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Abstract

Existing efforts in motion synthesis typically utilize either generative transformers
with discrete representations or diffusion models with continuous representations.
However, the discretization process in generative transformers can introduce mo-
tion errors, while the sampling process in diffusion models tends to be slow. In
this paper, we propose a novel text-to-motion synthesis method GMMotion that
combines a continuous motion representation with an autoregressive model, us-
ing the Gaussian mixture model (GMM) to represent the conditional probability
distribution. Unlike prior autoregressive approaches relying on residual vector
quantization, our model employs continuous motion representations derived from
the VAE’s latent space. This choice streamlines both the training and the inference
processes while mitigating discretization errors. Specifically, we utilize a causal
transformer to learn the distributions of continuous motion representations, which
are modeled with a learnable Gaussian mixture model. Extensive experiments
demonstrate that our model surpasses existing state-of-the-art models in the motion
synthesis task.

1 Introduction
3D human motion synthesis, i.e., generating a vivid action sequence by control conditions, holds
promising applications in game development, embodied intelligence, and the animation. Two main
paradigms are used today: (1) One paradigm uses generative transformers with discrete motion
representation, such as GPT-like (1; 2; 3) or BERT-like (4; 5) models, to synthesize motions based
on specific conditions. Typically, these methods require a vector quantization model (6) to convert
continuous motion sequences into discrete codebook tokens. Subsequently, a generative transformer is
trained either using a teacher-forcing approach to generate discrete motion tokens autoregressively or
using a masked filling strategy to generate them non-autoregressively. Finally, a decoder synthesizes
the final motion sequence. (2) The other paradigm employs diffusion models with continuous
motion representation (7; 8; 9; 10). They first train a continuous autoencoder, primarily using VAE-
based (11) models, to create a compressed and semantically rich representation of motion in latent
space. The diffusion model then utilizes various sampling strategies (12; 9; 13) and conditional
control methods (14; 15) to generate latent vectors of motion that align with the given conditions.
However, both paradigms have disadvantages.

The VQ process inevitably disrupts the continuity of the time series, which can lead to errors during
the token connection process. Some works employ residual VQ (RVQ) (4; 16), which involves
iteratively summing residuals using multiple codebooks to mitigate compression loss. However,
models using RVQ often have a structure similar to VALL-E (17), which requires separate processing
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of tokens for the primary layer and the residual layers, increasing the complexity of the model. Some
studies use binary codebooks (18) or model body joints separately (19), but this can increase the
codebook size and lead to higher storage costs. Moreover, the highly compressed nature of the motion
can lead to less diverse outputs, favoring common patterns found in the training data.

The diffusion models offer better diversity with text conditions and generate high-quality motion (20;
21; 8); however, their inference speed is limited since the sampling process requires multiple iterations.
Efforts to address these issues, such as MotionLCM (12) and B2A-HDM (22), have successfully
decreased sampling steps through distillation techniques. Nevertheless, they require pre-specifying
a maximum sequence length, which limits the scalability of motion generation. Therefore, we are
motivated to develop an approach that reduces compression loss in motion representation while
enabling continuous generation in multi-modal spaces.

In this paper, we propose a novel framework called Autoregressive Modeling with Gaussian Mixtures
(GMMotion), which aims to synthesize motions with continuous GMM latent sapce, demonstrating
that vector quantization is not a necessary prerequisite for autoregressive motion modeling. We lead
the motion sequence into the Gaussian mixtures’ latent space with learnable parameters in the first
stage. By constraining the latent representation to be a continuous multi-modal distribution during
VAE training and recovering it in the second stage with a continuous autoregressive (AR) model,
we can build a AR model that retains all the advantages of Large Language Modeling (prompting,
integrated duration modeling, and sampling) without many of the challenges associated with VQ.
Additionally, our key advantage lies in eliminating the need to predefine the duration of generated
content, enabling the synthesis of longer motion sequences based on the complexity of control
conditions.

Our approach includes three major aspects:

• We utilize a learnable Gaussian mixture model to represent motion sequences as multi-modal
distributions.

• We introduce an autoregressive causal transformer that learns the distribution of continuous
representations and employs Gaussian mixture sampling to generate motion representations.

