
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DO YOU KNOW WHAT K-MEANS? CLUSTERING WITH
CONSTANT NUMBER OF SAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering is one of the most important tools for analysis of large datasets, and
perhaps the most popular clustering algorithm is Lloyd’s algorithm for k-means.
This algorithm takes n vectors V = [v1, . . . , vn] ∈ Rd×n and outputs k centroids
c1, . . . , ck ∈ Rd; these partition the vectors into clusters based on which cen-
troid is closest to a particular vector. We present a classical ε-k-means algorithm
that performs an approximate version of one iteration of Lloyd’s algorithm with
time complexity Õ

(∥V ∥2
F

n
k2d
ε2 (k + log n)

)
, exponentially improving the depen-

dence on the data size n and matching that of the “q-means” quantum algorithm
originally proposed by Kerenidis, Landman, Luongo, and Prakash (NeurIPS’19).
Moreover, we propose an improved q-means quantum algorithm with time com-
plexity Õ

(∥V ∥F√
n

k3/2d
ε (

√
k +

√
d)(

√
k + log n)

)
that quadratically improves the

runtime of our classical ε-k-means algorithm in several parameters. Our quan-
tum algorithm does not rely on quantum linear algebra primitives of prior work,
but instead only uses QRAM to prepare simple states based on the current itera-
tion’s clusters and multivariate quantum mean estimation. Our upper bounds are
complemented with classical and quantum query lower bounds, showing that our
algorithms are optimal in most parameters. Finally, we conduct numerical exper-
iments that evidence the substantially improved runtime our classical algorithm
over the standard Lloyd’s algorithm, thus being one of the first cases of a practical
dequantised algorithm.

1 INTRODUCTION

Among machine learning problems, data clustering and the k-means problem are of particular rel-
evance and have attracted much attention in the past (Hartigan & Wong, 1979; Krishna & Murty,
1999; Likas et al., 2003). Here the task is to find an assignment of each vector from a dataset of
size n to one of k labels (for a given k assumed to be known) such that similar vectors are as-
signed to the same cluster. To be more precise, in the k-means problem we are given n vectors
v1, . . . , vn ∈ Rd as columns in a matrix V ∈ Rd×n, and a positive integer k, and the task is to find
k centroids c1, . . . , ck ∈ Rd such that the cost function

∑
i∈[n] minj∈[k] ∥vi − cj∥2, called residual

sum of squares, is minimized, where ∥vi − cj∥ is the Euclidean distance between vi and cj and
[n] := {1, . . . , n} for n ∈ N := {1, 2, . . . }.

Since the k-means problem is known to be NP-hard (Dasgupta, 2008; Vattani, 2009; Mahajan et al.,
2012), several classical polynomial-time algorithms have been developed to obtain approximate so-
lutions (Kanungo et al., 2002; Jaiswal et al., 2014; Ahmadian et al., 2017; Bhattacharya et al., 2020).
One such algorithm is the k-means algorithm (also known as Lloyd’s algorithm) introduced by Lloyd
(1982), a heuristic algorithm that iteratively updates the centroids c1, . . . , ck until some desired pre-
cision is reached. At each time step t, the algorithm clusters the data into k clusters denoted by the
sets Ct

j ⊆ [n], j ∈ [k], each with centroid ctj , and then updates the centroids based on such clus-
tering. More precisely, the k-means algorithm starts with initial centroids c01, . . . , c

0
k ∈ Rd, picked

either randomly or through some pre-processing routine as in the k-means++ algorithm (Arthur &
Vassilvitskii, 2007), and alternates between two steps:

1. Each vector vi, i ∈ [n], is assigned a cluster Ct
ℓti

where ℓti = argminj∈[k] ∥vi − ctj∥;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2. The new centroids {ct+1
j }j∈[k] are updated based on the new clusters, ct+1

j = 1
|Ct

j |
∑

i∈Ct
j
vi.

The above steps are repeated until 1
k

∑
j∈[k] ∥ctj − ct+1

j ∥ ≤ τ for a given threshold τ > 0, in which
case we say that the algorithm has converged. The naive runtime of a single iteration is O(nkd).

On the other hand, the subfield of quantum machine learning aims to offer computational advantages
in machine learning, with many new proposed algorithms (Lloyd et al., 2014; Kerenidis & Prakash,
2017; 2020a; Chakraborty et al., 2019; Lloyd et al., 2013; Allcock et al., 2020; Ambainis et al.,
2025). A notable line of work in this subfield is quantum versions of the k-means algorithm (Aı̈meur
et al., 2013; Lloyd et al., 2013). More notably, Kerenidis et al. (2019) proposed a quantum version
of Lloyd’s algorithm called q-means. They use quantum linear algebra subroutines and assume
the input vectors are stored in QRAM (Quantum Random Access Memory) (Giovannetti et al.,
2008a;b) and that all clusters are of roughly equal size. Their per-iteration runtime depends only
polylogarithmically on the size n of the dataset, an exponential improvement compared to prior
works. However, their quantum algorithm only performs each iteration approximately. The authors
showed that q-means performs a robust version of k-means called (ε, ν)-k-means, and then showed
through experiments that the approximation does not worsen the quality of the centroids. In the
(ε, ν)-k-means algorithm, two noise parameters ε, ν ≥ 0 are introduced in the distance estimation
and centroid update steps. It alternates between the steps:

1. A vector vi is assigned a cluster Ct
ℓti

where ℓti ∈ {j ∈ [k] : ∥vi−ctj∥2 ≤ minj′∈[k] ∥vi−ctj′∥2+ν};

2. The new centroids {ct+1
j }j∈[k] are updated such that

∥∥ct+1
j − 1

|Ct
j |
∑

i∈Ct
j
vi
∥∥ ≤ ε.

The overall idea behind q-means from Kerenidis et al. (2019) is to first create the quantum state
n−1/2

∑
i∈[n] |i⟩|ℓti⟩ using distance estimation and quantum minimum finding (Dürr & Høyer,

1996), followed by measuring the label register |ℓti⟩ to obtain |Ct
j |−1/2

∑
i∈Ct

j
|i⟩ for some random

j ∈ [k]. The q-means algorithm then proceeds to perform a matrix multiplication with matrix V by
using quantum linear algebra techniques, followed by quantum tomography (Kerenidis & Prakash,
2020b) in order to retrieve a classical description. Since quantum linear algebra techniques are used,
the final runtime depends on quantities like the condition number κ(V) of the matrix V and a matrix
dependent parameter µ(V) which is upper-bounded by the Frobenius norm ∥V ∥F of V .

Fact 1 ((Kerenidis et al., 2019, Theorem 3.1)). For ε > 0 and dataset matrix V ∈ Rd×n with
∥V ∥2,∞ := maxi∈[n] ∥vi∥ ≥ 1 and condition number κ(V), the q-means algorithm outputs cen-
troids consistent with the (ε, ν)-k-means algorithm in Õ

(
kd
ε2 ∥V ∥22,∞κ(V)(µ(V) + k

ν ∥V ∥22,∞) +
k2

εν ∥V ∥32,∞κ(V)µ(V)
)

time per iteration.

In this work, we provide exponentially improved classical and quantum (ε, ν)-k-means algorithms
that match the logarithmic dependence on n of the q-means algorithm from Kerenidis et al. (2019),
while substantially improving the dependence on other parameters.

2 COMPUTATIONAL MODELS

For x ∈ Rd, let ∥x∥r = (
∑

i∈[d] |xi|r)
1
r for r ∈ [1,∞] and ∥x∥ = ∥x∥2. Let D(1)

x and D(2)
x be the

distributions over [d] with probability density functions D(1)
x (i) = |xi|

∥x∥1
and D(2)

x (i) =
x2
i

∥x∥2 . For
V ∈ Rd×n, let the matrix norms:

• ∥V ∥ = maxx∈Rn:∥x∥=1 ∥V x∥ (spectral norm);

• ∥V ∥F = (
∑

i∈[n]

∑
l∈[d] V

2
li)

1
2 (Frobenius norm);

• ∥V ∥1,1 =
∑

i∈[n]

∑
l∈[d] |Vli| =

∑
i∈[n] ∥vi∥1;

• ∥V ∥2,1 =
∑

i∈[n] ∥vi∥;

• ∥V ∥2,∞ = maxi∈[n] ∥vi∥.

It is known that ∥V ∥2,∞ ≤ ∥V ∥ ≤ ∥V ∥F ≤ ∥V ∥2,1 ≤ ∥V ∥1,1 and ∥V ∥F ≤
√
min{n, d}∥V ∥ ≤√

nmin{n, d}∥V ∥2,∞ and ∥V ∥1,1 ≤
√
d∥V ∥2,1 ≤

√
nd∥V ∥F ≤ n

√
d∥V ∥2,∞. Let D(1)

V be the
distribution over [n]× [d] with probability density function D(1)

V (i, l) = |Vli|
∥V ∥1,1

.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Little background on quantum computing is required for our paper and we point the reader to Nielsen
& Chuang (2010) for more information. A quantum system is described by a unit vector from a
complex Hilbert space, denoted by the ket notation |·⟩. A qubit, the quantum equivalent of a bit,
is a quantum system described by a unit vector in C2, i.e., α|0⟩ + β|1⟩ with α, β ∈ C such that
|α|2 + |β|2 = 1, while an n-qubit system is described by a unit vector in C2n . The evolution of a
quantum state |ψ⟩ ∈ C2n is described by a unitary operator, or quantum gate, U ∈ C2n×2n such that
UU† = I where U† is the Hermitian conjugate of U . In order to extract classical information from a
quantum system, a quantum measurement is performed, which is a set {Em}m of positive operators
Em ≻ 0 that sum to identity,

∑
mEm = I . The probability of measuring Em on |ψ⟩ is ⟨ψ|Em|ψ⟩.

We let |0̄⟩ denote the state |0⟩ ⊗ · · · ⊗ |0⟩ where the number of qubits is clear from context.

In this work, we assume a standard computational model — wherein arithmetic operations require
O(1) time — enhanced by a special low-overhead classical/quantum data structures that allows for
efficiently querying and sampling the dataset and centroid matrices V ∈ Rd×n and C ∈ Rd×k.

Definition 2 (Classical query access). We say we have (classical) query access to a matrix V =
[v1, . . . , vn] ∈ Rd×n if V is stored in a data structure that supports the following operations:

1. Reading an entry of V in O(log(nd)) time;

2. Finding ∥vi∥ in O(log n) time for any given i ∈ [n];

3. Finding ∥V ∥2,1 or ∥V ∥1,1 in O(1) time;

4. Sampling from D(1)
(∥vj∥)nj=1

(i) = ∥vi∥
∥V ∥2,1

in O(log n) time;

5. Sampling from D(2)
vi (l) =

V 2
li

∥vi∥2 or D(1)
V (i, l) = |Vli|

∥V ∥1,1
in O(log(nd)) time.

