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Abstract

Over the past years, we have observed an abundance of approaches for modeling
dynamic 3D scenes using Gaussian Splatting (GS). These solutions use GS to
represent the scene’s structure and the neural network to model dynamics. Such ap-
proaches allow fast rendering and extracting each element of such a dynamic scene.
However, modifying such objects over time is challenging. SC-GS (Sparse Con-
trolled Gaussian Splatting) enhanced with Deformed Control Points partially solves
this issue. However, this approach necessitates selecting elements that need to be
kept fixed, as well as centroids that should be adjusted throughout editing. More-
over, this task poses additional difficulties regarding the re-productivity of such
editing. To address this, we propose Dynamic Multi-Gaussian Soup (D-MiSo),
which allows us to model the mesh-inspired representation of dynamic GS. Addi-
tionally, we propose a strategy of linking parameterized Gaussian splats, forming a
Triangle Soup with the estimated mesh. Consequently, we can separately construct
new trajectories for the 3D objects composing the scene. Thus, we can make the
scene’s dynamic editable over time or while maintaining partial dynamics.

1 Introduction

Figure 1: D-MiSo model parameterized dynamic
scenes by Triangle Soup (disjoint triangles cloud),
which allows modification of objects during time.

Recently introduced Gaussian Splatting (GS) [1]
represents the 3D scene structure through Gaus-
sian components. We can combine GS with the
neural network (i.e., deform network) to model
dynamic scenes [2]. This approach involves
the joint training of both the GS components
and the neural network. GS characterizes the
3D object’s shape and color, while the neural
network utilizes time embedding and Gaussian
parameters to generate updated initial positions
to model dynamic scenes. Such an approach
allows for fast rendering and extracting each
element of a dynamic scene.

Most existing methods can effectively model
dynamic scenes, but generating new 3D objects’

positions remain challenging. Consequently, we
cannot edit objects over time when using such
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Figure 2: Each object using the D-MiSo model is represented by Core-Gaussians and Sub-Gaussians,
which form Multi-Gaussians. Each Gaussian is related to a triangle using parameterization proposed
in GaMeS [3]. Triangles define the Gaussian shape (i.e., location, scale, rotation), and triangles
clouds form Triangles Soups.

approaches. To tackle this issue, SC-GS (Sparse Controlled Gaussian Splatting) [4] uses Deformed
Control Points to manage Gaussians. After the training phase, we can manually modify the model at
any point in time. However, this method requires identifying elements to remain static and adjusting
3D objects’ centroids (nodes) during editing when a relationship between the selected nodes is visible.
For example, by moving the humanoid 3D model’s hand, the part of the head or leg is also changed.

Figure 3: D-MiSo allows us to modify scenes in
similar ways as classical mesh-based models.

To address this issue, we introduce Dynamic
Multi-Gaussian Soup (D-MiSo), which is easier
to modify (Fig. 1) and obtain renders compara-
ble to SC-GS. D-MiSo estimates the mesh as
Triangle Soup, i.e. a set of disconnected trian-
gle faces [5, 6], and uses a dynamic function to
control the vertices.

D-MiSo employing Multi-Gaussians, defined
as larger Core-Gaussians encompassing smaller
ones termed Sub-Gaussians (Fig. 2). Sub-
Gaussians are defined in the local coordinate
system given by principal components of Core-
Gaussian. Therefore, by modifying Core-
Gaussian, we change all Sub-Gaussians, which allows scene modifications (Fig 3). Core-Gaussians
are an alternative to the control points discussed in [4], with the added advantage of allowing individ-
ual modifications. Consequently, there is no necessity for static and dynamic markers. In Fig. 4, we
present the difference between modification applied by SC-GS and D-MiSo.

Our model uses flat Gaussians. Therefore, based on GaMeS [3], we can approximate Gaussian
components using triangle face mesh by parameterizing Gaussian components by the vertices of the
mesh face. We denote such transformation by T (·). In practice, as a consequence of parameterizing
each Gaussian, we obtain a cloud of triangles called Triangle Soup [5]. Using Triangle Soup, we can
control two types of Gaussian components. Accordingly, in D-MiSo, we get: Sub-Triangle Soup,
Core-Triangle Soup and Multi-Triangle Soup (Fig. 2, Core-Triangle Soup is marked by red color, and
Sub-Triangle Soup is denoted in blue). In D-MiSo, we can select and modify one part of the object
like a mesh. In contrast, using SC-GS, static and dynamic points have to be selected, and editing only
one part of the object is difficult.

During training, the positions of Core-Gaussians are managed by deformation multilayer perceptron
(MLP), while the Sub-Gaussians are collectively manipulated through global transformation and
small local deformation. The former describes the general flow of objects in the scene, while the
local deformation is responsible for modeling small changes like shadows and light reflections. After
training, we can modify our model directly by using the vertex of the Sub-Triangle Soup, or we can
generate mesh from the Core-Triangle Soup (Fig. 5).

The contributions of this paper are significant and are outlined as follows:

• We introduce the Multi-Gaussian components, which consist of a single large Gaussian response
for global transformations and many small components dedicated to rendering. Multi-Gaussian
components allow for the modeling of large 3D scene elements.

• We propose D-MiSo a model that uses Multi-Gaussian components and two deformation networks
for modeling dynamic scenes.
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Figure 4: Comparison of possible modifications in D-MiSo and the SC-GS. In the latter, authors use
nodes while D-MiSo apply Sub-Triangle Soup (see the second column). We also must add static
(pink) and dynamic (yellow) points in SC-GS to obtain modification by editing dynamic points.
In practice, we have to use many static points to stop artifacts. Moreover, SC-GS is not an affine
invariant and produces space when we change the size of the objects. In the case of D-MiSo, we
marked points and applied modifications. Our model is superior in handling object scaling.

• Our D-MiSo allows an object to be edited at a selected moment in time. The edited components
are independent, and the editing does not affect other parts of the object. In addition, it also allows
for full or partial dynamics to be maintained. Modifications also include scaling and rotation.