• We design a straightforward architecture that benefits from single-step Gaussian mixture
sampling and AR generation, leading to extrapolatable inference and high-quality motion
synthesis.

2 Related Work

2.1 Autoregressive Generation with Continuous Tokens

Autoregressive models (23; 24; 17) typically generate content utilizing quantized representations
extracted from raw data (6; 25). However, recent studies (26; 27) find that as long as the per-token
distributions are modeled, autoregressive models can be approached without vector quantization.
MAR (27) introduced an image-masked autoregressive modeling method that uses an MLP head to
perform diffusion sampling on several consecutive tokens at each iteration. LatentLM (28) introduces
a multi-modal latent language model with a next-token diffusion approach, achieving good results in
both speech synthesis and image generation tasks. However, the sequential iterative diffusion sampling
process can lead to extremely slow inference speeds. MELLE (29) proposes an autoregressive text-
to-speech synthesis model using uni-modal Gaussian sampling to accelerate the inference process.
However, as shown in Figure 1, time series data often follow multi-modal distributions, making it
difficult to accurately fit with an unimodal Gaussian distribution. VAE (12) exhibits an unimodal
distribution but does not cluster the representations of movements. RVQ (4) captures the slightly
chaotic multimodal distribution. Due to sampling errors and the varying movements of different joints,
the raw data do not conform to a typical normal distribution, resulting in multi-modal distributions or
even more complex distributions.

2.2 Motion Generation Methods

Research on human motion analysis has a long history (30), statistical models (31; 32; 1) have
been employed in earlier studies. Some motion synthesis models leverage raw motion data for
training generative models (7). However, these models can be affected by measurement errors in the
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Figure 1: (a) Violin map of the motion’s moving components randomly selected from the normalized
HumanML3D datasets;(b) Visualization of different representation model’s latent space with t-SNE.
Yellow indicates dense sample distribution, while blue represents sparse sample distribution.

data, which often result from inaccuracies in the motion capture process (33; 34). Furthermore, the
motion vectors corresponding to different joints exhibit specific distributions, making it challenging
for these models to learn representations of complex movements. To maintain the continuity of
time series, some approaches (3; 13) employ continuous representation learning models such as
variational autoencoders (VAEs) (11; 35). In these models, an encoder predicts the mean and variance
of motion latent vectors, followed by sampling from a Gaussian distribution to obtain the latent
vector representation, which is then decoded to reconstruct the motion. Although VAEs (8) achieved
satisfactory reconstruction results, they struggled to differentiate between various motions, thereby
increasing the difficulty of learning for the subsequent generative model.

Recent work has leveraged Vector Quantized-Variational Autoencoders (VQ-VAEs) (5; 36; 18) to
achieve discrete representation learning for motion. These models use codebook indices as motion
tokens, enabling the application of language modeling (37) techniques and resulting in impressive
generation outcomes. However, due to the inevitable quantization error introduced by the discrete
process, autoregressive or masked generation methods based on VQ models have been constrained
(29; 27).

3 Methodology

Given a motion description like "A person rolls forward once, then raises their hand and quickly
shoots a ball.", our goal is to create a 3D motion sequence that reflects this description. In this
paper, we propose a learnable Gaussian mixture model to represent motion sequences as multi-modal
distributions, regularized by the Kolmogorov-Smirnov (KS) distance (Sec. 3.1). We then introduce
a masked autoregressive transformer that learns the distribution of continuous representations and
employs Gaussian mixture sampling to generate motion representations (Sec. 3.2).

Our proposed model comprises two primary components: a Gaussian Mixture Variational Autoen-
coder (GM-VAE) and an AR model. The GM-VAE incorporates causal convolutions to preserve
temporal consistency in sequential data processing, along with a learnable prior distribution to reg-
ularize the latent space. The AR model consists of a text encoder, a causal transformer, a latent
sampling module, and a PostNet. The latent sampling module applies Gaussian resampling to the
autoregressively generated latent vectors from the transformer to produce coarse reconstructions,
which the PostNet then refines into detailed motion outputs.