Definition 3 (Quantum query access). We say we have quantum query access to a matrix V =
[v1, . . . , vn] ∈ Rd×n if V is stored in a data structure that supports the following operations:

1. Reading an entry of V in O(log(nd)) time;

2. Finding ∥vi∥ in O(log n) time for any given i ∈ [n];

3. Finding ∥V ∥2,1 or ∥V ∥1,1 in O(1) time;

4. Mapping |0̄⟩ 7→∑
i∈[n]

√
∥vi∥

∥V ∥2,1
|i⟩ in O(log n) time;

5. Mapping |0̄⟩ 7→∑
(i,l)∈[n]×[d]

√
|Vli|

∥V ∥1,1
|i, l⟩ in O(log(nd)) time;

6. Mapping |i⟩|0̄⟩ 7→∑
l∈[d]

Vli

∥vi∥ |i, l⟩ in O(log(nd)) time;

7. Mapping |i, l⟩|0̄⟩ 7→ |i, l⟩|Vli⟩ in O(log(nd)) time;

8. Mapping |i⟩|0̄⟩ 7→ |i⟩|vi⟩ = |i⟩|V1i, . . . , Vdi⟩ in O(d log(nd)) time.

In our classical computation model, all arithmetic operations require O(1) time. We refer to any
operation in Definition 2 as a classical query. Our computational model thus assumes classical
query access to V , meaning that the dataset matrix has been pre-processed beforehand and all oper-
ations from Definition 2 can be performed with their respective stated time complexities. The pre-
processing phase, which takes Õ(nd) time, basically requires computing all the norms {∥vi∥}i∈[n],
∥V ∥2,1, and ∥V ∥1,1, plus inserting V into a RAM structure in order to efficiently read any of its
entries and into specialised binary trees (Prakash, 2014; Kerenidis & Prakash, 2017) in order to ef-
ficiently sample from the distributions D(1)

(∥vi∥)ni=1
, D(2)

vi , and D(1)
V . The centroid matrix C ∈ Rd×k

is not assumed to be pre-processed, since it changes throughout the k-means algorithm, and thus, if
we ever require classical query access to C, we must pay the pre-processing price of Õ(kd) time.
We note that norm sampling is a well-established technique in machine learning (Hazan et al., 2011;
Song et al., 2016) and randomised linear algebra (Frieze et al., 2004; Drineas et al., 2008; Kannan
& Vempala, 2017), so the data structures from Definition 2 are reasonable. Finally, we define a
measure of (classical) time complexity as the sum of the times of all arithmetic and classical queries

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

comprising some given computation. In other words, if a computation is composed of m arithmetic
operations and q classical queries, its time complexity is at most O(m+ q log(nd)).

In our quantum computation model, all single and two-qubit quantum gates require O(1) time, and
more generally, all arithmetic operations requireO(1) time. We refer to any operation in Definition 3
as a quantum query, except Item 8 which comprises d quantum queries. Our quantum model assumes
quantum query access to the dataset matrix V , meaning that it has been pre-processed beforehand
and all operations from Definition 3 can be performed with their respective stated time complexities.
In Definition 3, the unitaries from Items 7 and 8 are known as a quantum random access memory
(QRAM) (Giovannetti et al., 2008a;b) and can be seen as the quantum equivalent of a classical RAM.
As part of the pre-processing stage, we assume that V has been ported into a QRAM structure, for
which several several proposals exist (Giovannetti et al., 2008a;b; Zoufal et al., 2019; Park et al.,
2019; Hann et al., 2019; Chen et al., 2021; Niu et al., 2022; Phalak et al., 2022; Niu et al., 2022;
Agliardi & Prati, 2022; Allcock et al., 2024; Wang et al., 2025); see Hann (2021); Phalak et al.
(2023); Jaques & Rattew (2023) for a few surveys. In this work, we simply assume that a QRAM
requires a running time proportional to its circuit depth, i.e., logarithmitically in the memory size it
accesses. Although a somewhat controversial resource, there have been recent results which suggest
that the cost of QRAM is much smaller than previously assumed (Hann et al., 2021; Mehta et al.,
2024; Dalzell et al., 2025). Besides, an experimental QRAM implementation have been recently
reported in Shen et al. (2025). Finally, QRAM mimics the classical RAM model in the quantum
setting as closely as possible and we thus view it as a fair comparison to our classical model.

On the other hand, the classical data structure that allows the operations from Items 4 to 6 is usually
known as a KP-tree and was proposed in Prakash (2014); Kerenidis & Prakash (2017). In a nutshell,
a KP-tree is a rooted binary tree which contains the partial sums of the entries of a given vector in
its nodes. We note that a KP-tree can also be used to performed the classical sampling operations
from Definition 2. Finally, we define a measure of (quantum) time complexity as the sum of the
times of all arithmetic and quantum queries comprising some given computation. In other words, if
a computation is composed of m arithmetic operations and q quantum queries, its time complexity
is at most O(m+ q log(nd)).

3 OUR ALGORITHMS

Classical algorithms. In this work, we provide exponentially improved classical (ε, ν)-k-means
algorithms that match the logarithmic dependence on n of the q-means algorithm from Kerenidis
et al. (2019). Our first classical algorithm, named EKMeans1 and described in Algorithm 1, is an
approximate version of the standard k-means algorithm wherein the quantities

∑
i∈Ct

j
vi and |Ct

j |
for each j ∈ [k] are estimated using the classical query access of Definition 2, from which the new
centroids ct+1

j ≈ |Ct
j |−1

∑
i∈Ct

j
vi can be approximated. In more details, the cluster sizes |Ct

j | are
estimated by first sampling a set of indices P ⊆ [n] uniformly at random, while the sums

∑
i∈Ct

j
vi

are estimated by first sampling a set of indices Q ⊆ [n] from the distribution D(1)
(∥vi∥)ni=1

, i.e., by
ℓ1-sampling from the vector of V ’s column ℓ2-norms. EKMeans then mimics the standard k-means
algorithm in that it finds the closest centroid to each vector vi, i ∈ P ∪ Q, by exactly computing
∥vi− ctj∥2 inO(d) time. We then prove that the subset Pj ⊂ P of sampled vectors closest to ctj well

approximates |Pj |
|P | ≈ 1

n |Ct
j | with high probability. Likewise, the subset Qj ⊂ Q of sampled vectors

closest to ctj can be used to approximate
∑

i∈Qj

∥V ∥2,1

|Q|
vi

∥vi∥ ≈ ∑i∈Ct
j
vi with high probability. By

assuming that all clusters {Ct
j}j∈[k] are of roughly the same size, we can show that the number of

required samples is independent of n. The precise query and time complexities of EKMeans are
described in Table 1 below, while its proof is postponed to Appendix A. Interestingly enough, the
proof of correctness employs the advanced Freedman’s inequality for martingales (see Fact 6). Note
that EKMeans is consistent with a (ε, ν=0)-k-means algorithm since the cluster assignment is done
exactly and that it requires the operations from Items 1 to 4 of Definition 2.

The dependence on n comes from sampling the indices P,Q ⊆ [n] in O((|P | + |Q|) log n) time
under Definition 2, which is performed once before every iteration. Importantly—in practice—it

1Pronounced [i:k mi:nz].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Classical (ε, ν = 0)-k-means algorithm EKMeans

Input: Classical query access to data matrix V = [v1, . . . , vn] ∈ Rd×n, parameters δ, ε.
1: Select k initial centroids c01, . . . , c

0
k

2: for t = 0 until convergence do
3: Sample p = O

(∥V ∥2

n
k2

ε2 log k
δ

)
indices P ⊆ [n] uniformly from [n]

4: Sample q = O
(∥V ∥2

2,1

n2
k2

ε2 log k
δ

)
indices Q ⊆ [n] from D(1)

(∥vi∥)ni=1

5: For i ∈ P ∪Q, label ℓti = argminj∈[k] ∥vi − ctj∥
6: For j ∈ [k], let Pj := {i ∈ P |ℓti = j} and Qj := {i ∈ Q|ℓti = j}
7: For j ∈ [k], let the new centroids ct+1

j = p
n|Pj |

∑
i∈Qj

∥V ∥2,1

q
vi

∥vi∥
8: end for

is possible to draw P,Q only once before the first iteration and reuse the same samples throughout
the clustering procedure by slightly increasing the sizes of P and Q. More precisely, a union bound
over all T iterations leads to P,Q which are good enough for all iterations with probability 1 − δ
by sampling a factor of log(T/δ)/ log(1/δ) more indices. The time dependence on n can thus be
amortised over all iterations. In Section 4 we shall evaluate EKMeans on real-world datasets and we
observe that its empirical runtime depends very weakly on n, supporting our complexity claims.

We then propose a second classical algorithm (Algorithm 2 in Appendix A) similar to Algorithm 1
but where the distances ∥vi−ctj∥2 are now approximated up to error ν

2 via an ℓ2-sampling procedure
(Lemma 10), which yields the approximate labels ℓti ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤ minj′∈[k] ∥vi −
ctj′∥2 + ν}. The ℓ2-sampling subroutine to estimate ∥vi − ctj∥2, which has been employed before

in Tang (2019), requires sampling from the distribution D(2)
vi and uses a median-of-means estimator.

Another main difference from Algorithm 1 is that our (ε, ν)-k-means Algorithm 2 samples entries
of V via the distribution D(1)

V instead of sampling columns of V via the distribution D(1)
(∥vi∥)ni=1

in
order to improve the complexity dependence on d (at the cost of worsening the dependence on other
parameters). The precise query and time complexities of Algorithm 2 are described in Table 1 below,
while its analysis is postponed to Appendix A. Note that Algorithm 2 requires the operations from
Items 1 to 3 and 5 of Definition 2.

Quantum algorithms. Beyond classical algorithms, we also propose improved quantum algo-
rithms that avoid the need for quantum linear algebra subroutines as in Kerenidis et al. (2019) and
still keep the logarithmic dependence on the size n of the dataset, while improving the complex-
ity of the original q-means and of our classical (ε, ν)-k-means algorithms in several parameters.
Similar to our classical algorithms, we approximate separately the quantities |Ct

j | and
∑

i∈Ct
j
vi for

j ∈ [k], but now employing inherently quantum subroutines. Similar to Kerenidis et al. (2019), our
first quantum algorithm (Algorithm 3 in Appendix B) constructs states of the form

∑
i∈[n]

1√
n
|i⟩

and
∑

i∈[n]

√
∥vi∥

∥V ∥2,1
|i⟩ using quantum query access to V from Definition 3. By quantumly call-

ing a classical circuit to exactly compute the distances ∥vi − ctj∥2 in O(d) time (how to do so is
standard in quantum computing, see Nielsen & Chuang (2010)) plus the quantum minimum finding
subroutine from Dürr & Høyer (1996) to find the minimum ℓti = argminj∈[k] ∥vi − ctj∥ in O(

√
kd)

quantum queries, we then obtain the states
∑

i∈[n]
1√
n
|i, ℓti⟩ and

∑
i∈[n]

√
∥vi∥

∥V ∥2,1
|i, ℓti⟩. Up to this

point, Algorithm 3 behaves similarly to q-means from Kerenidis et al. (2019), but instead of perform-
ing quantum linear algebra transformations and quantum tomography, we input such states (or more
precisely the unitaries behind them) into the multivariate quantum mean estimator from Cornelissen
et al. (2022). Their subroutine, although highly non-trivial, basically outputs an estimate to the mean∑

ω∈Ω P(ω)X(ω) of some multivariate random variable X : Ω → RN over a probability space
(Ω, 2Ω,P) by assuming access to the unitaries |0̄⟩ 7→ ∑

ω∈Ω

√
P(ω)|ω⟩ and |ω, 0̄⟩ 7→ |ω,X(ω)⟩.

Applied to our case, the state
∑

i∈[n]
1√
n
|i, ℓti⟩ encodes the uniform probability distribution over

[n] used to approximate |Ct
j |, while

∑
i∈[n]

√
∥vi∥

∥V ∥2,1
|i, ℓti⟩ encodes the probability distribution

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Query and time complexities per iteration of our classical and quantum algorithms as-
suming |Ct

j | = Ω(nk) for all j ∈ [k]. The error (ε, ν) refer to the error ν in assigning a vec-
tor vi to a cluster Ct

ℓti
with ℓti ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤ minj′∈[k] ∥vi − ctj′∥2 + ν} and the

error ε in computing the new centroids as
∥∥ct+1

j − |Ct
j |−1

∑
i∈Ct

j
vi
∥∥ ≤ ε. The matrix norms

are ∥V ∥ = maxx∈Rd:∥x∥=1 ∥V x∥, ∥V ∥F = (
∑

i∈[n],l∈[d] V
2
li)

1
2 , ∥V ∥1,1 =

∑
i∈[n],l∈[d] |Vli|,

∥V ∥2,1 =
∑

i∈[n] ∥vi∥, ∥V ∥2,∞ = maxi∈[n] ∥vi∥. The quantum runtimes can be slightly improved
given access to a special gate called QRAG (Ambainis, 2007; Allcock et al., 2024) (see Footnotes 4
and 5). All complexities are up to polylog factors in k, d, 1

ε , 1
ν , ∥V ∥F√

n
.

