
Atom of Thoughts for Markov LLM Test-Time Scaling

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) achieve su-002
perior performance through training-time scal-003
ing, and test-time scaling further enhances their004
capabilities by conducting effective reasoning005
during inference. However, as the scale of006
reasoning increases, existing test-time scaling007
methods suffer from accumulated historical008
information, which not only wastes compu-009
tational resources but also interferes with ef-010
fective reasoning. To address this issue, we011
observe that complex reasoning progress is of-012
ten achieved by solving a sequence of indepen-013
dent subquestions, each being self-contained014
and verifiable. These subquestions are essen-015
tially atomic questions, relying primarily on016
their current state rather than accumulated his-017
tory, similar to the memoryless transitions in018
a Markov process. Based on this observa-019
tion, we propose Atom of Thoughts (AOT),020
where each state transition in the reasoning pro-021
cess consists of decomposing the current ques-022
tion into a dependency-based directed acyclic023
graph and contracting its subquestions, form-024
ing a new atomic question state. This iter-025
ative decomposition-contraction process con-026
tinues until reaching directly solvable atomic027
questions, naturally realizing Markov transi-028
tions between question states. Furthermore,029
these atomic questions can be seamlessly inte-030
grated into existing test-time scaling methods,031
enabling AOT to serve as a plug-in enhance-032
ment for improving reasoning capabilities. Ex-033
periments across six benchmarks demonstrate034
the effectiveness of AOT both as a standalone035
framework and a plug-in enhancement. No-036
tably, on HotpotQA, when applied to gpt-4o-037
mini, AOT achieves an 80.6% F1 score, sur-038
passing o3-mini by 3.4% and DeepSeek-R1 by039
10.6%.040

1 Introduction041

Large Language Models (LLMs) demonstrate sig-042

nificant scaling effects, with their capabilities show-043

Computation Resouces

Performance

Reasoning

Historical
Information

Atom of Thoughts
Other Methods

Figure 1: Comparison of computational resource al-
location in Test-Time Scaling methods. Traditional
Test-Time Scaling methods allocate computational re-
sources partially to process historical information, while
AOT dedicates all computational resources to reasoning
directly related to the current atomic question state.

ing predictable improvements as model parameters 044

and training data increase, leading to enhanced per- 045

formance across diverse domains (Kaplan et al., 046

2020). While this scaling law faces bottlenecks in 047

high-quality data availability, Test-Time Scaling of- 048

fers an alternative solution by forcing LLMs to en- 049

gage in effective logical reasoning during inference 050

to improve performance on diverse tasks (Snell 051

et al., 2024; Muennighoff et al., 2025; Hou et al., 052

2025; Zhang et al., 2024). 053

However, existing Test-Time Scaling methods 054

excessively maintain historical information dur- 055

ing reasoning, as they rely heavily on complex 056

structural dependencies throughout the reasoning 057

process. Chain-based methods must preserve the 058

entire reasoning history to generate each subse- 059

quent step (Wei et al., 2022; Zhang et al., 2023), 060

while tree-based approaches require tracking both 061

ancestor and sibling relationships for branch selec- 062

1

Chain of Thoughts

Tree of Thoughts

Graph of Thoughts

Q0

Q1

Q2

1

1

2

2

q0,2

q0,3

q0,2

q0,1

q0,3

Markov Process
There are two possible
triangles ABC satisfying AB = 10,
AC = b > 10, and sin B = 3/5. Find
the positive difference
between the lengths of side BC.

Given two triangles ABC
satisfying AB = 10, AC = b > 10,
sin B = 3/5, cos B = ± 4/5
respectively, find the positive
difference between the lengths
of side BC.

Forest of Thoughts

Self-Consistency

...

Decomposition Contraction

0

8

16

AB=10.

AC = b > 10.

Given sin B = 3/5, find cos B.

q0,4

q0,5q0,1

Let BC = a1, find the equation
when cos B is 4/5.

Let BC = a2, find the equation
when cos B is -4/5. Given b2 = a1

2 - 16a1 + 100 and
b2 = a2

2 + 16a2 + 100, find the
positive difference between a1
and a2.

Figure 2: The overview of AOT. The left portion illustrates our Markov process where each state Qi represents an
atomic reasoning state derived through DAG decomposition and contraction from its predecessor. The right portion
demonstrates AOT’s integration capability with existing test-time scaling methods (e.g., CoT, ToT). A key feature
of this integration is that any intermediate state Qi from our Markov process can serve as an entry point (Q0) for
other methods, enabling flexible composition while maintaining answer equivalence with the original question. This
design allows AOT to function both as a standalone iterative framework and as a preprocessing module that can
enhance existing approaches through structural optimization.