2 Related Works
Recent advancements in view synthesis, particularly driven by NeRFs [7], have significantly con-
tributed to the rapid development of novel view synthesis techniques. However, the majority of
these approaches model static scenes implicitly using MLP. Moreover, several works have extended
classical NeRF to dynamic scenes through the use of deformation fields [8, 9, 10] and [11]. The
alternative approaches, such as [12] and [13], represent scenes as 4D radiance fields. Early works on
dynamic scenes face difficulties when dealing with monocular settings and uncontrolled or lengthy
scenarios. To enhance scene motion modeling, some works utilize flow-based techniques [10, 14, 15].
However, NeRF-based solutions often suffer from long training and rendering times. To address
this, grid-plane-based methods [16, 17, 18] have been proposed. In addition, several NeRF-based
approaches have also been extended for scene editing purposes [19, 20, 21, 22].

The recently introduced Gaussian Splatting (GS) technique [1] addresses many limitations of other
methods, offering multiple advantages due to their explicit geometry representation, enabling easier
dynamics modeling. The efficient rendering of the 3D version of GS also avoids densely sampling and
querying neural fields, making downstream applications such as free-viewpoint video reconstruction
more feasible. A notable extension of 3D GS was proposed in [23], where the authors introduced
the concept of anchor points to tackle the problem of overfitting caused by redundant Gaussians.
Scaffold-GS addresses this issue by distributing local 3D Gaussians according to anchor points. This
approach reduces redundancy, enhances scene coverage, and maintains high-quality rendering with
improved robustness to view changes. While the original GS was developed for static scenes, several
extensions for dynamic scenes were proposed. Most of the early works operate in multiview setup
[24, 25, 26]. For example, [26] utilizes a frame-by-frame approach to model each timestep. However,
this method lacks inter-frame correlation and requires high storage overhead for long-term sequences.
In [27, 2], MLP is introduced to model changes in Gaussians over time, and in [28] MLP together
with decomposed neural voxel encoding algorithm are utilized for training and storage efficiency. In
[29], dynamic scenes are divided into dynamic and static parts, optimized separately and rendered
together to achieve decoupling. [24] spacetime Gaussian proposes approximating the spatiotemporal
4D volume of a dynamic scene by optimizing a collection of 4D primitives with explicit geometry
and appearance modeling. This method uses 4D Gaussians parameterized by anisotropic ellipses and
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Figure 5: One way to modify the object at the selected time ti is to take Core-Gaussians and apply
a meshing strategy to obtain the correct mesh instead of Triangle Soup. Then, we can parametrize
Sub-Gaussian in the coordinate system given bay mesh faces instead of Core-Triangle Soup. Finally,
we can modify our mesh to obtain new modifications.

view-dependent, time-evolved appearances represented by 4D spherical harmonics coefficients. In
[25], a novel, real-time and photorealistic scene representation called Spacetime Gaussian Feature
Splatting has been introduced. This approach extends 3D Gaussians with temporal opacity and
parametric motion/rotation, enabling the capture of static, dynamic, and transient scene content.
Additionally, the method incorporates splatted feature rendering to model view- and time-dependent
appearances while maintaining a compact representation size. The method is notable for its high
rendering quality and speed while also being storage-efficient. Other works enhance dynamic scene
reconstruction using external priors. For example, the diffusion priors can be used as regularization
terms during optimization [30].

Furthermore, GS was employed for mesh-based scene geometry editing. In [31], 3D Gaussians are
defined over an explicit mesh and utilize mesh rendering to guide adaptive refinement. This approach
depends on the extracted mesh as a proxy and fails if the mesh cannot be extracted. In contrast,
in [32], explicit meshes are extracted from 3D GS representations by regularizing Gaussians over
surfaces. However, this method involves a costly optimization and refinement pipeline. Another
example of [33] employs sparse control points for 3D scene dynamics, but this method struggles with
intense edit movements and necessitates accurate static node selection. Also, [3] combines GS with
mesh extraction. However, such an approach only works for static scenes.

Figure 6: Multi-Gaussian, consisting of one Core-
Gaussian GVj

and a Sub-Gaussian GiVj
. The Core

Gaussian is parametrized by a Vj-triangle, and the
Sub-Gaussian by a V ij -triangle. The relative dis-
tance of the center of the Sub-Gaussian from the
Core-Gaussian is indicated by αiαiαi = (αi1, α

i
2, α

i
3).

The method proposed in [34] combines meshes
with GS and reconstructs a high-fidelity and
time-consistent mesh from a single monocular
video. However, it relies on a Poisson Solver and
differentiable Marching Cubes to recover the de-
formed surface, significantly complicating the
pipeline. Moreover, it does not explore geom-
etry modification capabilities, which constitute
a significant aspect of our work. Conversely,
cage-based methods [35, 36] are an intuitive
tool for geometry manipulation. However, they
require additional steps for cage-building and
may lack the flexibility and precision of manual,
vertex-level deformation techniques, potentially
missing fine details.

In contrast to the listed approaches, we propose a D-MiSo, a mesh-based method specifically designed
to handle dynamic scenes. D-MiSo leverages a straightforward pipeline of GS techniques to enable
real-time editing of dynamic scenes.

3 Dynamic Multi-Gaussian Soup

Here, we present the main components of D-MiSo. We start with the classical GS to provide the
foundations for our model. Next, we introduce the concept of Multi-Gaussians and describe how to
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Figure 7: D-MiSo model diagram. The input of the model consists of images at different moments in
time and information regarding the position of the camera. Training distinguishes two main phases
(i.e., stages). The first includes the preparation of Core-Gaussians, describing the movement of the
object. The second focuses on the fitting of Sub-Gaussians responsible for the render’s quality. The
model has the ability to produce high-quality renders or create an animation/modification of the
object due to Sub-Gaussians (i.e., Sub-Triangles Soup) shape modification.

estimate the mesh for editing. Finally, we show D-MiSo, which uses Multi-Gaussians in dynamic 3D
scenes.