Alg. Error Query complexity Time complexity

Class.
Alg. 1 (ε, 0)

(
∥V ∥2

n +
∥V ∥2

2,1

n2

)
k2d
ε2

(
∥V ∥2

n +
∥V ∥2

2,1

n2

)
k2d
ε2 (log n+k)

Class.
Alg. 2 (ε, ν)

(
∥V ∥2

n +
∥V ∥2

1,1

n2

)
∥V ∥2

F ∥V ∥2
2,∞

n
k3

ε2ν2

(
∥V ∥2

n +
∥V ∥2

1,1

n2

)
∥V ∥2

F ∥V ∥2
2,∞

n
k3

ε2ν2 log n

Quant.
Alg. 3 (ε, 0)

(√
k ∥V ∥√

n
+
√
d
∥V ∥2,1

n

)
k

3
2 d
ε

(√
k ∥V ∥√

n
+
√
d
∥V ∥2,1

n

)
k

3
2 d
ε (log n+

√
k)

Quant.
Alg. 4 (ε, ν)

(√
k ∥V ∥√

n
+
√
d
∥V ∥1,1

n

)
∥V ∥F ∥V ∥2,∞√

n
k

3
2

εν

(√
k ∥V ∥√

n
+
√
d
∥V ∥1,1

n

)(
∥V ∥F ∥V ∥2,∞√

n
k

3
2

εν log n+ k2d
ε

)

D(1)
(∥vi∥)ni=1

used to approximate
∑

i∈Ct
j
vi, similar to our classical algorithms. The random variables

are basically X(i, j) = (0j−1, 1, 0k−j−1) in one case and X(i, j) =
(
0(j−1)d, vi

∥vi∥ , 0
(k−j−1)d

)
in the other. The outputs of the two multivariate quantum mean estimators are thus good approxi-
mations to |Ct

1|, . . . , |Ct
k| and

∑
i∈Ct

1
vi, . . . ,

∑
i∈Ct

k
vi. The precise query and time complexities of

quantum (ε, ν=0)-k-means Algorithm 3 are shown in Table 1 below, while its analysis is postponed
to Appendix B. Note that Algorithm 3 uses the operations from Items 1 to 4, 7 and 8 of Definition 3.

Mirroring our classical algorithms, we propose a second quantum algorithm (Algorithm 4 in Ap-
pendix B) similar to Algorithm 3 but where the distances ∥vi − ctj∥2 are approximated up to error
ν
2 by using a quantum subroutine (Lemma 17) based on quantum amplitude estimation (Brassard
et al., 2002) and quantum variable-time minimum finding (Ambainis, 2012). Another difference
from Algorithm 3 is that we create a quantum superposition over the distribution D(1)

V instead of

D(1)
(∥vi∥)ni=1

, i.e.,
∑

(i,l)∈[n]×[d]

√
|Vli|

∥V ∥1,1
|i, l⟩, in order to improve the complexity dependence on d.

The unitaries behind the states
∑

i∈[n]
1√
n
|i, ℓti⟩ and

∑
(i,l)∈[n]×[d]

√
|Vli|

∥V ∥1,1
|i, l, ℓti⟩, now with labels

ℓti ∈ {j ∈ [k] : ∥vi−ctj∥2 ≤ minj′∈[k] ∥vi−ctj′∥2+ν}, are once again inputted into the multivariate
quantum mean estimator from Cornelissen et al. (2022). The precise query and time complexities are
described in Table 1, while its analysis is postponed to Appendix B. Note that Algorithm 4 requires
the operations from Items 1 to 3 and 5 to 8 of Definition 3.

Lower bounds. In Appendix C we prove classical and quantum query lower bounds that show
that our algorithms are optimal in most parameters. Our lower bounds come from reducing the
problem of approximating the centroids |Cj |−1

∑
i∈Cj

vi given classical/quantum query access to
matrix V ∈ Rd×n and classical description of clusters {Cj}j∈[k] from the problem of approximat-
ing the Hamming weight of some bit-string, whose query complexity is well known (Nayak & Wu,
1999). More specifically, we construct a dataset matrix V for which all points within the same
cluster Cj have the same ℓr-norm for any r ∈ [1,∞], so access to ∥vi∥r does not give any meaning-
ful information about the centroids. An algorithm for approximating |Cj |−1

∑
i∈Cj

vi would then
give an algorithm for approximating Θ(kd) independent Hamming weights on Θ(nk) bits each to

precision O
(

n3/2ε
k∥V ∥F

)
, for which lower bounds are well known.

Below we provide our lower bounds and a simplified version of our algorithms’ query complexity.

Result 1. Let ε, ν > 0 and δ ∈ (0, 1). Assume classical/quantum query access to V ∈ Rd×n.
Assume all clusters satisfy |Ct

j | = Ω(nk). There are classical and quantum algorithms that out-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

put centroids consistent with (ε, ν)-k-means with probability 1 − δ and with per-iteration query
complexity (up to polylog factors in k, d, 1

ε , 1
ν , 1

δ , ∥V ∥F√
n

)

Classical: Õ
(
min

{∥V ∥2F
n

k2d

ε2
,

(∥V ∥2F
n

+
∥V ∥21,1
n2

)∥V ∥2F ∥V ∥22,∞
n

k3

ε2ν2

})
;

Quantum: Õ
(
min

{∥V ∥F√
n

k
3
2 d

ε
(
√
k +

√
d),

(√
k
∥V ∥F√

n
+

√
d
∥V ∥1,1
n

)∥V ∥F ∥V ∥2,∞√
n

k
3
2

εν

})
.

Moreover, with entry-wise query access to V ∈ Rd×n and (∥vi∥r)i∈[n] for any r ∈ [1,∞] and
classical description of partition {Cj}j∈[k] of [n], any classical or quantum algorithm that outputs
c1, . . . , ck ∈ Rd with

∥∥cj − 1
|Cj |
∑

i∈Cj
vi
∥∥ ≤ ε has query complexity

Classical: Ω
(
min

{∥V ∥2F
n

kd

ε2
, nd

})
; Quantum: Ω

(
min

{∥V ∥F√
n

kd

ε
, nd

})
.

4 EXPERIMENTAL RESULTS

We conduct numerical experiments to validate the theoretical performance of our proposed classical
algorithm, EKMeans (Algorithm 1), against the standard k-means algorithm. The experiments are
designed to demonstrate the scalability of our approach with respect to the dataset size, n, and were
conducted in C++ on an Intel® Core™ i5-9300H CPU @ 2.40GHz × 8 using only one core.

All experiments were performed on synthetic datasets created as follows: a number of k auxiliary
vectors uj ∈ [−1, 1]d were uniformly sampled entry-wise, and for each j ∈ [k], a number of n

k

dataset vectors were obtained as vi = uj +wi, where each wi ∈ [−1, 1]d is a vector with uniformly
random entries in [−1, 1]. In summary, the vectors vi were uniformly sampled around k uniformly
sampled auxiliary centers uj , thus creating k clusters of dataset vectors on average.

We analyse the performance of EKMeans and the standard k-means on varying dataset of sizes
n ∈ {100000, 150000, 200000, 250000, 300000, 350000, 400000, 450000, 500000} as our main nu-
merical experiment. For both algorithms, we set the number of clusters k = 5, the dimension
d = 30, and the convergence threshold τ = 0.1. The results are averaged over 4325 repetitions with
different random seeds for dataset V and centroid initialisation c01, . . . , c

0
k, but keeping the same

seed for two executions of EKMeans and standard k-means.

For EKMeans, we set the approximation parameter ε ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and the probability
parameter δ = 0.01. The sample sizes p and q were calculated dynamically based on the dataset

properties as p =
⌈∥V ∥2

n
k2

ε2 ln k
δ

⌉
and q =

⌈∥V ∥2
2,1

n2
k2

ε2 ln k
δ

⌉
according to Theorem 8 but ignoring

overall constant factors. As a sense of size, for ε = 0.2, p ≈ 20000 and q ≈ 128000 on average,
while for ε = 1.0, p ≈ 800 and q ≈ 5100 on average. Furthermore, to optimise performance, the
samples were drawn only once at the beginning of the clustering process rather than at each iteration.

Figures 1a and 1b show the total runtime required to compute centroids ct1, . . . , c
t
k which satisfy

the convergence criteria 1
k

∑
j∈[k] ∥ctj − ct−1

j ∥ ≤ τ . This includes sampling the sets P,Q ⊆ [n].
As predicted by the theoretical complexity O(nkd), the total runtime for standard k-means grows
linearly with the dataset size n. In contrast, the total runtime for EKMeans remains nearly constant
across different n’s (a more thorough analysis on the dependence on n is left to Appendix D).
This empirically validates that time complexity of our algorithm barely scales with n, a massive
improvement over the standard approach: for n = 500000, k-means requires ≈ 9 s on average to
run, while EKMeans with ε = 1.0 requires only ≈ 45 ms on average to run, a 200-fold improvement!

In Figure 1c, we compare the accuracy performance of EKMeans compared to k-means measured by
their residual sum of squares RSS :=

∑
i∈[n] minj∈[k] ∥vi − ctj∥. More precisely, we analyse the

relative difference (RSSε −RSS0)/RSS0 between the RSSε of EKMeans with approximation pa-
rameter ε and the RSS0 of k-means. Even at larger values of ε, EKMeans is only around 0.5% worse
relative to k-means, a small deviation that is more than outweighed by the faster runtimes. There is
thus little degradation in clustering with a constant number of samples according to EKMeans.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

100000 150000 200000 250000 300000 350000 400000 450000 500000
Data size n

0

2

4

6

8

T
ot

al
ru

n
ti

m
e

(s
)

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(a) Total runtime time

100000 150000 200000 250000 300000 350000 400000 450000 500000
Dataset size n

10−1

100

101

T
ot

al
ru

n
ti

m
e

(s
)

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(b) Total runtime time (log scale)

100000 150000 200000 250000 300000 350000 400000 450000 500000
Dataset size n

0.0

0.1

0.2

0.3

0.4

0.5

R
S

S
d

iff
er

en
ce

(%
)

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(c) Residual sum of squares (RSS) difference

100000 150000 200000 250000 300000 350000 400000 450000 500000
Dataset size n

4.2

4.4

4.6

4.8

5.0

N
u

m
b

er
of

it
er

at
io

n
s

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(d) Number of iterations until convergence

Figure 1: Total runtime time, residual sum of squares (RSS) difference, and number of iterations as
a function of the dataset size n. Here k = 5, d = 30, δ = 0.01, and τ = 0.1. The standard k-means
is depicted as ε = 0. Each point is the average of 4325 random datasets and centroid initialisations.

Furthermore, in Figure 1d we evaluate the number of iterations required to reach the same centroid
movement tolerance. We observe that EKMeans consistently requires more iterations to converge
than standard k-means on average. This is an expected consequence of the approximation in the
centroid update step. However, despite the higher number of iterations, the total clustering time
for EKMeans is substantially lower than for k-means, especially for larger datasets, as evident in
Figure 1a. This demonstrates the practical advantage of our algorithm: the dramatic reduction in
per-iteration cost more than compensates for the modest increase in the number of iterations needed
for convergence. Finally, we conduct further numerical experiments in Appendix D.