3.1 Stage 1: Learning Continuous Motion Representation

Motion data, which describes the movement of different parts of the body, can be highly variable
due to the unique motion patterns of individual joints. This complexity makes it difficult to represent
the data with a single normal distribution. For example, the movement of your feet when walking
or running (including speed and rhythm) can differ significantly from the movements of other parts
of your body. This motivated us to model multi-modal distributions in a continuous latent space to
preserve the temporal integrity of motion data (as shown in Figure 1).
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Figure 2: The training stage of the proposed GMMotion model. First, a VAE is trained to reconstruct
motion data. The encoder obtains the posterior distribution of motions, which is shaped by a learnable
Gaussian mixture, and then the decoder generates reconstructed motions from latent features. Next, a
causal transformer generates latent representations, which are regularized by VAE’s shared GMM
parameters. Text embeddings and latent representations control the transformer to predict Gaussian
variables for masked latent. Finally, continuous latent is restored through Gaussian mixture latent
sampling.

Learnable GMM as a prior. Some works (38; 39) suggest that structured VAEs can effectively train
deep models using a GMM as a prior distribution, replacing the normal distribution typically used in
vanilla VAEs. Inspired by (39), an unsupervised clustering model using Gaussian mixture variational
autoencoders, we propose the learnable mixture of Gaussians as a prior distribution to replace the
single normal distribution. The evidence lower bound is:

ELBO = Eq(z|x)[log p(x|z)]− λKLgmm, (1)

where λ controls the strength of the regularization, Eq(z|x)[log p(x|z)] is the log-likelihood of the
reconstructed data. Similar to VQ-based models, we obtain the latent vector z from the encoder
through a deterministic mapping. However, since the posterior is a deterministic function and the
prior is composed of a mixture of Gaussians, directly calculating the difference between these two
distributions (known as KL divergence) is not straightforward (40). The reconstruction term, therefore,
can be estimated by drawing Monte Carlo samples:

KLgmm =KL(q(z|x)∥
L∑

l=1

πlN (µl,Σl))

≈ 1

M

M∑
j=1

L∑
l=1

p
(j)
β KL(q(z|x)∥p (x|µl,Σl, tl = 1)),

(2)

where l denotes the mixing exponent index, L is the total number of mixtures, and t is a one-hot
vector sampled from the mixing probability π, which chooses one component from the Gaussian
mixture. M is number of samples, p(j)β = p(tl = 1|z(j)) is the conditional probability of tl being
equal to 1 when given the sampled latent z(j). The gradient can be backpropagated with the standard
reparameterization trick (35). The prior term can be calculated analytically.

KS distance for latent regularization. Our loss definition is based on the Kolmogorov-Smirnov
(KS) test (41) for equality of one-dimensional probability distributions. The KS test serves as a
statistical tool to determine whether a set of N one-dimensional data points is drawn from a specified
reference distribution. This determination is made by comparing the cumulative distribution function
(CDF) of the reference distribution with the empirical CDF FN , which is derived from the observed
samples.

For each mode l ≤ L in the GMM, let ul represent the mean, Σl represent the covariance matrix, and
πl represent the weight of that specific mode. The CDFs for univariate Gaussian distributions can be
defined as:

FGMM,j(z) =

L∑
l=1

πlΦ

(
z − [µl]j
[Σ]j,j

)
, (3)
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and the covariance matrix of the GMM can be computed as:

ΣGMM =

L∑
l=1

plΣl +

L∑
l=1

pl(µl − µ̄)(µl − µ̄)T , (4)

where µ̄ = 1
L

∑L
l=1 µl, applying our proposed regularization method to multi-modal GMMs is a

simple extension. Given d-dimensional latent samples z1, ..., zN , the empirical marginal CDF in
dimension j is given by:

F̄
(N)
j (z) =

1

n

N∑
n=1

I[zn]j≤z, (5)

where I is an indicator function, the primary term in our loss function is specified as:

LKS,L(z1, . . . , zN ) =
1

d

d∑
j=1

MSE
(
F̄

(N)
j (zj), FGMM,j(zj)

)
. (6)

Based on a motion-VAE (42), we use an L2 loss between the ground truth poses x and predictions x̂.
We use an L2 loss between the root-centered vertices of the SMPL mesh (43) v and predictions v̂:

Lrec(x̂,x) = ∥x̂− x∥22 + ∥v̂ − v∥22. (7)

The final loss function includes motion reconstruction and latent space distribution constraints:

Lloss = λKSLKS,L + Lrec. (8)

3.2 Stage 2: Learning Autoregressive Latent Sampling with GMM

.

