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ABSTRACT

Multimodal few-shot learning is challenging due to the large domain gap between
vision and language modalities. Existing methods are trying to communicate visual
concepts as prompts to frozen language models, but rely on hand-engineered task
induction to reduce the hypothesis space. To make the whole process learnable, we
introduce a multimodal meta-learning approach. Specifically, our approach decom-
poses the training of the model into a set of related multimodal few-shot tasks. We
define a meta-mapper network, acting as a meta-learner, to efficiently bridge frozen
large-scale vision and language models and leverage their already learned capacity.
By updating the learnable parameters only of the meta-mapper, it learns to accrue
shared meta-knowledge among these tasks. Thus, it can rapidly adapt to newly
presented samples with only a few gradient updates. Importantly, it induces the
task in a completely data-driven manner, with no need for a hand-engineered task
induction. We evaluate our approach on recently proposed multimodal few-shot
benchmarks, measuring how rapidly the model can bind novel visual concepts
to words and answer visual questions by observing only a limited set of labeled
examples. The experimental results show that our meta-learning approach out-
performs the baseline across multiple datasets and various training settings while
being computationally more efficient.

1 INTRODUCTION

Learning quickly by observing a few examples in a multimodal environment is an integral part of
human intelligence (Schmidhuber, 1987; Bengio et al., 1991). Yet, it is quite challenging for current
vision and language models to deal with a limited labeled space, when performing multimodal
few-shot learning (Tsimpoukelli et al., 2021; Alayrac et al., 2022). On the contrary, language-only
models have already flourished over the past years, especially when being transferred to a limited
labeled space (Brown et al., 2020; Perez et al., 2021; Min et al., 2022), as a result of the large-scale
pre-training and huge model capacity. Such advances in natural language processing inspired similar
efforts in the vision domain, yielding large vision models with impressive few-shot and zero-shot
image classification capabilities (Radford et al., 2021; Zhai et al., 2021; Jia et al., 2021). However,
due to the large domain gap between vision and language modalities, it is non-trivial to directly
embody few-shot capabilities into multimodal settings, which is the main motivation of this work.

One of the main challenges for bridging this gap is finding a proper mechanism for communicating
visual concepts to a language model, by accruing shared knowledge from sequences of multimodal
tasks. The Frozen model (Tsimpoukelli et al., 2021) is the first multimodal few-shot learner which
tackles this challenge by taking inspiration from language models able to do in-context learning
(Brown et al., 2020). This requires a task induction provided as a sentence followed by context data
samples, to reduce the hypothesis space for open-ended image interpretation. This might not be
a shortcoming for simpler tasks, like binary decisions; however it becomes an obstacle for more
complicated tasks (Li & Liang, 2021), since the task induction has to be engineered each time. We
hypothesize that the task can be induced from the data itself in a completely learnable manner.

Meta-learning or learning to learn (Schmidhuber, 1987; Thrun & Pratt, 2012; Andrychowicz et al.,
2016) comes as a natural solution to any few-shot settings. While it has been extensively studied
in unimodal settings, particularly for few-shot image classification (Vinyals et al., 2016; Ravi &
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Figure 1: Multimodal few-shot meta-learning task for an example of a 2-way 1-shot setting, with two
categories (ways) present in the support set images, each represented with one sample (shot). Given a
batch of tasks Ti, the support set is first used to obtain task-specific model parameters θ

′

i for each task
by few gradient-step updates, which are then used together with the query set samples to perform a
meta-update step for updating the meta-parameters θ. After the meta-training is finished, for a new
given task, the meta-trained model is used for inference by further adapting the meta-learned model
with the support set, and measuring the performance on unseen query samples.

Larochelle, 2017; Finn et al., 2017; Raghu et al., 2019; Ye et al., 2020), meta-learning remains almost
unexplored for multimodal few-shot settings. Similar to unimodal settings, empowering a multimodal
few-shot learner with the ability to accrue knowledge across tasks, would assist in building internal
multimodal representations broadly suitable for many tasks. These representations could serve as a
bridge between the different modalities and assist in learning quickly new tasks by observing only
limited labeled examples.

