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ABSTRACT

Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e.
excessive refusals or defaulting to “I don’t know”) persist as major challenges in
LLM reasoning. Current efforts to reduce hallucinations primarily focus on fac-
tual errors in knowledge-grounded tasks, often neglecting hallucinations related to
faulty reasoning. Meanwhile, some approaches render LLMs overly conservative,
limiting their problem-solving capabilities. To mitigate hallucination and laziness
in reasoning tasks, we propose Automatic Curriculum Expert Iteration (AUTO-
CEI) to enhance LLM reasoning and align responses to the model’s capabilities–
assertively answering within its limits and declining when tasks exceed them. In
our method, Expert Iteration explores the reasoning trajectories near the LLM
policy, guiding incorrect paths back on track to reduce compounding errors and
improve robustness; it also promotes appropriate “I don’t know” responses after
sufficient reasoning attempts. The curriculum automatically adjusts rewards, in-
centivizing extended reasoning before acknowledging incapability, thereby push-
ing the limits of LLM reasoning and aligning its behaviour with these limits. We
compare AUTO-CEI with various SOTA baselines across logical reasoning, math-
ematics, and planning tasks, where AUTO-CEI achieves superior alignment by
effectively balancing assertiveness and conservativeness. 1

1 INTRODUCTION

Hallucination is a long-standing issue in large language model (LLM) research, which refers to the
phenomenon where LLM-generated content appears plausible but is actually nonsensical or inaccu-
rate, often misleading humans by seeming deceptively credible (Ji et al., 2023). It is more evident
when solving complex reasoning problems beyond their capability, in which LLM tends to fake evi-
dence or logic to answer the questions assertively. The reason for LLM’s hallucinations, overall, is a
misalignment of its real capability and its behaviours: LLM should not behave overly assertively or
confidently when facing unfamiliar (Kang et al., 2024a) and difficult problems (Dziri et al., 2024).
Instead, a preferred behaviour of LLMs is to acknowledge their limitations by responding with “I
don’t know.” However, we must also prevent the LLM from defaulting to degenerate responses like
”I don’t know,” especially when the question is within its capability. A reliable LLM should strike a
balance between maximizing performance and avoiding hallucination.

Various methods have been proposed to mitigate LLM hallucinations. However, most studies have
focused on factual hallucinations, i.e., fabricating non-existent evidence, while often neglecting
reasoning hallucinations (Creswell et al., 2022). Reasoning tasks require deriving conclusions from
evidence using rules, often involving multiple steps. Reasoning hallucination refers to the phe-
nomenon where LLMs apply invalid rules or misinterpret the conclusion, leading to an incorrect
final result even without factual hallucination in the evidence. Dziri et al. (2024) found that LLMs
exhibit a probability of error at each reasoning step. As these errors compound, the likelihood of
incorrect final answers increases exponentially as the reasoning chain grows longer. In addition,
most techniques mitigate factual hallucinations using external knowledge or conduct post-training
to do “patching”. These techniques can reasonably mitigate factual errors, but hallucinations caused
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Figure 1: Demonstration of the key idea of AUTO-CEI. AUTO-CEI automatically designs a sequence of cur-
ricula and uses Expert Iteration to train LLM in each curriculum. Expert Iteration explores the reasoning tra-
jectories (i.e., Chain of thought) and learns to get incorrect paths back on track to reduce compounding errors.
Using the reward (denoted by blue and red colour) produced by the curriculum, Expert Iteration also samples
appropriate “I don’t know” responses (IDK responses) after sufficient reasoning attempts (in the blue region).
To mitigate laziness, it avoids the short IDK responses (in the red region). The curriculum automatically adjusts
rewards for the reasoning length, incentivizing extended reasoning before acknowledging incapability, thereby
pushing the limits of LLM reasoning and aligning its assertive and conservative behaviours with these limits.

by faulty reasoning are far more challenging due to the inevitable compounding error of the trans-
former. As such, most of these techniques cannot improve LLM’s inherent reasoning capability, and
simply using patching techniques alone can even make LLMs behave lazily.

Can LLM learn short reasoning or self-correction to reduce compounding errors and reasoning hal-
lucinations? Kang et al. (2024b) showed that learning the optimal shortest solution for difficult
problems (e.g., NP-complete problems) has very high sample complexity. Thus, directly learning
short solutions for all complex problems is unrealistic. Havrilla et al. (2024) showed that reinforce-
ment learning (RL) can help improve LLM’s performance in various reasoning tasks. RL methods,
such as Expert Iteration (Anthony et al., 2017) and PPO (Schulman et al., 2017), explore various
LLM reasoning trajectories (i.e., Chain of Thought (Wei et al., 2022)) and use reward function to
guide the incorrect trajectories back on track, therefore improving the robustness and reducing the
effect of compounding errors. However, compounding errors are inherently impossible to eliminate.
Even though RL reduces step-wise errors, the probability of error still increases exponentially with
the length of reasoning. As a result, it is necessary for LLMs to acknowledge their limitations,
particularly when faced with difficult problems beyond their capability. This raises a key question:

How can we assess the limits of LLMs’ reasoning abilities and adjust their re-
sponse behaviour appropriately to align with these limits?

To address this, we propose Automatic Curriculum Expert Iteration (AUTO-CEI), which simultane-
ously enhances LLM reasoning and aligns its behaviour to ensure precise answers while acknowl-
edging its limitations. AUTO-CEI assumes that the number of reasoning steps required to reach a
correct answer provides a reasonable estimate of both the problem difficulty and the limits of LLM
reasoning. This assumption is grounded in computational theory, as each reasoning problem has its
underlying computational complexity, and each reasoning step corresponds to an elementary com-
puting operation. Learning the reasoning steps (precondition/effect of reasoning rules) has similarly
low sample complexity (Kang et al., 2024b). Despite the existence of concise optimal solutions,
difficult problems (e.g., NP-complete problems) require extended reasoning to find those solutions.
This assumption helps align LLM’s behaviours: easier problems require fewer reasoning steps and
are less prone to compounding errors, justifying greater assertiveness from LLMs. Complex prob-
lems needing more steps and suffering more compounding errors require more conservativeness.

The key idea of AUTO-CEI is shown in Figure 1: using the length of reasoning steps to measure
difficulty, AUTO-CEI designs an automatic curriculum for expert iteration that rewards correct rea-
soning, compensates for “I don’t know” acknowledgements after a sufficient number of attempts,
and penalizes both overly conservative and assertive wrong responses. The expert iteration adjusts
the LLM’s responses by resampling based on these rewards. The curriculum automatically updates
the compensation reward to encourage more reasoning attempts before saying “I don’t know” over
time. It gradually adjusts the reward function to optimise an objective function, balancing the overall
precision and the proportion of saying “I don’t know” to control hallucination and avoid laziness.
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As such, it gradually pushes the limits to maximise the potential of LLM reasoning and aligns its
behaviours with these limits. AUTO-CEI is effective across various reasoning tasks such as logical,
mathematical, and planning problems, balancing reliability and conservativeness.

Contributions. In summary, AUTO-CEI automatically estimates the boundary of its reasoning ca-
pacity, thus achieving a reasonable alignment to maximise capacity and control behaviours. It learns
to reliably solve the problems within its boundary as much as possible; it also knows to acknowledge
“I don’t know” when the problem is beyond its limit. We carried out comprehensive experiments
in various reasoning benchmarks, and AUTO-CEI significantly outperforms the concurrent baseline
methods, boosting precision by 10-24% while maintaining a relatively low refusal rate of 18-36%
across diverse reasoning tasks in planning, logical and math reasoning.

