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Abstract

Rapid advancements in machine learning (ML)
are transforming materials science by significantly
speeding up material property calculations. How-
ever, the proliferation of ML approaches has made
it challenging for scientists to keep up with the
most promising techniques. This paper presents
an empirical study on Geometric Graph Neu-
ral Networks for 3D atomic systems, focusing
on the impact on performance, scalability, and
symmetry enforcement of different (1) canoni-
calization methods, (2) graph creation strategies,
and (3) auxiliary tasks. Our findings and in-
sights aim to guide researchers in selecting op-
timal modeling components for molecular mod-
eling tasks. Our code is available at https:
//github.com/RolnickLab/ocp.

1. Introduction
The field of computational materials science has witnessed
an increasing interest in recent years, with the explosion of
machine learning approaches to model material properties at
the quantum scale. This is possible thanks to the release of
large-scale datasets such as OC20 (Chanussot et al., 2020)
and QM7-X (Hoja et al., 2021), which contain millions of
molecular structures along with various properties (forces,
energy, band gap) computed using quantum mechanical
simulations involving Density Functional Theory (DFT)
(Kohn et al., 1996).

ML models have been trained to approximate DFT, thus
constituting an even faster proxy to the Schrödinger equa-
tion, modeling atomic interactions and systems’ behavior.
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bec AI Institute 6Entalpic 7McGill University 8Inria Saclay.
Correspondence to: Ali Ramlaoui <ali.ramlaoui@student-
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They enable the calculation of material properties in seconds
instead of hours or days, offering the potential to accelerate
scientific discovery via high-throughput screening of novel
materials (Batatia et al., 2023a; Merchant et al., 2023). How-
ever, the explosion of ML approaches in recent years makes
it hard to keep up with promising techniques for scientists
in the field. While some surveys have attempted to struc-
ture the different categories of ML approaches (Han et al.,
2022; Duval et al., 2024), these do not focus on empirical
evaluation.

In this paper, we propose an empirical study of some key
modeling aspects of Geometric GNNs for 3D atomic sys-
tems. Specifically, we investigate the impact of 1) the recent
canonicalization methods used to enforce or approximate
Euclidean symmetries, 2) the graph creation step when mod-
eling a 3D atomic system, and 3) adding several auxiliary
tasks. We focus on the OC20 dataset modeling the relaxed
adsorption energy of an adsorbate-catalyst system. We hope
that the conclusions and insights drawn from our experi-
ments will benefit the community, making it possible to
quickly choose the right modeling component.

2. Choice of Canonicalization
A function f : X → X is said to be equivariant with respect
to a transformation t if ∀x ∈ X , f(t(x)) = t(f(x)). In par-
ticular, f is E(3)-equivariant if it is equivariant to rotations,
translations, and reflections. E(3)-equivariance is a desir-
able property in molecular modeling to learn representations
that are best suited for physically meaningful tasks, such
as force predictions on atoms (e.g., S2EF task of OC20).
This can be enforced in the architecture of the model dur-
ing the message passing steps by using equivariant features
of the input’s representation (Schütt et al., 2021; Batatia
et al., 2023b; Liao & Smidt, 2023), which comes at the cost
of expensive feature computations. A recent alternative to
these equivariant architectures lies in unconstrained GNNs,
which do not enforce E(3)-equivariance by model design
but instead with a coordinate-preprocessing step referred
to as canonicalization (Hu et al., 2021; Duval et al., 2023;
Pozdnyakov & Ceriotti, 2024). This process grants uncon-
strained GNNs with greater flexibility, scalability, and often
expressivity (Duval et al., 2024). Commonly, it involves
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projecting (e.g., with PCA or an equivariant network) the
input atomic system into a canonical space such that every
Euclidean transformation of the same system gets mapped to
the same canonical representation, i.e. handling symmetries
in the data pre-processing.

Since these canonicalization methods are all recent and no
comparison has yet been drawn, we benchmark the proposed
approaches on QM9 and OC20 tasks, evaluating their impact
on performance and symmetry enforcement.