Motivated by this, we define a novel multimodal few-shot meta-learning approach, to bridge the
gap between vision and language modalities, illustrated in Figure 1. Specifically, our approach
adopts publicly available pre-trained large vision encoders (Radford et al., 2021) and language
models (Brown et al., 2020), which are kept frozen to take advantages of their already-learned
reasoning capability (Tsimpoukelli et al., 2021; Mokady et al., 2021; Zhou et al., 2022; Jia et al.,
2022; Tewel et al., 2021; Zhai et al., 2021). In doing so, our method avoids the huge computational
resources required by those models during training and their dependency on large datasets. Unlike
prior multimodal few-shot learners (Tsimpoukelli et al., 2021; Alayrac et al., 2022), our approach
decomposes the training of the model into sequential observing of multimodal few-shot tasks, in the
spirit of meta-learning. During the meta-training stage, the model translates the visual representations
into a visual prefix for the language model, by using a lightweight meta-mapper network. This
network serves as a multimodal bridge between the large vision and language models and is entirely
built from self-attention layers (Lee et al., 2019). Essentially, the aim of the meta-mapper is to collect
shared meta-knowledge from related tasks, by mapping the visual representation into the latent space
of the language model. Then, during inference, or meta-test according to the meta-learning parlance,
the model is able to induce the task in a fully data-driven manner by observing few labeled examples
and thus entirely removes the need for hand-engineered task inductions.

In summary, we contribute in three major aspects: Conceptually: We introduce meta-learning to
multimodal few-shot learning, which enables fast adaptation and efficient learning of multimodal few-
shot tasks. To that end, we design a new setting for multimodal few-shot learning by re-organizing
existing datasets and following suitable benchmarks. Methodologically: We present a multimodal
meta learner by using a lightweight meta-mapper, which learns to bridge a large frozen vision and
language backbones. To the best of our knowledge, this is the first meta-learning based model to
solve multimodal few-shot tasks. Empirically: We demonstrate through systematic experiments on
those benchmarks that our model, using only the small trainable meta-mapper with frozen backbones,
yields strong multimodal few-shot performance, while being computationally more efficient.

2



Published as a conference paper at ICLR 2023

2 RELATED WORKS

Large-scale language models emerged since the introduction of attention (Bahdanau et al., 2015) and
Transformers (Vaswani et al., 2017) to successfully deal with long-range dependencies in sequences.
The field has seen significant progress over the last years (Devlin et al., 2019; Radford et al., 2019;
Brown et al., 2020), which also initiated the development of similar strategies for vision (Dosovitskiy
et al., 2021; Radford et al., 2021; Zhai et al., 2021) and multimodal models (Lu et al., 2019; Li
et al., 2020; Wang et al., 2021; Jia et al., 2021; Tewel et al., 2021; Mokady et al., 2021; Eichenberg
et al., 2021; Shen et al., 2021). In current few-shot scenarios, the language models are steered into
producing a desired output by using the concept of prompting (Brown et al., 2020; Tsimpoukelli et al.,
2021; Alayrac et al., 2022). The approach is to prepend fixed task induction with a few examples as a
prompt and then generate the output from the language model. Instead of optimizing over a fixed set
of task inductions and examples, also known as in-context learning, we aim to optimize the context
representation (Li & Liang, 2021; Lester et al., 2021), in the form of meta-learned visual prefix.

Meta-learning for few-shot learning (Ravi & Larochelle, 2017; Santoro et al., 2016b; Finn et al.,
2017; Vinyals et al., 2016; Snell et al., 2017) addresses the fundamental challenge of generalizing
across tasks with limited labelled data. The aim is learning to acquire inductive biases and perform
fast adaptation to new tasks (Grant et al., 2018). Meta-learning algorithms are typically categorized
as: (i) metric-based, focusing on learning a common embedding space and deriving prototypes as
meta-knowledge (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018) (ii) memory-based, using
an external memory as meta-knowledge to quickly adapt to new tasks (Mishra et al., 2018; Santoro
et al., 2016a; Munkhdalai & Yu, 2017; Munkhdalai et al., 2018) and (iii) optimization-based, aiming
to learn a good model initialization across tasks as meta-knowledge, which can be used to efficiently
adapt to new samples (Ravi & Larochelle, 2017; Finn et al., 2017; Grant et al., 2018). Our approach
is positioned in this last category, as it offers greater flexibility and is modality-agnostic.