Linear Layer
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Gumbel-Softmax

𝜀 ~ 𝑁(0, 𝐼)

+
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𝑧t

𝑧′t

Figure 3: GMM latent sampling process.

Considering that the motion representation in
the first stage is constrained to be continuous and
follows a GM distribution, in the second stage,
we directly generate this distribution from a
variational inference perspective, thereby avoid-
ing the multi-step iterations of diffusion sam-
pling (44).

The model uses a causal transformer architecture
like T2M-GPT (36). Additionally, we designed
a Residual-MLP composed of three-layer Mul-
tilayer Perceptrons to reorganize the sampled
latent representations. Then, the coarse latent
representations are refined through a PostNet
with residual connections to reconstruct finer
latent representations. In the case of Gaussian
mixture generative modeling, we no longer need
an embedding layer or a softmax layer. Since
there are no mask/padding token IDs in the con-
tinuous case, we design learnable mask latent
and padding latent to replace them.

Gaussian mixture latent sampling. We aim for the transformer to predict the parameters of a
mixture of Gaussian distributions, from which we can sample to obtain latent vectors( Figure 3). We
define an autoregressive model for the continuous random variable zt ∈ RD, where the conditional
probabilities are represented as a mixture of Gaussian distributions:

p(z
′

t | z
′

t−1, . . . , z
′

1, Y ) =

L∑
l=1

ωt
lN

(
zt;ν

t
l , (τ

t
l)

2
)
, (9)

where ωt
n is the n-th GM’s weights, νt

n and τ t
n represent the n-th GM’s mean and diagonal variances

for generating step t. The mixture parameters are generated by a neural network f(), which takes the
previous inputs and conditional information as its inputs:

[ωt
1:L,ν

t
1:L, τ

t
1:L] = f(zt−1, . . . , z1, C), (10)
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where C is the condition embeddings, z is the AR transformer latent representations. We use one
Linear layer to obtain the weights, means, and diagonal variances. We use the negative log-likelihood
loss function as:

LNLL =

M∑
i=1

− log p
(
zi | {ωi

l , ν
i
l , τ

i
l }Ll=1

)
+ KL(

L∑
l=1

ω1:M
l N

(
ν1:M
l , τ 1:M

l

)
)∥

L∑
l=1

πlN (µl,Σl)).

(11)
To ensure the mixture weights and variances are valid, we apply softmax to normalize the ωt values
and softplus to the τ t values in the network output.

Head pre-padding and learnable rotary position encoding. Motion sequences in the same batch
vary in length. Previous AR motion generation models pad shorter sequences with padding tokens
at the tail to maintain uniform length and apply absolute position encoding to indicate positional
relationships. Inspired by large language models (45), we fill padding tokens at the head of shorter
sequences and employ learnable relative position encoding (46) to preserve positional relationships.
Our goal is to enhance the scalability of the autoregressive model, enabling it to synthesize longer
motion videos even when trained on shorter sequences from the HumanML3D dataset.

On the other hand, we adopt the same text-conditioning injection method as SALAD (47), where a
cross-attention module with residual connections is added after each transformer block to inject text
embeddings. We use the same text encoder as LAMP (16). Compared to embedding text conditions
as the first token in the AR iteration process, this approach allows for more flexible control and better
compatibility with our head pre-filling method.

4 Experimental Results

4.1 Datasets and evaluation metrics

Datasets. To fairly and accurately compare our method with the baseline, we used two main motion-
language benchmarks: KITML (34) and HumanML3D (33). The KITML dataset comprises 3,911
actions from KIT motion data, with each action accompanied by one to four text notes (a total of
6,278 notes). The KITML motions are set at 12.5 frames per second (FPS). HumanML3D includes
14,616 actions from the AMASS (48) and HumanAct12 (49) datasets. Each action is described by
three text scripts (a total of 44,970 notes). The HumanML3D motions are set at 20 FPS and last up to
10 seconds. We augmented the data by flipping motions and split both datasets into training, testing,
and validation sets.