2 RELATED WORK

Hallucinations and laziness of LLM. It is widely acknowledged that LLMs often produce halluci-
nated responses, including fabricated facts and misleading logic (Radhakrishnan et al., 2023; Ji et al.,
2023). Most works focus on reducing hallucinations by ensuring the factual accuracy of generated
content, often using retrieval-based methods that enhance LLMs with external knowledge (Shuster
et al., 2021). This methodology has been effective in improving the reliability of LLMs in do-
mains that require high factual accuracy, such as knowledge-based question answering (Lewis et al.,
2020). Particularly, Retrieval-Augmented Generation (RAG) reduces hallucinations by fetching rel-
evant documents from external sources during inference, integrating factual information to enhance
accuracy and relevance (Izacard et al., 2023). These methods ensure that the LLMs’ responses align
more closely with verified data (Komeili et al., 2022; Gururangan et al., 2021). Moreover, sev-
eral studies have explored hybrid approaches that combine retrieval with fact-checking modules or
domain-specific fine-tuning to improve factual accuracy (Lee et al., 2022). Retrieval-based strategies
show strong potential in mitigating hallucinations, outperforming purely generative models that rely
only on knowledge from training (Borgeaud et al., 2022; Petroni et al., 2020). However, hallucina-
tions are not limited to factual inaccuracies; they can also extend to faulty or incomplete reasoning,
a significant concern for multi-step reasoning-based tasks (Creswell et al., 2022). Moreover, LLMs
often exhibit what can be described as “laziness,” which refers to the tendency of the model to reject
or avoid generating correct but complex answers in favour of simpler, superficial, or incomplete re-
sponses (Bubeck et al., 2023; Bang et al., 2023). This phenomenon has been noted in tasks requiring
step-by-step logical reasoning, where LLMs tend to skip intermediate steps or provide too general
answers, rather than addressing the nuanced complexity of the problem at hand (Rae et al., 2021).

Reinforcement learning for LLM reasoning. Reinforcement learning has been widely used in
the alignment stage of LLM training to enhance their capabilities. The research in this area can
be broadly divided into two aspects: (1) RL algorithms; (2) reward construction. Conventional ad-
vanced deep RL algorithms, such as Proximal Policy Optimization (PPO) (Schulman et al., 2017),
have been extensively applied in the training process of modern LLMs, helping to improve both
format and reasoning abilities (Achiam et al., 2023; Team et al., 2023; Dubey et al., 2024). How-
ever, due to the introduction of the value network, the computational overhead of these algorithms
is extremely high, often making them unaffordable for academic settings where resources are lim-
ited. More recently, expert iteration (also known as rejection sampling or reward-ranked fine-tuning)
(Dong et al., 2023; Gulcehre et al., 2023; Zelikman et al., 2022; Hoffman et al., 2024), preference-
based RL (Rafailov et al., 2024; Xiong et al., 2024a), and REINFORCE-type RL (Williams, 1992;
Shao et al., 2024; Li et al., 2023; Ahmadian et al., 2024) have emerged as more efficient alter-
natives for the alignment stage, especially when operating within a fixed budget. These methods
have demonstrated significant improvements over supervised fine-tuning in reasoning tasks (Aksi-
tov et al., 2023; Gou et al., 2023; Havrilla et al., 2024; Shao et al., 2024; Dong et al., 2024; Trung
et al., 2024; Xiong et al., 2024b). Additionally, Lightman et al. (2023) introduced process super-
vision to refine the reward signal for each reasoning step. Compared to traditional outcome-based
supervision, process supervision has been shown to yield substantial gains (Lightman et al., 2023;
Wang et al., 2024a; Shao et al., 2024). Despite the impressive progress in this area, most existing
works focus on maximizing the upper bound of reasoning ability. In contrast, our algorithm aims to
develop a more balanced model incorporating self-awareness into the reasoning procedure.
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3 PRELIMINARIES

3.1 FORMULATION: REASONING PROBLEMS

We address reasoning problems in general, such as logical reasoning, mathematical reasoning, and
planning. Reasoning involves deriving unknown facts from provided evidence and reasoning rules.
In logical reasoning, evidence is represented as clauses with assigned boolean values, and applying
reasoning rules determines the boolean values of unknown clauses. In arithmetic reasoning, evi-
dence consists of clauses linked to scalar values, and reasoning requires both logical deduction and
arithmetic operations. In planning problems, the goal is to identify a sequence of actions that move
an initial state to a target state by applying actions based on their preconditions and effects.

Unlike methods that convert problems into Boolean satisfiability (SAT) and solve them with SAT
solvers, the LLM reasoning approach, such as Chain of Thought (CoT) (Wei et al., 2022), follows a
sequential decision-making strategy. To capture reasoning problems, we rely on planning concepts
that consist of four main elements: state space S, action space A, transition function T , and goal
function G. The state space S includes all possible configurations, such as the boolean or scalar
values assigned to the given variables or clauses, as well as unknown clauses. Actions, defined in
the action space A, represent rules or equations that can be applied to these states. The action has
its preconditions and effects. A state should satisfy the corresponding precondition to execute an
action, and then the effects will be applied to the state. The precondition and effect are encoded in
the transition function. When an action A is executed in a state S, the transition function T (s, a) de-
termines the resulting state s′, e.g., new values would be assigned to (unknown) clauses or variables.
The goal function G checks whether the current state matches the desired outcome.

3.2 BACKGROUNDS

Expert Iteration. Expert iteration (EI) (Anthony et al., 2017) is an iterative process in which experts
are built upon a base policy, the base policy is refined by learning from the expert, and this cycle
repeats with newly derived base policies. EI is effective in improving the quality of generated re-
sponses in LLM literature (Dong et al., 2023; Gulcehre et al., 2023). Havrilla et al. (2024) discussed
the usage of EI in LLM reasoning problems. They used LLM sampling to generate responses, and
preferred responses were selected by a ground-truth or reward model to build the expert. They then
used LLM to imitate the expert via SFT. EI explores the neighbouring area of LLM policy in the
token space, which helps LLM derive back to the correct reasoning trajectories if there are errors or
find suboptimal trajectories. As a result, in their experiment, EI improved the LLM reasoning over
time, which performed similarly or even better than the PPO (Schulman et al., 2017).

Curriculum Reinforcement Learning. Curriculum Reinforcement Learning (Narvekar et al.,
2020) focuses on sequencing tasks or data samples into a structured curriculum to solve complex
problems that are difficult to learn from scratch. A curriculum can be considered an ordering over
experience samples at the most basic level. The underlying assumption is that learning from elemen-
tary samples or tasks can be transferred and help learn more complex tasks. In this paper, we design
the curriculum by reshaping the reward to gradually guide the LLM in conducting more reasoning
attempts to solve the problem before acknowledging its limits. Its attempts could be used to discover
suboptimal trajectories that mitigate its compounding errors in easy problems and also transferred
to increase the chances of solving more complex problems.

4 AUTOMATIC CURRICULUM EXPERT ITERATION

AUTO-CEI aims to estimate and push the limits of LLM reasoning concerning the number of rea-
soning steps, maximising its capacity while aligning its behaviours accordingly. We assume that,
for a broad class of reasoning problems, the number of reasoning steps (in the chain of thoughts)
required to reach the correct answer estimates the problem’s difficulty and the limits of LLM reason-
ing. We justify the assumption by computational theory. The reasoning problem has its underlying
computational complexity, where each of the reasoning steps can be treated as an elementary com-
puting operation. Learning to apply the preconditions and effects of those elementary reasoning
actions/rules has low sample complexity (Kang et al., 2024b). Although problems may have concise
optimal solutions, given the inherent computational complexity (e.g., NP-complete), finding that
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solution still needs long reasoning attempts. AUTO-CEI estimates the reasoning limits in terms of
the number of reasoning steps until the LLM can respond reliably, solving a maximum number of
problems. But beyond this point, further continuing the same assertive behaviour of the LLM policy
leads to a significant increase in mistakes, whereas being overly conservative within this range limits
reasoning capacities due to the high refusal rate. Thus, it estimates the LLM’s capability’s boundary
when fine-tuned for multi-step reasoning tasks.