Gaussian Splatting The Gaussian Splatting (GS) technique models 3D scenes using an array of
3D Gaussians, each specified by its mean position, covariance matrix, opacity, and color expressed
using spherical harmonics (SH) [37, 38]. The GS algorithm constructs the radiance field by iteratively
optimizing the parameters of all Gaussian components. Ultimately, the GS efficiency mainly depends
on its rendering method, which involves projecting Gaussian components.

The GS framework employs a dense collection of 3D Gaussians: G = {(N (mi,Σi), σi, ci)}ni=1,
where mi denotes the position, Σi the covariance, σi the opacity, and ci the SH colors for the i-th
Gaussian. The GS optimization process involves a repetitive cycle of rendering and comparing the
resultant images with the training views. In our work, we will use Multi-Gaussian approaches (Fig. 6).

Figure 8: Representation of change over time act-
ing on Core-Gaussians using a neural network re-
sponsible for movement. In practice, ti is an ab-
stract time. The network’s output returns informa-
tion about the change in location ∆v1, scale (∆v2,
∆v3), and rotation ∆R.

Multi-Gaussians Multi-Gaussians Gmulti are
dedicated to describing relatively large parts
of the 3D scene to allow modification of large
blocks instead of modifying each small Gaus-
sian separately. The Multi-Gaussian model com-
prises a primary large 3D Gaussian (referred
to as the Core-Gaussian Gcore), which encom-
passes numerous smaller Gaussians (termed
Sub-Gaussians Gsub), all of which are param-
eterized by the main Core-Gaussian. Multi-
Gaussianare is similar to anchor Gaussians
from [39], but we do not use a neural network
to produce child components. We parametrize
Sub-Gaussians in a local coordinate system.

Similarly to classical GS, we parameterize the Core-Gaussian distribution by center m and the
covariance parameterized by factorization: Σ = RSSRT , where R is the rotation matrix and S the
scaling parameters. More precisely we consider p Core-Gaussians uses flat Gaussians as in [3], and
is defined by:

Gcore = {(Ncore(mi, Ri, Si), σi, ci)}pi=1, (1)

where S = diag(s1, s2, s3), s1 = ε and R is rotation matrix of Core-Gaussian defined as:
R = (r1, r2, r3), where ri ∈ R3 which can be interpreted as a local coordinate system used by
Sub-Gaussian.
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It is worth noting that Sub-Gaussian can be interpreted as a child of Core-Gausian. We define centers
of Sub-Gaussian Nsub(m

i, Ri, Si) in the local coordinate system of Core-Gaussian Ncore(m, R, S)
by: mi = m+RαiαiαiT , where m, R is Core-Gaussian position and rotation; and αiαiαi = (αi1, α

i
2, α

i
3)

are trainable parameters used to define the positions of the Sub-Gaussian relative to the Core-Gaussian
(Fig. 6). Sub-Gaussians are used for rendering and can be seen as a main component of our model:

Gsub =
{(

Nsub

(
m+RαiαiαiT , Ri, Si

)
, σi, ci

)}k
i=1

, (2)

where m, R, S are parameters of Core-Gaussian and, αi, Si, Ri marks parameters of i-th Sub-
Gaussians with opacity σi, and SH colors ci.

Core-Gaussians is generally dedicated mainly to transformations, hence, in practice opacity or
colors are not used during rendering. On the other hand, Sub-Gaussian is devoted to rendering and
modification. It has its own opacity and colors.

Figure 9: One way to animate is to assign the near-
est triangle (face) to each Sub-Gaussian from the
estimated mesh. The mesh modification changes
the assigned Gaussian.

GaMeS parametrisation of Multi-Gaussian
component Multi-Gaussians describe 3D
scenes using solid blocks rather than tiny Gaus-
sian distributions. This method enhances our
model’s suitability for dynamic environments.
One of our mode’s most important properties is
its ability to model dynamic scenes in each time
step. To obtain such properties, we parameter-
ize all Gaussian using Triangle Soup following
similar approach as in GaMeS [3]. Thanks to a
few simple transformations, we can convert the
mean m rotation R and scaling S into triangle
V = (v1,v2,v3), which parametrizes Gaussian
distribution. Such transformation is unambigu-
ous and reversible.

Let us assume that we have a Gaussian component parameterized by mean m, rotation matrix
R = [r1, r2, r3] and scaling S = dig(ε, s2, s3). We define three vertex of a triangle (face): V =
[v1,v2,v3],, where v1 = m, v2 = m+ s2r2, v3 = m+ s3r3.

Now we froze the vertex of the face V = [v1,v2,v3] and reparameterize the Gaussian component by
defining m̂, R̂ = [r̂1, r̂2, r̂3] and Ŝ = dig(ŝ1, ŝ2, ŝ3). First, we put m̂ = v1. The first vertex of R̂ is
given by a normal vector:

r̂1 =
(v2 − v1)× (v3 − v1)

∥(v2 − v1)× (v3 − v1)∥
,

Figure 10: An example of Sub-Triangle Soup mod-
ification using D-MiSo and the render obtained by
this change from a different viewpoint. It is possi-
ble not only to change the position of the hand but
also to raise the thumb. Comparison with SC-GS
similar modifications, highlighting the challenge
of editing small elements individually.

where × is the cross product. The second one
is defined by r̂2 = (v2−v1)

∥(v2−v1)∥ . The third one is
obtained as a single step in the Gram–Schmidt
process [40]:

r̂3 = orth(v3 − v1; r1, r2).

Scaling parameters can also be easily calcu-
lated as s1 = ε, ŝ2 = ∥v2 − v1∥ and ŝ3 =
⟨v3 − v1, r̂3⟩. Consequently, the covariance of
Gaussian distribution positioned on face is given
by:

Σ̂V = R̂V ŜV ŜV R̂
T
V ,

and correspond with the shape of a triangle V .
For one face (v1,v2,v3), we define the corre-
sponding Gaussian component:

N ((v1,v2,v3)) = N (m̂V , R̂V , ŜV ).
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Figure 11: Reconstruction and three ways of modification of the output object. The first involves
modifying the estimated mesh, which does not have to be accurate. The next two focus on Sub-
Triangle Soup editing. The red box shows the direct modification of the Triangle Soup in a logical
way (e.g., raising a hand). The yellow box shows a change in space, i.e., giving fluidity to an object
by creating an abstract modification.