Evaluation metrics. We evaluate the generated motions in three aspects: (1) Quality of the
generated motions. We use the Frechet Inception Distance (FID) to measure how close the generated
motion patterns are to the real ones. (2) Text-motion alignment. We use the Matching Score to
measure how well the texts match the generated motions. Additionally, we apply R-Precision(N ) to
assess how accurately motions can be retrieved based on their corresponding texts within a set of
N motion-text pairs. (3) Motion disversity. MultiModality (MModality) measures the generation
diversity conditioned on the same text and Diversity calculates variance through features (33).

4.2 Experimental setup

We use the same CNN-based encoder and decoder as Momask (4). We introduce a linear layer after
the encoder (the same as (50)) and replace the vector quantization step with a learnable Gaussian
mixture distribution. To maintain training stability, we make the mean learnable, initialize the weights
with a uniform distribution, and fix the variance to be the identity matrix. The dimension of the
8-layer Causal Transformer is set to 512, with 8 heads and a dropout rate of 0.1, using the GELU
activation function. Learnable RoPE embeddings are applied. The diagonal covariance matrices are
set to be diagonal.
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Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MultiModality ↑Top-1 Top-2 Top-3

Real motion 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

T2M-GPT (36) 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 9.722±.082 1.831±.048

AttT2M (51) 0.499±.003 0.690±.002 0.786±.002 0.112±.006 3.038±.007 9.700±.090 2.452±.051

ParCo (52) 0.515±.003 0.706±.003 0.801±.002 0.109±.005 2.927±.008 9.576±.088 1.382±.060

MoMask (4) 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

MoGenTS (19) 0.529±.003 0.719±.002 0.812±.002 0.033±.001 2.867±.006 9.570±.077 -
LaMP (16) 0.557±.003 0.751±.002 0.843±.001 0.032±.002 2.759±.007 9.571±.069 -

DiverseMotion (53) 0.515±.003 0.706±.002 0.802±.002 0.072±.004 2.941±.007 9.683±.102 1.869±.089

MDM (7) 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MLD (8) 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

MotionDiffuse (54) 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

ReMoDiffuse (55) 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

Fg-T2M++ (56) 0.513±.002 0.702±.002 0.801±.003 0.089±.004 2.925±.007 9.223±.114 2.625±.084

GMMotion (Ours) 0.572±.003 0.761±.003 0.852±.001 0.086±.003 2.743±.008 9.792±.085 2.033±.058

Real motion 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

T2M-GPT (36) 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.92±.108 1.570±.039

AttT2M (51) 0.413±.006 0.632±.006 0.751±.006 0.870±.039 3.039±.021 10.96±.123 2.281±.047

ParCo (52) 0.430±.004 0.649±.007 0.772±.006 0.453±.027 2.820±.028 10.95±.094 1.245±.022

MoMask (4) 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 - 1.131±.043

DiverseMotion (53) 0.416±.005 0.637±.008 0.760±.011 0.468±.098 2.892±.041 10.87±.101 2.062±.079

MoGenTS (19) 0.445±.006 0.671±.006 0.797±.005 0.143±.004 2.711±.024 10.92±.090 -
LaMP (16) 0.479±.006 0.691±.005 0.826±.005 0.141±.013 2.704±.018 10.93±.101 -
MDM (7) 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

MLD (8) 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

MotionDiffuse (54) 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

ReMoDiffuse (55) 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 10.80±.105 1.239±.028

Fg-T2M++ (56) 0.442±.006 0.657±.005 0.781±.004 0.135±.004 2.696±.011 10.99±.105 1.255±.078

GMMotion (Ours) 0.481±.005 0.703±.006 0.819±.004 0.198±.012 2.604±.023 11.12±.095 1.457±.039

Table 1: Quantitative evaluation results on the test sets of HumanML3D (top) and KIT-ML (bottom).
↑ and ↓ denote that higher and lower values are better, respectively, while → denotes that the values
closer to the real motion are better. Red and blue colors indicate the best and the second best results.