AUTO-CEI uses the average number of the reasoning steps of the initial (after supervised finetuning,
SFT) policy to determine the curriculum, i.e., the reward function. It starts from optimising an
initialised policy that is reasonably conservative with a certain distribution to say, “I don’t know.” It
then runs into the Expert Iteration process, in which the LLM policy will sample many reasoning
trajectories and receive various rewards. We build up the expert by resampling the trajectories
according to the reward and removing the assertively wrong responses. After convergence, AUTO-
CEI updates the reward function according to the performance, in a way to encourage the LLM
to produce more reasoning steps before saying “I don’t know.” The curriculum eventually tries
to optimise an objective function, which balances assertiveness and conservativeness and stops the
curriculum if the objective function reaches the optimal value.

4.1 INITIALISATION

Algorithm 1 INITIALISATION(D,π)

1: πsft ← SFT(π,D)
2: D′ ← {(x′, y′) | y′ ∼ πsft(x

′), x′ ∈ D}
3: Add IDK to all wrong y′ in D′ to get Dinit

4: π0 ← SFT(π,Dinit)
5: return π0

We adopt R-Tuning (Zhang et al., 2023), one
of our baseline methods, as the initialization
strategy. R-Tuning produces a good starting
point with a reasonable proportion of refusal
behaviours. It also makes LLM lazier and has
a lot of room for optimisation. We first use
SFT to train a language model given the train-
ing dataset D consisting of n question-answer
pairs. Each answer uses the chain of thought. After SFT, we will let the language model answer the
questions in the same dataset D using random sampling. As we use random sampling, there will
be a certain number of correct answers, and the others will be wrong. Thus, we split the questions
and the new answers generated by LLM into two datasets, D1 and D2, where D1 collects correct
answers and D2 consists of wrong answers. For D2, in each of the wrong answers, we add an ex-
pression at the end to acknowledge the limitations and abstain from answering the questions, such
as “Sorry, I am not sure if I answer the question correctly. There might be mistakes in my answer.”
Thus, we have collected a new Refusal-Aware dataset D2 for our finetuning.

After collecting D1 and D2, we concatenate both datasets to form Dinit and use SFT to fine-tune the
LLM again. We also examined the SFT result to ensure it had enough sample points for assertive and
refusal answers. We set a threshold of 25% for the distribution of refusal behaviours in the validation
set, as we need to have enough variety of acknowledge “I don’t know” for AUTO-CEI. If the model
has a very low distribution of acknowledge “I don’t know”, we then repeat the previous process of
collecting D1 and D2 again, where the refusal answers will also be collected in D1 and use the new
dataset for a new SFT training. We observed that, empirically, the distribution of refusal answers
would increase over the steps. Thus, after the initialisation, we will have a good initial policy with
enough base knowledge to answer questions and a distribution of acknowledging “I don’t know.”

4.2 EXPERT ITERATION

c1
−1

−0.5

0

0.5

1

len(y)

R(x, y)

Figure 2: The shape of R(x, y)
for y is a refusal answer.

Given the initial policy, we run the Expert Iteration to improve the
policy over time.

We build the expert using the reward function and resampling. The
reward function R(x, y) takes the question x and an answer y as
input and outputs a scalar. R(x, y) is designed to give a large pos-
itive reward for correct answers, a small compensatory reward for
refusal answers after long reasoning trajectories, a small negative
penalty for refusal answers after very short reasoning trajectories,
and a large negative penalty for assertive wrong answers. The re-

5



Published as a conference paper at ICLR 2025

ward is designed as follows:

R(x, y) =


1 for y correctly answers x ;

1−exp(−c2(len(y)−c1))
1+exp(−c2(len(y)−c1))

for y is a refusal answer ;
−1 for y wrongly answers x .

(1)

In this function, c1 and c2 are two hyperparameters determined by the distribution of answers from
the initial LLM. If y is a refusal answer and the number of steps for the reasoning trajectory len(y)
is longer than c1, then it will receive a small positive compensation reward; otherwise, it turns into a
small negative penalty. The shape of this function is shown in Figure 2. c1 is initialised by the mean
value of reasoning steps produced by the initial LLM policy in the validation set. c2 is computed by
solving 1−exp(−c2·2σ)

1+exp(−c2·2σ) = 0.9, meaning that if the number of reasoning steps has reached c1+2σ (σ is
the standard deviation of the reasoning steps by initial policy), then the reward should be higher than
0.9. It means the answer is longer than roughly 97% of the reasoning trajectories in the validation
set, assuming the distribution of reasoning steps is a normal distribution.

Algorithm 2 EXPERTITER(D,πei, R,Dval, π)

1: while πei doesn’t converge in Dval do
2: for x ∈ D do
3: Yx ← {yi|yi ∼ πei(x)}Ki=1
4: Rx ← {ri|ri = R(x, yi), yi ∈ Yx}
5: Resamples Yx according to Rx to form

new responses set Y ′
x

6: end for
7: Dnew ← {(x, y) | y ∈ Y ′

x, x ∈ D}
8: πei ← SFT(π,Dnew)
9: end while

10: return π′

The reward function helps us build the expert,
enabling us to improve LLM reasoning perfor-
mance over time. We resample the responses
according to the rewards to build the expert. We
first use LLM to generate K samples {yi}Ki=1
for each of the questions in the training dataset
D. Then, we use the reward function to get
a reward value of each sample r1, r2, . . . , rK .
Over that reward, we employ the temperature-
scaled softmax function to construct a new dis-
tribution: p′(yi) = exp(ri/τ)/

∑
j exp(rj/τ)

and subsequently use p′(yi) to conduct resam-
pling and generate N new samples {y′i}Ki=1. τ
is the temperature of resampling, the same as
the overall accuracy of the initial SFT model finetuned by D. If the SFT model has high overall
accuracy, we will encourage LLM to explore more randomly; otherwise, the responses with higher
rewards will be sampled more densely. τ will be capped in a range [0.4, 0.7] to avoid extreme cases.
Thus, the distribution is reshaped to encourage more instances that produce correct answers and
produce more reasoning steps before saying “I don’t know.” Since resampling also kills instances
that waste some of the exploration data, we concatenate the {yi}Ki=1 and {y′i}Ki=1 together to form
the new training dataset. Lastly, we removed the answers that had −1 rewards.

4.3 CURRICULUM UPDATE

Algorithm 3 AUTO-CEI(D,π,R, f,Dval)

1: πei ← INITIALISATION(D,π)
2: while Optimal f is not found do
3: Update c1 in reward function R ▷ Eq 1
4: πei ←EXPERTITER(D,πei, R,Dval, π)
5: Measure f by πei and Dval

6: end while
7: return πei

After EXPERTITER converges, the curriculum up-
dates the reward function to optimise (i.e. max-
imise) an objective function:

f = (1− λ)PPre + λ(1− PIDK), (2)

where PPre denotes the precision, i.e., the correct-
ness of answers that are not refusal answers, and
PIDK denotes the proportion of refusal answers.
This function f tries to find a good balance between
avoiding both hallucination (low PPre and low PIDK) and laziness (high PPre but high PIDK) when
finetuning the LLM. λ ∈ [0, 1] is a hyperparameter to control the tradeoff between hallucination and
laziness; a higher value of λ will lead to more assertive behaviour (i.e. lower IDK rate) while smaller
λ would make the LLM policy behave more conservatively. We empirically show that setting λ is
fairly intuitive; in most task scenarios, setting λ to a reasonably small value (≈ 0.2) achieves the
desired effect for the LLM policy. Over the EI iterations, the curriculum will update the value of
c1 in Equation 1, i.e., try to push c1 to encourage more exploration before saying “I don’t know”.
Thus, with the new reward function, we repeat the Expert Iterations and make it converge again.