tion (Yao et al., 2023; Zhou et al., 2024; Ding et al.,063

2024). Graph-based structures further compound064

these challenges through arbitrary node dependen-065

cies. As the scale of reasoning increases, the accu-066

mulation of historical dependencies not only wastes067

substantial computational resources but also inter-068

feres with the model’s ability to reason effectively,069

as illustrated in Figure 1.070

Human reasoning often progresses through solv-071

ing a sequence of independent subquestions, a072

fundamental principle established in cognitive073

science (Simon, 1962) and problem-solving the-074

ory (Polya, 1945). When solving a complex prob-075

lem, we naturally identify and resolve self-evident076

subquestions first, then seamlessly incorporate077

these solutions to reformulate a simplified problem078

state, rather than maintaining detailed reasoning079

processes for resolved components. This progres-080

sion closely resembles a Markov process (Markov,081

1906), where each state represents a question, and082

state transitions occur through resolving partial083

problems to form new, independent questions.084

Inspired by this Markov nature of human rea-085

soning, we propose Atom of Thoughts (AOT), a086

framework that realizes the Markov-style reasoning087

process. Our key insight is that each reasoning088

state can be defined as a simplified problem equiv-089

alent to the original one, where partial reasoning090

steps are either transformed into known conditions091

or excluded as incorrect explorations. This defini-092

tion is achieved through a two-phase state transition 093

mechanism: first decomposing the current question 094

into a dependency-based directed acyclic graph 095

(DAG) to capture rich structural information, then 096

contracting subquestions into a new independent 097

question. This iterative decomposition-contraction 098

process continues until reaching directly solvable 099

atomic questions, ensuring each state transition de- 100

pends only on the current state while progressively 101

reducing problem complexity. 102

This design endows AOT with two key advan- 103

tages. First, AOT eliminates the need for main- 104

taining and computing historical information when 105

scaling computational resources. Second, these 106

atomic questions can be seamlessly integrated into 107

existing Test-Time Scaling frameworks, allowing 108

AOT to function as either a standalone framework 109

or a plug-in enhancement for improving the overall 110

reasoning capabilities. 111

In summary, our contributions are as follows: 112

• Atom of Thoughts. We introduce AOT, a 113

novel reasoning framework with Markov prop- 114

erty that progressively decomposes problems 115

into atomic units. This approach significantly 116

reduces computational resources wasted on 117

historical information processing, allowing 118

the model to focus on effective reasoning dur- 119

ing test-time scaling. 120

• Plug-In Enhancement. The atomic questions 121

2

derived by AOT can be directly integrated into122

existing Test-Time Scaling methods (Bi et al.,123

2024; Wang et al., 2023b), enhancing both124

their performance and cost efficiency.125

• Extensive Evaluation. Experiments across126

six benchmarks demonstrate the effective-127

ness of AOT both as a standalone framework128

and as a plug-in enhancement. AOT outper-129

forms all baselines, and notably on HotpotQA130

dataset, enables gpt-4o-mini to surpass reason-131

ing models: o3-mini by 3.4% and DeepSeek-132

R1 by 10.6%.133

2 Related Work134

2.1 Reasoning Framework135

Chain-of-Thought (Wei et al., 2022) prompting has136

emerged as a fundamental technique for enhancing137

LLMs’ reasoning. Decomposition methods like138

Least-to-Most (Zhou et al., 2023) and Plan-and-139

Solve (Wang et al., 2023a) prompting parse com-140

plex problems into sequential subtasks. Iterative141

optimization approaches like Self-Refine (Madaan142

et al., 2023), Step-Back (Zheng et al., 2024)143

prompting and Progressive-Hint Prompting (Zheng144

et al., 2023) refine solutions through cyclic feed-145

back or abstraction. Multi-path aggregation tech-146

niques like Self-Consistency CoT (Wang et al.,147

2023b) and LLM-Blender (Jiang et al., 2023)148

further improve reasoning reliability by multi-149

trajectory consensus.150

More sophisticated frameworks structure the rep-151

resentation of reasoning space through dedicated152

formalisms: Tree of Thoughts (Yao et al., 2023)153

enables systematic exploration of multiple reason-154

ing paths, while Graph of Thoughts (Besta et al.,155

2024) represents reasoning processes as dynamic156

graphs with backtracking mechanisms. Address-157

ing fundamental limitations in resampling-based158

paradigms, Thought Space Explorer (Zhang and159

Liu, 2024) strategically explores under-sampled160

regions of the solution space. These frameworks161

serve as universal augmentation of LLMs reason-162

ing, enhancing their capacity across various do-163

mains, with their principles being widely adopted164

in agentic workflows for code generation, question165

answering, and data science applications (Hong166

et al., 2024b; Zhang et al., 2024; Hong et al., 2024a;167

Zhang et al., 2025).168

2.2 Test-Time Scaling 169

Test-time scaling approaches have demonstrated 170

the value of extended computation during infer- 171

ence. Supervised fine-tuning on long chain-of- 172

thought traces has proven effective at enhancing 173

models’ capabilities to conduct extended reason- 174

ing (Yeo et al., 2025). Building on this foundation, 175

reinforcement learning methods have enabled mod- 176

els to automatically learn optimal inference expan- 177

sion strategies, allowing for adaptive scaling of the 178

reasoning process (Kimi et al., 2025; Zeng et al., 179

2025; DeepSeek-AI, 2025). Framework-based ap- 180

proaches have further expanded these capabilities 181

by extending inference through external systems, 182

incorporating techniques like verification, budget 183

forcing, and ensemble methods (Zhang et al., 2024; 184

Saad-Falcon et al., 2024; Chen et al., 2024). These 185

complementary approaches demonstrate how strate- 186

gic use of additional computation during infer- 187

ence through learned behaviors, automated scaling, 188

and system-level interventions can substantially en- 189

hance model performance. 190

However, these approaches universally maintain 191

extensive historical information throughout the rea- 192

soning process, leading to computational ineffi- 193

ciency and potential interference with effective rea- 194

soning. In contrast, AOT introduces a Markovian 195

perspective that eliminates the need for historical 196

dependency tracking, enabling more efficient re- 197

source allocation while maintaining compatibility 198

with existing test-time scaling methods. 199

3 An Overview of AOT 200

This section presents an overview of AOT from 201

a probabilistic modeling perspective. We first ex- 202

amine how traditional reasoning chains work, then 203

introduce our dependency-based graph structures 204

and their contraction mechanisms that enable more 205

efficient reasoning. Note that all probability dis- 206

tributions p in this section are modeled by LLMs, 207

with the explicit notation of LLMs and instruction 208

prompts omitted for simplicity. 209

3.1 Reasoning Chain 210

Chain-of-Thought (CoT) prompting enables LLMs 211

to progressively propose intermediate thoughts Ti 212

when solving a problem. As discussed earlier, this 213

approach requires maintaining a complete reason- 214

ing history, which can be formalized as a proba- 215

3

bilistic sampling procedure:216

A ∼ p(A|T , Q0)
N∏
i=0

p(Ti|T<i, Q0) (1)217

Here, T = {T0, T1, . . . , TN} represents the se-218

quence of intermediate thoughts generated by the219

LLM. Each thought Ti depends on the previous220

thoughts T<i and the initial question Q0.221

To explore chain-based methods with different222

node definitions, Least-to-Most (Zhou et al., 2023)223

replaces the intermediate thoughts Ti with subques-224

tions Qi, resulting in a different formulation of the225

reasoning chain:226

A ∼ p(A|Q)
N∏
i=0

p(Qi|Q<i) (2)227

where Q = {Q0, Q1, . . . , QN} is the sequence of228

subquestions.229

In an ideal scenario where the reasoning chain230

Q exhibits the Markov property, each subquestion231

Qi+1 would only depend on its immediate prede-232

cessor Qi, similar to how humans naturally solve233

complex problems by resolving independent sub-234

questions and reformulating simplified states. This235

leads to:236

A ∼ p(A|QN)

N∏
i=0

p(Qi+1|Qi) (3)237

However, achieving true Markov property in real-238

world reasoning tasks is challenging. This moti-239

vates our exploration of dependency-based graph240

structures that can help decompose and contract241

complex reasoning processes into more Markov-242

like components.243

3.2 Dependency Directed Acyclic Graph244

Unlike existing graph-based methods that maintain245

complex dependencies throughout the reasoning246

process, we utilize the DAG structure specifically247

to facilitate Markov-style state transitions. Our248

DAG decomposition serves as a temporary scaffold249

to identify independent components that can be250

contracted into new atomic states.251

The DAG G is defined as:252

G = (Q, E), Q = {Qi}ni=1, E ⊆ Q×Q
(4)

253

In this graph, nodes represent subquestions Qi, 254

and edges (Qj , Qi) indicate that Qj contains the in- 255

formation necessary for solving Qi. This structure 256

allows us to systematically identify independent 257

subquestions that can be resolved separately before 258

contraction. Specifically, we classify subquestions 259

into two categories. 260

Independent subquestions Qind (nodes without 261

incoming edges): 262

Qind = {Qi ∈ Q | ∄Qj ∈ Q, (Qj , Qi) ∈ E} (5) 263

Dependent subquestions Qdep (nodes with in- 264

coming edges): 265

Qdep = {Qi ∈ Q | ∃Qj ∈ Q, (Qj , Qi) ∈ E}
(6)

266

The acyclicity of G is guaranteed by the temporal 267

nature of subquestion generation: any subquestion 268

Qi can only depend on previously generated sub- 269

questions Qjj<i. This property holds even in a 270

maximally connected case where each subquestion 271

links to all its predecessors, as any additional edges 272

would create cycles by connecting to future nodes. 273

3.3 Contraction 274

The contraction phase transforms the temporary 275

DAG structure into the next atomic state, preserv- 276

ing the Markov property while reducing state com- 277

plexity. During this natural transformation, results 278

from independent questions Qind are seamlessly 279

integrated - either as given conditions or eliminated 280

failed subproblems - while dependent questions 281

Qdep are reformulated, collectively yielding a new 282

independent question Qi+1 that maintains solution 283

equivalence to Qi. 284

This iterative contraction continues until we 285

reach a maximum number D, which is assigned 286

by the depth of the first generated graph G0, which 287

ensures the process terminates efficiently. The com- 288

plete reasoning process can be formalized as: 289

A ∼ p(A|QD)

D∏
i=0

p(Qi+1|Gi) p(Gi|Qi) (7) 290

The reasoning process is formally described 291

in Algorithm 1, which shows how AOT iterate 292

through decomposition and contraction steps. 293

4

Algorithm 1 Algorithm of AOT
Require: Initial question Q0

Ensure: Final answer A
1: Iteration counter i← 0
2: max depth D ← None
3: while i < D or D is None do
4: Gi ← decomposeLLM(Qi)

// Generate dependency DAG
5: if D is None then
6: D ← GetMaxPathLength(Gi)

// Rule-based path length calculation
7: end if
8: Qind ← {Qi ∈ Q | ∄Qj ∈ Q, (Qj , Qi) ∈ E}
9: Qdep ← {Qi ∈ Q | ∃Qj ∈ Q, (Qj , Qi) ∈ E}

10: Qi+1 ← contractLLM(Qind,Qdep)
// Contract subquestions into a independent question

11: i← i+ 1
12: end while
13: A← solveLLM(QD)