As a final remark, during the experiments we observed that, at times for larger ε, one of the initial
centroids c0j would fall into a “empty” region of the d-dimensional space and its associated cluster
C0
j would end up empty. Nonetheless, EKMeans would still converge and yield a good result in terms

of its RSS. This is thus evidence that the requirement that |Ct
j | = Ω(nk) for all j ∈ [k] might not

be needed on average for certain datasets. Still, since p ≪ q on the vast majority of cases, the
bottleneck thus being the approximation of

∑
i∈Ct

j
vi, we find it beneficial to artificially increase

p by a small constant factor in order to avoid smaller cluster sizes and increase the accuracy of
estimating |Ct

j |, specially since this quantity will be inverted at the end of the iteration — as |Ct
j |−1.

5 RELATED INDEPENDENT WORK

We briefly mention related works that have appeared online around the same time or later than ours.
First, the independent work of Jaiswal (2023) (see also Shah & Jaiswal (2025)) quantised the highly
parallel, sampling-based approximation scheme of Bhattacharya et al. (2020) and thus obtained a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

quantum algorithm for the k-means problem with provable guarantees, as opposed to our results,
which are heuristic. Due to such a guarantee, though, their final runtime depends exponentially
in k and 1

ε (but maintains the polylogarithmic dependence on n). Another related work is Xue
et al. (2023), who proposed a quantum algorithm to compute coresets for k-means, a compressed
representation of the dataset which preserves the optimal residual sum of squares up to some small
multiplicative error ε. By employing Õ(

√
nkd

3
2 /ε) QRAM calls, the authors obtained a coreset

of size O
(
kd
ε2 poly log n

)
. Their coreset can then be used by classical algorithms for obtaining

provable guarantees. Our work, on the other hand, is based on Lloyd’s iteration which is heuristic.
Nonetheless, our query complexities are independent on n, far better than Xue et al. (2023).

Very recently, Chen et al. (2025) proposed alternative quantum algorithms to the ones presented
here by employing uniform sampling plus shifting the vectors vi by the current centroids ct1, . . . , c

t
k.

Their algorithm uses Õ
(
k

5
2

√
d
(√

ϕ
ε +

√
d
))

QRAM calls, where ϕ := 1
n

∑
j∈[k]

∑
i∈Ct

j
∥vi−ct+1

j ∥2

and ct+1
j = |Ct

j |−1
∑

i∈Ct
j
vi for clusters {Ct

j}j∈[k] defined by ct1, . . . , c
t
k. Since one can write ϕ =

1
n

∑
j∈[k]

(∑
i∈Ct

j
∥vi∥2−|Ct

j |−1∥∑i∈Ct
j
vi∥2

)
, then

√
ϕ ≤ ∥V ∥F√

n
. Algorithm 3, on the other hand,

makes Õ
((√

k ∥V ∥√
n

+
√
d
∥V ∥2,1

n

)
k3/2

ε

)
QRAM calls assuming |i⟩|0̄⟩ 7→ |i⟩|vi⟩ counts as 1 QRAM

call as in Chen et al. (2025) (Definition 3 assumes that this map counts as d QRAM calls instead). If√
ϕ≪ ∥V ∥√

n
+

∥V ∥2,1

n (note that ∥V ∥ ≤ ∥V ∥F and ∥V ∥2,1

n ≤ ∥V ∥F√
n

), e.g., when the distance between
vectors within the same cluster is much smaller than the distance between clusters, the complexity
from Chen et al. (2025) can be better than ours, otherwise, if

√
ϕ = ω

(
1√
kd

∥V ∥√
n

+ 1
k
∥V ∥2,1

n

)
, our

complexity is better. Both results are thus incomparable.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We proposed improved classical and quantum approximation versions of the standard k-means algo-
rithm with runtimes depending only logarithmically on the size n of the dataset V . Our algorithms
not only match the dependence on n from the quantum q-means algorithm of Kerenidis et al. (2019)
but also improve the dependence on several other parameters like number of clusters k, dimension
d, approximation parameter ε, and other parameters depending on V . For such, we assumed that the
dataset V has been pre-processed beforehand to allow for efficient sampling and query operations.
The required data structures have been previously used in other (quantum) machine learning applica-
tions (Hazan et al., 2011; Song et al., 2016; Kerenidis & Prakash, 2017; Biamonte et al., 2017; Tang,
2019). We note that our classical algorithms can be seen as a “dequantised” version of our quantum
algorithms, in a similar flavor to prior dequantisation works (Tang, 2019; 2021; Gilyén et al., 2018;
2022). Moreover, our upper bounds were complemented with query lower bounds, proving that our
algorithms are optimal in several parameters, which hints at our choice for subroutines being right.

Even though our quantum algorithms require the use of QRAM, we are not aware of any inherent
reason why this model would not be physically realisable in the lab. Indeed, several new results
suggest otherwise (Hann et al., 2021; Mehta et al., 2024; Dalzell et al., 2025; Shen et al., 2025).
Nonetheless, we do believe that designing quantum algorithms in the QRAM-model, like in this
work, can help motivate the development of such architectures in the lab, and inform their role in
the algorithmic frameworks they are to be embedded in.

Finally, we conducted numerical experiments to measure the performance of our main classical
algorithm, EKMeans, compared to the standard k-means. Our findings support our theoretical results
in that EKMeans has time complexity almost independent on the dataset size n while still returning
centroids on par with k-means quality-wise. Even more impressive, EKMeans is extremely fast,
running at the order of tens of milliseconds for datasets reaching the size of millions! We believe
that EKMeans can become a competitive clustering algorithm, specially if a given dataset must be
analysed repeated times so that pre-processing it makes sense. This is probably one of the first
examples of a practically viable dequantised algorithm.

We mention a few future directions. One is to assume data vectors with special properties, e.g., well-
clusterable datasets (Kerenidis et al., 2019), in order to obtain tighter runtimes. In this direction,
Chen et al. (2025) exploited certain symmetries of k-means. Another direction is to bridge our work
and Jaiswal (2023) to obtain improved complexities in k and 1

ε together with provable guarantees.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Gabriele Agliardi and Enrico Prati. Optimized quantum generative adversarial networks for distri-
bution loading. In 2022 IEEE International Conference on Quantum Computing and Engineering
(QCE), pp. 824–827, 2022. doi: 10.1109/QCE53715.2022.00132.

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-
means and euclidean k-median by primal-dual algorithms. In 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 61–72, 2017. doi: 10.1109/FOCS.2017.15.

Esma Aı̈meur, Gilles Brassard, and Sébastien Gambs. Quantum speed-up for unsupervised learning.
Machine Learning, 90:261–287, 2013.

Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu Zhang. Quantum algorithms
for feedforward neural networks. ACM Transactions on Quantum Computing, 1(1):1–24, 2020.

Jonathan Allcock, Jinge Bao, Joao F. Doriguello, Alessandro Luongo, and Miklos Santha. Constant-
depth circuits for Boolean functions and quantum memory devices using multi-qubit gates. Quan-
tum, 8:1530, November 2024. ISSN 2521-327X. doi: 10.22331/q-2024-11-20-1530. URL
https://doi.org/10.22331/q-2024-11-20-1530.

Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing,
37(1):210–239, 2007. doi: 10.1137/S0097539705447311. URL https://doi.org/10.
1137/S0097539705447311.

Andris Ambainis. Quantum search with variable times. Theory of Computing Systems, 47(3):786–
807, Oct 2010. ISSN 1433-0490. doi: 10.1007/s00224-009-9219-1. URL https://doi.
org/10.1007/s00224-009-9219-1.

Andris Ambainis. Variable time amplitude amplification and quantum algorithms for linear algebra
problems. In Thomas Wilke Christoph Dürr (ed.), Symposium on Theoretical Aspects of Computer
Science, volume 14, pp. 636–647, Paris, France, February 2012. LIPIcs. URL https://hal.
science/hal-00678197.

Andris Ambainis, Joao F Doriguello, and Debbie Lim. A bit of freedom goes a long way: Classical
and quantum algorithms for reinforcement learning under a generative model. arXiv preprint
arXiv:2507.22854, 2025.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp.
1027–1035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.

Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma.
Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett., 114:090502,
Mar 2015. doi: 10.1103/PhysRevLett.114.090502. URL https://link.aps.org/doi/
10.1103/PhysRevLett.114.090502.

Anup Bhattacharya, Dishant Goyal, Ragesh Jaiswal, and Amit Kumar. On sampling based algo-
rithms for k-means. In Nitin Saxena and Sunil Simon (eds.), 40th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020), vol-
ume 182 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 13:1–13:17, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-95977-174-
0. doi: 10.4230/LIPIcs.FSTTCS.2020.13. URL https://drops.dagstuhl.de/opus/
volltexte/2020/13254.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, Sep 2017. ISSN 1476-4687. doi:
10.1038/nature23474. URL https://doi.org/10.1038/nature23474.

Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification
and estimation. Contemporary Mathematics, 305:53–74, 2002.

10

https://doi.org/10.22331/q-2024-11-20-1530
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1007/s00224-009-9219-1
https://doi.org/10.1007/s00224-009-9219-1
https://hal.science/hal-00678197
https://hal.science/hal-00678197
https://link.aps.org/doi/10.1103/PhysRevLett.114.090502
https://link.aps.org/doi/10.1103/PhysRevLett.114.090502
https://drops.dagstuhl.de/opus/volltexte/2020/13254
https://drops.dagstuhl.de/opus/volltexte/2020/13254
https://doi.org/10.1038/nature23474

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The Power of Block-Encoded Ma-
trix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation. In Chris-
tel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (eds.), 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132
of Leibniz International Proceedings in Informatics (LIPIcs), pp. 33:1–33:14, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-109-2.
doi: 10.4230/LIPIcs.ICALP.2019.33. URL https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ICALP.2019.33.

K. C. Chen, W. Dai, C. Errando-Herranz, S. Lloyd, and D. Englund. Scalable and high-fidelity
quantum random access memory in spin-photon networks. PRX Quantum, 2:030319, Aug 2021.
doi: 10.1103/PRXQuantum.2.030319.

Tyler Chen, Archan Ray, Akshay Seshadri, Dylan Herman, Bao Bach, Pranav Deshpande, Abhishek
Som, Niraj Kumar, and Marco Pistoia. Provably faster randomized and quantum algorithms for
k-means clustering via uniform sampling, 2025. URL https://arxiv.org/abs/2504.
20982.

Yanlin Chen and Ronald de Wolf. Quantum Algorithms and Lower Bounds for Linear Regres-
sion with Norm Constraints. In Kousha Etessami, Uriel Feige, and Gabriele Puppis (eds.), 50th
International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume
261 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 38:1–38:21, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-278-
5. doi: 10.4230/LIPIcs.ICALP.2023.38. URL https://drops.dagstuhl.de/opus/
volltexte/2023/18090.

Arjan Cornelissen, Yassine Hamoudi, and Sofiene Jerbi. Near-optimal quantum algorithms for
multivariate mean estimation. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2022, pp. 33–43, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392648. doi: 10.1145/3519935.3520045. URL
https://doi.org/10.1145/3519935.3520045.

Alexander M Dalzell, András Gilyén, Connor T Hann, Sam McArdle, Grant Salton, Quynh T
Nguyen, Aleksander Kubica, and Fernando GSL Brandão. A distillation-teleportation protocol
for fault-tolerant QRAM. arXiv preprint arXiv:2505.20265, 2025.

Sanjoy Dasgupta. The hardness of k-means clustering. Technical report, University of California,
San Diego, 2008.