Assuming that the function of f does not have local optimal point wrt c1, the curriculum uses local
search (hill climbing) (Russell & Norvig, 2016) to search c1 and conduct Expert Iterations until it

6



Published as a conference paper at ICLR 2025

finds the highest f . The hill-climbing algorithm searches its neighbouring value of c1 ± d via a step
size d, and if f at the new step is higher, then it updates c1 to the new value. It will stop the search if
its neighbouring c1 has a smaller value than its current f . The domain of c1 is [µ−2σ, µ+2σ] where
µ denotes the average length of the reasoning steps produced by the initial LLM policy. d is defined
by min{0.5, 4σ/10}, where σ denotes the standard deviation of the reasoning length produced by
the initial LLM policy. We also do not want to make the step too large, thus capping it by a threshold
value of 0.5, an empirically selected value.

Overall, the curriculum update, together with initialisation and Expert Iteration of AUTO-CEI, are
in the pseudo-code listed in Algorithm 3.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Benchmarks. To demonstrate the effectiveness of AUTO-CEI in reasoning tasks, we se-
lect BoardgameQA (Kazemi et al., 2024), MATH (Hendrycks et al., 2021), and Blocksworld
(Valmeekam et al., 2023) as benchmarks, spanning from logical and mathematical reasoning to
planning. They have various domains and complexities. We briefly introduce the benchmarks and
report our detailed experimental settings in the Appendix F.

• BoardgameQA is one of the latest benchmarks for logical reasoning. The data is synthesised
from formal logical reasoning rules and clauses. The problem provides a self-contained con-
text, pieces of evidence, reasoning rules, and questions. Given the evidence and reasoning rules,
LLM must decide if the queried clause is true, false, or unknown. Moreover, BoardgameQA has
cases where some evidence might contradict others. To deal with this case, BoardgameQA also
provides preferences among the reasoning rules, meaning that the conclusions drawn from the
preferred rules have higher priority. In addition, since BoardgameQA does not provide CoT data
for unknown questions, we use GPT-4 to generate CoT reasoning trajectories for unknown prob-
lems for the training dataset. Thus, the training data is consistent. The prompt for data generation
is in the Appendix F.1.

• MATH is a challenging mathematical reasoning benchmark, including advanced-level algebra
and geometry. In each of the problems, the necessary evidence is provided in the context, and
LLM is required to learn correct mathematical theorems and rules to connect the pieces of evi-
dence in the given problem and draw conclusions. It typically requires long reasoning steps in
which each mathematical theorem and rule is correctly applied to get the correct answers.

• Blocksworld is a symbolic planning problem. It defines a domain with a few blocks in differ-
ent colours. The problem requires the LLM to rearrange the blocks step-by-step and make the
configuration of the blocks satisfy some preferred constraints. Concretely, it requires the LLM
to output a sequence of pick and place behaviours, which transform the current configuration of
blocks to the goal configuration. Blocksworld has been proved to be NP-hard in finding optimal
(i.e., shortest) planning trajectories (Gupta & Nau, 1992), while suboptimal policies might be
easier to learn.

Baselines. To validate the effectiveness of AUTO-CEI, we conduct extensive experiments compar-
ing it against multiple baselines.

• SFT. We perform supervised fine-tuning on the original training dataset D and use the overall
accuracy as a reference metric.

• Vanilla EI. As noted by Havrilla et al. (2024), Expert Iteration achieves strong results in enhanc-
ing reasoning capabilities. We apply Expert Iteration to improve LLM reasoning, evaluating its
performance by retaining only correct and assertive answers during the iteration process.

• SFT + R-Tuning (Zhang et al., 2023). This is an SFT-based post-training method for hallucina-
tion mitigation. Please see our initialisation part in Section 4.1 for details.

• EI + R-Tuning. This baseline uses Vanilla Expert Iteration to boost the performance of LLM
reasoning first and then uses R-Tuning for post-training.

• RLKF (DPO). Reinforcement Learning from Knowledge Feedback (RLKF) (Xu et al., 2024) is
an RL-based post-training method for hallucination mitigation. It aligns the LLM’s behaviours
according to the consistency and correctness of LLM’s sampled responses: it teaches LLM to
respond assertively if its responses are correct and consistent and acknowledges “I don’t know” if

7



Published as a conference paper at ICLR 2025

its responses are mainly wrong or inconsistent. We implemented a DPO version of this method.
Please see the Appendix for details.

Metrics. We evaluate LLM’s responses’ overall accuracy, precision, and refusal rate (refusal rate).
The overall accuracy measures the overall performance of LLM in a specific reasoning task. A
higher accuracy means the LLM can solve more problems. We compute the accuracy by PAcc =
Number of correct responses

Number of all responses . The precision measures the accuracy of LLM when it is willing to answer
the questions assertively. It reflects the overall reliability of LLM reasoning. We compute the
precision by PPre = Number of correct responses

Num of all responses−Num of IDK . In addition, the hallucination (error) rate refers to
Number of non-refusal but incorrect responses

Num of all responses−Num of IDK . The refusal rate measures how conservative the LLM policy is. It

is computed by PIDK = Num of refusal responses
Num of all responses . A good LLM policy should have reasonable precision

and refusal rate balance, i.e., a high precision and a reasonable refusal rate according to the difficulty
of the task.

Implementation details. We use Llama-3.1-8B-instruct (Dubey et al., 2024) as the backbone model
and use Lora (r = 128, α = 64) to fine-tune. The experiments are conducted in a server with
8×Nvidia A100 (40GB) GPUs. We use DeepSpeed Stage 2 to conduct the training. See Section G
in Appendix for more details about the AUTO-CEI setup.

5.2 RESULTS

The main result is reported in Table 1. In this result, AUTO-CEI produces high precision (Pre) and
keeps a reasonably lower refusal rate (IDK) across all tasks. It also has the highest objective function
value f defined by Equation 2 (λ = 0.2). We summarize our findings in the following paragraphs.

Table 1: Main results. Acc: accuracy (%); Pre: precision (%); IDK: refusal rate (%); f : objective function.

BoardgameQA MATH Blocksworld

Method Acc Pre IDK f Acc Pre IDK f Acc Pre IDK f

SFT 60.23 60.23 – – 38.65 38.65 – – 51.99 51.99 – –
Vanila EI 67.77 67.77 – – 42.04 42.04 – – 71.04 71.04 – –
SFT + R-Tuning 55.23 80.36 31.27 0.780 19.49 60.67 67.88 0.550 38.54 90.69 57.51 0.811
EI + R-Tuning 57.76 80.77 28.49 0.789 29.57 55.80 47.02 0.552 67.92 93.95 27.71 0.896
RLKF (DPO) 49.32 54.17 8.95 0.615 40.02 42.19 5.14 0.527 35.24 38.08 8.21 0.486
AUTO-CEI (Ours) 59.70 84.52 29.37 0.817 35.56 55.63 36.08 0.575 74.78 91.53 18.30 0.896

EI improve LLM reasoning. In our experiments, the Vanila EI produced higher overall accuracy
than SFT in all tasks, which indicates the overall capacity of LLM in reasoning is improved. This
improvement is because EI helps LLM to sample various trajectories and collect those who draw a
correct solution and learn those solutions; for the next iteration of EI, it samples more trajectories
near those correct trajectories and keeps collecting and learning. Over time, LLM learns to start
from various trajectories and still get to the correct solution, even though some might be suboptimal.
Thus it becomes more robust to the randomness in token sampling when generating responses and
the resulting compounding errors.

R-Tuning makes LLM over-conservative. We found that SFT + R-Tuning and EI + R-Tuning
all show the trend of over-conservativeness (i.e., laziness). The results of both baselines have a
relatively high refusal rate (IDK) and lower overall accuracy. The low overall accuracy indicates
that LLM’s capacity has been limited, and LLM produces refusal responses to many problems that
lie within the LLM’s capability.