Multimodal few-shot learning across vision and language modalities has emerged recently with the
introduction of the first multimodal few-shot learner Frozen (Tsimpoukelli et al., 2021), followed
by other innovative prompting and in-context learning strategies (Song et al., 2022; Jin et al.,
2021). Particularly, Frozen performs in-context learning, which is considered as one of the possible
approaches to deal with multimodal few-shot learning settings. Another recently proposed model
named Flamingo (Alayrac et al., 2022) follows a similar in-context learning paradigm, by using a
visual-language model of 70 billion parameters, which is proven to be successful due to its scale. Our
goals differ since our aim is to perform fast adaptation to new tasks by acquiring meta-knowledge
across tasks, with a lightweight model of less than two million trainable parameters. In particular, we
define optimization-based meta-learning steps (Ravi & Larochelle, 2017; Finn et al., 2017; Grant
et al., 2018), by using the context samples to adapt a small trainable mapper and evaluate on the
query samples.

3 METHODOLOGY

We aim to train a model that can learn and quickly adapt to new multimodal tasks with limited
labeled data under the meta-learning setting. In the next sections, we will first define the multimodal
meta-learning setting, then explain our architecture, and finally describe how it is used during training
and inference time.

3.1 PROBLEM FORMULATION

We start by defining our approach for multimodal few-shot settings, following a meta-learning
approach. Different from standard supervised learning, in meta-learning we are dealing with a
collection of meta-datasets, which are split into disjoint Dmeta−train and Dmeta−test partitions. We
define a meta-training stage, where the model is trained on the meta-train Dmeta−train partition,
and a separate meta-test stage where the performance is measured on the Dmeta−test partition. In
particular, the meta-train Dmeta−train set consists of meta-datasets Di, each one containing a pair
of separate inner-train set Dtri , also referred to as a support set and inner-test set Dtsi , referred to
as a query set. This means that Dmeta−train = {(Dtr1 ,Dts1 ), . . . (Dtrn ,Dtsn )}. We refer to each
meta-dataset pair (Dtr

i , D
ts
i ) as a meta-task Ti, following Finn et al. (2017).
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Figure 2: The architecture of the multimodal meta few-shot learner. It consists of three parts: frozen
vision encoder vϕ; frozen language model with a text embedder gψ and a generator gω; and a meta-
mapper fθ with trainable meta-parameters θ. In the example shown, the model is generating the last
word retriever, in an autoregressive manner.

When considering a k-shot, N -way setting, the support set Dtri of a single meta-task Ti consists of
k labeled samples for each of the N -ways, where N is the number of object categories i.e. ways
in few-shot parlance, meaning Dtri = {(xi1, yi1) . . . (xik, yik)}, where xij represents the image and yij
represents the caption. The query set Dtsi is defined as Dtsi = {(xi1, qi1, ai1) . . . (xim, qim, aim)}, where
xij is the image, qim is an optional slot for an input text representation, like a question, and aim is the
output text representation, i.e an answer to the question.

We consider a distribution over tasks p(T ), where a single batch of tasks Ti ∼ p(T ) for the k-shot
N -way problem, is sampled in the following fashion: N object categories are randomly sampled
from the pool of all meta-train Dmeta−train samples. For the support set there are k samples chosen
for each of the N categories, and for the query set there are m samples per category, with m > k.

3.2 MODEL ARCHITECTURE

The architecture that we present in this paper is modular and consists of three components: a vision
encoder, the meta-mapper and a language model, illustrated in Figure 2. It is trained in a fully
autoregressive manner, meaning that it offers flexibility for the choice of a downstream generative
multimodal task.

Vision encoder network The vision encoder is defined as a function vϕ, with fixed parameters
ϕ ∈ Rdv , taken from a pre-trained vision encoder. The input is a raw image x and the outputs are the
extracted visual features vϕ(x) = x1, . . . xn.