2.1. Canonicalization for direct predictions

In this subsection, we evaluate several canonicalization
procedures with the FAENet backbone architecture (Du-
val et al., 2023), a powerful unconstrained GNN which is
not equivariant by itself. We assume familiarity of the reader
with these approaches but provide a description in Appendix
A.

• Vector Neurons Network (VNN) (Deng et al., 2021)
using the VN re-implementation of PointNet (Qi et al.,
2017) and DGCNN (Wang et al., 2019). This class of
canonicalization networks is SO(3)-equivariant by de-
sign and is applied to obtain a canonical representation
of the data following the method of Kaba et al. (2023).

• Stochastic Frame Averaging (SFA) (Duval et al., 2023),
designed to avoid averaging the predictions over 8 el-
ements of the frame as required by Frame Averaging
(Puny et al., 2021). Instead, we sample one canonical
orientation at random at each epoch, similar to data
augmentation on a small and complete set.

• A novel method denoted SFA+SignNet, where we pro-
pose to map the several projection matrices of SFA to
a single one using a sign-equivariant network proposed
in SignNet (Lim et al., 2023b;a). The rationale is to
handle the sign ambiguity problem of PCA that exists
in SFA with a small dedicated network to get a unique
canonical representation of Euclidean transformations.
We propose two implementations of SignNet, either
using VNNs to have a perfect E(3)-equivariance when
combined with SFA or using MLPs without theoretical
guarantees.

For VNNs and SFA+SignNet methods, we test both training
and freezing the weights of the Canonicalization Network
(CN). We report performance on the OC20 IS2RE, OC20
S2EF, and QM9 in Tables 1, 5, 6, 7, 8, and 9.

In our OC20 IS2RE experiment, we found there are al-
most no differences between the various canonicalization
methods, with MAE of 594, 598, and 593 for SFA, VN-
PointNet, and VN-DGCNN. Specially, non-exact canoni-
calizations (SFA and SFA+SignNet) demonstrate equal or

Canonicalization Cano. trained avg. MAE EwT (ID) 3D Rotation
parameters (meV) ↓ (%) ↑ Invariance ↓

SFA 0 594 4.40 1.30 · 10−2

(U) SFA+MLP-SignNet 0 580 4.48 9.71 · 10−2

(T) SFA+MLP-SignNet 454 583 4.46 4.00 · 10−2

(U) SFA+VN-SignNet 0 592 4.69 7.58 · 10−3

(T) SFA+VN-SignNet 2,620 599 4.25 2.57 · 10−2

(U) VN-Pointnet 0 605 4.09 4.62 · 10−3

(T) VN-Pointnet 1,310 598 4.12 3.80 · 10−3

(U) VN-DGCNN 0 600 4.31 3.11 · 10−2

(T) VN-DGCNN 663,804 593 4.42 9.10 · 10−3

Table 1. Invariance comparison of canonicalization methods on
OC20 IS2RE dataset. (U) (resp. (T)) indicates an untrained
(resp. trained) canonicalization network. FAENet backbone has
4,147,731 parameters. More details in Tables 5 and 6.

better MAE than perfectly equivariant methods (e.g., VN-
based). This suggests that heuristics approximation of equiv-
ariance should be sufficient in some practical applications
like OC20. This is aligned with what Duval et al. (2023)
suggested when showing that SFA outperforms exact Frame
Averaging in terms of downstream performance.

In terms of symmetry enforcement, non-exact methods are
surprisingly nearly as effective as fully invariant methods,
suggesting that the FAENet backbone implicitly learns to
handle symmetries.

Regarding exact canonicalization methods, we observe that
training or not the network and swapping one method for
another has little impact on model performance. This tends
to indicate that the canonical networks’s ability to intro-
duce equivariance is more critical than the choice of the
canonicalization method.