RLKF degrades reasoning performance. Reported by Xu et al. (2024), RLKF performs well for
short, knowledge-grounded arithmetic problems. However, for reasoning problems, the responses
generally become much longer for more complex questions. This causes a few additional issues for
RLKF techniques. First, the LLM finds it hard to distinguish the correct chosen/rejected responses
given the long response length if the dataset is not very large; thus, the reward accuracy is relatively
low (it only has 30% accuracy for Blocksworld and 70% for BoardgameQA and MATH). Second, the
original strategy of reward shaping greedily maximizes the reward for correct answers and minimises
incorrect or refusal responses. As such, the LLM will be over-assertive. As it greedily imitates the
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optimal responses guided by the inaccurate reward, it will suffer more from the compounding error
when facing the unseen context of the reasoning problems, thus degrading its performance.

AUTO-CEI improves the LLM reasoning. The result shows that the overall accuracy of AUTO-
CEI is higher than SFT + R-Tuning. Since our method initialises its optimisation using SFT +
R-Tuning, this result indicates that AUTO-CEI improves LLM’s reasoning capacities. It is because
AUTO-CEI gradually adjusts the curriculum to encourage LLM to solve more problems within its
capacities and only accept refusal responses after sufficient reasoning attempts. It thus avoids the
LLM’s laziness in easy problems and improves the robustness of the LLM’s problem-solving when it
samples suboptimal trajectories. The improvement of precision and refusal rate within a few expert
iterations is shown in Figure 7 of the Appendix.
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Figure 3: The error and refusal rate (hallucination/IDK)
according to the response length on different datasets.

AUTO-CEI estimates LLM’s limit in rea-
soning and produces the best alignment
between its behaviours and its limit. We
compare the error (hallucination) rate and
refusal rate (IDK) according to the response
length. Figure 3 shows that the error rate
of SFT and EI grows exponentially with the
increase in response length. On the other
hand, we can also see that AUTO-CEI has a
relatively uniform low rate of hallucination
for different response lengths, and its refusal
rate (refusal rate) grows according to the er-
ror rate of SFT/EI, as is ideally expected.
This result indicates that AUTO-CEI is in-
deed able to estimate LLM’s current capa-
bility limit and is further capable of reach-
ing a reasonable alignment between its as-
sertive and conservative behaviours accord-
ing to its limit. It thus behaves assertively for
problems within its limit (low refusal rate for
short reasoning length) and conservatively
for problems beyond its limit (high refusal
rate for long reasoning length). Overall,
it produces reliable reasoning while simul-
taneously maintaining maximum reasoning
ability.

5.3 ABLATION STUDY & DISCUSSION

We conduct an ablation study to verify the
effectiveness of our solution design choices
and further discuss our underlying assump-
tions. As the effect of Expert Iterations has
been demonstrated in the main result, in this
section, we mainly focus on the effect of curriculums and the practical usage of hyper-parameter λ.
The result of the ablation study is shown in Table 2.

Table 2: Ablation study. Acc: accuracy (%); Pre: precision (%); IDK: refusal rate (%).

BoardgameQA MATH Blocksworld

Method Acc Pre IDK Acc Pre IDK Acc Pre IDK

No Curriculum 56.10 85.56 34.43 27.14 52.06 47.86 68.43 93.42 26.75
λ = 0.5 59.57 81.12 26.56 37.62 49.90 24.61 79.31 84.25 5.86
λ = 0.2 59.70 84.52 29.37 35.56 55.63 36.08 74.78 91.53 18.30

Effect of λ. The hyperparameter λ decides the optimal objective function and when to stop the
optimisation. A higher λ will try to minimise the refusal rate (refusal rate) and thus make the LLM
more assertive. The lower λ will try to focus on maximising precision and tends to keep a higher
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refusal rate, making the LLM policy more conservative. The λ does not affect the overall training
process in AUTO-CEI, and the decision of the hyperparameter is mainly determined by the user’s
demand. Empirically, λ = 0.2 has a reasonable balance between the precision and refusal rate. In
practice, we suggest the user start by λ = 0.2 and further adjust the parameter according to the
demands. For example, a lower λ would be preferred in highly risky tasks, whereas a higher λ is
better for training search heuristics that require more assertive behaviours, a higher λ is better.

Effect of curriculum. We aim to use the curriculum to push the limit of LLM reasoning, thus
achieving a good alignment of its behaviours and maximizing its reasoning ability simultaneously.
We compare the ablation that does not gradually update the reward function defined in Equation 1.
The result in Table 2 (No Curriculum) shows that LLM converge to a suboptimal point where its
overall accuracy is lower and its refusal rate is higher. In addition, there might be a chance that
LLM directly reaches the optimal f after one curriculum with some other choices of λ. However,
as discussed previously, the choice of λ is determined by the user’s demand, and the optimisation
conducted by the curriculum should be able to find the optimal point specified by different λ.

6 CONCLUSION

This paper focused on mitigating LLM’s hallucinations and laziness in reasoning tasks. We pro-
pose Automatic Curriculum Expert Iteration (AUTO-CEI) to push the limits of LLM’s reasoning
capacities and align its assertive and conservative behaviours according to these limits for reliable
reasoning. We conduct experiments on various challenging reasoning benchmarks, including logical
reasoning, mathematics, and planning. Our result suggests that AUTO-CEI maximizes its reasoning
ability while achieving a superior alignment between response behaviours and this ability. The fun-
damental assumption under AUTO-CEI is that solving difficult reasoning problems requires more
reasoning steps, thus making the number of reasoning steps a good estimation measure of difficul-
ties. Recent research works by OpenAI (2024) and Snell et al. (2024) suggest that a longer reasoning
length in the inference time scales up the LLM reasoning ability and enables it to achieve expert-
level capabilities. These researches provide evidence for our assumption. Meanwhile, they also
show the chance that our method can also be applied to improve the reliability of those language
models with super-long reasoning lengths.

Limitations. This work focuses on challenging reasoning problems, where complexity can be es-
timated by the number of reasoning steps. For simpler problems with shorter reasoning paths or
well-studied datasets (e.g., GSM8K), R-Tuning reliably performs well, leaving limited scope for
further optimization. This is partly due to the reduced impact of compounding errors in these easier
tasks. We also found that the model might decline to answer even if its response is correct. Thus,
further adjustment and fine-tuning should be applied to solve this issue, and our method should be
able to be extended accordingly as well. In addition, our method might require a long time for opti-
misation as it requires running Expert Iteration multiple times. Nonetheless, compared to the cost of
pre-training, the overhead of the iterative post-training algorithm remains worthwhile for achieving
better alignments. Our primary goal was to establish a proof-of-concept using straightforward, re-
producible metrics common in curriculum learning. While we focused on the number of reasoning
steps as the core metric, the framework can accommodate more sophisticated approaches. Future
work could incorporate advanced metrics such as LLM-predicted statistics (Wang et al., 2024b;
Damani et al., 2024) for fine-grained curriculum learning. The foundational nature of Auto-CEI
makes it amenable to such extensions while maintaining its core benefits of automation and scala-
bility.

Reproducibility Statement. In Section 4, we provide pseudocode for our algorithm and explain
the details of each part. We provide sufficient details in Appendix Section G for our implementation
of AUTO-CEI and training settings. For our experiment benchmarks, we introduce our benchmark
selection and metric computation in Section 5.1 and provide the link to download the dataset or
the source code from the published papers to generate the dataset, the format of the dataset, and
the dataset size we choose in Appendix Section F. We also provide the baseline methods’ details,
implementation and training in Appendix Section H. Codes are available.
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A DIFFICULTY AND RESPONSE LENGTH

The underlying assumption of our paper is that difficult problems require longer responses to get the
answer. We use the MATH dataset, which has manually labelled difficulties, to verify the hypothesis.
We measure the steps of reasoning with respect to the labelled difficulty, shown in Fig 4. The result
suggests that the reasoning length and manually labelled difficulty are correlated with statistical
significance. The scale looks different from Fig 3 in the paper, as the reasoning length distribution
is a long tail distribution. The distribution is visualised in Fig 5.