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error cur matrix de-
compositions. SIAM Journal on Matrix Analysis and Applications, 30(2):844–881, 2008. doi:
10.1137/07070471X. URL https://doi.org/10.1137/07070471X.

Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum. arXiv preprint
quant-ph/9607014, 1996.

David A. Freedman. On Tail Probabilities for Martingales. The Annals of Probability, 3(1):100
– 118, 1975. doi: 10.1214/aop/1176996452. URL https://doi.org/10.1214/aop/
1176996452.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo algorithms for finding low-rank
approximations. J. ACM, 51(6):1025–1041, November 2004. ISSN 0004-5411. doi: 10.1145/
1039488.1039494. URL https://doi.org/10.1145/1039488.1039494.

András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression with
logarithmic dependence on the dimension. arXiv preprint arXiv:1811.04909, 2018.

András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired algorithm for linear
regression. Quantum, 6:754, 2022.

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures for a quantum random ac-
cess memory. Phys. Rev. A, 78:052310, Nov 2008a. doi: 10.1103/PhysRevA.78.052310. URL
https://link.aps.org/doi/10.1103/PhysRevA.78.052310.

11

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.33
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.33
https://arxiv.org/abs/2504.20982
https://arxiv.org/abs/2504.20982
https://drops.dagstuhl.de/opus/volltexte/2023/18090
https://drops.dagstuhl.de/opus/volltexte/2023/18090
https://doi.org/10.1145/3519935.3520045
https://doi.org/10.1137/07070471X
https://doi.org/10.1214/aop/1176996452
https://doi.org/10.1214/aop/1176996452
https://doi.org/10.1145/1039488.1039494
https://link.aps.org/doi/10.1103/PhysRevA.78.052310

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory. Phys.
Rev. Lett., 100:160501, Apr 2008b. doi: 10.1103/PhysRevLett.100.160501. URL https://
link.aps.org/doi/10.1103/PhysRevLett.100.160501.

Connor T. Hann. Practicality of Quantum Random Access Memory. PhD thesis, Yale Uni-
versity, 2021. URL https://www.proquest.com/dissertations-theses/
practicality-quantum-random-access-memory/docview/2631670801/
se-2.

Connor T. Hann, Chang-Ling Zou, Yaxing Zhang, Yiwen Chu, Robert J. Schoelkopf, S. M. Girvin,
and Liang Jiang. Hardware-efficient quantum random access memory with hybrid quantum acous-
tic systems. Phys. Rev. Lett., 123:250501, Dec 2019. doi: 10.1103/PhysRevLett.123.250501.
URL https://link.aps.org/doi/10.1103/PhysRevLett.123.250501.

Connor T. Hann, Gideon Lee, S.M. Girvin, and Liang Jiang. Resilience of quantum random access
memory to generic noise. PRX Quantum, 2:020311, Apr 2021. doi: 10.1103/PRXQuantum.2.
020311. URL https://link.aps.org/doi/10.1103/PRXQuantum.2.020311.

J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means clustering algorithm. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979. ISSN 00359254,
14679876. URL http://www.jstor.org/stable/2346830.

Elad Hazan, Tomer Koren, and Nati Srebro. Beating SGD: Learning SVMs in sublinear
time. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/
file/5f2c22cb4a5380af7ca75622a6426917-Paper.pdf.

Ragesh Jaiswal. A quantum approximation scheme for k-means. arXiv preprint arXiv:2308.08167,
2023.

Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D2-sampling based PTAS for k-means
and other clustering problems. Algorithmica, 70(1):22–46, 2014.

Samuel Jaques and Arthur G. Rattew. QRAM: A survey and critique. arXiv preprint
arXiv:2305.10310, 2023. doi: 10.48550/arXiv.2305.10310.

Ravindran Kannan and Santosh Vempala. Randomized algorithms in numerical linear algebra. Acta
Numerica, 26:95–135, 2017. doi: 10.1017/S0962492917000058.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and
Angela Y. Wu. A local search approximation algorithm for k-means clustering. In Proceedings
of the Eighteenth Annual Symposium on Computational Geometry, SCG ’02, pp. 10–18, New
York, NY, USA, 2002. Association for Computing Machinery. ISBN 1581135041. doi: 10.1145/
513400.513402. URL https://doi.org/10.1145/513400.513402.

Iordanis Kerenidis and Anupam Prakash. Quantum Recommendation Systems. In Christos H. Pa-
padimitriou (ed.), 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), vol-
ume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 49:1–49:21, Dagstuhl,
Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-029-3.
doi: 10.4230/LIPIcs.ITCS.2017.49. URL https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ITCS.2017.49.

Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear systems and least
squares. Phys. Rev. A, 101:022316, Feb 2020a. doi: 10.1103/PhysRevA.101.022316. URL
https://link.aps.org/doi/10.1103/PhysRevA.101.022316.

Iordanis Kerenidis and Anupam Prakash. A quantum interior point method for LPs and SDPs.
ACM Transactions on Quantum Computing, 1(1), October 2020b. doi: 10.1145/3406306. URL
https://doi.org/10.1145/3406306.

12

https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://www.proquest.com/dissertations-theses/practicality-quantum-random-access-memory/docview/2631670801/se-2
https://www.proquest.com/dissertations-theses/practicality-quantum-random-access-memory/docview/2631670801/se-2
https://www.proquest.com/dissertations-theses/practicality-quantum-random-access-memory/docview/2631670801/se-2
https://link.aps.org/doi/10.1103/PhysRevLett.123.250501
https://link.aps.org/doi/10.1103/PRXQuantum.2.020311
http://www.jstor.org/stable/2346830
https://proceedings.neurips.cc/paper_files/paper/2011/file/5f2c22cb4a5380af7ca75622a6426917-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/5f2c22cb4a5380af7ca75622a6426917-Paper.pdf
https://doi.org/10.1145/513400.513402
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.49
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.49
https://link.aps.org/doi/10.1103/PhysRevA.101.022316
https://doi.org/10.1145/3406306

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. q-
means: A quantum algorithm for unsupervised machine learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/16026d60ff9b54410b3435b403afd226-Paper.pdf.

K. Krishna and M. Narasimha Murty. Genetic k-means algorithm. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 29(3):433–439, 1999.

Matthieu Lerasle. Lecture notes: Selected topics on robust statistical learning theory. arXiv preprint
arXiv:1908.10761, 2019.

Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. The global k-means clustering algorithm.
Pattern recognition, 36(2):451–461, 2003.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised and
unsupervised machine learning. arXiv preprint arXiv:1307.0411, 2013.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis.
Nature Physics, 10(9):631–633, Sep 2014. ISSN 1745-2481. doi: 10.1038/nphys3029. URL
https://doi.org/10.1038/nphys3029.

Stuart Lloyd. Least squares quantization in PCM. IEEE transactions on information theory, 28(2):
129–137, 1982.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem is
NP-hard. Theoretical Computer Science, 442:13–21, 2012.

Rohan Mehta, Gideon Lee, and Liang Jiang. Analysis and suppression of errors in quantum random
access memory under extended noise models. arXiv preprint arXiv:2412.10318, 2024.

Ashwin Nayak and Felix Wu. The quantum query complexity of approximating the median and
related statistics. In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting, STOC ’99, pp. 384–393, New York, NY, USA, 1999. Association for Computing Machin-
ery. ISBN 1581130678. doi: 10.1145/301250.301349. URL https://doi.org/10.1145/
301250.301349.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cam-
bridge university press, 2010.

Murphy Yuezhen Niu, Alexander Zlokapa, Michael Broughton, Sergio Boixo, Masoud Mohseni,
Vadim Smelyanskyi, and Hartmut Neven. Entangling quantum generative adversarial networks.
Phys. Rev. Lett., 128:220505, Jun 2022. doi: 10.1103/PhysRevLett.128.220505.

Daniel K. Park, Francesco Petruccione, and June-Koo Kevin Rhee. Circuit-based quantum random
access memory for classical data. Scientific Reports, 9(1):3949, Mar 2019. ISSN 2045-2322. doi:
10.1038/s41598-019-40439-3.

Koustubh Phalak, Junde Li, and Swaroop Ghosh. Approximate quantum random access memory
architectures. arXiv preprint arXiv:2210.14804, 2022. doi: 10.48550/arXiv.2210.14804.

Koustubh Phalak, Avimita Chatterjee, and Swaroop Ghosh. Quantum random access memory for
dummies. Sensors, 23(17), 2023. ISSN 1424-8220. doi: 10.3390/s23177462.

Anupam Prakash. Quantum algorithms for linear algebra and machine learning. University of
California, Berkeley, 2014.

Poojan Chetan Shah and Ragesh Jaiswal. Quantum (inspired) D2-sampling with applications. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=tDIL7UXmSS.

Fanhao Shen, Yujie Ji, Debin Xiang, Yanzhe Wang, Ke Wang, Chuanyu Zhang, Aosai Zhang, Yiren
Zou, Yu Gao, Zhengyi Cui, et al. Experimental realization of the bucket-brigade quantum random
access memory. arXiv preprint arXiv:2506.16682, 2025.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://doi.org/10.1038/nphys3029
https://doi.org/10.1145/301250.301349
https://doi.org/10.1145/301250.301349
https://openreview.net/forum?id=tDIL7UXmSS
https://openreview.net/forum?id=tDIL7UXmSS

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhao Song, David Woodruff, and Huan Zhang. Sublinear time orthogonal tensor decom-
position. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf.

Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 217–228,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367059. doi:
10.1145/3313276.3316310. URL https://doi.org/10.1145/3313276.3316310.

Ewin Tang. Quantum principal component analysis only achieves an exponential speedup
because of its state preparation assumptions. Phys. Rev. Lett., 127:060503, Aug 2021.
doi: 10.1103/PhysRevLett.127.060503. URL https://link.aps.org/doi/10.1103/
PhysRevLett.127.060503.

Joel Tropp. Freedman’s inequality for matrix martingales. Electronic Communications in Probabil-
ity, 16(none):262 – 270, 2011. doi: 10.1214/ECP.v16-1624. URL https://doi.org/10.
1214/ECP.v16-1624.

Andrea Vattani. The hardness of k-means clustering in the plane. Technical report, University of
California, San Diego, 2009.

Zhaoyou Wang, Hong Qiao, Andrew N. Cleland, and Liang Jiang. Quantum random access
memory with transmon-controlled phonon routing. Phys. Rev. Lett., 134:210601, May 2025.
doi: 10.1103/PhysRevLett.134.210601. URL https://link.aps.org/doi/10.1103/
PhysRevLett.134.210601.

Yecheng Xue, Xiaoyu Chen, Tongyang Li, and Shaofeng H.-C. Jiang. Near-optimal quantum core-
set construction algorithms for clustering. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 38881–38912. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/xue23a.html.

Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum generative adversarial networks for
learning and loading random distributions. npj Quantum Information, 5(1):103, Nov 2019. ISSN
2056-6387. doi: 10.1038/s41534-019-0223-2.

A CLASSICAL ALGORITHMS

We now present our classical (ε, ν)-k-means algorithms, whose main idea is to employ the classical
query access from Definition 2 to separately estimate the quantities

∑
i∈Ct

j
vi and |Ct

j | for j ∈ [k],

from which the new centroids ct+1
j ≈|Ct

j |−1
∑

i∈Ct
j
vi are approximated. For our first algorithm, we

sample columns of V with probability ∥vi∥
∥V ∥2,1

and select those closer to ctj to approximate
∑

i∈Ct
j
vi.

To approximate |Ct
j | we sample columns of V uniformly at random instead.