2.2. Canonicalization for relaxed IS2RE

Previous work showed that solving the IS2RE task yields
better results by performing relaxed energy predictions
rather than direct energy estimation (Liao et al., 2023).
Here, we evaluate whether canonicalization methods also
perform well at relaxing a trajectory. Table 2 reports the per-
formances of FAENet with multiple symmetry-preserving
methods, with the invariant SchNet model and direct IS2RE
acting as baseline. Our findings suggest that relaxed IS2RE
predictions are competitive with direct IS2RE predictions
and are interesting directions to explore for improving
molecular property predictions with these architectures.
Moreover, a potential explanation as to why the relaxations
do not yield significant improvements over direct IS2RE
may involve the approximate equivariance or the lack of
continuity in some of these canonicalization methods, as
pointed out in Dym et al. (2024), which may hamper accu-
rate and smooth relaxations trajectories. This is mainly true
for SFA, where a frame is randomly picked at each step of
the relaxation, meaning that the canonical inputs can also be
far from each other. Lastly, note that exact equivariant meth-
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IS2RE IS2RS
Model EwT (%) ↑ MAE (eV) ↓ DwT (%) ↑ Pos. MAE ↓
FAENet (Direct) 4.05 0.551 - -
FAENet (SFA) 4.92 0.587 31.1 0.390
FAENet (UTPN) 5.64 0.560 33.7 0.381
SchNet 1.89 0.912 15.0 0.461

Table 2. Results on the IS2RE and IS2RS tasks for the VAL-ID
validation dataset of OC20 using iterative relaxations. The S2EF
models’ results are reported in Appendix A.5. Note that these
results can only be obtained by keeping the tag 0 atoms of the
subsurface as they are important for relaxations.

ods for relaxed IS2RE predictions such as the untrained
VN-PointNet (UTPN) implementation from (Kaba et al.,
2023) yields better MAE than the approximate equivariance
module SFA. Still, during our experiments we found that
with further focus on the accuracy of S2EF models, canoni-
calization methods used to enforce symmetries can become
more appealing using iterative relaxation methods.

3. Graph Creation Study
For large molecular structures, electrostatic long-range in-
teractions are non-negligible components of the system’s
dynamics (Gasteiger et al., 2019). While various methods
have tried to model long-range interactions between far-
away atoms, they often suffer from the over-smoothing ef-
fect when increasing the number of interaction layers (Liao
& Smidt, 2023). As a result, models where the geometric
graph is modelled using a cutoff distance between neigh-
bour atoms have been shown to work best. Since properly
handling these interactions is essential to accurately simu-
late the system, we explore in this section the impact of this
creation step and the rewiring strategies.

3.1. Graph cutoff and rewiring

First, we vary the cutoff distance1 used during the creation
of the graph to check whether linking more atoms with each
other helps in learning these couplings. We report the results
for the FAENet model on the OC20 IS2RE task in Table 3.

A small cutoff of 1.0 Å leads to the weakest performance,
which makes sense since the associated graph is almost
empty and nodes are isolated, i.e. messages can not pass
correctly. A large cutoff or a complete graph also leads to
poor performance despite every atomic interaction being
modeled. Within an intermediary range of cutoff values,
the model achieves optimal learning with computational
efficiency. This is in accordance with past observations
where the locality bias of GNN models seemed to fit really
well with atomic system property prediction tasks. Thus,

1When representing the 3D point cloud with a graph, we create
an edge between any two atoms if their are within a fixed cutoff
distance, and no edge otherwise.

ID
Model EwT (%) ↑ MAE (eV) ↓
Cutoff 30 - Max neighbours 40 2.65 0.697
Cutoff 20 - Max. neighbours 40 3.08 0.673
Cutoff 20 - Max. neighbours 10 2.25 0.768
Cutoff 10 - Max. neighbours 50 4.17 0.553
Cutoff 10 - Max. neighbours 10 4.49 0.553
Cutoff 6 - Max. neighbours 40 4.31 0.553
Cutoff 1 - Max. neighbours 40 1.35 1.069

Table 3. Impact of the cutoff on the performance of FAENet on the
OC20 IS2RE task. Full Table in Appendix B.1.

although the creation of the graph through a well-chosen
cutoff is important, the margin for fine-tuning this parameter
is large enough.