Human-labelled difficulty often diverges from computational measures, with LLM-perceived dif-
ficulty better aligning with reasoning steps (Pearson’s r = 0.349, p < 1e-142). Despite the noise
in the MATH dataset’s non-standardized steps, Auto-CEI performs robustly, effectively balancing
assertiveness and conservativeness.
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Figure 4: Correlation between reasoning length and
labeled difficulty (MATH dataset). For each difficulty
level, the mean reasoning length is plotted with error
bars representing the standard error of the estimator.
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by AUTO-CEI for the MATH dataset.
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Some difficult problems might have short optimal solutions. However, this doesn’t mean the compu-
tational complexity of that problem is low. Take NP-complete problems as an example. Searching
for the solution may require exponential time (in the worst case), but verifying the solution only
takes polynomial time, as the optimal solution is much shorter than the search process. While the
question of whether verification is inherently simpler than finding a solution (NP ?= P) remains
open, our hypothesis relies on human intuitive common sense: more difficult problems generally
require higher computational complexity to arrive at correct solutions, which is also the case for
real-world problems and solutions.

B HYPERPARAMETER TUNING

The mitigation of hallucination and laziness contradict each other. Optimizing precision makes the
LLM respond “I don’t know” most of the time; minimising the refusal rate makes the LLM try to
make an assertive response all the time. Because of this, our objective is not to maximise accuracy
but to achieve the sweet spot of balance between assertiveness and conservativeness.

The hyper-parameter does not affect the training process but determines when to stop the Auto-CEI.
Empirically, the user can start an initial hyper-parameter. After it terminates, if the user is unsatisfied
with the result, they can further update the hyper-parameter and continue the training process. The
previous models can be reused so that no extra computation is involved. One example is shown in
Fig 6.
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Figure 6: The value of objective function f changes according to the curriculum and hyper-parameter λ. The
red dot denotes the highest value of f in the curve.

C REFUSAL ACCURACY

We evaluate if the language model makes a refusal response even if its answer is correct. Thus, we
define the refusal accuracy (IDK Acc) below.

PIDKAcc =
Number of refusal response with correct answer

Number of refusal response
(3)

The refusal accuracy measures the proportion of the correct answer in the refusal responses. A
lower accuracy indicates a better self-awareness in correctness, while a higher correctness means
the language model is over-conservative. The refusal accuracy, compared with the precision, is
shown in Table 3.

The result suggests that Auto-CEI’s refusal responses have significantly lower accuracy. We also
highlight that a model’s true capacity is inherently a hidden variable and can only be estimated
indirectly, as there is no ground-truth label of which questions are truly beyond LLM’s capacity. 1 -
(refusal accuracy) is a Monte-Carlo estimation of the model’s awareness in providing an inaccurate
answer.
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Table 3: Refusal accuracy v.s. Precision. Pre: precision (%); IDK Acc: refusal accuracy (%).

Boardgame QA MATH BlocksWorld

Pre IDK Acc Pre IDK Acc Pre IDK Acc

SFT + R-Tuning 80.36 19.62 60.67 14.27 90.69 32.44
EI + R-Tuning 80.77 16.67 55.80 12.74 93.95 41.21
RLKF 54.17 21.48 42.19 13.49 38.08 24.47
Auto-CEI 84.52 12.25 55.63 9.89 91.53 27.02

D GENERALIZABILITY CROSS LANGUAGE MODELS

We conduct additional experiments to test the generalizability of our method in other language
models. We did experiments on Mistral-7B-Instruct-v3 on the BoardgameQA benchmark. The
result is shown in Table 4. It provides further evidence of our method’s generalisability.

Table 4: Additional Experiment on Mistral-7B-Instruct-v3. Acc: accuracy (%); Pre: precision (%); IDK:
refusal rate (%); IDK Acc: refusal accuracy (%).

Acc Pre IDK IDK Acc f(λ = 0.2)

SFT 71.28 – – – –
EI 75.54 – – – –
SFT + R-Tuning 59.02 76.39 22.74 15.42 0.7656
EI + R-Tuning 61.62 80.39 23.35 14.23 0.7964
Auto-CEI 75.01 93.47 19.75 11.50 0.9083

E IMPROVEMENT IN EXPERT ITERATION
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Figure 7: Improvement within EI. The precision and refusal rate converge after 3 iterations.

F EXPERIMENTAL SETTINGS

F.1 BOARDGAMEQA

For boardgameQA, we use the main dataset to do fine-tuning and evaluation 2. We take the
dataset under the folder BoardgameQA-Main-depth1, BoardgameQA-Main-depth2 and
BoardgameQA-Main-depth3. We show one example of the problem in BoardgameQA in List-
ing 1. For more details about the dataset itself, please refer to the paper by Kazemi et al. (2024).

In our experiment, we put the example as the input prompt and verify if the final answer is the
same as the label. The proof provides the chain of thought inference data, which is used in our
fine-tuning.

2The dataset is downloaded from https://storage.googleapis.com/gresearch/
BoardgameQA/BoardgameQA.zip

16

https://storage.googleapis.com/gresearch/BoardgameQA/BoardgameQA.zip
https://storage.googleapis.com/gresearch/BoardgameQA/BoardgameQA.zip


Published as a conference paper at ICLR 2025

Listing 1: BoardgameQA Problem Example
{

"facts": "The cow learns the basics of resource management from the
aardvark. The dog burns the warehouse of the koala. The dog proceeds to
the spot right after the leopard. The dog reduced her work hours recently
. The hummingbird has a card that is red in color.",

"rules": "Rule1: For the halibut, if the belief is that the dog shows
her cards (all of them) to the halibut and the hummingbird knocks down

the fortress of the halibut, then you can add that \"the halibut is not
going to eat the food that belongs to the lion\" to your conclusions.
Rule2: If the hummingbird has a card whose color appears in the flag of
Japan, then the hummingbird knocks down the fortress that belongs to the
halibut. Rule3: If you see that something proceeds to the spot right
after the leopard and burns the warehouse that is in possession of the
koala, what can you certainly conclude? You can conclude that it also
shows her cards (all of them) to the halibut. Rule4: If the cow learns
elementary resource management from the aardvark, then the aardvark burns
the warehouse of the elephant. Rule5: If at least one animal burns the

warehouse of the elephant, then the halibut eats the food that belongs to
the lion.",

"preferences": "Rule5 is preferred over Rule1. ",
"example": "A few players are playing a boardgame. The current state

of the game is as follows. The cow learns the basics of resource
management from the aardvark. The dog burns the warehouse of the koala.
The dog proceeds to the spot right after the leopard. The dog reduced her
work hours recently. The hummingbird has a card that is red in color.