Meta-mapper network To map the visual encoding into the latent space of the language model in
our multimodal few-shot setting, we use a set of l learnable parameters pi ∈ Rde . These parameters
are also called visual prefix for the language model, with the same dimension de as the language
embeddings. We prepend this visual prefix to the encoded visual features, yielding the following
sequence [p1 . . . pl, x1, . . . xn]. Particularly, we view this representation as an ordered set of elements
and we employ self-attention to simultaneously encode the whole set. For this purpose, we adopt the
set multi-head attention block (Lee et al., 2019), which has the role of a meta-mapper with trainable
meta-parameters θ, and is defined as:

MetaMapθ(Q,K, V ) = σ(QKT ) ∗ V, (1)

where the pairwise dot-product QKT measures the similarity amongst features, and is used for
feature weighting computed through an activation function σ. Intuitively, each feature of V will
get more weight if the dot-product between Q and K is larger. In Eq. 1, we have Q = K = V =
[p1 . . . pl, x1, . . . xn], meaning that the input of the meta-mapper is the sequence of features, and the
output is a vector of learned parameters p∗1 . . . p

∗
k, namely the visual prefix for the language model, as

expressed in:
p∗1 . . . p

∗
l = MetaMapθ([p1 . . . pl, x1, . . . xn]). (2)

The self-attention layer, as the building block of this module, allows to retrieve meaningful information
from the visual features x1, . . . xn, and accumulate it into p∗1 . . . p

∗
l , due to its inherent weighting

mechanism of pairwise similarities between elements in the sequence. The meta-parameters of the
meta-mapper are learned and shared across all tasks T in Dmeta−train.
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Language model The language model is defined as a function gω , which parametrizes a probability
distribution over a text sequence y. It consists of an embedding function gψ , with ψ ∈ Rde , to embed
each word token yi of the sequence y into a word token embedding ti, followed by a Transformer
block conducting an autoregressive text generation. More precisely, the language model receives
the visual prefix p∗1 . . . p

∗
k concatenated with the token embeddings t1, . . . tm, and outputs the next

tokens conditioned on the prefix in an autoregressive manner:

ti+1 = gω([p
∗
1 . . . p

∗
l , t1, . . . ti]), i < m. (3)

Since our approach aims to learn in a limited labeled space which might distort the learned parameters
if we update them, we initialize the ω parameters with pre-trained parameters from a large-scale
language model and keep them entirely frozen.

3.3 META-TRAINING & INFERENCE

To meta-train the model, we sample batches of multimodal few-shot learning tasks Ti ∼ p(T ), which
consist of a support set denoted as Dtr

i and a query set Dts
i . Here, for simplicity, we assume that

our full model described in 3.2 is defined as a function fθ, which receives an image x as input and
produces y as output. The loss function, optimized per task during training, is a cross-entropy loss,
defined as:

LTi(fθ) =
∑

xj ,yj∼Dtr
i

yj log fθ(x
j) + (1− yj) log(1− fθ(xj)). (4)

When adapting to a new task Ti, the trainable meta parameters θ become task-specific parameters,
namely θ

′

i. These task-specific parameters are computed with N gradient-step updates, similar as in
(Finn et al., 2017), with the following rule for one gradient update: θ

′

i = θ − α∇θLTi
(fθ). This is

referred as the inner-loop update, where α is the hyperparameter for the step size. Next, the model
meta-parameters θ are optimized for the performance of fθ′i , using the query set Dts

i samples and the

task-specific parameters θ
′

i as initialization of the model:

min
θ

∑
xj ,yj∼Dts

i

LTi
(fθ′i

) =
∑

xj ,yj∼Dts
i

LTi
(fθ−α∇θLTi

(fθ)), (5)

which is called outer-loop optimization. The meta-optimization across all tasks Ti is performed using
stochastic gradient descent update rule, as follows: θ ← θ − β∇θ

∑
xj ,yj∼Dts

i
LTi

(fθ′i
), where β is

the step size hyperparameter.