Before presenting and proving the correctness of our classical algorithm, we recall the following
useful concentration inequalities and approximation lemma.
Fact 4 (Chernoff’s bound). Let X :=

∑
i∈[N]Xi where X1, . . . , XN are independently distributed

in [0, 1]. Then Pr[|X − E[X]| ≥ ϵE[X]] ≤ 2e−ϵ2E[X]/3 for all ϵ > 0.

Fact 5 (Median-of-means (Lerasle, 2019, Proposition 12)). Let X(j) := 1
N

∑
i∈[N]X

(j)
i for j ∈

[K], where {X(j)
i }i∈[N],j∈[K] are i.i.d. copies of a random variable X . Then, for all ϵ > 0 and

σ2 ≥ Var(X),

Pr
[
|median(X(1), . . . , X(K))− E[X]| ≥ ϵ

]
≤ exp

(
− 2K

(
1

2
− σ2

Nϵ2

)2)
.

14

https://proceedings.neurips.cc/paper_files/paper/2016/file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf
https://doi.org/10.1145/3313276.3316310
https://link.aps.org/doi/10.1103/PhysRevLett.127.060503
https://link.aps.org/doi/10.1103/PhysRevLett.127.060503
https://doi.org/10.1214/ECP.v16-1624
https://doi.org/10.1214/ECP.v16-1624
https://link.aps.org/doi/10.1103/PhysRevLett.134.210601
https://link.aps.org/doi/10.1103/PhysRevLett.134.210601
https://proceedings.mlr.press/v202/xue23a.html
https://proceedings.mlr.press/v202/xue23a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Fact 6 (Freedman’s inequality (Freedman, 1975, Theorem 1.6) & (Tropp, 2011, Theorem 1.1)). Let
{Yi : i ∈ N∪{0}} be a real-valued martingale with difference sequence {Xi : i ∈ N}. Assume that
Xi ≤ B almost surely for all i ∈ N. Let Wi :=

∑
j∈[i] E[X2

j |X1, . . . , Xj−1] for i ∈ N. Then, for
all ϵ ≥ 0 and σ > 0,

Pr[∃i ≥ 0 : Yi ≥ ϵ and Wi ≤ σ2] ≤ exp

(
− ϵ2/2

σ2 +Bϵ/3

)
.

Claim 7. Let ã, a ∈ R+ be such that |a− ã| ≤ ϵ, where ϵ ∈ [0, a2]. Then
∣∣ 1
ã − 1

a

∣∣ ≤ 2ϵ
a2 .

Theorem 8 (Classical (ε, 0)-k-means algorithm). Let ε > 0, δ ∈ (0, 1), and assume classical query
access to V = [v1, . . . , vn] ∈ Rd×n. If all clusters satisfy |Ct

j | = Ω(nk), then Algorithm 1 outputs
centroids consistent with the (ε, ν = 0)-k-means algorithm with probability 1− δ. The complexities
per iteration of Algorithm 1 are

Classical queries: O
((∥V ∥2

n
+

∥V ∥22,1
n2

)
k2d

ε2
log

k

δ

)
,

Time: O
((∥V ∥2

n
+

∥V ∥22,1
n2

)
k2d

ε2
(k + log(nd)) log

k

δ

)
.

Proof. Let χt
j ∈ Rn be the characteristic vector for cluster j ∈ [k] at iteration t scaled to ℓ1-norm,

i.e., (χt
j)i =

1
|Ct

j |
if i ∈ Ct

j and 0 if i ̸∈ Ct
j . For i ∈ [n], let ℓti := argminj∈[k] ∥vi − ctj∥. Sample

p indices P ⊆ [n] uniformly from [n]. Let λj = p
|Pj |

|Ct
j |
n , where Pj := {i ∈ P |ℓti = j}. On the

other hand, sample q indices Q ⊆ [n] from the distribution D(1)
(∥vi∥)ni=1

(i) = ∥vi∥
∥V ∥2,1

. For each i ∈ Q,

let Xi ∈ Rd×n be the matrix formed by setting the i-th column of X to ∥V ∥2,1 vi
∥vi∥ and the rest to

zero. Define Ṽ := 1
q

∑
i∈QXi. Then E[Ṽ] = V .

We start with the error analysis. We note that the outputs of the standard k-means and Algorithm 1
can be stated, respectively, as c∗ t+1

j = V χt
j and ct+1

j = λj Ṽ χ
t
j = p

n|Pj |
∑

i∈Qj

∥V ∥2,1

q
vi

∥vi∥ , where

Qj := {i ∈ Q|ℓti = j}. In order to bound ∥c∗ t+1
j − ct+1

j ∥, first note that, by the triangle inequality,

∥c∗ t+1
j − ct+1

j ∥ ≤ |λj − 1|∥V χt
j∥+ |λj |∥(Ṽ − V)χt

j∥,
so we aim at bounding |λj − 1| ≤ ε

2∥V χt
j∥

and ∥(Ṽ − V)χt
j∥ ≤ ε

2|λj | . Let us start with |λj − 1|.
Notice that |Pj | is a binomial random variable with mean p|Ct

j |/n. By a Chernoff bound (Fact 4),

Pr

[∣∣∣∣∣ |Pj |
p

n

|Ct
j |

− 1

∣∣∣∣∣ ≥ ε

4∥V ∥∥χt
j∥

]
≤ 2 exp

(
−

ε2p|Ct
j |

48n∥V ∥2∥χt
j∥2

)
. (1)

It suffices to take p =
48∥V ∥2∥χt

j∥
2n

ε2|Ct
j |

ln 2k
δ = O

(∥V ∥2

n
k2

ε2 log k
δ

)
in order to estimate |λ−1

j − 1| ≤
ε

4∥V ∥∥χt
j∥

with probability at least 1 − δ
2k (using that |Ct

j | = Ω(nk), ∥V χt
j∥ ≤ ∥V ∥∥χt

j∥, and

∥χt
j∥2 = 1/|Ct

j |). The bound on |λ−1
j −1| implies that |λj−1| ≤ ε

2∥V ∥∥χt
j∥

, where we used Claim 7

and that |λj | ≤ 2 with high probability — which is already implied by the bound in Eq. (1). By the
union bound, the bound on λj holds for all j ∈ [k] with probability at least 1− δ

2 .

Regarding the bound on Ṽ , we use Freedman’s inequality to prove ∥(Ṽ − V)χt
j∥ ≤ ε

4 ≤ ε
2|λj |

(again using that |λj | ≤ 2). For such, let f(X1, . . . , Xq) = ∥(Ṽ − V)χt
j∥. First, for all i ∈ [q],

|f(X1, . . . , Xi, . . . , Xq)− f(X1, . . . , X
′
i, . . . , Xq)| ≤

1

q
∥(Xi −X ′

i)χ
t
j∥ ≤ 2∥V ∥2,1

q|Ct
j |

.

Second, we bound the variance: for all i ∈ [q],

E
Xi,X′

i

[
f(X1, . . . , Xi, . . . , Xq)− f(X1, . . . , X

′
i, . . . , Xq)

]2 ≤ 1

q2
E

Xi,X′
i

[
∥(Xi −X ′

i)χ
t
j∥
]2

≤ 4

q2
E
Xi

[∥Xiχ
t
j∥2] =

4

q2
(χt

j)
⊤ E

X
[X⊤X]χt

j =
4

q2
(χt

j)
⊤∥V ∥2,1 diag((∥vi∥)i∈[n])χ

t
j ≤

4∥V ∥22,1
q2|Ct

j |2
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We employ Freedman’s inequality with the Doob martingale Yi := E[f(X1, . . . , Xq)|X1, . . . , Xi]

for i ∈ [q]. Then Fact 6 with B =
2∥V ∥2,1

q|Ct
j |

and σ2 = q · 4∥V ∥2
2,1

q2|Ct
j |2

leads to

Pr
[
∥(Ṽ − V)χt

j∥ ≥ ε

4

]
≤ exp

− ε2/32
4∥V ∥2

2,1

q|Ct
j |2

+
ε∥V ∥2,1

6q|Ct
j |

 .

It suffices to take q = O
(
max

{∥V ∥2
2,1

n2
k2

ε2 ,
∥V ∥2,1

n
k
ε

}
log k

δ

)
to approximate ∥(Ṽ − V)χt

j∥ ≤ ε
2 with

probability at least 1− δ
2k (already using that |Ct

j | = Ω(nk)). All in all, we have ∥c∗ t+1
j − ct+1

j ∥ ≤ ε
with probability at least 1− δ for all the centroids (using a union bound).

We now turn our attention to the query and time complexities. In order to compute the clusters
{Ct

j}j∈[k], for each i ∈ P ∪ Q and j ∈ [k], we exactly compute the distance ∥vi − ctj∥, which
requires O(d log(nd)) time: O(d log(nd)) time to read a vector of d components vi and O(d) time
to compute the distance. In total, we need access to at most p+ q vectors, so O((p+ q)d) classical
queries, while the time complexity is O((p+ q)(kd+ d log(nd))), accounting for the O(kd) cost in
computing all distances ∥vi − ctj∥ between vi and the k centroids stored in memory. Finally, the k
new centroids are obtained by summing q d-dimensional vectors in O(qd) time. In summary,

• Sampling P,Q ⊆ [n] and querying the corresponding vectors {vi}i∈P∪Q takesO((p+q)d)
queries and O((p+ q)d log(nd)) time;

• Obtaining the labels {ℓti}i∈P∪Q requires O((p+ q)kd) time;

• Computing new centroids {ct+1
j }j∈[k] by adding q d-dimensional vectors takesO(qd) time.

This means the overall query complexity is O((p+ q)d) and the time complexity is

O
(
(p+ q)d(k + log(nd))

)
= O

((∥V ∥2
n

+
∥V ∥22,1
n2

)
k2d

ε2
(k + log(nd)) log

k

δ

)
.

Algorithm 1 computes the distances ∥vi − ctj∥, and thus the labels {ℓti}i∈P∪Q, in an exact way via
classical arithmetic circuits in O((p + q)kd) time (O(d) time for each pair (vi, ctj)). Similarly, the
new centroids ct+1

j are computed by adding q d-dimensional vectors,
∑

i∈Qj

vi
∥vi∥ . It is possible,

however, to approximate ∥vi − ctj∥ via a sampling procedure, which allows to trade the dependence
on d with some norm of V . Algorithm 2 describes how this can be performed and the next theorem
analyses its query and time complexities.
Theorem 9 (Classical (ε, ν)-k-means algorithm). Let ε, ν > 0, δ ∈ (0, 1), and assume classical
query access to V = [v1, . . . , vn] ∈ Rd×n. If all clusters satisfy |Ct

j | = Ω(nk), then Algorithm 2 out-
puts centroids consistent with the (ε, ν)-k-means algorithm with probability 1− δ. The complexities
per iteration of Algorithm 2 are (up to polylog factors in k, d, 1

δ , 1
ν , 1

ε , ∥V ∥F√
n

)

Classical queries: Õ
((∥V ∥2

n
+

∥V ∥21,1
n2

)∥V ∥2F ∥V ∥22,∞
n

k3

ε2ν2

)
,

Time: Õ
((∥V ∥2

n
+

∥V ∥21,1
n2

)∥V ∥2F ∥V ∥22,∞
n

k3

ε2ν2
log n

)
.

Proof. The proof is similar to Theorem 8. Let χt
j ∈ Rn be such that (χt

j)i =
1

|Ct
j |

if i ∈ Ct
j and 0 if

i ̸∈ Ct
j . For i ∈ [n], let ℓti ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤ minj′∈[k] ∥vi − ctj′∥2 + ν}. Again we sample

p indices P ⊆ [n] uniformly from [n] and let λj = p
|Pj |

|Ct
j |
n , where Pj := {i ∈ P |ℓti = j}. On

the other hand, we now sample q indices Q ⊆ [n] × [d] from the distribution D(1)
V (i, l) = |Vli|

∥V ∥1,1
.