Finally, the Gaussian component is derived from the mesh face parameters. This approach can be
applied in a Multi-Gaussian framework. Therefore, we will use invertible transformation between
Gaussian parameters and triangle face T and notation:

N (V ) := N (T −1(V )) = N (m̂V , R̂V , ŜV ).

In our D-MiSo we parameterize the p Core-Gaussians with k Triangle soup:

Gmulti =
{(

Ncore(Vj),
{(

Nsub

(
m̂Vj

+ R̂Vj
αiαiαiT , R̂i, Ŝi

)
, σi, ci

)}k
i=1

)}p
j=1

, (3)

where Vj , αiαiαi, Ri,Ŝi, σi, ci are trainable parameters and (m̂Vj , R̂Vj , ŜVj ) = T −1(Vj). Alternatively,
we can parameterize Core-Gaussian and Sub-Gaussians by Triangle Soup:

Gmulti =
{(

Ncore(Vj),
{(

Nsub

(
V ij

)
, σi, ci

)}k
i=1

)}p
j=1

, (4)

where (m̂Vj
, R̂Vj

, ŜVj
) = T −1(Vj), V i = T (m̂V + R̂Vα

iαiαiT , R̂i, Ŝi).

In D-MiSo, we use the collation of Multi-Gaussian distribution for rendering and Sub-Triangle Soup
for editing. The formal definition of our model uses equation (3) since, in training, we store Core-
Gaussian as a triangle face (Core-Gaussian does not have colors) and Sub-Gaussian as a collection
from classical GS components with color and opacity. After training, we parametrize our model to
equation (4) for editing.

3.1 Dynamic Multi-Gaussian Soup (D-MiSo)

Previously, we defined Multi-Gaussians and their parametrization using Triangle Soup. Now, we
have all the tools to present the D-MiSo model. The overview of our method is illustrated in Fig. 7.
The input to our model is a set of images of a dynamic scene, together with the time label and the
corresponding camera poses. Our training is divided into two stages. In the first stage, we initialize
the Core-Gaussians. In the second, we add Sub-Gaussian components.

Stage 1 First, we train only Core-Gaussians to obtain good initialization for Multi-Gaussins.
As Core-Gaussians are mainly employed to capture motion, our model only requires their small
amount (Fig. 7). In our approach, the Core-Triangle Soup, constructed via the Core-Gaussians
parameterization (as depicted in Fig. 2), is adjusted depending on the time t.

In practice, when random initialization of Gaussians is necessary, redundant Gaussians must be pruned
first to ensure that the remaining ones represent the object’s shape. To reduce the number of Gaussians
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and obtain consistent Core-Gaussians, we train GS on a batch containing a few views instead of one.
In practice, we render a handful of views from different positions and use back-propagation.

In particular, we parameterize Gaussians N (m, R, S) by face V = (v1,v2,v3) to ob-
tain N (v1,v2,v3). Our Deform Network takes as in input the triangle vertices V as-
signed to the parameterized 3D Core-Gaussians and the current time t and returns updated
ψ(V, t) = (∆v1(t),∆v2(t),∆v3(t),∆RV (t)). Such updates consist of translation and rota-
tion (Fig. 8):

V (t) = V ⊙ ψ(V, t) = (v1 +∆v1(t),v2 +∆v2(t),v3 +∆v3(t)) ·∆RV (t).

D-MiSo parameterized Core-Gaussians in time t by: Ncore(V (t), σ, c) = Ncore(V ⊙ ψ(V, t), σ, c)
where ψ is a deformable network that moves triangle V according to time t. The opacity and color of
the Core-Gaussian are used only in the first stage.

Figure 12: Limbs render and modification obtained
with D-MiSo. It is worth noting that it is also
possible to close the hand.

Stage 2: Preparation To move to the second
phase of the model, it is imperative to prepare
the Multi-Gaussians. This involves attaching k
Sub-Gaussians to each Core-Gaussian generated
in Stage 1, as shown in Fig. 6. Henceforth, Sub-
Gaussians assume responsibility for the resultant
rendering. Initially, the Sub-Gaussian adopts the
same features as the Core-Gaussian, except for
the position.

Stage 2 The primary objective of the sec-
ond phase is to parallelized Core-Gaussians
(Core-Triangles Soup) to enhance understand-
ing of movement and increase rendering quality
through the precise training of Sub-Gaussians.
Since the centers of Sub-Gaussians are parameterized by the local coordinate system given by the
rotation matrix of Core-Gaussian, when the Deform Network ψ changes the Core-Gaussian, all
Sub-Gaussians (attached to this Core-Gaussian) are modified by global transformation ψ(V, t).

D-MiSo use an additional deformation network Sub-Rot Network ϕ dedicated to each i-th Sub-
Gassian’s small changes. Sub-Rot Network takes the Sub-Gaussian rotation matrix RiV and the
current time t as input and produces an updated rotation matrix ∆RiV (t).

Figure 13: Examples of object modifications. The
first method allows for a smooth modification
(bending) and also removes (e.g. plate), scales
and/or adds (e.g. small blue balls) objects.

The position m̂i
V (t) = m̂V (t) + R̂V (t)α

iαiαiT of
the Sub-Gaussian in time t is determined by
the position m̂V (t), and rotation R̂V (t) of the
Core-Gaussian (parameterized by triangle V )
and the learning parameter αiαiαi. It should be
noted that scale Si, color ci, and opacity σi
of Sub-Gaussian are trainable and do not de-
pend on time. Sub-Rot Network produce up-
dated ϕ(Ri, t) = ∆Ri(t) for rotation parameter
of Sub-Gaussians. Finally parameters of Sub-
Gaussians in time t depends on Deform Network
ψ, and Sub-Rot Network ϕ, and the Corr-Gaussians parameter V , and Sub-Gaussian parameters Ri,
Si, ci and σi:

GSub(t) = {(Nsub(m̂V⊙ψ(V,t) + R̂V⊙ψ(V,t)α
iαiαiT , Ri + ϕ(Ri, t), Si), ci, σi)}ki=1.