And the rules of the game are as follows. Rule1: For the halibut, if the
belief is that the dog shows her cards (all of them) to the halibut and
the hummingbird knocks down the fortress of the halibut, then you can add
that \"the halibut is not going to eat the food that belongs to the lion

\" to your conclusions. Rule2: If the hummingbird has a card whose color
appears in the flag of Japan, then the hummingbird knocks down the
fortress that belongs to the halibut. Rule3: If you see that something
proceeds to the spot right after the leopard and burns the warehouse that
is in possession of the koala, what can you certainly conclude? You can

conclude that it also shows her cards (all of them) to the halibut. Rule4
: If the cow learns elementary resource management from the aardvark,
then the aardvark burns the warehouse of the elephant. Rule5: If at least
one animal burns the warehouse of the elephant, then the halibut eats

the food that belongs to the lion. Rule5 is preferred over Rule1. Based
on the game state and the rules and preferences, does the halibut eat the
food of the lion?",

"proof": "We know the cow learns the basics of resource management
from the aardvark, and according to Rule4 \"if the cow learns the basics
of resource management from the aardvark, then the aardvark burns the
warehouse of the elephant\", so we can conclude \"the aardvark burns the
warehouse of the elephant\". We know the aardvark burns the warehouse of
the elephant, and according to Rule5 \"if at least one animal burns the
warehouse of the elephant, then the halibut eats the food of the lion\",
and Rule5 has a higher preference than the conflicting rules (Rule1), so
we can conclude \"the halibut eats the food of the lion\". So the
statement \"the halibut eats the food of the lion\" is proved and the
answer is \"yes\".",

"goal": "(halibut, eat, lion)",
"theory": "Facts:\n\t(cow, learn, aardvark)\n\t(dog, burn, koala)\n\t

(dog, proceed, leopard)\n\t(dog, reduced, her work hours recently)\n\t(
hummingbird, has, a card that is red in color)\nRules:\n\tRule1: (dog,
show, halibut)ˆ(hummingbird, knock, halibut) => ˜(halibut, eat, lion)\n\
tRule2: (hummingbird, has, a card whose color appears in the flag of
Japan) => (hummingbird, knock, halibut)\n\tRule3: (X, proceed, leopard)ˆ(
X, burn, koala) => (X, show, halibut)\n\tRule4: (cow, learn, aardvark) =>
(aardvark, burn, elephant)\n\tRule5: exists X (X, burn, elephant) => (

halibut, eat, lion)\nPreferences:\n\tRule5 > Rule1",
"label": "proved"
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}

BoardgameQA data argumentation For the problems whose label is unknown, the proof
only provides one simple statement: The provided information is not enough to prove or disprove
the statement “{the query statement}”. This make the responses inconsistent with other responses
whose label is proved or disproved. Thus, we use GPT-4 to generate the chain of thought data
for unknown cases. The prompt of our data generation is provided in the Listing 2.

Listing 2: Prompt for data generation
prompt="""
You are helping to generate the reasoning for a logical reasoning problem
. The problem has no sufficient evidence to conclude if the question is
proved or disproved, thus is not provable, or unknown. You will need to
generate refutation or exploration reasoning steps to show that there is
no evidence to draw a conclusion. Make sure your answer is clear and
concise. Always end your answer by saying So the statement "..." is not
provable and the answer is "unknown".
Example:
Quesiton: A few players are playing a boardgame. The current state of the
game is as follows. The cheetah needs support from the swordfish. The

crocodile winks at the moose. The dog burns the warehouse of the raven.
The gecko needs support from the aardvark. The kudu learns the basics of
resource management from the aardvark. The leopard eats the food of the
penguin. The leopard holds the same number of points as the lion. The
viperfish winks at the penguin. The zander respects the doctorfish. The
hare does not attack the green fields whose owner is the hummingbird. The
rabbit does not knock down the fortress of the sea bass. And the rules

of the game are as follows. Rule1: Be careful when something eats the
food that belongs to the penguin and also needs the support of the lion
because in this case it will surely sing a victory song for the whale (
this may or may not be problematic). Rule2: If the gecko needs the
support of the aardvark and the kudu prepares armor for the aardvark,
then the aardvark will not wink at the oscar. Rule3: If the dog burns the
warehouse that is in possession of the raven, then the raven shows her

cards (all of them) to the hare. Rule4: If you are positive that one of
the animals does not knock down the fortress that belongs to the sun bear
, you can be certain that it will wink at the oscar without a doubt.
Rule5: If the leopard sings a victory song for the whale, then the whale
attacks the green fields of the tilapia. Rule4 is preferred over Rule2.
Based on the game state and the rules and preferences, does the whale
attack the green fields whose owner is the tilapia? This quesion is not
provable. Please generate the reasoning steps. Make sure your answer is
clear and concise.
Answer:
We know the whale’s attack on the green fields of the tilapia depends on
whether the leopard sings a victory song for the whale, as stated in Rule
5.

For the leopard to sing the victory song, it must both eat the food of
the penguin and need the support of the lion, per Rule 1.
However, the game state does not confirm whether the leopard needs the
lion’s support, leaving this condition unresolved.
As none of the other rules (Rules 2, 3, or 4) are relevant to the whale’s
attack or the leopard’s behavior, and there is insufficient information

to verify the key condition in Rule 1, the conclusion remains unknown.
So the statement "the whale attack the green fields whose owner is the
tilapia" is not provable and the answer is "unknown".
Question: {} This quesion is not provable. Please generate the reasoning
steps. Make sure your answer is clear and concise.
Answer:
""".format(question)

When using GPT-4 to generate the data, we choose temperature=0.6 and top p=0.95. The
model we selected is gpt-4-turbo.
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F.2 MATH

We download the MATH dataset via Hugging Face 3. It automatically divide the dataset into training,
validation, and test set. We used all the training data in our experiment and evaluated it using all
validation and testing sets to check if the final answer was the same as the labelled data. For more
details about the dataset itself, please refer to the paper by Hendrycks et al. (2021). One example
format of the dataset is shown in the Listing 3.

Listing 3: Example data point of MATH dataset
{

’level’: ’Level 4’,
’type’: ’Counting & Probability’,
’prompt’: "The reality game show Survivor is played with 16 people

divided into two tribes of 8. In the first episode, two people get
homesick and quit. If every person has an equal chance of being one of
the two quitters, and the probability that one person quits is
independent of the probability that any other person quits, what is the
probability that both people who quit are from the same tribe?\nThink
step by step and use the format of ’#### \\{final answer\\}. \n###’ to
complete your answer.",

’answer’: ’\\frac{7}{15}’,
’completion’: ’There are $\\binom{16}{2} = 120$ ways to pick 2 of the

16 people to quit.\nThere are $\\binom{8}{2} = 28$ ways for them to both
be from the first tribe, and $\\binom{8}{2} = 28$ ways for them to both

be from the other tribe, for a total of $28 + 28 = 56$ ways for them both
to be from the same tribe.\nSo the odds that both people who quit are

from the same tribe is $56/120 = \\boxed{\\frac{7}{15}}$.\n#### \\frac
{7}{15}. \n###’
}

F.3 BLOCKSWORLD

The Blocksworld dataset can be generated using the code in the GitHub repository by Valmeekam
et al. (2023)4. For our case, we generate domains from 4 blocks to 6 blocks, and randomly samples
500 data points for training. We randomly sample 500 data points for validation and testing sets
whose optimal solution length (i.e., ground truth plan) is no longer than ten steps. We uniformly
sample the tasks according to the ground truth lengths to form the testing set (i.e., 100 two-step
tasks, 100 four-step tasks, ..., and 100 ten-step tasks).

The original format of the chain of thought for Blocksworld planning is unnecessarily long, therefore
making it difficult to learn a sufficient policy. We modified the format of the chain of thought to make
it more concise and informative. The elementary format is shown below:“{problem description}.
Since {precondition text}. Thus, we take action {action} . . . Since {precondition text}. Thus, we
take action {action}. Since the goal is GOAL. The goal conditions are satisfied. ###”. One example
of the dataset format is shown in the Listing 4.