The fact that better graphs are adapted to GNN functioning
rather than the precise modeling of the situation, where all
atoms interact with each other, echoes what Duval et al.
(2022) have stated. Indeed, they showed that to fit the GNN
message passing scheme, removing repeating subsurface
atoms of the adsorbate did not affect the model performance
on IS2RE tasks. Similarly to having a moderate cutoff, the
performance improvements of such a strategy are decisive
for scalability. As an empirical example, we tried to run an
EquiformerV2 (Liao et al., 2023) model for IS2RE with the
remove-tag-0 method on an 80GB A100 GPU, leading to
a 5× speed-up with no performance loss and proving the
relevance of this technique even on very large models.

3.2. Ewald-based long range message passing

Since a small value for the cutoff seems to be the most
interesting one, we want to model the long interactions dif-
ferently than adding links between all atoms. Ewald-based
Message Passing (EMP) (Kosmala et al., 2023) is introduced
in this perspective. It incorporates a physics-based prior in
the architecture to model the long-range electrostatic po-
tential via a nonlocal Fourier space scheme, drawing edges
based on a cutoff on frequency instead of distances.

Our experiments, given in Table 4, show that EMP is in-
teresting for an invariant method like SchNet (Schütt et al.,
2017), which limits its geometric information to atom pair-
wise distances. However, EMP does not benefit more ad-
vanced GNNs like FAENet. To understand why, we plot
in Figure 1 the cosine similarity between the embeddings
throughout interaction layers. We observe that SchNet and
FAENet learn very different representations. Indeed, while
the representation of each atom in SchNet tends to be simi-
lar to nearby atoms, FAENet is able to give very different
embeddings for them. A potential explanation could be
that because FAENet is a more expressive model, the prop-
agated messages are less constrained and thus can lead to
very diverse atom representations without Ewald. On the
other hand, embeddings of SchNet only become diversified
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ID
Model EwT (%) ↑ MAE (eV) ↓
FAENet (Graph Rewiring) 4.05 0.551
FAENet (Graph Rewiring) + Ewald 4.12 0.562
FAENet (No Graph Rewiring) 4.54 0.544
FAENet (No Graph Rewiring) + Ewald 4.11 0.556
SchNet (Graph Rewiring) 3.18 0.641
SchNet (Graph Rewiring) + Ewald 3.54 0.604
SchNet (No Graph Rewiring) 2.93 0.654
SchNet (No Graph Rewiring) + Ewald 3.48 0.597

Table 4. Comparison of the performances of FAENet and SchNet
with and without Ewald Message Passing on the IS2RE task. Full
table and results for the QM9 dataset in Appendix B.2.

using Ewald, maybe because incorporating longer messages
helps create more distinct representations. More plots can
be found in Appendix B.2. One interesting takeaway is that
EMP helps take into account long-range interactions for
simple models and GNNs with symmetry-constrained lay-
ers (Kosmala et al., 2023) but is less efficient on expressive
models.

(a) SchNet without Ewald (b) FAENet without Ewald

(c) SchNet with Ewald (d) FAENet with Ewald

Figure 1. Similarity matrix of the embeddings of the atoms of a
randomly picked system for different interaction blocks from the
training set of OC20. The same system is used every time to be
able to compare the different results.