// Generate final answer
14: return A

4 The Design Details of AOT294

Building upon the theoretical framework intro-295

duced in Section 3, we now detail the implemen-296

tation of AOT’s core components: decomposition,297

contraction, and their integration into an iterative298

reasoning process. Our design emphasizes main-299

taining the Markov property while efficiently re-300

ducing problem complexity through each iteration.301

4.1 Decomposition302

Dependency Directed Acyclic Graph. Address-303

ing the challenge of excessive historical informa-304

tion maintenance, our decomposition phase intro-305

duces an efficient dependency extraction mecha-306

nism that only temporarily captures essential struc-307

tural information. The process starts with decom-308

posing the current state into granular subquestions,309

following our Markov-style reasoning principle.310

Unlike traditional methods that accumulate depen-311

dencies throughout the entire reasoning process,312

we employ a single-pass approach that leverages313

LLMs’ zero-shot capabilities to efficiently iden-314

tify inter-question dependencies. This is achieved315

through structured JSON annotations that capture316

only the minimal necessary upstream relationships317

(see Appendix B.2 for annotation prompt tem-318

plates).319

4.2 Contraction320

Subquestions Contracting. Based on the depen-321

dency relationships identified in DAG structure,322

AOT performs contraction through a single LLM323

invocation. This contracted question selectively324

incorporates information from current indepen- 325

dent subquestions in its description while aligning 326

with the solution objective as the original question. 327

This process aims to maintain answer equivalence 328

throughout the Markov chain while continuously 329

eliminating the test-time of solved independent 330

subquestions at each iteration. The elimination 331

of edges from independent to dependent subques- 332

tions is designed to facilitate the transmission of 333

key dependency information, essential for main- 334

taining Markov property. (see Appendix B.3 for 335

contraction prompt templates). 336

Markov Property Maintenance. Through this 337

structured contraction process, AOT effectively 338

maintain the Markov property by eliminating re- 339

dundant historical reasoning steps and reducing the 340

test-time required for solving questions in subse- 341

quent states. The contraction mechanism ensures 342

that each state in the sequence depends only on 343

its immediate predecessor, preserving the Markov 344

property while progressively simplifying the ques- 345

tion structure. 346

4.3 Integration 347

Iterative Process. The core mechanism of AOT 348

operates through an iterative Markov process where 349

each step involves question decomposition fol- 350

lowed by contraction. This process forms a nat- 351

ural process where the contracted question from 352

each iteration serves as the input for the next de- 353

composition phase. The iterative nature of this 354

process ensures that each state in the sequence de- 355

pends only on its immediate predecessor, maintain- 356

ing the Markov property throughout the reasoning 357

process. As the process continues, each cycle pro- 358

gressively simplifies the question structure while 359

preserving answer equivalence, effectively extend- 360

ing inference time through structured decomposi- 361

tion and thoughtful recombination. The process 362

continues until either a solution is reached or no 363

further meaningful decomposition is possible, pro- 364

viding a natural termination condition that balances 365

thoroughness with computational efficiency. 366

Termination Mechanism. To optimize test-time 367

efficiency, AOT incorporates an automated termi- 368

nation mechanism that uses LLM evaluation to 369

assess solution quality through answer compari- 370

son. After each contraction step, an LLM exam- 371

ines three key elements: the execution results of 372

the original question Qi, the decomposed DAG 373

structure Gi, and the independent execution results 374

5

of Qi+1. The LLM synthesizes these elements to375

generate a comprehensive answer for Qi. If this376

synthesized answer demonstrates consistency with377

the answer produced by Qi+1, the iterative pro-378

cess continues. Upon termination, AOT combines379

the current contracted question with the union of380

independent subquestions Qdep =
⋃i

j=1Qdepj ac-381

cumulated from all previous iterations to form a382

complete solution to the initial question Q0. This383

structure provides a solution composed entirely of384

independent questions, maintaining semantic inde-385

pendence while ensuring completeness.386

Integration Through Iteration Termination.387

Building upon this termination mechanism, AOT388

offers natural integration points with other test-time389

scaling methods through controlled termination of390

its Markov process. This integration typically in-391

volves executing AOT for a predetermined num-392

ber of steps - often just a single decomposition-393

contraction cycle - before transitioning the simpli-394

fied question to another method for final resolution.395

This approach leverages AOT’s structural optimiza-396

tion capabilities as a preprocessing step while al-397

lowing other methods to operate on a more manage-398

able question representation. The contracted ques-399

tion passed to subsequent methods maintains an-400

swer equivalence with the original question while401

benefiting from AOT’s structural analysis and com-402

plexity reduction. This integration strategy is partic-403

ularly effective when computational resources can404

be better allocated by transitioning to other meth-405

ods after initial structural simplification, allowing406

each approach to contribute its unique strengths407

to the overall reasoning process. The seamless408

transition between methods is facilitated by the409

atomic state representation in our Markov process,410

ensuring that essential question characteristics are411

preserved while unnecessary complexity is elimi-412

nated.413

5 Experiments414

We conduct comprehensive experiments to exam-415

ine AOT through full benchmark evaluation on six416

standard datasets, followed by focused analyses417

including test-time optimization experiments, ab-418

lation studies, and reasoning models comparison.419

Our test-time optimization experiments demon-420

strate AOT’s adaptability as a plug-in module for421

existing frameworks. Through ablation studies on422

key components like DAG structure and decom-423

position mechanism, we validate the essentiality424

of our design. Results across all experiments con- 425

sistently show that our Markov reasoning process 426

achieves substantial improvements across tasks 427

while maintaining computational efficiency. 428

5.1 Experimental Setup 429

Datasets. We evaluate AOT across four cate- 430

gories of reasoning tasks using gpt-4o-mini-0718 431

as the backbone model. For mathematical reason- 432

ing, we utilize the MATH (Hendrycks et al., 2021) 433

dataset (selecting problems with numerical answers 434

for easier evaluation) and GSM8K (Cobbe et al., 435

2021). For knowledge-intensive evaluation, we test 436

on MMLU-CF (Zhao et al., 2024). For logical 437

reasoning, we evaluate on multiple-choice subsets 438

of BBH (Suzgun et al., 2023) (see Appendix D.1 439

for details). Finally, to evaluate multi-hop reason- 440

ing abilities, we use HotpotQA (Yang et al., 2018) 441

along with two subsets from LongBench (Bai et al., 442

2024): MuSiQue (Trivedi et al., 2022) and 2Wiki- 443

MultiHopQA (Ho et al., 2020), which specifically 444

test models’ capacity to connect information across 445

multiple contexts. For evaluation, we use the first 446

1,000 examples from each dataset, with two excep- 447

tions: we evaluate on the complete GSM8K test set 448

(1,319 examples total) and the combined MuSiQue 449

and 2WikiMultiHopQA subsets from LongBench 450

(400 examples). 451

Baselines. We compare two categories of meth- 452

ods. The first category includes classical prompt- 453

ing methods: Chain-of-Thought (CoT), CoT with 454

Self-Consistency (CoT-SC) with sample number n 455

= 5, Self-Refine, and Analogical Reasoning (Ya- 456

sunaga et al., 2024). The second category consists 457

of advanced systems, including agentic workflow 458

AFlow (Zhang et al., 2024) and test-time scaling 459

framework Forest of Thought (FoT). For FoT im- 460

plementation, we use the basic Tree of Thoughts 461

as the building blocks, considering its generaliz- 462

ability across diverse task categories, and set the 463

branch number b to three for each tree, allowing 464

three exploration attempts before selecting the op- 465

timal path. Unless otherwise specified, all reported 466

accuracy scores are averaged over three runs. More 467

reproduction details can be found in Appendix D. 468

5.2 Experimental Results and Analysis. 469

Main Results As shown in Table 1, AOT demon- 470

strates consistent improvements across different 471

reasoning tasks. AOT achieves strong perfor- 472

mance on mathematics tasks, with AOT ∗ reaching 473

6

Table 1: Performance Comparison Across Tasks (%). We evaluate three variants: the base version (AOT), a version
integrated with FoT (AOT (d=1) + FoT(n=2)), and a computationally intensive version (AOT ∗) that uses LLM to
select the optimal answer from three runs. Results are reported as exact match accuracy for MATH, GSM8K, BBH,
and MMLU-CF, and F1 scores for HotpotQA and LongBench.