Listing 4: Example of Blocksworld dataset
{

’instance_id’: ’3’,
’query’: ’I am playing with a set of blocks where I need to arrange

the blocks into stacks. Here are the actions I can do\n\nPick up a block\
nUnstack a block from on top of another block\nPut down a block\nStack a
block on top of another block\n\nI have the following restrictions on my
actions:\nI can only pick up or unstack one block at a time.\nI can only
pick up or unstack a block if my hand is empty.\nI can only pick up a
block if the block is on the table and the block is clear. A block is
clear if the block has no other blocks on top of it and if the block is
not picked up.\nI can only unstack a block from on top of another block
if the block I am unstacking was really on top of the other block.\nI can

3Link: https://huggingface.co/datasets/hendrycks/competition_math
4Link: https://github.com/karthikv792/LLMs-Planning.
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only unstack a block from on top of another block if the block I am
unstacking is clear.\nOnce I pick up or unstack a block, I am holding the
block.\nI can only put down a block that I am holding.\nI can only stack
a block on top of another block if I am holding the block being stacked

.\nI can only stack a block on top of another block if the block onto
which I am stacking the block is clear.\nOnce I put down or stack a block
, my hand becomes empty.\nOnce you stack a block on top of a second block
, the second block is no longer clear.\n\nThe plan correctness is defined
in terms of states resulting from executing the actions in the plan. An

action is executable in a state when all its preconditions hold in that
state. The state resulting from the action execution consists of
everything in the previous state with the addition and deletion of add
and delete effects of the action. Plan correctness is defined as follows:
if the first action in the plan is applicable in the initial state, i.e

., its preconditions are all present there; and the second action is
applicable in the state resulting from applying the first action to the
initial state, this process continues until the state resulting from the
application of the last action in the last but one state gives rise to
the final state where all the goals are satisfied.\n\n[STATEMENT]\nAs
initial conditions I have that, the red block is clear, the orange block
is clear, the yellow block is clear, the hand is empty, the yellow block
is on top of the blue block, the red block is on the table, the blue
block is on the table and the orange block is on the table\nMy goal is to
have that the blue block is on top of the orange block and the yellow

block is on top of the red block.\nMy plan is as follows:\n\n[PLAN]’,
’reply’: ’Since the yellow block is clear, the hand is empty and the

yellow block is on top of the blue block. Thus, we take action unstack
the yellow block from on top of the blue block. Since the red block is
clear and the hand is currently holding yellow block. Thus, we take
action stack the yellow block on top of the red block. Since the blue
block is clear, the hand is empty and the blue block is on the table.
Thus, we take action pick up the blue block. Since the orange block is
clear and the hand is currently holding blue block. Thus, we take action
stack the blue block on top of the orange block. Since the goal is the
blue block is on top of the orange block and the yellow block is on top
of the red block. The goal conditions are satisfied.\n###’,

’ground_truth_plan’: ’(unstack d b)\n(stack d a)\n(pick-up b)\n(stack
b c)\n’

}

For more details about the dataset, please refer to the paper by Valmeekam et al. (2023).

G IMPLEMENTATION DETAILS

G.1 AUTO-CEI SETTING

Neural Network Model We use Llama-3.1-8B-instruct (Dubey et al., 2024) as the backbone
model and use Lora (r = 128, α = 64) to fine-tune 5. We use the Fastchat template designed
for Llama-3.1-8B-Instruct. The template is demonstrated in the Listing 5. We fill in the Prompt by
our query and train the LLM to respond by Completion.

Listing 5: Chat Template
A chat between a curious human and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the human’s
questions.
### Human: {Prompt}
### Assistant: {Completion}
###

5The Llama-3.1-8B-instruct model is downloaded at https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct.
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Initialisation As suggested in the paper, we used R-Tuning (Zhang et al., 2023) as our initiali-
sation strategy. Overall, we use LLM to generate various responses via random sampling. It will
produce correct and incorrect responses with intermediate reasoning steps. We collect those incor-
rect responses and attach an expression of acknowledging limitations. In practice, we use tempera-
ture=1.0 and top p = 0.95 to sample responses. We sample 16 responses in our experiments for each
query. The expression of acknowledging limitation is “Sorry, I am not sure if I answer the question
correctly. There might be mistakes in my answer”.

Expert Iteration In this process, the language model will keep sampling responses, and we select
the correct responses or have sufficient reasoning attempts before acknowledging incapability. We
use temperature=1.0 and top p = 0.95 to sample responses and sample 16 responses for each query.

Expert Iteration resamples the response according to the reward function defined in Equation 1. In
this function, c1 is initialised by the mean value of reasoning steps produced by the initial LLM
policy in the validation set, and c2 is computed to make sure that if the number of reasoning steps
has reached c1 + 2σ (σ is the standard deviation of the reasoning steps by initial policy), then the
reward should be higher than 0.9. It means the answer is longer than roughly 95% of the reasoning
trajectories in the validation set, assuming the distribution of reasoning steps is a normal distribution.
We use the keywords to identify the length of the reasoning steps. We set a fixed format for different
reasoning tasks, and each task will have a marker for length identification. In general, we use the
keyword “Since” to identify the number of reasoning steps for the Blocksworld task, and “.\n” for
the BoardgameQA and MATH tasks.

Curriculum Update The curriculum updates the reward function gradually. Specifically, it grad-
ually increases or reduces the value of c1 defined in Equation 1. We use the hill-climbing algorithm
to search for the optimal value of the objective function f under the assumption that there is no sub-
optimal value of f wrt c1. We define the steps of updating c1 by min{0.5, 4σ/10}, where σ denotes
the standard deviation of the reasoning length produced by the initial LLM policy. We assume that
the domain is [µ− 2σ, µ+ 2σ] where µ denotes the mean length of the initial LLM policy, and the
domain determines the step size of updating c1. We also do not want to make the step too large,
thus capping it by a threshold value of 0.5, an empirically selected value. As such, the hill climbing
algorithm will search the neighbouring value of c1 according to the step size d and identify if the
neighbouring point has a larger f value; otherwise, we believe c1 has reached its optimal point to
achieve the highest f .

G.2 TRAINING DETAILS

The experiments are conducted in a server with 8×Nvidia A100 GPUs. We use DeepSpeed Stage 2
to conduct the training 6. During the SFT stage, we choose the batch size = 256, and epoch number
is 5 for initial SFT process, and 2 for SFT in R-Tuning and EI process. The learning rate of SFT is
1× 10−4. We use the HuggingFace SFT trainer7 to conduct the SFT training automatically.

H DETAILS OF BASELINE METHODS

H.1 R-TUNING

The setting is the same as AUTO-CEI in the initialisation part of Section G.1.

H.2 RLKF

Reinforcement Learning from Knowledge Feedback (RLKF) (Xu et al., 2024) is an RL-based post-
training method for hallucination mitigation. It aligns the LLM’s behaviours according to the con-
sistency and correctness of LLM’s sampled responses: it teaches LLM to respond assertively if its
responses are correct and consistent and acknowledges “I don’t know” if its responses are mainly
wrong or inconsistent. We implemented a DPO version of this method as one of our baseline.

6The configuration of DeepSpeed Stage 2 can be found at https://github.com/huggingface/
transformers/blob/main/tests/deepspeed/ds_config_zero2.json

7https://huggingface.co/docs/trl/v0.11.1/en/sft_trainer
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Data collection Xu et al. (2024) define the pairwise preference to define the reward function:

pair =

{
(x, yc) > (x, yr), for All samples are correct;
(x, yc) > (x, yw), for There exists correct response in samples;
(x, yr) > (x, yw), for All samples are wrong.

(4)

In this equation, x refers to the query, and y means the response sampled from LLM. yc denotes the
correct response, yw denotes the wrong responses, and yr denotes the refusal response (acknowl-
edging “I don’t know”). We use this strategy to build up the dataset. Since we do not have a special
out-of-domain dataset in our setting, we only build the reliable in-domain preference dataset. We
sample the LLM using temperature=1.0 and top p=0.95, and sample 16 instances for each
query. The template refusal responses in RLKF is the same as the R-Tuning. If all responses are
correct, we will annotate all 16 responses using the refusal template to form 16 pairs of preference
data. If there are correct and incorrect responses, we sample 16 preference pairs randomly. If all
samples are wrong, we use all of the wrong responses to generate the refusal responses and form 16
pairs of preference data.

Training We use the TRL DPOTrainer8 to conduct the training. Similar to the previous setting,
we use Lora (r = 128, α = 64) for fine-tuning. The experiment is implemented in 8×Nvidia A100
GPUs. The batch size of our training is 256, and the learning rate is 1.0 × 10−5, and the epoch
number is 5.

8https://huggingface.co/docs/trl/main/en/dpo_trainer
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