4. Auxiliary Tasks
In this section, we study how to leverage other tasks to
improve the performance of FAENet on IS2RE.

4.1. Noisy nodes IS2RS auxiliary task

First, we recall that increasing the number of interaction
blocks above 8 does not yield better performance for most
geometric GNNs, with a dramatic loss of information after
14 layers in the classical FAENet IS2RE setup, as illustrated
in Table 14. To address the oversmoothing issue, Godwin
et al. (2022) propose to use noisy regularisation, introducing
their method called Noisy Nodes. It consists of adding an
auxiliary node-level denoising task that encourages diversity

Figure 2. MAD values of the graph embeddings (averaged over 50
randomly sampled graphs of the train set) throughout the interac-
tion layers for various models. “FAENet top” models are trained
with the top configs of the classical FAENet model (Duval et al.,
2023) but with more epochs and lower batch size (128). “FAENet
aux” models are our models trained on IS2RE with IS2RS aux-
iliary task. A model having xx interaction layers is indicated as
“XXi”.

in the latent representations of the nodes (more details in
C.2).

Here, we implement Noisy Nodes for the IS2RE task, which
is done by adding a position decoding head running in par-
allel to the original energy prediction head. Our implemen-
tation takes inspiration from other state-of-the-art models
such as EquiformerV1 (Liao & Smidt, 2023), which benefit
from using Noisy Nodes on the IS2RE task (more details in
C.2).

To understand the reason for the performance drop for the
classical FAENet IS2RE setup of (Duval et al., 2023) when
adding interaction layers in Table 14, we plot the Mean Av-
erage Distance (MAD) (Chen et al., 2019), averaged over 50
input adsorbate-catalyst pairs, of their embeddings through-
out the interaction blocks in Figure 2. The classical FAENet
models (”FAENet top”) with 14 interaction layers or more
see their latent node representations all collapse to almost
the same vector, since the MAD goes to almost zero as we
go deeper in the model’s interaction layers, which is a mani-
festation of oversmoothing. Figure 2 shows that the models
trained with Noisy Nodes IS2RS auxiliary task (”FAENet
aux”) do not suffer from oversmoothing (i.e. MAD going to
zero) even when going as deep as 28 interaction layers.

Then, we compare the performances of our new FAENet
models trained on IS2RE Noisy Nodes, varying the number
of interaction layers, as summarized in Table 15. First, we
observe a clear correlation between the performances and
the number of blocks. Second, the best model trained with
Noisy Nodes, which has 26 interaction blocks, outperforms
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the best models of (Duval et al., 2023), allowing the average
MAE to decrease from 568 meV to 525 and the average
EwT percentage to increase from 3.78% to 4.43%. Details
about our experimental setup are given in Appendix C.1.
We observe that the throughput at inference is divided by
two between the smallest (5 interaction layers) and biggest
model (28 layers). The best tradeoff seems to be around
16 interaction layers, similar to what (Liao & Smidt, 2023)
choose for their models trained with IS2RS auxiliary task.

The current most general state-of-the-art models for atomic
property prediction, such as (Shoghi et al., 2024) only make
use of backbone GNNs (such as GemNet-OC (Gasteiger
et al., 2022)) with not more than 6 interaction blocks. Noisy
Nodes proves to be a regularisation technique that can be
used across models, having equivariant (Liao & Smidt,
2023) or non-equivariant (Duval et al., 2023) features, to
leverage the power of more interaction layers and improve
performance. On direct IS2RE, our experiments only show
a slightly increasing performance with the number of blocks.
Yet, unlocking the potential of deeper GNNs with this simple
regularisation allows greater freedom in training or pretrain-
ing on larger datasets or for more complex tasks, such as re-
laxed IS2RE 2.2. Our focus for FAENet was on IS2RE, but
we expect similar results on S2EF, IS2RS, and other datasets
such as QM9 or QM7-X, as obtained by (Godwin et al.,
2022) with other GNNs such as GNS (Sanchez-Gonzalez
et al., 2020).

4.2. Learning equivariance with more interaction layers

As previously stated, equivariant networks are preferred
when handling 3D point clouds. However, in the field
of protein structure prediction, we were caught by the Al-
phaFold3 architecture (Abramson et al., 2024) that chose
non-equivariant networks in its diffusion module, contrary
to AlphaFold2 (Jumper et al., 2021). Thus, we tested
whether a deep GNN with no equivariance enforced could
learn the equivariance from the data and match perfor-
mances with canonicalized models using the FAENet back-
bone, as in Section 2.