In the meta-test stage, we consider new multimodal few-shot tasks Ti with previously unseen objects,
which also have a support set: Dtri for fast adaptation by fine-tuning the model meta-parameters θ to
a given task, and a query set Dtsi to evaluate the model on this task. Note that the generation of the
answer for each query set sample is done in an open-ended autoregressive manner. Specifically, we
use top-k nucleus sampling (Holtzman et al., 2019) to sample from the language model given the
visual prefix of the image.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets To design a meta-learning setting for multimodal few-shot learning, the datasets have to
be structured into sequences of tasks, as explained in section 3.1. The datasets introduced in Frozen
(Tsimpoukelli et al., 2021) are representative examples for this type of multimodal few-shot datasets,
where each task consists of a few labeled instances as a support set and unlabeled ones as a query
set. In practise, any dataset can be suited for few-shot meta-learning, as long as there is an available
object information based on which the tasks can be constructed. Therefore, for meta-training, we use
the COCO2017 captioning dataset (Lin et al., 2014) and restructure it to construct tasks in N -way,
k-shot manner based on the N object categories present in the images. For meta-test, we use the four
mentioned datasets, namely, Real-Name miniImageNet, Real-Fast VQA, Open-Ended miniImageNet
and Fast-VQA datasets, as they test the characteristics that make a good multimodal few-shot learner,
such as fast binding of visual concepts to words and adaptation to new tasks.
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Table 1: Comparison with the Frozen (Tsimpoukelli et al., 2021) baselines on Real-Name and
Open-Ended miniImageNet 2- and 5-way setting; expressed in accuracy(%). ANIL (Raghu et al.,
2019) is used as an upper bound, since it is a discriminative approach as opposed to our open-ended
generative one. Our episodically trained models are outperforming the Frozen baselines, both with
and without domain-shift. The overall best performance is denoted in bold, whereas the same settings
as the baseline are denoted in italic & bold.

Real-Name 2-way Open-Ended 2-way Real-Name 5-way Open-Ended 5-way
Methods episodic cross-domain 1-shot 5-shots 1-shot 5-shots 1-shot 5-shots 1-shot 5-shots

Frozen w/o task ind ✗ ✓ 1.7 - 29.0 - 0.9 - 18.0 -
Frozen w/ task ind ✗ ✓ 33.7 66.0 53.4 58.9 14.5 33.8 20.2 21.3

Ours

✗ ✗ 35.6 65.7 50.2 57.5 15.2 39.6 18.9 22.0
✗ ✓ 37.3 66.0 52.5 59.0 19.2 40.3 20.9 25.0
✓ ✓ 45.3 69.8 53.6 63.4 24.7 41.8 24.8 28.5
✓ ✗ 48.2 72.3 58.7 65.8 29.0 43.2 25.1 29.6

ANIL upper-bound - - 73.9 84.2 - - 45.5 62.6 - -

Table 2: Comparison with the Frozen (Tsimpoukelli et al., 2021) baselines on 2- and 5-way Real-
Name and Open-Ended miniImageNet for the 1-shot setting, with different number of repeats (reps);
expressed in accuracy(%). Increasing the repeats in the support set does not show a huge benefit
compared to when the number of shots are increased. The overall best performance is denoted in
bold, whereas the same settings as the baseline are denoted in italic & bold.

Real-Name 2-way Open-Ended 2-way Real-Name 5-way Open-Ended 5-way

Methods episodic cross-domain 1-rep 5-reps 1-rep 5-reps 1-rep 5-reps 1-rep 5-reps

Frozen w/ task ind ✗ ✓ 63.0 63.7 51.1 58.5 33.8 32.8 21.4 20.9

Ours

✗ ✗ 36.0 36.7 51.2 52.0 15.5 15.9 18.5 19.0
✗ ✓ 37.9 38.5 53.0 54.2 20.3 22.5 25.6 26.1
✓ ✓ 46.8 47.5 56.4 58.0 26.7 27.1 26.5 28.1
✓ ✗ 62.1 64.3 59.8 60.8 31.3 33.7 26.8 27.5

Training & inference procedures We consider two different training procedures: (i) standard
mini-batched training, which we refer to as a non-episodic; (ii) our proposed procedure by observing
batches of multimodal tasks, which we refer to as episodic training; These training procedures
are considered within two scenarios determined by the domain shift emerging during training and
inference: (i) cross-domain multimodal few-shot learning, when the training and test datasets are of
different distribution. Here the model is trained on COCO2017 (both in episodic and non-episodic
manner) and the performance is measured on the full multimodal few-shot datasets; (ii) in-domain
multimodal few-shot learning (standard meta-learning) setup, where the training and test partitions
are of the same domain. This means that the training and test partitions, namely meta-training and
meta-test tasks are constructed from the same multimodal few-shot dataset.