For each (i, l) ∈ Q, let Xli ∈ Rd×n be the matrix formed by setting the (l, i)-th entry of X to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Classical (ε, ν)-k-means algorithm

Input: Classical query access to data matrix V = [v1, . . . , vn] ∈ Rd×n, parameters δ, ε, ν.
1: Select k initial centroids c01, . . . , c

0
k

2: for t = 0 until convergence do
3: Sample p = O

(∥V ∥2

n
k2

ε2 log k
δ

)
rows P ⊆ [n] uniformly from [n]

4: Sample q = O
(∥V ∥2

1,1

n2
k2

ε2 log k
δ

)
rows Q ⊆ [n]× [d] from D(1)

V

5: For i ∈ P and (i, ·) ∈ Q, compute ℓti ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤ minj′∈[k] ∥vi − ctj′∥2 + ν}
using Lemma 10

6: For (j, l) ∈ [k]× [d], let Pj := {i ∈ P |ℓi = j} and Qjl := {(i, l′) ∈ Q|(ℓti, l′) = (j, l)}
7: For (j, l) ∈ [k]× [d], let the new centroids (ct+1

j)l =
p

n|Pj |
∑

(i,l′)∈Qjl

∥V ∥1,1

q sgn(Vl′i)

8: end for

∥V ∥1,1 sgn(Vli) and the rest to zero. Define Ṽ := 1
q

∑
(i,l)∈QXli. Then E[Ṽ] = V . Let also

Q := {i|(i, l) ∈ Q for some l ∈ [d]} for convenience.

The outputs of the standard k-means and Algorithm 1 can be stated, respectively, as c∗ t+1
j = V χt

j

and (ct+1
j)l = λj(Ṽ χ

t
j)l =

p
n|Pj |

∑
(i,l′)∈Qjl

∥V ∥1,1

q sgn(Vl′i), where Qjl := {(i, l′) ∈ Q|(ℓti, l′) =
(j, l)}. In order to bound ∥c∗ t+1

j − ct+1
j ∥, once again, by the triangle inequality,

∥c∗ t+1
j − ct+1

j ∥ ≤ |λj − 1|∥V χt
j∥+ |λj |∥(Ṽ − V)χt

j∥,

and we just need to show that |λj−1| ≤ ε
2∥V χt

j∥
and ∥(Ṽ −V)χt

j∥ ≤ ε
2|λj | . Exactly as in Theorem 8,

it suffices to take p = O
(∥V ∥2

n
k2

ε2 log k
δ

)
in order to bound |λj−1| ≤ ε

2∥V χt
j∥

with probability 1− δ
4 .

Regarding the bound on Ṽ , we use Freedman’s inequality to prove ∥(Ṽ − V)χt
j∥ ≤ ε

4 ≤ ε
2|λj |

(using that |λj | ≤ 2). For such, let f(X1, . . . , Xq) = ∥(Ṽ − V)χt
j∥. First, for all i ∈ [q],

|f(X1, . . . , Xi, . . . , Xq)− f(X1, . . . , X
′
i, . . . , Xq)| ≤

1

q
∥(Xi −X ′

i)χ
t
j∥ ≤ 2∥V ∥1,1

q|Ct
j |

.

Second, we bound the variance: for all i ∈ [q],

E
Xi,X′

i

[
f(X1, . . . , Xi, . . . , Xq)− f(X1, . . . , X

′
i, . . . , Xq)

]2 ≤ 1

q2
E

Xi,X′
i

[
∥(Xi −X ′

i)χ
t
j∥
]2

≤ 4

q2
E
Xi

[∥Xiχ
t
j∥2] =

4

q2
(χt

j)
⊤ E

X
[X⊤X]χt

j =
4

q2
(χt

j)
⊤∥V ∥1,1 diag((∥vi∥1)i∈[n])χ

t
j ≤

4∥V ∥21,1
q2|Ct

j |2
.

We employ Freedman’s inequality with the Doob martingale Yi := E[f(X1, . . . , Xq)|X1, . . . , Xi]

for i ∈ [q]. Then Fact 6 with B =
2∥V ∥1,1

q|Ct
j |

and σ2 = q · 4∥V ∥2
1,1

q2|Ct
j |2

leads to

Pr
[
∥(Ṽ − V)χt

j∥ ≥ ε

4

]
≤ exp

− ε2/32
4∥V ∥2

1,1

q|Ct
j |2

+
ε∥V ∥1,1

6q|Ct
j |

 .

It suffices to take q = O
(
max

{∥V ∥2
1,1

n2
k2

ε2 ,
∥V ∥1,1

n
k
ε

}
log k

δ

)
to approximate ∥(Ṽ − V)χt

j∥ ≤ ε
2 with

probability at least 1− δ
4k (already using that |Ct

j | = Ω(nk)). All in all, we have ∥c∗ t+1
j − ct+1

j ∥ ≤ ε

with probability at least 1− δ
2 for all the centroids (using a union bound).

We now turn our attention to the query and time complexities. Another main difference to Theorem 8
is that the clusters {Ct

j}j∈[k] are computed by approximating the distances ∥vi − ctj∥ using an ℓ2-
sampling procedure explained in Lemma 10. More precisely, for any i ∈ [n] we can compute

ℓti ∈
{
j ∈ [k] : ∥vi − ctj∥2 ≤ min

j′∈[k]
∥vi − ctj′∥2 + ν

}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

with probability 1− δ
4(p+q) in Õ

(∥V ∥2
F

n
k∥vi∥2

ν2 log n
)

time and using Õ
(∥V ∥2

F

n
k∥vi∥2

ν2

)
queries, where

Õ(·) hides poly log factors in k, d, 1
δ , 1

ν , ∥V ∥F√
n

. The classical query complexity in computing

{ℓti}i∈P∪Q is thus Õ
(∥V ∥2

F

n
k
ν2

∑
i∈P∪Q ∥vi∥2

)
= Õ

(
(p + q)

∥V ∥2
F ∥V ∥2

2,∞
n

k
ν2

)
, while the time com-

plexity has an extra O(log n) factor.2 In summary, the time and query complexities are:

• Sampling P ⊆ [n], Q ⊆ [n]× [d] takes O(p+ q) queries and O((p+ q) log(nd)) time;

• Computing the labels {ℓti}i∈P∪Q takes Õ
(
(p + q)

∥V ∥2
F ∥V ∥2

2,∞
n

k
ν2

)
classical queries and

Õ
(
(p+ q)

∥V ∥2
F ∥V ∥2

2,∞
n

k
ν2 log n

)
time;

• Querying the entries {Vli}(i,l)∈Q and computing all new centroids {ct+1
j }j∈[k] takes O(q)

queries and O(q log(nd)) time.

The total query complexity is thus Õ
(
(p+ q)

∥V ∥2
F ∥V ∥2

2,∞
n

k
ν2

)
and the time complexity is

Õ

(
(p+ q)

∥V ∥2F ∥V ∥22,∞
n

k

ν2
log n

)
= Õ

((∥V ∥2
n

+
∥V ∥21,1
n2

)∥V ∥2F ∥V ∥22,∞
n

k3

ε2ν2
log n

)
.

Lemma 10 (Approximate classical cluster assignment). Assume classical query access to matrix
V = [v1, . . . , vn] ∈ Rd×n. Let δ ∈ (0, 1), ν > 0, and 0 < ε ≤ ∥V ∥F√

n
. Consider the centroid matrix

Ct = [ct1, . . . , c
t
k] ∈ Rd×k such that

∥∥ctj − |Ct−1
j |−1

∑
i∈Ct−1

j
vi
∥∥ ≤ ε with |Ct−1

j | = Ω(nk) for all

j ∈ [k]. For any i ∈ [n], there is a classical algorithm that outputs ℓti ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤
minj′∈[k] ∥vi − ctj′∥2 + ν} with probability 1− δ in O

(∥V ∥2
F

n
k∥vi∥2

ν2 log k
δ log(nd)

)
time and using

O
(∥V ∥2

F

n
k∥vi∥2

ν2 log k
δ

)
classical queries.

Proof. Fix (i, j) ∈ [n]× [k] and consider the random variable X(ij) such that

Pr

[
X(ij) = ∥vi∥2

(ctj)l

(vi)l

]
=

(vi)
2
l

∥vi∥2
∀l ∈ [d].

We can straightforwardly calculate

E[X(ij)] =
∑
l∈[d]

∥vi∥2
(ctj)l

(vi)l

(vi)
2
l

∥vi∥2
=
∑
l∈[d]

(ctj)l(vi)l = ⟨ctj , vi⟩,

Var[X(ij)] ≤
∑
l∈[d]

∥vi∥4
(ctj)

2
l

(vi)2l

(vi)
2
l

∥vi∥2
= ∥vi∥2

∑
l∈[d]

(ctj)
2
l = ∥vi∥2∥ctj∥2.

By taking the median of K = 8 ln k
δ copies of the mean of 64

ν2 ∥vi∥2∥ctj∥2 copies of X(ij), we obtain
an estimate of ⟨ctj , vi⟩ within additive error ν

4 with probability 1 − δ
k (Fact 5). From this, we can

output wij ∈ R such that |wij −∥vi− ctj∥2| ≤ ν
2 with probability 1− δ

k . Let ℓti = argminj∈[k] wij .
Then ℓti ∈ {j∈ [k] :∥vi−ctj∥2 ≤ minj′∈[k]∥vi−ctj′∥2+ν} with probability 1−δ by a union bound.

2It is possible to do slightly better than
∑

i∈P∪Q∥vi∥
2 ≤ (p + q)∥V ∥22,∞ via concentration bounds.

Let the random variable Pr
[
Y (i) = ∥vi∥2

∥V ∥22,∞

]
= 1

n
with mean E[Y] =

∥V ∥2F
n∥V ∥22,∞

. By a Chernoff’s bound,

Pr
[∑

i∈P ∥vi∥
2≥2p

∥V ∥2F
n

]
≤exp

(
− p

3

∥V ∥2F
n∥V ∥22,∞

)
≤ δ

2
if p≥3

n∥V ∥22,∞
∥V ∥2

F
ln 2

δ
. On the other hand, let the random

variable Pr
[
Y (i)= ∥vi∥2

∥V ∥22,∞

]
= ∥vi∥

∥V ∥2,1
with mean E[Y]= 1

∥V ∥2,1

∑
i∈[n]

∥vi∥3

∥V ∥22,∞
≤ ∥V ∥2F

∥V ∥2,1∥V ∥2,∞
. By a Cher-

noff’s bound, Pr
[∑

i∈Q∥vi∥
2 ≥ 2q

∥V ∥2F ∥V ∥2,∞
∥V ∥2,1

]
≤ exp

(
− q

3

∥V ∥2F
∥V ∥2,1∥V ∥2,∞

)
≤ δ

2
if q≥ 3

∥V ∥2,1∥V ∥2,∞
∥V ∥2

F
ln 2

δ
.

Thus
∑

i∈P∪Q∥vi∥
2 ≤ 2

(
p+ q

n∥V ∥2,∞
∥V ∥2,1

) ∥V ∥2F
n

with probability 1− δ for large enough p and q.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Regarding the sample and time complexities, the total amount of samples is

O

(
∥vi∥2
ν2

log
k

δ

∑
j∈[k]

∥ctj∥2
)

= O

(
∥vi∥2∥Ct∥2F

ν2
log

k

δ

)
= O

(
∥vi∥2
ν2

k∥V ∥2F
n

log
k

δ

)
,

where we used that ∥ctj∥ ≤ ε+ |Ct−1
j |−1

∑
i∈Ct−1

j
∥vi∥ implies

∥Ct∥2F ≤ 2kε2 +
∑
j∈[k]

2

|Ct−1
j |2

(∑
i∈Ct−1

j

∥vi∥
)2

≤ 2kε2 +
∑
j∈[k]

2

|Ct−1
j |

∑
i∈Ct−1

j

∥vi∥2 = O

(
k∥V ∥2F
n

)
,

using that |Ct−1
j | = Ω(nk) for all j ∈ [k] and ε ≤ ∥V ∥F√

n
. The total time complexity is simply the

sample complexity times O(log(nd)).