Method MATH GSM8K BBH MMLU-CF HotpotQA LongBench Avg.
CoT 78.3 90.9 78.3 69.6 67.2 57.6 73.7
CoT-SC (n=5) 81.8 92.0 83.4 71.1 66.2 58.6 75.5
Self-Refine 78.7 91.7 80.0 69.7 68.3 58.2 74.4
Analogical Prompting 65.4 87.2 72.5 65.8 64.7 52.9 68.1
AFlow 83.0 93.5 76.0 69.5 73.5 61.0 76.1
FoT (n=8) 82.5 94.0 82.4 70.6 66.7 59.1 75.9
AOT (d=1) + FoT (n=2) 82.6 94.2 82.2 69.7 67.6 58.4 75.8
AOT (Ours) 83.6 95.0 86.0 70.9 80.6 68.5 80.8
AOT ∗ (Ours) 84.9 95.1 87.4 71.2 81.0 68.8 81.4

Table 2: Comparison of Reasoning Model Performance
on Multi-hop QA Tasks. Results show F1 scores and
Hit rates (F1 > 0) for HotpotQA and LongBench across
different models. Our framework with o3-mini achieves
the best performance, demonstrating significant im-
provements over baseline models while maintaining
computational efficiency. Note: LongBench evaluation
uses a 100-example subset due to computational con-
straints.

Method HotpotQA LongBench
F1 Hit F1 Hit

CoT
QwQ 68.1 82.4 52.7 65.6
DeepSeek-R1 70.0 85.5 56.0 69.9
o3-mini 77.2 88.3 55.3 70.0

AOT
gpt-4o-mini 80.6 89.8 60.5 69.3
o3-mini 81.4 91.4 63.3 72.1

84.9% on MATH and 95.1% on GSM8K (+1.9%474

over AFlow on MATH, +1.1% over FoT(n=8) on475

GSM8K). The most notable gains are in multi-hop476

QA tasks, where our base version achieves 80.6%477

accuracy on HotpotQA (+7.1% over AFlow). Simi-478

lar improvements on LongBench (68.8%) further479

demonstrate the effectiveness of our atomic state480

representation in long context scenarios.481

Reasoning Models Comparison Results. We482

compare AOT with several reasoning mod-483

els, including QwQ-32B-Preview (Qwen-Team,484

2024), DeepSeek-R1 (DeepSeek-AI, 2025), and485

o3-mini-2025-01-31(OpenAI, 2025). When op-486

erating within our framework, o3-mini demon-487

strates significant improvements: on HotpotQA, F1488

score rises from 77.2% to 81.4%, and Hit rate im-489

proves from 88.3% to 91.4%. On the LongBench490

subset, our framework with o3-mini achieves a491

1 2 3 4 5
Depth

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Pe
rf

or
ma

nc
e

(%
)

1000

780

553

369
207

Performance vs Iteration Depth on MATH

0 1000

Figure 3: Performance scaling with transition times on
MATH dataset. Darker blue indicates larger sample
sizes at shallower depths, as most problems are solved
with fewer decomposition steps.

63.3% F1 score and 72.1% Hit rate, surpassing all 492

baseline models. 493

Test-Time Optimization Results. We investi- 494

gate the test-time scaling behavior of AOT through 495

two sets of experiments. First, as shown in Figure 496

3, we analyze the performance scaling of AOT on 497

MATH dataset by setting a uniform maximum it- 498

eration limit of 5. Since each iteration produces 499

an evaluable solution, we can track performance 500

across different iteration depths. Starting with all 501

1000 test samples at depth 1, we observe that fewer 502

samples proceed to deeper iterations (dropping to 503

207 at depth 5), as many problems are solved sat- 504

isfactorily at earlier depths. The results demon- 505

strate that AOT exhibits consistent accuracy im- 506

provements from 83.2% to 92.7% as the iteration 507

depth increases, with the performance gains grad- 508

ually tapering. This pattern suggests that while 509

deeper iterations continue to benefit overall perfor- 510

7

mance, many problems can be effectively solved511

with fewer iterations, providing a natural trade-off512

between computational cost and solution quality.513

1 0 1 2 3 4
Cost ($) in log scale

79

80

81

82

83

Pe
rf

or
ma

nc
e

(%
)

Performance vs Cost on MATH

Trend line
(R²=0.999)
FoT(n=1,2,4,8)
CoT
CoT-SC

Self-Refine
AFlow
AoT(d=1)+FoT(n=2)
AoT

Figure 4: Performance comparison on MATH dataset
showing computational efficiency. The gray trend line
(formed by CoT, Self-Refine, CoT-SC, and AFlow)
shows a strong linear relationship (R2 = 0.999) indi-
cating exponential cost increase for linear performance
gains. The green line shows FoT scaling with varying
tree numbers (2k, k = 0, 1, 2, ...), establishing a dif-
ferent pattern. AOT combined with FoT(n=2) slightly
outperforms standalone FoT(n=8) while requiring sub-
stantially less computation.

In our second experiment (Figure 4), we examine514

the effectiveness of AOT as a plug-in for exist-515

ing test-time scaling methods. When integrated516

with FoT, AOT demonstrates promising efficiency.517

This efficiency gain stems from how AOT restruc-518

tures the reasoning process: by iteratively solv-519

ing sub-problems and using them as known condi-520

tions for subsequent steps, it eliminates redundant521

derivations. This leads to substantially reduced522

test-time demands in the FoT phase while achiev-523

ing slightly better performance, demonstrating how524

our approach can systematically optimize existing525

test-time scaling methods.526

Cost Analysis. Through analyzing computa-527

tional efficiency as shown in Figure 4, our AOT528

achieves superior efficiency - at a computational529

cost comparable to FoT(n=2), it reaches compet-530

itive performance compared to existing methods531

that require significantly more computation. This532

enhanced efficiency can be attributed to our state533

contraction mechanism that preserves only neces-534

sary intermediate states while eliminating redun-535

dant computations.536

Table 3: Ablation Study on AOT Components (%). Re-
moving decomposition leads to moderate performance
drops (-0.7% on MATH, -0.2% on GSM8K), while re-
moving the DAG structure causes larger degradation
(-0.9% on MATH, -0.7% on GSM8K), highlighting the
importance of structured decomposition for effective
contraction.

Method MATH GSM8K
AOT (Full) 83.6 95.0
AOT w/o Decomposition 82.9 94.8
AOT w/o DAG Structure 82.7 94.3

Ablation Study. We conduct ablation studies to 537

analyze the contribution of components in AOT. 538

Without a clear decomposition structure, the con- 539

tracting LLM fails to capture crucial dependencies 540

between subquestions, resulting in contracted ques- 541

tions that often contain redundant information and 542

fail to reduce problem complexity. Furthermore, 543

providing single sub-problem guidance without 544

proper structural information leads to the destruc- 545

tion of parallelism - where the LLM fails to main- 546

tain the parallel relationship between sub-problems. 547

This provides a critical insight: imperfect structural 548

guidance can be more harmful than no guidance at 549

all (see Appendix C.1 for examples). 550

6 Conclusion 551

In this paper, we introduced Atom of Thoughts 552

(AOT), a novel framework that transforms complex 553

reasoning tasks into a Markov process of atomic 554

questions. By implementing a two-phase transi- 555

tion mechanism of decomposition and contraction, 556

AOT eliminates the need to maintain historical de- 557

pendencies during reasoning, allowing models to 558

focus computational resources on the current ques- 559

tion state. This approach not only serves as an 560

effective standalone reasoning framework but also 561

functions as a versatile plug-in enhancement for 562

existing test-time scaling methods. Our extensive 563

evaluation across six benchmarks demonstrates the 564

framework’s effectiveness, with particularly strong 565

results on HotpotQA where AOT enables gpt-4o- 566

mini to achieve an 80.6% F1 score, outperforming 567

state-of-the-art models o3-mini and DeepSeek-R1 568

by 3.4% and 10.6% respectively. These results 569

validate AOT’s ability to enhance LLMs’ reason- 570

ing capabilities while optimizing computational 571

efficiency through its innovative Markov-style ap- 572

proach to question decomposition and atomic state 573

transitions. 574

8

7 Limitations575

A key limitation of AOT lies in its Markov state576

transition process without a well-designed reflec-577

tion mechanism. When the initial DAG decompo-578

sition fails to properly model parallel relationships579

between subquestions or captures unnecessary de-580

pendencies, it can negatively impact subsequent581

contraction and reasoning steps, a scenario that582

occurs frequently in practice. The framework cur-583

rently lacks the ability to detect and rectify such584

poor decompositions, potentially leading to com-585

pounded errors in the reasoning process. This lim-586

itation suggests the need for future research into587

incorporating effective reflection and adjustment588

mechanisms to improve the robustness of DAG-589

based decomposition.590

8 Ethics Statement591

While this work advances the computational effi-592

ciency and reasoning capabilities of language mod-593

els through the AOT framework, we acknowledge594

that these models process information and conduct595

reasoning in ways fundamentally different from596

human cognition. Making direct comparisons be-597

tween our Markov reasoning process and human598

thought patterns could be misleading and poten-599

tially harmful. The atomic state representation and600

dependency-based decomposition proposed in this601

research are computational constructs designed to602

optimize machine reasoning, rather than models of603

human cognitive processes. Our work merely aims604

to explore more efficient ways of structuring ma-605

chine reasoning through reduced memory overhead606

and simplified state transitions, while recognizing607

the distinct nature of artificial and human intelli-608

gence. We encourage users of this technology to609

be mindful of these limitations and to implement610

appropriate safeguards when deploying systems611

based on our framework.612

References613

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,614
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao615
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,616
and Juanzi Li. 2024. Longbench: A bilingual, multi-617
task benchmark for long context understanding. In618
ACL (1), pages 3119–3137. Association for Compu-619
tational Linguistics.620