Implementation details The vision encoder is implemented as CLIP (Radford et al., 2021) with
the Vision Transformer (ViT/B-32) (Dosovitskiy et al., 2021) as a backbone model, yielding visual
features of size 512. The language model is implemented as GPT-2 (Radford et al., 2019), with word
embeddings of size 768. The learnable visual prefix is empirically set to length 4 with dimensions
of 768, which are specific to the language model. The meta-mapper is initialized following Xavier
uniform initialization (Glorot & Bengio, 2010). For the meta-learning specific hyperparameters, we
empirically determined to have five inner-loop gradient-updates with a learning rate of 0.01. The
meta-update is performed with AdamW (Loshchilov & Hutter, 2018) with a meta-learning rate of
0.001 and 4 tasks in each meta-batch. All hyperparameters are tuned using the query sets in the
meta-training partition which acts as a validation set.

Regarding the computational resources, our model is trained end-to-end on one NVIDIA GTX 1080Ti
GPU, in less than 2 hours, showing the benefit of the lightweight framework. The total number of
trainable parameters is approximately two million, which is order of magnitudes lower than the Frozen
model. The full implementation is in PyTorch and HuggingFace (Wolf et al., 2020) and is publicly
realized at https://github.com/ivonajdenkoska/multimodal-meta-learn.
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Table 3: Comparison with the Frozen baseline (Tsimpoukelli et al., 2021) on 2-way Real-Fast VQA
and Fast-VQA, in accuracy(%). Our episodically trained models outperform their counterparts, both
with and without domain shift.

Real-Fast VQA Fast-VQA

Methods episodic cross-domain 1-shot 5-shots 1-shot 5-shots

Frozen ✗ ✓ 7.8 10.5 2.8 7.9

Ours

✗ ✗ 5.4 9.1 2.5 7.1
✗ ✓ 6.9 10.7 3 8
✓ ✓ 8.5 13 5.2 8.6
✓ ✗ 9.7 13.2 5.7 9.3

Table 4: Benefit of the meta-knowledge in accuracy(%) on the four multimodal few-shot datasets
under the 2-way setting. Accruing meta-knowledge is crucial for our approach.

Real-Name Open-Ended Real-Fast VQA Fast-VQA
Variants 1-shot 5-shots 1-shot 5-shot 1-shot 5-shots 1-shot 5-shot

w/o meta-knowledge 0.0 0.06 0.0 0.05 0.0 0.03 0.0 0.06
w/ meta-knowledge 48.2 72.3 58.7 65.8 9.7 13.2 5.7 9.3

4.2 RESULTS & DISCUSSION

Binding of visual concepts and words The experiments conducted on Real-Name and Open-Ended
miniImageNet measure to what extent the multimodal meta-learner is able to bind visual concepts
to words. Table 1 shows the 2-way and 5-way accuracy in 1 and 5 shots on both datasets. We
observe that our multimodal meta-learner is able to largely outperform Frozen, even without using
an engineered task induction. This shows the advantage of having a meta-learned visual prefix, in
contrast to just reshaping the vision encoder output as a prefix to language models. Specifically,
the meta-learned prefix is able to collect shared meta-knowledge from related instances in the tasks,
which is useful for narrowing down the search space in a learnable manner, instead of using an
engineered task instruction. Having this adaptable component, makes it easier for the model to later
adapt to unseen visual concepts, without being explicitly instructed to do so. Also, similar to Frozen,
we observe an upward trend when increasing the number of shots, for both the 2-way and 5-way
settings, which confirms that having more distinct examples of the task increases the performance.

We believe that the open-ended approach is promising due to its flexibility in reasoning about visual
concepts in an unconstrained manner, instead of relying on a pre-defined closed set of concepts.
However, due to the magnitudes larger hypothesis space in the open-ended text generation (the full
vocabulary of the language model), compared to the finite set of possible answers of conventional
classifiers, such as ANIL (Raghu et al., 2019), it is not possible to perform a fair comparison to them.
Therefore, we use their results as upper bound to our approach.

Increasing the number of repeats of support samples As an additional analysis, we experiment
with the number of times each shot is repeated in the support set presented to the model, during
inference i.e. the meta-test time. We observe from Table 2 that increasing the repeats in the support
set, does not show as large benefit as increasing the number of distinct shots. This means that the meta-
learner is able to accumulate more useful meta-knowledge by seeing different examples of images,
even only once, rather than multiple repetitions of the same ones. Contrary to this observation, Frozen
benefits more from these repetitions since they are used in combination with a hand-engineered task
induction, which is crucial for their method.