4.3 Motion representation performance

In Table 2, we compared our motion GM-VAE with other motion tokenizers, such as RVQ-VAE (4),
Transformer-VAE (8), and VQ-VAE (36), and found that our model demonstrates superior results in
motion reconstruction.

Methods FID ↓ MPJPE ↓ R-Precision ↑
Top 1 Top 2 Top 3

VQ-VAE 0.081±.001 72.6±.001 0.483±.003 0.680±.003 0.780±.002

RVQ-VAE 0.029±.001 31.5±.001 0.497±.002 0.693±.003 0.791±.002

Trans-VAE 0.023±.001 13.7±.001 0.499±.002 0.695±.003 0.791±.003

GM-VAE-s (Ours) 0.004±.001 9.4±.001 0.514±.002 0.703±.002 0.819±.003

GM-VAE-l (Ours) 0.008±.001 10.2±.001 0.518±.002 0.710±.002 0.811±.002

Table 2: Reconstruction results of latent encoders in our method vs baseline methods(VQ-VAE (36),
RVQ (4) and VAE (12)) on HumanML3D (33) data. s and l mean 128 dims and 512 dims in GMM
latent spaces.

We also analyzed how our latent space representation compares with others, as shown in the t-SNE
plot (see Figure 1). Constrained by the standard normal distribution, VAE (12) exhibits an unimodal
distribution but does not cluster the representations of movements. Meanwhile, due to uneven
utilization of the codebook, RVQ (4) captures representations of high-frequency movements but
is less sensitive to low-frequency movements. Our model not only represents multi-modal motion
distributions more effectively but also achieves better clustering of motion data. This is facilitated
by the use of Gaussian mixture distributions, which allows the model to capture detailed motion
characteristics through unsupervised clustering.
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Figure 5: Visualization of qualitative results vs. diffusion based model (12) and VQ based model (4).
The color from light yellow to dark yellow indicates the motion sequence order.

4.4 Text to motion Generation

Quantitative results. We compared our model with other state-of-the-art methods (5; 4; 36; 12; 7),
which can be broadly divided into two types: VQ-based models and diffusion-based models. The
results indicate that GMMotion achieves favorable outcomes in both text alignment and motion
quality. In the qualitative analysis, we evaluated the quality of motion synthesis, the alignment
between text and motion, and the diversity of motions. For the quantitative analysis, we compared
our model’s motion synthesis results with those of other baselines using the same text instructions.

GMM naive + learnable u + Linear layer

1 Gaussians 4 Gaussians 8 Gaussians

Figure 4: Visualization of different GMM settings
with t-SNE.

Additionally, to demonstrate the feasibility of
applying our method, we compare average infer-
ence time results in Appendix Table ??.

Qualitative results. We also visualize our qual-
itative results in Figure 5. GMMotion demon-
strates more accurate and natural-looking mo-
tions compared to the other models. For in-
stance, in the action of striding forward with
a raised arm, our model captures the movement
fluidly, whereas Momask and MotionLCM ex-
hibit some blurriness and less precise limb po-
sitioning. Similarly, in the knee-lifting motion,
our model shows clearer and more realistic leg
movements, while the other models struggle
with the finer details. Overall, our model outper-
forms Momask and MotionLCM in generating
coherent and lifelike human movements across
different actions.

4.5 Ablation Study

We focused on two aspects: (1) The effectiveness of the GMM. We explored its reconstruction
performance under various conditions, including the number of components and regularization
weights. (2) The continuous motion Transformer structure. We investigated how the transformer
module, designed for continuous sampling, influences generation outcomes. We also discuss the
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effectiveness of the generation methods in the Appendix. We examined the combined effects of
different sampling and training approaches.

No.Gaus KS weight λ FID↓ Matching
score↓ R-Pre.↑

1
0.1 0.121±.004 2.939±.008 0.815±.006

1.0 0.145±.005 2.942±.007 0.805±.005

10.0 0.165±.004 3.080±.006 0.799±.004

4
0.1 0.088±.003 2.781±.006 0.841±.004

1.0 0.086±.003 2.743±.008 0.852±.001

10.0 0.142±.004 2.892±.007 0.827±.005

8
0.1 0.101±.002 3.011±.011 0.801±.004

1.0 0.196±.009 3.110±.009 0.782±.004

10.0 0.659±.016 3.556±.010 0.679±.006

Table 3: Text-to-motion results with different Gaus-
sian components and KS weights.

