate cardiac output.

[9], and for SV estimation in peri-operative scenarios [10], to
the best of our knowledge, it has not been studied in the con-
text of hemorrhage and resuscitation. Building on these efforts,
our study presents a fully non-invasive, wearable sensor-based
framework for continuous estimation of CO using ECG, SCG,
and PPG signals. Evaluated on a porcine model (n=6), our
approach performs beat-by-beat regression without requiring
baseline calibration or normalization, allowing continuous
hemodynamic monitoring.

II. METHODS

A. Experimental Protocol

Six Yorkshire pigs (three males, three females; 51.5–71.4
kg) were included under a protocol approved by the Georgia
Institute of Technology, T3 Labs, and the Department of
the Navy BUMED. Anesthesia was induced with Xylazine
and Telazol, and maintained via inhaled isoflurane during
mechanical ventilation. Baseline blood volume was estimated
using Evans Blue dye, followed by a second blood sample after
distribution. Hypovolemia was induced by passively drawing
blood through a venous line in 7% increments, with 5–10
minute stabilization pauses at each level. Blood withdrawal
was stopped upon a 20% drop in mean aortic root pres-
sure (MARP), indicating cardiovascular collapse. Resuscita-
tion followed the same 7% incremental steps in reverse, again
with 5–10 minute monitoring periods. At the end of each
interval, CO was measured via thermodilution using a Swan-
Ganz catheter. Throughout the protocol, ECG, SCG, and PPG
signals were continuously recorded at 2 kHz using a Biopac
system (BIOPAC Systems Inc., Goleta, CA, USA).

B. Signal Pre-Processing and Feature Extraction

Single-lead ECG, dorsoventral SCG, and PPG signals col-
lected throughout the protocol were filtered using linear-phase
finite impulse response (FIR) digital bandpass filters with a
Kaiser window. Cutoff frequencies were set to 0.5–40 Hz for

ECG, 1–40 Hz for SCG, and 0.5–10 Hz for PPG signals.
Following filtering, each signal was segmented into individ-
ual heartbeats with respect to ECG R-peaks. Three sensing
modalities—electrical (ECG), mechanical (SCG), and optical
(PPG)—were used to assess the cardiovascular function of
the subjects during hemorrhage and resuscitation. From these
modalities, twelve clinically validated features were extracted
for each heartbeat, including both modality-specific and cross-
domain features similar to the previous studies [11]. Fiducial
points were identified from each signal: the R-peak from the
ECG, the aortic opening (AO) and aortic closing (AC) points
from the SCG, and the amplitude and foot points from the PPG
signal (Fig. 1). From ECG, heart rate (HR) and three heart
rate variability (HRV) measures were extracted: time-domain
HRV as the standard deviation of de-trended R-R intervals
over 5-minute windows; Poincaré HRV via the ratio of the
first two eigenvalues of the covariance matrix; and frequency-
domain HRV from the low-to-high frequency power ratio of an
FFT-upsampled window. From SCG, the pre-ejection period
(PEP, R-peak to AO), left ventricular ejection time (LVET,
AO to AC), and the PEP/LVET ratio were extracted to assess
cardiac contractility. From PPG, PPG amplitude (PPGamp),
pulse arrival time (PAT, R-peak to foot), normalized PAT
(nPAT = PAT/R-R interval), pulse transit time (PTT = PAT –
PEP), and pleth variability index (PVI), defined as amplitude
variation over respiratory cycles were computed.

All extracted features were calculated on a beat-to-beat basis
and used for subsequent analysis of cardiovascular responses
to hemorrhage and resuscitation.

C. Label Assignment

CO measurements were obtained at the end of each hemor-
rhage and resuscitation step using the thermodilution method.
To account for dynamic physiological changes within each
monitoring interval, a window of 100 heartbeats starting
from the time of the CO measurement was selected, and the



Fig. 2. Results of the LASSO model for stroke volume (SV) estimation: (a) Subject-wise results with leave-one-subject-out cross-validation (LOSO-CV).
Actual SV is shown as a red dotted line, estimated SV as light blue dots, and the mean estimate for each blood removal/resuscitation phase as a dark blue
line. (b) Aggregated predicted versus actual SV results for the best-performing model (c) SHAP values of the five most important features, illustrating their
impact on model output and ranked by feature importance.

extracted features within this window were labeled with the
corresponding CO value. Then, SV labels were calculated by
dividing the CO values by the corresponding HR.

D. Regression Modeling

To estimate SV, multiple regression models were developed
using features extracted from ECG, SCG, and PPG signals.
Five regression models were evaluated, and all models were
trained with leave-one-subject-out cross-validation (LOSO-
CV). Linear regression was included as a baseline to provide
a simple and interpretable comparison. Ridge and LASSO
were used to incorporate regularization, with LASSO also
offering inherent feature selection to eliminate irrelevant or
less informative features, which is an important consideration
given that some extracted features may not directly contribute
to SV estimation.