Visual question-answering with limited labeled samples The aim of the experiments on the
Real-Fast and Fast-VQA 2-ways benchmarks, presented in Table 3 with 1 and 5 shots, is to evaluate
the abilities of the multimodal meta-learner to answer more complex queries about the objects in
the image. There is an implicit testing of the binding of visual concepts and words, since the query
samples are designed in such a way to contain both categories from the support set in the query
image, while the question is addressed in one of them. Moreover, the emphasis is on the ability of the
meta-learner to reason about particular object properties, without being explicitly meta-trained to do
so. As we observe from the results, our multimodal meta-learner achieves improvements over the
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Figure 4: Qualitative examples of query set images from Real-Name miniImageNet (first two) and
Real-Fast VQA (last two), with their question, ground-truth and answers generated by our model.

Frozen baseline, showing once more the benefit of accruing meta-knowledge across tasks. Again,
there is an upward trend in the performance when increasing the number of shots.

Episodic training of multimodal few-shot learners Another important observation from Tables
1 and 3 is that the episodic training improves the overall performance. The simple reason for this
is having matched training and inference time conditions, as in standard supervised learning. More
precisely, the multimodal few-shot datasets that are employed at inference time, are structured into
tasks, so training the model in a similar manner by observing the tasks improves the performance.

Learning across domains Tables 1 and 3 provide insights into the more challenging cross-domain
multimodal few-shot setting. Essentially, meta-training on the COCO2017 captioning dataset, helps
the model to bind visual concepts with richer semantic descriptions, compared to when training
on the multimodal few-shot datasets (which have simpler captions). However, according to the
evaluation procedure that we follow, also employed by Frozen, the model is expected to generate
the exact word as the ground-truth, penalizing any paraphrasing of words. Therefore, a COCO2017
meta-trained model exhibits lower accuracy from a quantitative perspective when transferred to a
miniImageNet-based dataset. However, in many cases the generated sentences are qualitatively better
and more detailed, as we discuss in the next paragraph.

Figure 3: Relationship between consecu-
tive steps of gradient-based updates and
the accuracy on Real-Name miniIma-
geNet on 5-way tasks, performed during
the meta-test stage.

Qualitative analysis In Figure 4, we show a examples
of query images with the questions and answers at infer-
ence time, by the best version of our approach in Tables
1 and 3. The capability of the multimodal meta-learner
to bind visual concepts to words is apparent: the model
is able to connect the visual concepts in the image not
only to electric guitar, as stated in the ground-truth, but
also to the word player. This demonstrates that the model
is correctly steered by the meta-learned visual prefix to
leverage additional information about image, not necessar-
ily present in the ground-truth. An important observation
from these examples is that the generated answers have
some differences w.r.t the ground-truth, which is however
penalized during evaluation, since we count as correct only
words that match, to be able to compare to Frozen. The
evaluation should, however, measure whether the gener-
ated sentence matches the image in a more general manner,
ideally without using ground-truth references (Hessel et al., 2021), which is left for future work.

4.3 ABLATION STUDY

What is the benefit of accruing meta-knowledge? To test how useful the meta-knowledge is, we
run an ablation experiment where the meta-knowledge accrued from the previous batch of tasks is
erased before observing the next one. This essentially means to randomly initialize the meta-mapper,
which collects the meta-knowledge, before observing the next batch of tasks. As it can be observed
in Table 4, this erasing yields deteriorating performance, across all datasets, ways and shots. This
shows that training the meta-mapper to accumulate useful representations from sequences of tasks is
crucial for the success of our meta-approach.
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Table 5: Benefit of the self-attention structure of the meta-mapper in accuracy (%) on the four
multimodal few-shot datasets under the 2-way setting. Self-attention meta-mapper is more critical
than the MLP-based one for our approach.

Real-Name Open-Ended Real-Fast VQA Fast-VQA
Variants 1-shot 5-shots 1-shot 5-shot 1-shot 5-shots 1-shot 5-shot

MLP-based meta-mapper 42.5 62.6 45.3 58.3 4.3 11.9 4.5 7.5
Self-attention meta-mapper 48.2 72.3 58.7 65.8 9.7 13.2 5.7 9.3

Table 6: Effect of using a fixed, hand-engineered task induction vs. only learning it from support sets,
in accuracy (%) on the four multimodal few-shot datasets under the 2-way setting. Learning the task
induction in a data-driven manner improves the performance.