Ablation of Gaussian mixtures. In Table 3, we
examine how the number of components and
the loss weight λ influence the generative per-
formance. It is evident that the reconstruction
quality improves significantly when the number
of components exceeds one, suggesting that a
Gaussian mixture distribution has better fitting
capabilities than a single Gaussian. We also
adjusted the weight λ of the regularization con-
straint in the GM-VAE, and the results indicate
that the model performs best when the weight
is set to 1. In Figure 4, we find that adding a
linear layer in the vanilla VAE and setting the
GMM parameters to be learnable can improve
the latent space representation.

Components FID↓ Matching
score↓ R-Pre.↑

Full 0.086±.003 2.743±.008 0.852±.001

w/o RoPE 0.133±.006 2.851±.010 0.823±.007

w/o Res 0.945±.028 3.423±.018 0.752±.009

w/o GM Samp. 0.485±.013 3.241±.014 0.791±.004

w/o Post 0.141±.004 2.939±.010 0.813±.005

Table 4: Results of AR. Where Res is the residual
net, GM Samp. is the Gaussian mixture sampling
stage, and Post is the PostNet.

Ablation of AR architecture. In Table 4, we
present the results of ablation studies on the
structure of the AR model. The findings indi-
cate that the head pre-padding and RoPE mod-
ules improve the quality of motion, while the
motion reorganization module has a significant
impact on the synthesis effect. We believe the
motion reorganization module plays a crucial
role in refining the rough latent representations
after sampling. When we removed Gaussian
sampling, reverting the model to deterministic sampling, there was a notable decline in performance.
This suggests that the stochastic nature of Gaussian sampling is essential for maintaining high-quality
motion synthesis.

Methods Visual Quality Text-motion Alignment

LaMP (16) 3.962±.171 3.775±.186

MotionLCM (50) 3.418±.163 3.219±.196

GMMotion (Ours) 4.392±.093 4.121±.098

Table 5: User study results.

User study. To evaluate the perceptual quality
of text-driven motion generation, we conducted
a user study with 19 participants comparing
our method against two baselines: LaMP (16),
which generates motions by discrete AR mod-
els; and MotionLCM (50), which generates mo-
tions by continuous diffusion models. For each
method, participants were presented with 15 video examples and asked to evaluate them based on
two criteria: visual quality and text-motion alignment. All ratings were collected using a 5-point
Likert scale ranging from 1 (poorest) to 5 (best). The results demonstrate that our model exhibits
advantages in terms of visual quality and text-motion alignment.

5 Conclusion

We introduced GMMotion, a novel text-to-motion synthesis framework that employs continuous
motion representation and GMM to capture multimodal human motions. GMMotion streamlines
training and inference by avoiding vector quantization, instead sampling from learnable GMMs in the
latent space. Our two-stage model—first modeling motion sequences into multimodal distributions
with GMM, then using a causal transformer for efficient generation—outperforms existing models in
quality and alignment.

Limitations. While GMMotion achieves efficient motion synthesis through autoregressive genera-
tion, the sequential nature of the process may occasionally lead to minor error accumulation over
long sequences. Early prediction inaccuracies (e.g., subtle joint angle deviations) could propagate
temporally, potentially affecting the smoothness of extended motions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We demonstrate our novel GMM-based design.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the impact of the error accumulation process.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided a thorough theoretical explanation for GMM sampling.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code will be made publicly available after the review process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be made publicly available after the review process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We repeated the description of the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We presented the results in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the relevant content in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have included the relevant content.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the content related to this issue.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We discussed the content related to this issue.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We discussed the content related to this issue.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: we communicate the details of the model as part of submissions via structured
templates.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We discussed the content related to this issue.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We discussed the content related to this issue.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
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Justification: We used LLMs in accordance with the conference guidelines.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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