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-621
berger, Michal Podstawski, Lukas Gianinazzi, Joanna622

Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi- 623
otr Nyczyk, and Torsten Hoefler. 2024. Graph of 624
thoughts: Solving elaborate problems with large lan- 625
guage models. In AAAI, pages 17682–17690. AAAI 626
Press. 627

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and 628
Yunhe Wang. 2024. Forest-of-thought: Scaling test- 629
time compute for enhancing LLM reasoning. CoRR, 630
abs/2412.09078. 631

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter 632
Bailis, Ion Stoica, Matei Zaharia, and James Zou. 633
2024. Are more LLM calls all you need? towards 634
scaling laws of compound inference systems. CoRR, 635
abs/2403.02419. 636

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 637
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 638
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 639
Nakano, Christopher Hesse, and John Schulman. 640
2021. Training verifiers to solve math word prob- 641
lems. CoRR, abs/2110.14168. 642

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 643
soning capability in llms via reinforcement learning. 644
Preprint, arXiv:2501.12948. 645

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, 646
Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmohan, 647
Qingwei Lin, and Dongmei Zhang. 2024. Everything 648
of thoughts: Defying the law of penrose triangle for 649
thought generation. In ACL (Findings), pages 1638– 650
1662. Association for Computational Linguistics. 651

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 652
Arora, Steven Basart, Eric Tang, Dawn Song, and 653
Jacob Steinhardt. 2021. Measuring mathematical 654
problem solving with the MATH dataset. In NeurIPS 655
Datasets and Benchmarks. 656

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, 657
and Akiko Aizawa. 2020. Constructing A multi-hop 658
QA dataset for comprehensive evaluation of reason- 659
ing steps. In COLING, pages 6609–6625. Interna- 660
tional Committee on Computational Linguistics. 661

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Bin- 662
hao Wu, Ceyao Zhang, Chenxing Wei, Danyang Li, 663
Jiaqi Chen, Jiayi Zhang, et al. 2024a. Data inter- 664
preter: An llm agent for data science. arXiv preprint 665
arXiv:2402.18679. 666

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 667
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 668
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 669
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 670
and Jürgen Schmidhuber. 2024b. Metagpt: Meta pro- 671
gramming for A multi-agent collaborative framework. 672
In ICLR. OpenReview.net. 673

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang 674
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao 675
Dong. 2025. Advancing language model reasoning 676
through reinforcement learning and inference scaling. 677
Preprint, arXiv:2501.11651. 678

9

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.11651
https://arxiv.org/abs/2501.11651
https://arxiv.org/abs/2501.11651

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023.679
Llm-blender: Ensembling large language models680
with pairwise ranking and generative fusion. In ACL681
(1), pages 14165–14178. Association for Computa-682
tional Linguistics.683

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.684
Brown, Benjamin Chess, Rewon Child, Scott Gray,685
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.686
Scaling laws for neural language models. CoRR,687
abs/2001.08361.688

Kimi, Angang Du, Bofei Gao, Bowei Xing, Changjiu689
Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chen-690
zhuang Du, Chonghua Liao, et al. 2025. Kimi k1.691
5: Scaling reinforcement learning with llms. arXiv692
preprint arXiv:2501.12599.693

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler694
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,695
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,696
Shashank Gupta, Bodhisattwa Prasad Majumder,697
Katherine Hermann, Sean Welleck, Amir Yazdan-698
bakhsh, and Peter Clark. 2023. Self-refine: Iterative699
refinement with self-feedback. In NeurIPS.700

Andrey Andreyevich Markov. 1906. Extension of the701
law of large numbers to dependent quantities. Izv.702
Fiz.-Matem. Obsch. Kazan Univ.(2nd Ser), 15(1):135–703
156.704

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-705
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke706
Zettlemoyer, Percy Liang, Emmanuel Candès, and707
Tatsunori Hashimoto. 2025. s1: Simple test-time708
scaling. Preprint, arXiv:2501.19393.709

OpenAI. 2025. OpenAI o3-mini: Pushing the frontier710
of cost-effective reasoning.711

G Polya. 1945. How to solve it: A new aspect of mathe-712
matical method.713

Qwen-Team. 2024. QwQ: Reflect deeply on the bound-714
aries of the unknown.715

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok716
Natarajan, Nahum Maru, Hristo Todorov, Etash717
Guha, Estefany Kelly Buchanan, Mayee F. Chen,718
Neel Guha, Christopher Ré, and Azalia Mirhoseini.719
2024. Archon: An architecture search framework for720
inference-time techniques. CoRR, abs/2409.15254.721

Herbert A Simon. 1962. The architecture of complexity.722
Proceedings of the American Philosophical Society,723
106(6):467–482.724

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-725
mar. 2024. Scaling llm test-time compute optimally726
can be more effective than scaling model parameters.727
ArXiv, abs/2408.03314.728

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-729
bastian Gehrmann, Yi Tay, Hyung Won Chung,730
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,731
Denny Zhou, and Jason Wei. 2023. Challenging732

big-bench tasks and whether chain-of-thought can 733
solve them. In ACL (Findings), pages 13003–13051. 734
Association for Computational Linguistics. 735

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, 736
and Ashish Sabharwal. 2022. 9835 musique: Multi- 737
hop questions via single-hop question composition. 738
Trans. Assoc. Comput. Linguistics, 10:539–554. 739

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, 740
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 741
2023a. Plan-and-solve prompting: Improving zero- 742
shot chain-of-thought reasoning by large language 743
models. In ACL (1), pages 2609–2634. Association 744
for Computational Linguistics. 745

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. 746
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd- 747
hery, and Denny Zhou. 2023b. Self-consistency im- 748
proves chain of thought reasoning in language mod- 749
els. In ICLR. OpenReview.net. 750

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 751
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 752
and Denny Zhou. 2022. Chain-of-thought prompt- 753
ing elicits reasoning in large language models. In 754
NeurIPS. 755

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 756
gio, William W. Cohen, Ruslan Salakhutdinov, and 757
Christopher D. Manning. 2018. Hotpotqa: A dataset 758
for diverse, explainable multi-hop question answer- 759
ing. In EMNLP, pages 2369–2380. Association for 760
Computational Linguistics. 761

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom 762
Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. 763
Tree of thoughts: Deliberate problem solving with 764
large language models. In NeurIPS. 765

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong 766
Pasupat, Jure Leskovec, Percy Liang, Ed H. Chi, 767
and Denny Zhou. 2024. Large language models as 768
analogical reasoners. In ICLR. OpenReview.net. 769

Edward Yeo, Yuxuan Tong, Morry Niu, Graham 770
Neubig, and Xiang Yue. 2025. Demystifying 771
long chain-of-thought reasoning in llms. Preprint, 772
arXiv:2502.03373. 773

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing 774
He, Qian Liu, Zejun Ma, and Junxian He. 2025. 775
7b model and 8k examples: Emerging reason- 776
ing with reinforcement learning is both effective 777
and efficient. https://hkust-nlp.notion.site/ 778
simplerl-reason. Notion Blog. 779

Guibin Zhang, Kaijie Chen, Guancheng Wan, Heng 780
Chang, Hong Cheng, Kun Wang, Shuyue Hu, and 781
Lei Bai. 2025. Evoflow: Evolving diverse agentic 782
workflows on the fly. Preprint, arXiv:2502.07373. 783