Real-Name Open-Ended Real-Fast VQA Fast-VQA
Variants 1-shot 5-shots 1-shot 5-shot 1-shot 5-shots 1-shot 5-shot

w/ fixed task ind 47.9 71.9 58.0 65.0 9.5 13.2 5.0 8.9
w/o fixed task ind 48.2 72.3 58.7 65.8 9.7 13.2 5.7 9.3

What is the effect of the multimodal inner loop optimization? To analyse the effect of the
gradient-based updates during test time, namely the inner loop optimization, we illustrate the rela-
tionship between the update steps and the accuracy in Figure 3. We observe increased performance
as the number of gradient-based steps increases, for {1, 3, 5} shots on 5-way Real-Name miniIm-
ageNet tasks. This demonstrates that the mechanism of the meta-learning framework to adapt the
meta-parameters on support samples, allows the model to respond promptly to a new task, which
yields increased performance on the query samples.

Does the structure of the meta-mapper influence the performance? To test the performance of
our approach with a different structure of the meta-mapper, we run experiments with an alternative to
the proposed self-attention-based one. Specifically, we implement a multi-layer perceptron (MLP)
with one hidden layer. It can be observed from Table 5, that the self-attention meta-mapper brings
notable improvements over MLP. This is attributed to the fact that, different from MLP, self-attention
layers are able to select and extract the most relevant features from an input representation.

Is there an effect of fixed task induction in the meta-learning setting? We analyse the effect of
a fixed hand-engineered task induction, as opposed to learning the induction in a data-driven manner.
In particular, we choose the best variant of our meta-learner from Table 1, and add a fixed sentence
describing the task in natural language, for instance, "Answer with lion or dog.", similar as in Frozen.
It can be observed from Table 6, that there is no significant increase in the performance, meaning that
only fine-tuning the meta-mapper on the support set is good enough to induce the task.

5 CONCLUSION

We present a novel meta-learning approach for multimodal few-shot learning. We design our model by
introducing a lightweight trainable meta-mapper that acts as a bridge between large frozen vision and
language models. This meta-mapper accrues shared meta-knowledge by sequentially observing tasks
into a learnable visual prefix, which is then used to steer the language model into generating relevant
linguistic interpretations. Unlike prior works, we use the support samples to adapt our model to
unseen tasks, which shows to be beneficial as it improves performance without using hand-engineered
task induction. Moreover, it operates with low computational costs, as it smartly combines large
pre-trained models without the need to train them from scratch. This makes our architecture flexible
enough to incorporate additional modalities, which is left to tackle in future work. Last but not least,
our experiments verify the effectiveness of our approach by outperforming the baseline on several
benchmarks and fostering further exploration of multimodal few-shot meta-learning.
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ETHICS STATEMENT

Our proposed model uses pre-trained large-scale models, both for the vision encoder and language
decoder modules, namely CLIP (Radford et al., 2021) and GPT-2 (Radford et al., 2019). So, our
model inherits any problematic biases and limitations that these pre-trained models may contain,
meaning we should be careful when using the results especially in sensitive settings.
More specifically, our model has a generative nature with the ability to produce language, which
might lead to generation of disinformation or potential hallucinations. But, as our model is conditional
on the visual features, it enforces the text generation to follow the image contents. This serves as a
control mechanism of the otherwise free text generation, and can mitigate the generation of linguistic
disinformation. Additionally, as can be seen in some of the qualitative examples in Figure 4, our
proposed approach takes advantage of the complementarities of the two backbone models. This
suggests that it might be useful to mitigate biases potentially present in one of the pre-trained models.

REPRODUCIBILITY STATEMENT

To help the reproducibility of the paper, we provide the formal definition of the meta-learning setup
in Section 3.1, the implementation details in Section 4.1, additional details about the design of the
setting and the formal definition of the algorithms during the meta-training and inferences stages in
Appendix. Also, we release the source code to reproduce the results and evaluate the performance of
the model at: https://github.com/ivonajdenkoska/multimodal-meta-learn.
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