D-MiSo final model consists of two deformable networks and two levels of Gaussian distributions.
This approach enables efficient modeling of object motion over time in dynamic scenes, allowing for
adjustments to objects at each time frame.

The result of the model’s inference depends on the camera’s view angle as well as on the selected
time. Only Sub-Gaussian features are used in the rendering process. Hence, the implementation of
generating an output image from Gaussians is no different from a vanilla GS.
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The modifications involve the appropriate transformation of Sub-Gaussians. We base this on the fact
that the transformed Gaussians have exactly the same color properties as before editing. Only the
shape of the Gaussians is changed. In our work, we present three editing methods (Fig. 11).

4 Experiments
Table 1: Quantitative comparisons (PSNR) on a
D-NeRF dataset showing that D-MiSo gives com-
parable results with other models.

PSNR ↑
Hook Jumpin. Trex Bounc. Hell. Mutant Stan.

D-NeRF [11] 29.25 32.80 31.75 38.93 25.02 31.29 32.79
TiNeuVox-B [41] 31.45 34.23 32.70 40.73 28.17 33.61 35.43
Tensor4D [18] 29.03 24.01 23.51 25.36 31.40 29.99 30.86
K-Planes [17] 28.59 32.27 31.41 40.61 25.27 33.79 34.31
FF-NVS [42] 32.29 33.55 30.71 40.02 27.71 34.97 36.91
4D-GS [28] 30.99 33.59 32.16 38.59 31.39 35.98 35.37
DynMF [2] 33.94 38.04 35.82 41.92 37.51 41.68 41.16
Deform-GS [43] 37.77 39.10 38.40 41.46 42.11 43.73 45.38

Editable
SC-GS [33] 39.87 41.13 41.24 44.91 42.93 45.19 47.89
D-MiSo (our) 38.13 42.05 40.88 41.49 41.49 44.38 47.66

The experimental section is divided into two
parts. First, we show that D-MiSo can model
dynamic scenes with high quality; in the sec-
ond part, we demonstrate that our model allows
an easy editing procedure, which is our main
contribution.

4.1 Reconstruction of dynamic scenes

Here, we outline the specifics of our implemen-
tation and provide a detailed description of the
used datasets. We demonstrated the core advan-
tages of our model by conducting experiments
using three different datasets. The source code
is available on 3. Our code is developed on top of the GS vanilla code, according to their license. We
used NVIDIA GeForce RTX 4090 and A100 GPUs. The experiments focus on a benchmark task
of reconstruction. PSNR metric is used to compare our model with other methods. Furthermore,
additional numerical comparisons, i.e., SSIM/LPIPS, are available in the supplementary material.

D-NeRF Datasets: Contains seven dynamic objects with realistic materials described with a single
camera [11]. This means the model had access to only one view at a given moment. Tab. 1 shows we
are very comparable to other methods, and we achieve a higher PSNR on one object. The differences
in metrics are small, however, our method presents an easier way to edit (Fig. 4). Providing, among
other things, better scaling. Following previous methods, our results are obtained on images using
400 by 400 resolution with a black background.

NeRF-DS[44]: This dataset contains again seven real-world scenarios containing a moving or
deforming specular object. Each scene was recorded using two cameras, with the video captured by
one of them being used as a training set, while the footage from the second one was treated as a test
set. The camera pose was estimated using COLMAP for both cameras. Tab. 2 shows that our method
achieves the SOTA results for distinct objects.

PanopticSports Datasets: The dataset comprises six dynamic scenes featuring significant object
and actor movements [26, 45]. The scenes are categorized by the activities performed in the video
sequences, i.e., juggling, boxing, softball, tennis, football, and basketball. Each scene was recorded
using 31 cameras over 150 timesteps. Following the official data split, we use footage from 27
cameras for training and the remaining 4 cameras for testing. Numerical results are shown in Tab. 3.
The results show that the model achieved SOTA for five objects according to PSNR metrics and six
objects according to LPIPS metrics.

These results demonstrate that D-MiSo is comparable to other methods. Moreover, our main
contribution in comparison to other methods is the very easy editing of the resulting object (Fig. 4 11).

4.2 Editing of dynamic scenes

As mentioned earlier, we proposed three new methods of output object modification. The first
one focuses on moving and preparing a formal mesh, which is connected in contrast to Triangle
Soup. We apply a simple meshing strategy on Core-Gaussians. We used the basic Alpha Shape
algorithm [46, 47] and showed that the mesh does not have to estimate the surface perfectly to be
effective. Then, we reparametrize the Sub-Gaussian by finding the closest face from the mesh (Fig. 9).
In practice, we represent each Sub-Gaussian in a local coordinate system (analogically to Multi-
Gaussians). Therefore, each Sub-Gaussian is assigned to the nearest face (Fig. 9). Each face can
have a different number of Sub-Gaussians prescribed in such a configuration. This method allows us

3https://github.com/waczjoan/D-MiSo
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to maintain the consistency bestowed by the mesh. The whole process is shown in Fig. 5. Thanks to
such representation, we can edit our connected mesh to produce the correct edition of the dynamic
scene (Fig. 2).

Table 2: PSNR comparisons on a NeRF-DS
dataset showing that D-MiSo gives compa-
rable results with other models.