Ensemble models, including random forest and XGBoost,
were also evaluated due to their ability to model complex, non-
linear relationships and their previous success in predicting
blood volume decompensation status using the same dataset
[11] . All models were trained to provide beat-by-beat SV
predictions, allowing continuous monitoring of cardiovascular
function.

III. RESULTS AND DISCUSSION

SV estimation results are reported in Fig. 2. From the
subject-wise estimation results, it is evident that the estimated

SV values closely follow the same trends observed in the
ground truth SV values. Aggregating results across all subjects,
the SV estimation model achieved a high correlation (R =
0.79) and low MAPE (14.31%). The SHAP (SHapley Additive
exPlanations) values for the five most important features are
also presented in Fig. 2. These results align well with existing
literature, emphasizing the importance of SCG features known
to indicate cardiovascular contractility [4], [12].

RMSE (mL/beat), MAPE, and R scores are summarized
in Table I, which details LOSO-CV results. The mean of
subject-wise RMSE scores was reported as the aggregated
result, while MAPE and R were recalculated from aggregated
plots. Among the tested models, LASSO provided the highest
R score and the lowest MAPE, ranging from 9.68% to 22.58%,
with an aggregated MAPE of 14.31%. This performance is
significantly better than the clinically acceptable range for non-
invasive measurements (i.e., 30%) [2].

The superior performance of the LASSO can be attributed
to its L1 regularization capability, effectively zeroing out noisy
features from individual subjects. Given potential issues with
signal quality across subjects, a multimodal approach provides
robust SV estimation. Utilizing multiple modalities ensures
that even if one signal is compromised, other signals can
maintain accurate estimations. In ideal scenarios, combining
different modalities provides diverse cardiovascular insights,
particularly beneficial during hemorrhage and blood transfu-
sion events.



TABLE I
SV ESTIMATION PERFORMANCE RESULTS

Pig Index Linear Regression LASSO Ridge Regression Random Forest XGBoost
RMSE MAPE R RMSE MAPE R RMSE MAPE R RMSE MAPE R RMSE MAPE R

1 17.20 33.97 0.89 11.04 22.58 0.90 16.44 32.58 0.89 7.94 13.50 0.83 8.54 13.67 0.90
2 12.64 23.32 0.66 9.72 15.91 0.85 10.62 19.98 0.84 8.01 14.39 0.92 8.30 14.64 0.92
3 18.61 29.84 0.33 9.07 13.99 0.76 18.54 29.68 0.31 5.75 8.18 0.88 8.59 13.12 0.88
4 22.09 31.47 0.87 7.23 9.62 0.92 22.69 32.51 0.87 10.40 12.43 0.88 13.31 16.07 0.85
5 14.68 30.08 0.84 8.98 16.01 0.89 12.40 24.16 0.86 9.45 12.20 0.86 9.18 10.88 0.87
6 4.07 7.17 0.92 5.45 9.68 0.92 4.31 7.31 0.92 16.20 29.74 0.80 9.28 16.80 0.84

All 15.25 24.48 0.55 8.65 14.31 0.79 14.64 22.95 0.57 10.45 15.81 0.70 9.50 14.38 0.74

From the SHAP results, the five most important features
for SV estimation were identified as HR, PEP, LVET, PTT,
and PAT. HR tends to have an inverse relationship with SV
as higher HR requires shorter filling times. PEP reflects my-
ocardial contractility, venous return, and sympathetic activity;
longer PEP can indicate lower cardiac contractility, correlating
with reduced SV and CO. In hemorrhagic conditions, cardiac
contractility initially increases as a compensatory response
to blood loss but tends to decline as the subject progresses
toward decompensation. LVET, indicative of ventricular func-
tion and contractility, is intrinsically tied to SV. A shortened
LVET typically suggests reduced SV or compromised cardiac
performance, thus directly influencing CO estimation. PAT
and PTT are well-established indicators correlated with blood
pressure [13] and were found to be important for SV estima-
tion. However, these features exhibited inconsistent behavior
during the hemorrhage and resuscitation phases, making their
contributions to the model less impactful compared to the
consistently-performing SCG features.

A critical advantage of the proposed model is that it does not
require normalization, which makes it particularly suitable for
casualty care scenarios where baseline measurements may be
unavailable. The algorithm successfully demonstrates accurate
beat-by-beat estimation of SV within clinically-acceptable
ranges. Importantly, the model reliably identifies trends in SV
values, indicating whether they are increasing or decreasing.
This capability is crucial for decision-making regarding the
initiation and cessation of blood transfusions.

IV. CONCLUSION

This work explored algorithms for continuous and non-
invasive estimation of CO. By leveraging features extracted
from cardiac signals, SV was estimated with an MAPE of
14.31%, which falls within the clinically acceptable range for
non-invasive CO measurement. Notably, this level of accuracy
was achieved without applying any baseline normalization,
highlighting the potential of the proposed approach for use
in real-world trauma scenarios where rapid, calibration-free
monitoring is essential.

V. DISCLOSURES
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