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, 784
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin 785
Cheng, Sirui Hong, Jinlin Wang, et al. 2024. Aflow: 786
Automating agentic workflow generation. arXiv 787
preprint arXiv:2410.10762. 788

10

https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://qwenlm.github.io/blog/qwq-32b-preview
https://qwenlm.github.io/blog/qwq-32b-preview
https://qwenlm.github.io/blog/qwq-32b-preview
https://api.semanticscholar.org/CorpusID:271719990
https://api.semanticscholar.org/CorpusID:271719990
https://api.semanticscholar.org/CorpusID:271719990
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason
https://arxiv.org/abs/2502.07373
https://arxiv.org/abs/2502.07373
https://arxiv.org/abs/2502.07373

Jinghan Zhang and Kunpeng Liu. 2024. Thought space789
explorer: Navigating and expanding thought space790
for large language model reasoning. In 2024 IEEE In-791
ternational Conference on Big Data (BigData), pages792
8259–8251. IEEE.793

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex794
Smola. 2023. Automatic chain of thought prompting795
in large language models. In ICLR. OpenReview.net.796

Qihao Zhao, Yangyu Huang, Tengchao Lv, Lei Cui,797
Qinzheng Sun, Shaoguang Mao, Xingxing Zhang,798
Ying Xin, Qiufeng Yin, Scarlett Li, and Furu Wei.799
2024. MMLU-CF: A contamination-free multi-800
task language understanding benchmark. CoRR,801
abs/2412.15194.802

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo803
Li, and Yu Li. 2023. Progressive-hint prompting804
improves reasoning in large language models. CoRR,805
abs/2304.09797.806

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,807
Heng-Tze Cheng, Ed H. Chi, Quoc V. Le, and Denny808
Zhou. 2024. Take a step back: Evoking reasoning809
via abstraction in large language models. In ICLR.810
OpenReview.net.811

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,812
Haohan Wang, and Yu-Xiong Wang. 2024. Language813
agent tree search unifies reasoning, acting, and plan-814
ning in language models. In ICML. OpenReview.net.815

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,816
Nathan Scales, Xuezhi Wang, Dale Schuurmans,817
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.818
Chi. 2023. Least-to-most prompting enables com-819
plex reasoning in large language models. In ICLR.820
OpenReview.net.821

11

A Analysis of structural diversity822

Graph structure and Chain Length823

0 1 2 3 4 5 6 7
Depth

0

50

100

150

200

250

Co
un
t

5

182

269
251

145

90

35
23

Problem Count Distribution by Depth

Figure 5: Distribution of solution depths across ques-
tions. Darker orange bars indicate depths that appear
more frequently in the dataset.

1 2 3 4 5 6 7 8 9
Subproblems

0

50

100

150

200

250

Co
un
t

4

52

202

243
226

132

75

37 29

Problem Count Distribution by Subproblems

Figure 6: Distribution of subquestion counts across
questions. Darker green bars represent more common
subquestion counts in the solutions.

To understand the structural characteristics of824

decomposed questions, we analyzed the first 1,000825

questions from the MATH dataset after perform-826

ing DAG decomposition. Our analysis focused on827

two key structural metrics: the depth of the solu-828

tion graph and the number of subquestions (chain829

length) in each decomposition.830

The distributions shown in Figures 5 and 6 re-831

veal clear patterns in question structure. The depth832

distribution (indicated by orange bars) shows that833

most questions have depths between 2 and 4, with834

depth 3 being the most common as indicated by835

the darkest orange bar. Similarly, the subquestion836

count distribution (shown in green) indicates that837

questions typically contain 2 to 5 subquestions,838

with the darker green bars highlighting that 3-4839

subquestions is the most frequent decomposition840

pattern.841

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Subproblems

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

Accuracy vs Number of Subproblems

Figure 7: Number of subquestions vs accuracy. Color
intensity (green) reflects data density - darker points
represent more frequent patterns.

0 2 4 6 8 10
Depth

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Accuracy vs Depth

Figure 8: Solution depth vs accuracy. Color intensity
(orange) reflects data density - darker points represent
more frequent patterns.

Notably, we observed correlations between these 842

structural metrics and solution accuracy. The scat- 843

ter plots reveal two important patterns: First, as 844

shown in Figure 8, as the depth of the solution 845

graph increases, there is a general trend of de- 846

creasing accuracy. Second, as illustrated in Fig- 847

ure 7, questions with more subquestions tend to 848

show lower accuracy rates. The color intensity 849

of the points provides additional insight - darker 850

points represent more common structural patterns 851

in our dataset, showing that most of our high- 852

accuracy solutions come from questions with mod- 853

erate depth and subquestion counts. This suggests 854

that more complex question structures, character- 855

ized by either greater depth or more subquestions, 856

pose greater challenges for question-solving sys- 857

tems. The decline in accuracy could be attributed 858

to error propagation through longer solution chains 859

12

and the increased cognitive load required to main-860

tain consistency across more complex question861

structures.862

B The prompt used in AOT863

In this section, we mainly present the basic prompts864

in mathematical scenarios.865

B.1 Direct Solver866

def direct(question: str):867
instruction = """868

You are a precise math question869
solver. Solve the given math870
question step by step using a871
standard algebraic approach:872

873
QUESTION: {question}874

875
You can freely reason in your876

response , but please enclose the877
final answer within <answer ></answer878
> tags (pure number without units879
and explanations)880
"""881
prompt = instruction.format(question882
=question)883
return prompt884

Listing 1: Direct Solver Prompt Template

B.2 Dependency Annotation885

def label(question: str , result: dict):886
instruction = f"""887

For the original question: {888
question},889

We have broken it down into the890
following subquestions:891

subquestions:892
{result [" subquestions "]}893
And obtained a complete894

reasoning process for the original895
question:896

{result [" response "]}897
We define the dependency898

relationship between subquestions as899
: which information in the current900
subquestion description does not901
come directly from the original902
question , but from the results of903
other subquestions.904

905
You are a math question solver906

specializing in analyzing the907
dependency relationships between908
these subquestions. Please return a909
JSON object that expresses a910
complete reasoning trajectory for911
the original question , including the912
description , answer , and dependency913
relationships of each subquestion.914

The dependency relationships are915
represented by the indices of the916

dependent subquestions in 917
subquestions , starting from zero. 918
""" 919

920
formatter = ''' 921

Format your response as the 922
following JSON object: 923

{ 924
"thought ": "Give your 925

thought process here", 926
"subquestions ": [927

''' 928
for i, sub_q in enumerate(result[" 929
subquestions"]): 930

formatter += f''' 931
{{" description ": "{sub_q}", "answer 932

": "<the answer of this subquestion 933
>", "depend ": [<indices of the 934
dependent subquestions >, ...]}} ''' 935

if i != len(result["subquestions 936
"]) - 1: 937

formatter += ",\n" 938
else: 939

formatter += "\n 940
]\n }" 941

942
return instruction + formatter 943

Listing 2: Dependency Annotation Prompt Template

B.3 Subquestions Contracting 944

def contract(question: str , 945
decompose_result: dict , independent: 946
list , dependent: list): 947
instruction = """ 948

You are a math question solver 949
specializing in optimizing step -by- 950
step reasoning processes. Your task 951
is to optimize the existing 952
reasoning trajectory into a more 953
efficient , single self -contained 954
question. 955

956
For the original question: { 957

question} 958
959

Here are step -by-step reasoning 960
process: 961

{response} 962
963

The following subquestions and 964
their answers can serve as known 965
conditions: 966

{independent} 967
968

The descriptions of the 969
following questions can be used to 970
form the description of the 971
optimized question: 972

{dependent} 973
974

Here are explanations of key 975
concepts: 976

1. self -contained: The optimized 977
question must be solvable 978

independently , without relying on 979
any external information 980

13

2. efficient: The optimized981
question must be simpler than the982
original , requiring fewer reasoning983
steps and having a clearer reasoning984
process (these steps are reduced985

because some solved subquestions986
become known conditions in the987
optimized question or are excluded988
as incorrect explorations)989

990
You can freely reason in your991

response , but please enclose the992
your optimized question within <993
question ></question > tags994
"""995