PSNR ↑
Bell Sheet Press Basin Cup Sieve Plate

HyperNeRF [9] 24.0 24.3 25.4 20.2 20.5 25.0 18.1
NeRF-DS [44] 23.3 25.7 26.4 20.3 24.5 26.1 20.8
TiNeuVox-B [41] 23.1 21.1 24.1 20.7 20.5 20.1 20.6

Editable
SC-GS [4] 25.1 26.2 26.6 19.6 24.5 26.0 20.2
D-MiSo (our) 25.3 25.8 25.6 19.8 24.5 26.5 20.8

The second editing method allows us to define the con-
nections, i.e., editing Sub-Triangles Soup directly, e.g.
moving a hand or bending horns (Fig. 10) or rotating a
human body (Fig. 3). Changes are possible because we
can also transform a group of Sub-Triangles instead of
individual ones. This method allows for even very sub-
tle changes like raising the thumb (Fig. 10), turning the
hand over (Fig 4), opening or closing the hand (Fig. 12).
These edits would be difficult in other approaches based
on adjusting the 3D objects’ centroids (nodes) since the
space of nodes is limited in details area (Fig. 4). Nodes’ use is preeminent for defining movement,
which was insignificant in these places.

With this method, we can also change complicated objects like a 360◦ scene without losing the
dynamics-related model. For example, the rotation of a person stacking boxes (Fig. 3).

Table 3: Comparison on PanopticSports dataset.
Metrics Method JuggleBoxes SoftballTennisFootball BasketballMean

3DGS [1] 28.19 28.74 28.77 28.03 28.49 27.02 28.21
PSNR ↑ Dyn3DG [26] 29.48 29.46 28.43 28.11 28.49 28.22 28.7

D-MiSo (our) 29.79 29.39 28.6 29.02 28.99 28.49 29.04

3DGS [1] 0.91 0.91 0.91 0.90 0.90 0.89 0.90
SSIM ↑ Dyn3DG [26] 0.92 0.91 0.91 0.91 0.91 0.91 0.91

D-MiSo (our) 0.93 0.92 0.92 0.92 0.92 0.91 0.92

3DGS [1] 0.15 0.15 0.14 0.16 0.16 0.18 0.16
LPIPS ↓ Dyn3DG [26] 0.15 0.17 0.19 0.17 0.19 0.18 0.17

D-MiSo (our) 0.13 0.13 0.15 0.14 0.13 0.15 0.14

The third method focuses on transform-
ing the space in which the object is lo-
cated. Similar to the second method, the
third one also works directly on the Sub-
Triangle Soup. We can achieve such an
effect by applying a certain function to
the selected plane. In practice, the ob-
ject, or a portion of it, is modified, for
instance, through the use of sinusoidal
functions. It allows us to obtain fluid-
ity and more easily define the physical
nature of the movement (Fig. 1, 11, 13).

Our methods are also scalable, so we can easily remove or duplicate elements from an image.
Moreover, the duplicated elements can be given their own dynamics. Examples of these effects
are shown in Fig. 13, where we removed the plate and both duplicated and rescaled the blue balls
multiple times.

5 Conclusion

D-MiSo is a novel method based on Gaussian Splatting parameterization, which produces a cloud of
triangles called Triangle Soup. The method allows easy editing of objects created in inference with
the possible transformations, including moving, scaling, and rotating. By defining Multi-Gaussians,
the obligatory separability of modified elements seen in other models is combated. In addition, certain
elements of objects can be duplicated and removed (Fig. 13). Furthermore, the D-MiSo method can
facilitate giving different dynamics to separate parts of an object (Fig. 1).

Limitation The method allows for complex changes at a given moment in time. However, if some
area is not well represented in the training set, it is impossible to edit them. For example, a person’s
hand can be changed but not fingers (Fig. 4). This is due to the liminality of Triangle Soup relative to
a well-fitted mesh.

Broader impact Our model significantly improves rendering quality and advances 3D scene recon-
struction and rendering, impacting multiple domains by enabling more realistic and efficient 3D
modeling and animation. This technology could enhance VR/AR experiences [48], robotics [49], and
medical imaging [50]. It could also be used for interactive education [50], scientific visualization,
and a plethora of other commercial applications like product design and real estate [51].
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A Extended related work and potential applications of D-MiSo

The detail-capturing capabilities of Sub-Gaussians can be effectively adapted to other GS-based
approaches, particularly in cases where native methods lack dedicated support for high-detail recon-
struction [52, 53, 54] or edition [55, 56].

Recent studies have investigated the integration of human faces, avatars, and meshes for 3D hu-
man modeling and rendering from video, presenting a promising avenue for enhancing detailed
reconstruction.

For instance, [57] introduces a human body representation where neural features across frames share
a latent code anchored to a deformable mesh, facilitating cross-frame integration and efficient 3D
representation learning in sparse monocular video scenarios. Similarly, HumanNeRF [58] optimizes
a volumetric human representation in a canonical T-pose, using a decomposed motion field to
handle both skeletal and non-rigid deformations. This method provides high-quality, free-viewpoint
renderings in challenging settings. UV-Volumes [59] further address the high computational costs
associated with NeRF, achieving real-time, editable video rendering by encoding appearance details
into 2D neural texture stacks for efficient 3D density and texture estimation.

Gaussian-based representations have gained traction for modeling dynamic avatars, as in [60, 61, 62,
63, 64], with most approaches leveraging video data and human pose/face priors like FLAME fitting
[65]. Building on these advances, we propose that D-MiSo concepts could be effectively adapted
for dynamic motion modeling and small detail capture in avatar representations. Specifically, Stage
1 could focus on integrating such models for capturing fine-grained avatar motion with anchored
details.

B Extension of numerical results from the main paper

This section contains a numerical comparison of the D-MiSo with other models regarding the
experiments described in the main document. We used additional LPIPS and SSIM metrics. During
the experiments, we used the RTX4090 GPU and densification until 5000 iterations (1st Stage). We
see that we get comparable competitive results. We can see that our method achieves better results
for five objects from the D-NeRF dataset in terms of the LPIPS metric (Tab. 4). Full numerical
comparison with metrics for the NeRF-DS dataset shows that we are comparable to other methods in
the reproduction task (Tab. 5).