We compare our models trained on IS2RE with IS2RS aux-
iliary task in two settings: with SE(3)-SFA and without any
canonicalization method (No-FA). The results are displayed
in Table 16. They reveal that, even with many additional
interaction blocks (up to 26), both the MAE and the equivari-
ance property do not improve compared to using SE(3)-SFA,
meaning that imposing equivariance is still a beneficial in-
ductive bias. Unfortunately, in our setting, having a deeper
network does not allow to learn invariance and equivariance
more effectively. Further analysis would be needed with
larger datasets and other methods to reinforce this argument
or find its limits (if any).

4.3. Pre-training on different tasks

With the release of larger datasets, the community has in-
creasingly shifted towards pre-training and transfer learning
approaches (Batatia et al., 2023a; Shoghi et al., 2024; Deng
et al., 2023). We make a step in this direction in this subsec-
tion by pre-training our model on the S2EF, which contains
roughly two orders of magnitude more data points, and by
fine-tuning it on IS2RE, hoping to transfer some knowl-
edge of atomic interactions. More precisely, we leverage
the extensive S2EF dataset to utilize all trajectories while
maintaining high inference throughput by performing di-
rect energy predictions. Although training on S2EF is more
time-consuming than on IS2RE, separating the learning of
relaxation and molecular interactions may yield better re-
sults than training IS2RE directly from scratch.

Figure 7 in Appendix C.6 shows that with this approach,
the energy MAE starts at a better value during training
but evolves much slower and converges to a slightly bet-
ter result (0.53 eV vs. 0.55 eV on the validation ID split).
This shows that while the model starts with a good repre-
sentation of molecular dynamics, the differences are not
significant because dynamics are not taken into account by
the S2EF training process. Learning molecular interactions
through auxiliary tasks with or without dynamics is helpful
to achieve better performances, but this pre- or joint train-
ing needs to be correctly incorporated into the architecture
so as not to overwrite the learned information during the
downstream task. This opens the way for new architectures
designed to leverage materials design knowledge between
tasks and datasets (Shoghi et al., 2024). Whether by training
with auxiliary tasks or on other datasets, there seems to be
transfer learning and generalization capabilities in atomic
property prediction, as in NLP. Hence, we recommend to
further explore this promising area of research.

5. Conclusion
In this study, we explored various techniques aimed at en-
hancing the performance of geometric GNNs for molecular
modeling. Our empirical study covered several aspects, with
the main observations being summarized below.

Canonicalization methods. While exact methods provide
the best theoretical guarantees for equivariance, approxima-
tive heuristics such as SFA seem to yield better performance.
This opens questions about how to design canonicalizations
that are the most effective in practice, beyond theoretical
guarantees, and leaves a broader set of possibilities for the
model design, too.

Graph creation. Although accurate graph construction
is important, many viable options can be considered with-
out significant differences in performance. Furthermore,
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physics-inspired modules such as Ewald-based message
passing demonstrate improved performance for symmetry-
constrained models such as SchNet but do not provide any
benefits to more expressive models such as FAENet.

Auxiliary tasks. Implementing Noisy Nodes as an auxil-
iary task significantly enhances the performance of FAENet
by leveraging the benefits of much deeper GNNs. As with
pretraining on different tasks such as S2EF, there is evidence
of transfer learning for atomic property prediction, and we
recommend more exploration of this path in the flavor of
(Shoghi et al., 2024).

Future work could focus on refining these techniques,
exploring their applications across a wider spectrum of
datasets, and developing new methods to combine the
strengths of various approaches.
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Schütt, K., Kindermans, P.-J., Sauceda Felix, H. E., Chmiela,
S., Tkatchenko, A., and Müller, K.-R. Schnet: A
continuous-filter convolutional neural network for model-
ing quantum interactions. Advances in neural information
processing systems, 30, 2017.
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