996
for sub_q in independent:997

sub_q.pop("depend", None)998
for sub_q in dependent:999

sub_q.pop("depend", None)1000
1001

return instruction.format(1002
question=question ,1003
response=decompose_result["1004

response"],1005
independent=independent ,1006
dependent=dependent1007

)1008

Listing 3: Subquestions Contracting Prompt Template

C Case study1009

C.1 The illusion phenomenon when1010

contracting subquestions1011

Destruction of Parallelism1012

When solving complex questions through decompo-1013

sition, parallel subquestions should maintain their1014

independence. However, parallelism can be de-1015

stroyed when merging results, as illustrated by this1016

example: Original decomposition:1017

{1018
"question": "Are both Cypress and1019
Ajuga genera?",1020
"groundtruth": "no",1021
"thought": "To determine if both1022
Cypress and Ajuga are genera , I need1023
to consider each term separately.",1024
"subquestions": [1025

{1026
"description": "Is Cypress a1027

genus?",1028
"supporting_sentences": [1029

"Cypress is a conifer1030
tree or shrub of northern temperate1031
regions that belongs to the family1032
Cupressaceae.",1033

"The genus Cupressus is1034
one of several genera within the1035
family Cupressaceae ..."1036

],1037
"answer": "yes"1038

},1039
{1040

"description": "Is Ajuga a 1041
genus?", 1042

"supporting_sentences": [1043
"Ajuga , also known as 1044

bugleweed , ground pine , carpet bugle 1045
, or just bugle , is a genus of 40 1046
species annual and perennial 1047
herbaceous flowering plants in the 1048
mint family Lamiaceae ..." 1049

], 1050
"answer": "yes" 1051

} 1052
], 1053
"conclusion": "Both are genera.", 1054
"answer": "yes", 1055
"f1": 0 1056

} 1057

Listing 4: Destruction of Parallelism Example

Contracted decomposition (showing parallelism de- 1058

struction): 1059

{ 1060
"question": "Are both Cypress and 1061
Ajuga genera?", 1062
"subquestions": [1063

{ 1064
"description": "Is Cypress a 1065

genus?", 1066
"supporting_sentences": [1067

"Cypress is a conifer 1068
tree or shrub of northern temperate 1069
regions that belongs to the family 1070
Cupressaceae." 1071

], 1072
"answer": "yes" 1073

}, 1074
{ 1075

"description": "Cypress is a 1076
genus , Is Ajuga a genus?", 1077

"answer": "yes" 1078
} 1079

], 1080
"f1": 0 1081

} 1082

Listing 5: Destruction of Parallelism Example

The destruction of parallelism is manifested in that 1083

the answers to the questions after contraction can- 1084

not be used to answer the original question, but 1085

instead create an illusion of answering a certain 1086

subquestion. 1087

Destruction of Independence 1088

When subquestions have dependencies, maintain- 1089

ing independence in the analysis chain is crucial. 1090

Loss of independence occurs when the relationship 1091

between dependent subquestions is not properly 1092

maintained during contraction, as shown in this 1093

example: Original decomposition: 1094

14

{1095
"question": "What is the name of the1096
executive producer of the film that1097
has a score composed by Jerry1098

Goldsmith?",1099
"groundtruth": "Ronald Shusett",1100
"thought": "First identify films1101
with Goldsmith scores , then find1102
their executive producers.",1103
"subquestions": [1104

{1105
"description": "Identify1106

films with scores composed by Jerry1107
Goldsmith",1108

"supporting_sentences": [1109
"The iconic score to '1110

Alien ' was composed by Jerry1111
Goldsmith",1112

"L.A. Confidential 's1113
score was composed by Jerry1114
Goldsmith",1115

"Innerspace , with music1116
composed by Jerry Goldsmith",1117

"Lionheart 's score by1118
Jerry Goldsmith"1119

],1120
"answer": [1121

"Alien",1122
"L.A. Confidential",1123
"Innerspace",1124
"Lionheart"1125

]1126
},1127
{1128

"description": "Determine1129
the executive producer for each1130
identified film",1131

"supporting_sentences": [1132
"Alien: Shusett was1133

executive producer",1134
"Innerspace: Spielberg1135

served as executive producer",1136
"L.A. Confidential: No1137

executive producer mentioned",1138
"Lionheart: Coppola as1139

executive producer"1140
],1141
"answer": [1142

"Ronald Shusett",1143
"Steven Spielberg",1144
"Francis Ford Coppola"1145

]1146
}1147

],1148
"f1": 01149

}1150

Listing 6: Destruction of Independence Example

Contracted decomposition (showing independence1151

destruction):1152

{1153
"question": "What is the name of the1154
executive producer of the film that1155
has a score composed by Jerry1156

Goldsmith?",1157
"subquestions": [1158

{ 1159
"description": "Which films 1160

have scores by Jerry Goldsmith?", 1161
"answer": [1162

"Alien", 1163
"L.A. Confidential", 1164
"Innerspace", 1165
"Lionheart" 1166

] 1167
}, 1168
{ 1169

"description": "Who is the 1170
executive producer?", 1171

"answer": "Steven Spielberg" 1172
} 1173

], 1174
"f1": 0 1175

} 1176

Listing 7: Destruction of Independence Example

Independence destruction is reflected in the fact 1177

that the second subquestion, after contraction, lost 1178

its dependency on the answer to the first subques- 1179

tion, directly producing an independent answer in- 1180

stead of determining the executive producer based 1181

on the list of movies found from the first subques- 1182

tion. This led to a final answer that deviated from 1183

the original question’s requirements and failed to 1184

accurately identify the executive producer of films 1185

scored by Jerry Goldsmith. 1186

C.2 Example of AOT Reasoning Process 1187

Question Statement 1188

For a given constant b > 10, there are two possible 1189

triangles ABC satisfying AB = 10, AC = b, and 1190

sinB = 3
5 . Find the positive difference between 1191

the lengths of side BC in these two triangles. 1192

Ground Truth 1193

We have that cos2B = 1 − sin2B = 16
25 , so 1194

cosB = ±4
5 . For cosB = 4

5 , let a1 = BC. Then 1195

by the Law of Cosines, b2 = a21+100−20a1 · 45 = 1196

a21 − 16a1 + 100. For cosB = −4
5 , let a2 = BC. 1197

Then by the Law of Cosines, b2 = a22 + 100 − 1198

20a2 ·
(
−4

5

)
= a22+16a2+100. Subtracting these 1199

equations, we get a22 − a21 +16a2 +16a1 = 0. We 1200

can factor as (a2−a1)(a2+a1)+16(a2+a1) = 0. 1201

Since a1+a2 is positive, we can safely divide both 1202

sides by a1 + a2, to get a2 − a1 + 16 = 0. Hence, 1203

a1 − a2 = 16 . 1204

LLM Input-Output Solution 1205

To find the lengths of side BC in the two possible 1206

triangles ABC given AB = 10, AC = b, and 1207

sinB = 3
5 , we will employ the Law of Sines. 1208

15

From the Law of Sines, we know:

a

sinA
=

b

sinB
=

c

sinC

where a, b, and c are the sides opposite angles A,1209

B, and C, respectively.1210

In our triangle, we assign AB = c = 10, AC =1211

b, BC = a, and sinB = 3
5 .1212

The Law of Sines gives us:

a

sinA
=

10

sinB

From which we can write:

a =
10 sinA

sinB

Since sinB = 3
5 , we can substitute:

a =
10 sinA

3
5

=
10 · 5 sinA

3
=

50 sinA

3

Using the Law of Sines again for side b:

b

sinB
=

a

sinA

We have:
b
3
5

=
a

sinA

Rearranging gives:

b · sinA = a · 3
5

From the triangle’s cosine rule:

a2 = b2 + 102 − 2 · b · 10 · cosB

Using the sine identity sin2B+cos2B = 1, we
get:

cosB =
√

1− sin2B =

√
1−

(
3

5

)2

=

√
16

25
=

4

5

Substituting into the cosine rule:

a2 = b2 + 100− 2 · b · 10 · 4
5

Calculating 2 · b · 10 · 4
5 = 16b, we get:

a2 = b2 + 100− 16b = b2 − 16b+ 100

We have the equation a = 50 sinA
3 . To find sinA,1213

we notice b2− 16b+100 can yield different values1214

for two different angles. Let A1 and A2 be the1215

angles corresponding to the two triangles possible 1216

due to the ambivalence in triangle formation. 1217

When considering these angles, the two possible
values arise from:

sinA1 =
3A1

5

and similarly for the alternate A2. 1218

The key observation is that both A values yield
a values symmetric around 10. The two sides will
be exactly equal distances away from a midpoint.
Using numeric approximations where b = 11, b =
12, etc., leads to side length differences. Final
calculation yields:

|a2 − a1| = |c2 + c1| = 6

Therefore, the positive difference between the 1219

lengths of side BC in these two triangles is 6 . 1220

Decomposition-Only Solution 1221

Q1: What are the known values and definitions for 1222

triangle ABC? 1223

A: In triangle ABC: AB = 10, AC = b (where 1224

b > 10), sinB = 3
5 . 1225

For the derivation of cosB: Since sinB = 3
5 , 1226

using the Pythagorean identity: 1227

sin2B + cos2B = 1 1228

(
3

5
)2 + cos2B = 1 1229

9

25
+ cos2B = 1 1230

cos2B = 1− 9

25
=

16

25
1231

cosB = ±4

5
1232

Q2: How to express sinA in terms of b using 1233

the Law of Sines? 1234

A: sinA = 3b
50 . 1235

Q3: How do we determine the lengths of side 1236

BC using the Law of Sines? 1237

A: BC1 =
100
b . 1238

Q4: Are there different cases for angle A that 1239

affect the length of BC? 1240

A: No, both acute and obtuse angles give the 1241

same result due to the symmetry of sine. 1242

Q5: What is the positive difference between the 1243

lengths of side BC in the two triangles? 1244

A: 0. 1245

Final Answer: 0 1246

16

Error Analysis1247

In the Direct Solution, the key error lies in only1248

considering cosB = 4
5 while missing cosB = −4

5 ,1249

leading to just one triangle configuration instead of1250

two and eventually an incorrect conclusion of 6.1251

In the Decomposition Solution, despite breaking1252

down the question into subquestions, the crucial1253

mistake was concluding that angles give "the same1254

result due to the symmetry of sine" when in fact the1255

Law of Cosines with different cosB values leads to1256

distinct triangle configurations whose BC lengths1257

differ by 16.1258

AOT Reasoning Process1259

First initialize the origin question as Q0.1260

Decomposition of Q0:1261

• Q: What are the values of the known sides1262

triangle ABC? A: AB = 10.1263

• Q: What boundary conditions are known? A:1264

AC = b > 10.1265

• Q: It is known that sinB = 3
5 in triangle1266

ABC, so what is the value of cosB? A: Use1267

the Pythagorean identity, cosB = ±4
5 .1268

Contracted Question Q1: Given two triangles1269

ABC satisfying AB = 10, AC = b > 10,1270

sinB = 3/5, cosB = 4/5 respectively, find the1271

positive difference between the lengths of side BC.1272

Decomposition of Q1:1273

• Q: Given that in triangle ABC, cosB = 4
5 ,1274

AC = b, AB = 10, let BC = a1, find the1275

equation of these two variables. A: b2 = a21 +1276

100− 20a1 · 4
5 = a21 − 16a1 + 1001277

• Q: Given that in triangle ABC, cosB = −4
5 ,1278

AC = b, AB = 10, let BC = a1, find the1279

equation of these two variables. A: b2 = a22 +1280

100− 20a2 ·
(
−4

5

)
= a22 + 16a2 + 100.1281

Contracted Question Q2: Given that b2 = a21−1282

16a1+100, b2 = a22+16a2+100, find the positive1283

difference between a1 and a2.1284

Solution of Q2:1285

Equating the two expressions for b2:

a21 − 16a1 = a22 + 16a2,

and factoring:

(a1 − a2)(a1 + a2) = 16(a1 + a2).

Dividing by a1 + a2:

a1 − a2 = 16.

Thus, the positive difference between a1 and a2 is 1286

16. 1287

Final Answer: 16 . 1288

D Implementation Details 1289

D.1 Data Subset Selection 1290

For the BBH dataset, we select all multiple-choice 1291

subsets to evaluate the model’s logical reasoning 1292

capabilities. The selected subsets include tempo- 1293

ral sequences, salient translation error detection, 1294

penguins in a table, snarks, ruin names, date under- 1295

standing, hyperbaton, logical deduction (with three, 1296

five, and seven objects), movie recommendation, 1297

geometric shapes, disambiguation QA, and reason- 1298

ing about colored objects. These subsets cover a 1299

diverse range of logical reasoning tasks, from tem- 1300

poral and spatial reasoning to deductive logic and 1301

error detection. 1302

selected_sets = [1303
'temporal_sequences ', 1304
'salient_translation_error_detection 1305
', 1306
'penguins_in_a_table ', 1307
'snarks ', 1308
'ruin_names ', 1309
'date_understanding ', 1310
'hyperbaton ', 1311
'logical_deduction_five_objects ', 1312
'movie_recommendation ', 1313
'logical_deduction_three_objects ', 1314
'geometric_shapes ', 1315
'disambiguation_qa ', 1316
'logical_deduction_seven_objects ', 1317
'reasoning_about_colored_objects ' 1318

] 1319

Listing 8: BBH Subset Selection

D.2 Forest of Thoughts 1320

In our implementation, we utilize the classical Tree 1321

of Thoughts (ToT) approach as the fundamental 1322

tree structure in our Forest of Thoughts framework, 1323

while maintaining several critical mechanisms from 1324

the original FoT, including majority voting for ag- 1325

gregating results across different trees and expert 1326

evaluation for assessing solution quality. However, 1327

our implementation differs from the original FoT 1328

in certain aspects as we address a broader range of 1329

questions. 1330

Specifically, we remove its early stopping cri- 1331

teria. The original FoT terminates tree splitting 1332

17

when nodes cannot produce valid outputs, which1333

is particularly effective for mathematical question-1334

solving like Game-of-24 where rule-based valida-1335

tion is straightforward. However, for our diverse1336

use cases where output validity is less clearly de-1337

fined, we maintain tree expansion regardless of in-1338

termediate output quality, allowing the framework1339

to explore potentially valuable paths that might1340

initially appear suboptimal. The Input Data Aug-1341

mentation technique is also omitted since such ana-1342

logical reasoning approach does not demonstrate1343

consistent effectiveness across different types of1344

questions.1345

These modifications allow the Forest of1346

Thoughts framework to maintain the strengths of1347

FoT while being more adaptable to a wider range1348

of question domains. The implementation not only1349

successfully reproduces the scaling curves reported1350

in the original FoT paper but also achieves superior1351

performance across multiple benchmarks.1352

D.3 AFlow1353

In our implementation, we leverage the optimal1354

workflows identified by AFlow across different1355

benchmark datasets while adapting them to suit1356

our specific requirements. For mathematical rea-1357

soning tasks on MATH and GSM8k datasets, we1358

directly adopt AFlow’s established optimal work-1359

flows, which have demonstrated strong perfor-1360

mance in these domains. Similarly, for multi-hop1361

reasoning scenarios in LongBench, we utilize the1362

workflow originally optimized for HotpotQA, as1363

both datasets share fundamental multi-hop reason-1364

ing characteristics. For knowledge-intensive eval-1365

uation on MMLU-CF and logical reasoning tasks1366

on BBH, which were not covered in the original1367

AFlow paper, we conducted a new workflow search1368

(consistent with the settings in the original paper)1369

to identify the most effective approach, resulting1370

in specialized workflows optimized for these for-1371

mats.1372

18

	Introduction
	Related Work
	Reasoning Framework
	Test-Time Scaling

	An Overview of AoT
	Reasoning Chain
	Dependency Directed Acyclic Graph
	Contraction

	The Design Details of AoT
	Decomposition
	Contraction
	Integration

	Experiments
	Experimental Setup
	Experimental Results and Analysis.

	Conclusion
	Limitations
	Ethics Statement
	Analysis of structural diversity
	The prompt used in AoT
	Direct Solver
	Dependency Annotation
	Subquestions Contracting

	Case study
	The illusion phenomenon when contracting subquestions
	Example of AoT Reasoning Process

	Implementation Details
	Data Subset Selection
	Forest of Thoughts
	AFlow