Table 4: Quantitative comparison on a D-NeRF dataset

Methods Hook Jumpingjacks Trex BouncingBalls
PSNR ↑ SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓

D-NeRF 29.25 .968 .1120 32.80 .981 .0381 31.75 .974 .0367 38.93 .987 .1074
TiNeuVox-B 31.45 .971 .0569 34.23 .986 .0383 32.70 .987 .0340 40.73 .991 .0472
Tensor4D 29.03 .955 .0499 24.01 .919 .0768 23.51 .934 .0640 25.36 .961 .0411
K-Planes 28.59 .953 .0581 32.27 .971 .0389 31.41 .980 .0234 40.61 .991 .0297
FF-NVS 32.29 .980 .0400 33.55 .980 .0300 30.71 .960 .0400 40.02 .990 .0400
4D-GS 30.99 .990 .0248 33.59 .990 .0242 32.16 .988 .0216 38.59 .993 .0267
SC-GS 39.87 .997 .0076 41.13 .998 .0067 41.24 .998 .0046 44.91 .998 .0166
D-MiSo (our) 38.13 .990 .0086 42.05 .995 .0049 40.88 .996 .0029 41.49 .993 .0079
Methods Hellwarrior Mutant Standup Average

PSNR ↑ SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓
D-NeRF 25.02 .955 .0633 31.29 .978 .0212 32.79 .991 .0241 31.69 .975 .0575
TiNeuVox-B 28.17 .978 .0706 33.61 .982 .0388 35.43 .991 .0230 33.76 .983 .0441
Tensor4D 31.40 .925 .0675 29.99 .951 .0422 30.86 .964 .0214 27.62 .947 .0471
K-Planes 25.27 .948 .0775 33.79 .982 .0207 34.31 .984 .0194 32.32 .973 .0382
FF-NVS 27.71 .970 .0500 34.97 .980 .0300 36.91 .990 .0200 33.73 .979 .0357
4D-GS 31.39 .974 .0436 35.98 .996 .0120 35.37 .994 .0136 34.01 .987 .0316
SC-GS 42.93 .994 .0155 45.19 .999 .0028 47.89 .999 .0023 43.31 .997 .0063
D-MiSo (our) 41.49 .986 .0173 44.38 .997 .0026 47.66 .998 .0016 42.27 .993 .0065
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Table 5: Quantitative comparison on a NeRF-DS dataset

Methods Bell Sheet Press Basin
PSNR ↑ SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓

HyperNeRF 24.0 .884 .159 24.3 .874 .148 25.4 .873 .164 20.2 .829 .168
NeRF-DS 23.3 .872 .134 25.7 .918 .115 26.4 .911 .123 20.3 .868 .127
TiNeuVox-B 23.1 .876 .113 21.1 .745 .234 24.1 .892 .133 20.7 .896 .105
SC-GS 25.1 .918 .117 26.2 .898 .142 26.6 .901 .135 19.6 .846 .154
D-MiSo (our) 25.3 .846 .174 25.8 .875 .211 25.6 .867 .206 19.8 .788 .217
Methods Cup Sieve Plant Average

PSNR ↑ SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓
HyperNeRF 20.5 .705 .318 25.0 .909 .129 18.1 .714 .359 22.5 .827 .206
NeRF-DS 24.5 .916 .118 26.1 .935 .108 20.8 .867 .164 23.9 .898 .127
TiNeuVox-B 20.5 .806 .182 20.1 .822 .205 20.6 .863 .161 21.5 .843 .162
SC-GS 24.5 .916 .115 26.0 .919 .114 20.2 .837 .202 24.1 .891 .140
D-MiSo (our) 24.5 .874 .185 26.5 .881 .159 20.8 .815 .234 24.0 .849 .198

Table 6: Storage cost, training time, fps, and batch study on a D-NeRF dataset

PSNR ↑
Hook Jumpin. Trex Bounc. Hell. Mutant Standup

Batch: 4 4 4 4 4 4 4
PSNR 37.77 40.42 39.56 40.63 41.44 43.38 46.07
Time 1st stage 00:02:48 00:02:22 00:02:41 00:03:12 00:02:27 00:03:46 00:03:17
Time 2nd stage 1:40:15 1:16:18 2:14:09 1:43:08 1:01:27 1:48:49 1:19:32
Storage cost 76MB 53.5MB 122MB 131MB 27MB 73MB 43MB
Rendering time [fps] 138 175 90 123 185 138 169
Batch: 8 8 8 8 8 8 8
PSNR 38.07 41.65 40.74 40.55 41.59 44.40 47.22
Time 1st stage [h] 00:05:30 0:05:17 00:05:38 00:05:16 00:04:28 00:05:51 00:05:56
Time 2nd stage [h] 2:27:08 2:03:25 2:42:22 2:40:30 1:43:33 2:18:43 2:12:12
Storage cost 32MB 24MB 51MB 80MB 16MB 28MB 20MB
Rendering time[fps] 192 190 143 153 205 188 194

In our method, a batch of images is taken as input to the model. Tab. 6 shows a numerical comparison
using batch: 4, 8 on D-NeRF. Training takes 80 thousand iterations, and the second stage starts at the
5 thousandth iteration. Each Core-Gaussian has attached 25 Sub-Gaussians. This is comparable to
the SC-GS implementation. Tab. 6 also presents the training time and storage cost, as well as the FPS
for rendering for each dataset. These results suggest that our model is memory efficient and that the
time required to train it is minimal. With batch equal to 8 in all cases, storage costs decreased, and
performance improved with a trade-off of increased training time.

A similar batch study has been done for the NeRF-DS dataset presented in Tab.7. We can see that
batch is playing a bigger role in the dataset, which is considered a more pronounced move.

We contrasted our model with and without the Sub-Rotation Network. The Sub-Rot Network, despite
being a simple single-layer network, plays a crucial role in the second stage. Tab. 8 shows a numerical
comparison of PSNR for models with and without the Sub-Rot Network. Furthermore, we would
like to emphasize that due to its shallow architecture, incorporating the Sub-Rot Network does not
significantly impact training time. We decided to present the results on the jumpingjack dataset
distinguishing between batches of 4, 8. These results show that the Sub-Rot Network is crucial to
obtaining SOTA PSNR. With Sub-Rot Network, we obtain approximately 0.5 PSNR crucial to obtain
the reconstruction of small elements (like human fingers in the jumpingjack dataset)

Tab. 9 shows how the size of the network influences training time and render speed. These results
show that deformable networks and Sub-Rot Networks are not costly in terms of rendering time,
resulting in real-time rendering. In practice, batch size has a higher impact than deformation network
depth.
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Table 7: Batch study on a NeRF-DS dataset

Batch size Bell Sheet Press Basin
PSNR ↑ SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓

8 25.1 .851 .165 24.8 .863 .219 25.2 .858 .205 19.7 .788 .217
4 24.5 .832 .190 25.1 .873 .202 25.3 .860 .215 19.8 .781 .245
2 25.3 .846 .174 25.8 .875 .211 25.6 .867 .206 19.6 .785 .207
1 25.1 .844 .190 25.6 .873 .216 24.3 .842 .273 19.7 .785 .229
Batch size Cup Sieve Plant Average

PSNR ↑ SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓ PSNR ↑SSIM ↑LPIPS ↓
8 24.0 .884 .163 26.5 .881 .158 20.2 .812 .226 23.6 .848 .193
4 24.2 .886 .163 25.8 .871 .167 20.8 .815 .234 23.6 .845 .202
2 24.4 .883 .169 26.0 .875 .169 20.6 .817 .232 23.9 .849 .195
1 24.5 .874 .185 25.8 .864 .195 20.5 .808 .245 23.6 .841 .219

Table 8: Training time corresponding to the num-
ber of Sub-Gaussians and iteration start of the de-
form network using the jumpingjack dataset.

batch = 4 batch = 8
Sub-Rot Network with without with without
PSNR 40.42 39.98 41.65 41.27
Training time [h] 1:18 1:12 2:08 1:45
Rendering time [fps] 175 186 190 259

Our model operates on several hyperparame-
ters, primarily derived from the basic GS frame-
work. Given the introduction of additional
stages and the multi-Gaussian component, one
of the new hyperparameters is the number of
Core-Gaussians and Sub-Gaussians (Tab. 10).
The ablation study also focuses on the influence
of the Sub-Rot Network on training time and
PSNR (Tab. 8). Tables show training time and
PSNR analysis.

The number of Core-Gaussians is determined automatically during stage 1, utilizing the pruning
mechanism implemented in GS. The Tab. 10 illustrates the training time corresponding to these
parameters using the jumpingjacks dataset as an example with batch equal to 8. We can see the speed
of the 1st stage, which is used for Core-Gaussian preparation. Moreover, too few Core-Gaussians can
cause a drop in render quality (PSNR metric). The experiments suggest the number of Core-Gaussians
is sufficient after the first phase. In all cases, a larger number of Sub-Gaussians improved the quality
of renders.

Table 9: Deformation network depth (numbers of layers) and batch study on a jumpingjack dataset
from D-NeRF.

Def. net. depth 4 6 8 10 4 6 8 10
Batch 4 4 4 4 8 8 8 8
PSNR 40.91 40.75 40.42 40.26 41.86 42.01 41.65 41.37
Training time [h] 1:21 1:22 1:18 1:31 2:00 1:58 2:08 2:07
Render time [fps] 138 167 175 144 227 221 190 192

Table 10: Training time corresponding to the number of Sub-Gaussians and iteration start of the
deform network using the jumpingjack dataset.

n_sub 1 10 25 1 10 25 1 10 25
Iter. start of def. net. 2000 2000 2000 3000 3000 3000 5000 5000 5000
N_core after 1st stage 3290 3340 3434 2841 2974 2936 1803 1798 1807
PSNR 38.94 41.35 41.65 38.52 41.14 41.41 33.63 37.14 37.47
Train time 1st stage [h] 00:05:14 00:04:48 00:05:17 00:04:17 00:04:33 00:04:16 00:03:27 00:03:02 00:03:21
Train time 2nd stage [h] 1:51:17 1:44:21 2:03:25 1:39:39 1:53:18 1:50:25 1:48:54 1:41:12 1:56:28
Sum: Train time [h] 1:56:31 1:49:09 2:08:42 1:43:56 1:57:51 1:54:41 1:52:21 1:44:14 1:59:49

C Extension of examples modification

Below is an example of scene modification from the PanopticSports dataset (Fig. 14). The dynamics
of the object were stopped, so as to show the possibility of changing the position of the ball at a given
time instant t.

Due to the characteristics of Multi-Gaussians and the ease of their control, we show that we can
easily duplicate and/or scale selected objects (Fig. 15).
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The third method of modification allows us to give new dynamics and fluidity to the object (Fig. 16).
We can see that even difficult edits like bending the back, changing the shape of the face, and bending
the hand are possible while the result is natural from the point of view of graphics. This is made
possible by editing the scale and rotation of Gaussians in an explicitly defined way.

Figure 14: Example of a ball position modification on a 360◦ scene from PanopticSports Datasets

Figure 15: Example of animation by duplicating elements or changing their scale

Figure 16: Example of a third way of modification: transformation of space, allowing to give new
dynamics.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the claims made in the paper,
detailing the contributions, key assumptions, and scope. The claims are consistent with
experimental results, indicating the extent to which the findings can be generalized to other
settings.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper clearly presents both technical as well as ethical limitations in a
dedicated paragraph.

Guidelines:

• The answer NA means that the paper has no limitation, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides comprehensive technical details necessary for reproducing
the code, along with datasets and experimental settings. The authors will also release the
code and resulting checkpoints to ensure complete reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code, along with the checkpoints used to report results, is publicly
available. Link is provided in Experiments section. All experiments were conducted using
publicly available datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All results were obtained using official data splits which are stated in the paper.
The hyperparameters of the model and their influence are also thoroughly discussed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Statistical significance is not provided due to the large computational resources
required. No related work provides such statistics, making it unfeasible to recompute all
results for comparison with our method.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Justification: Compute resources used for experiments are listed in the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact of our work in the Broader impact paragraph in
Conclusion section.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all utilized works and resources according to the citing guidelines.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

23



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not relate new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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