B QUANTUM ALGORITHMS

We now describe our quantum (ε, ν)-k-means algorithms. Similarly to our classical algorithm from
the previous section, we approximate the quantities

∑
i∈Ct

j
vi and |Ct

j | for all j ∈ [k] separately.
This time, however, we employ quantum query access from Definition 3 to build quantum unitaries
which are fed into the multivariate quantum mean estimator from Cornelissen et al. (2022). As an
intermediary step, the quantities ℓti = argminj∈[k] ∥vi − ctj∥ are computed in superposition as part
of these unitaries (Lemma 15).

Before presenting and proving the correctness of our quantum algorithm, recall a few subroutines
that will serve as building blocks: the quantum minimum finding subroutine from Dürr & Høyer
(1996), its generalisation with variable times due to Ambainis (2010; 2012), and the multivariate
quantum mean estimation subroutine from Cornelissen et al. (2022).

Fact 11 (Quantum min-finding (Dürr & Høyer, 1996)). Given δ ∈ (0, 1) and oracle Ux : |i⟩|0̄⟩ 7→
|i⟩|xi⟩ for x ∈ RN , there is a quantum algorithm that outputs |Ψx⟩ using O(

√
N log 1

δ) queries to
Ux such that, upon measuring |Ψx⟩ in the computational basis, the outcome is argmini∈[N] xi with
probability 1− δ.

Fact 12 (Variable-time quantum min-finding (Ambainis, 2010)). Let δ ∈ (0, 1), x ∈ RN , and
{Ui}i∈[N] a collection of oracles such that Ui : |0̄⟩ 7→ |xi⟩ in time O(ti). There is a quantum
algorithm that runs in time O((

∑
i∈[N] t

2
i)

1
2 log 1

δ) and outputs |Ψx⟩ such that, upon measuring
|Ψx⟩ in the computational basis, the outcome is argmini∈[N] xi with probability 1− δ.

Fact 13 ((Cornelissen et al., 2022, Theorem 3.3)). Consider a bounded N -dimensional random
variable X : Ω → RN over a probability space (Ω, 2Ω,P) with mean µ =

∑
ω∈Ω P(ω)X(ω) and

such that ∥X∥ ≤ 1. Assume access to unitaries UP : |0̄⟩ 7→∑
ω∈Ω

√
P(ω)|ω⟩ and BX : |ω⟩|0̄⟩ 7→

|ω⟩|X(ω)⟩. Given δ ∈ (0, 1), m ∈ N, and an upper bound L2 ≥ E[∥X∥], there is a quantum
algorithm that outputs µ̃ ∈ RN such that ∥µ − µ̃∥∞ ≤

√
L2 log(N/δ)

m with success probability at
least 1− δ, using O(mpoly logm) queries to the oracles UP and BX , and in time Õ(mN).3

Theorem 14 (Quantum (ε, 0)-k-means algorithm). Let ε > 0, δ ∈ (0, 1), and assume quantum
query access to V = [v1, . . . , vn] ∈ Rd×n. If all clusters satisfy |Ct

j | = Ω(nk), then Algorithm 3
outputs centroids consistent with the (ε, ν = 0)-k-means with probability 1 − δ. The complexities

3The time complexity of the mean estimation subroutine is not analysed in Cornelissen et al. (2022), so we
give a sketch of its analysis here. The last step of the algorithm needs to perform N parallel inverse QFTs on
m qubits, which requires Θ̃(mN) gates since we need to touch every qubit at least once. It remains to show
that we can implement the rest of the algorithm in time Õ(mN). In the preprocessing step, we compute the
ℓ2-norm of the random variable in time O(N), a total of Õ(m) times. The main routine, subsequently, runs
with m repetitions, within each of which we perform arithmetic operations such as computing the inner product
of two N -dimensional vectors, in O(N) time, and do quantum singular value transformations. This last step
is used to turn a so-called probability oracle into a phase oracle, and takes Õ(1) time to implement. The total
time complexity of this step thus also becomes Õ(mN).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 3 Quantum (ε, ν = 0)-k-means algorithm

Input: Quantum query access to data matrix V = [v1, . . . , vn] ∈ Rd×n, parameters δ, ε.
1: Select k initial centroids c01, . . . , c

0
k

2: for t = 0 until convergence do
3: Build quantum query access to [ct1, . . . , c

t
k] ∈ Rd×k

4: Using Lemma 15 to obtain |i⟩|0̄⟩ 7→ |i⟩|ℓti⟩ where ℓti = argminj∈[k] ∥vi − ctj∥, construct
the unitaries

UI : |0̄⟩ 7→
∑
i∈[n]

1√
n
|i, ℓti⟩, UV : |0̄⟩ 7→

∑
i∈[n]

√
∥vi∥

∥V ∥2,1
|i, ℓti⟩,

BI : |i, j⟩|0̄⟩⊗k 7→ |i, j⟩|0̄⟩⊗(j−1)|1⟩|0̄⟩⊗(k−j−1),

BV : |i, j⟩|0̄⟩⊗kd 7→ |i, j⟩|0̄⟩⊗(j−1)d|vi/∥vi∥⟩|0̄⟩⊗(k−j−1)d

5: Apply the multivariate quantum mean estimator (Fact 13) with p = Õ
(∥V ∥√

n
k3/2

ε

)
queries to

the unitaries UI and BI to obtain P ∈ Rk

6: Apply the multivariate quantum mean estimator (Fact 13) with q = Õ
(∥V ∥2,1√

n
k
√
d

ε

)
queries

to the unitaries UV and BV to obtain Q ∈ (Rd)k

7: For j ∈ [k], record the new centroids ct+1
j =

∥V ∥2,1

n
Qj

Pj

8: end for

per iteration of Algorithm 3 are (up to polylog factors in k, d, 1
δ , 1

ε , ∥V ∥F√
n

)

Quantum queries: Õ
((√

k
∥V ∥√
n

+
√
d
∥V ∥2,1
n

)
k

3
2 d

ε

)
,

Time: Õ
((√

k
∥V ∥√
n

+
√
d
∥V ∥2,1
n

)
k

3
2 d

ε
(
√
k + log n)

)
.

Proof. We start with the error analysis. Consider the unitaries

UV : |0̄⟩ 7→
∑
i∈[n]

√
∥vi∥

∥V ∥2,1
|i, ℓti⟩, BV : |i, j⟩|0̄⟩⊗kd 7→ |i, j⟩|0̄⟩⊗(j−1)d|vi/∥vi∥⟩|0̄⟩⊗(k−j−1)d,

UI : |0̄⟩ 7→
∑
i∈[n]

1√
n
|i, ℓti⟩, BI : |i, j⟩|0̄⟩⊗k 7→ |i, j⟩|0̄⟩⊗(j−1)|1⟩|0̄⟩⊗(k−j−1).

The unitaries UV and UI can be thought of as preparing a superposition over probability spaces with
distributions PV and PI , respectively, given by

PV (i, j) =

{
∥vi∥

∥V ∥2,1
if j = ℓti,

0 if j ̸= ℓti,
and PI(i, j) =

{
1
n if j = ℓti,

0 if j ̸= ℓti,

while the unitaries BV and BI can be thought of as binary encoding the random variablesXV : [n]×
[k] → (Rd)k and XI : [n]× [k] → Rk, respectively, given by XV (i, j) = (0, . . . , 0, vi

∥vi∥ , 0, . . . , 0)

and XI(i, j) = (0, . . . , 0, 1, 0, . . . , 0), where the non-zero entry is the j-th entry. Note that

∑
(i,j)∈[n]×[k]

PV (i, j)XV (i, j) =

(∑
i∈Ct

1

vi
∥V ∥2,1

, . . . ,
∑
i∈Ct

k

vi
∥V ∥2,1

)
,

∑
(i,j)∈[n]×[k]

PI(i, j)XI(i, j) =

(|Ct
1|
n
, . . . ,

|Ct
k|
n

)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Therefore, the multivariate quantum mean estimator (Fact 13) returns P ∈ Rk and Q ∈ (Rd)k such
that, with probability at least 1− δ and for some ε1, ε2 > 0 to be determined,∣∣∣∣Pj −

|Ct
j |
n

∣∣∣∣ ≤ ε1 and

∥∥∥∥∥Qj −
∑
i∈Ct

j

vi
∥V ∥2,1

∥∥∥∥∥
∞

≤ ε2 ∀j ∈ [k].

This means that, by a triangle inequality,

∥c∗ t+1
j − ct+1

j ∥ ≤
∣∣∣∣ |Ct

j |
nPj

− 1

∣∣∣∣
∥∥∥∥∥ 1

|Ct
j |
∑
i∈Ct

j

vi

∥∥∥∥∥+ ∥V ∥2,1
nPj

∥∥∥∥∥Qj −
∑
i∈Ct

j

vi
∥V ∥2,1

∥∥∥∥∥.
For ε1 small enough such that ε1 ≤ minj∈[k]

|Ct
j |

2n , then
∣∣Pj − |Ct

j |
n

∣∣ ≤ ε1 =⇒ 1
nPj

≤ 1
|Ct

j |−nε1
≤

2
|Ct

j |
and

∣∣ 1
Pj

− n
|Ct

j |

∣∣ ≤ 2n2

|Ct
j |2
ε1 according to Claim 7. Moreover,

∥∥ 1
|Ct

j |
∑

i∈Ct
j
vi
∥∥ = ∥V χt

j∥ ≤

∥V ∥∥χt
j∥ = ∥V ∥/

√
|Ct

j |. Hence

∥c∗ t+1
j − ct+1

j ∥ ≤ ∥V ∥√
|Ct

j |
2n

|Ct
j |
ε1 +

2
√
d∥V ∥2,1
|Ct

j |
ε2.

It suffices to take ε1 = O
(√

n
∥V ∥

ε
k3/2

)
and ε2 = O

(
n

∥V ∥2,1

ε
k
√
d

)
in order to obtain ∥c∗ t+1

j −ct+1
j ∥ ≤ ε,

where we used that |Ct
j | = Ω(nk). In order to obtain ε1 = O

(√
n

∥V ∥
ε

k3/2

)
, we must query the unitaries

UI and BI in the multivariate quantum mean estimator p = Õ
(∥V ∥√

n
k3/2

ε

)
times (since ∥XI∥ = 1

and E[∥XI∥] = 1). On the other hand, in order to obtain ε2 = O
(

n
∥V ∥2,1

ε
k
√
d

)
, we must query the

unitaries UV and BV in the multivariate quantum mean estimator q = Õ
(∥V ∥2,1

n
k
√
d

ε

)
times (since

∥XV ∥ = 1 and E[∥XV ∥] = 1).

Finally, we must show how to perform the unitaries UV , UI , BV , BI . The binary-encoding unitary
BV is d QRAM calls (O(d log n) time), followed by a normalisation computation (O(d) time),
followed by d controlled-SWAPs on k qubits (O(kd log k) time (Berry et al., 2015)), while BI is
simply 1 controlled-SWAP on k qubits. On the other hand, the probability-distribution-encoding

unitaries UV , UI can be performed via the initial state preparations |0̄⟩ 7→ ∑
i∈[n]

√
∥vi∥

∥V ∥2,1
|i⟩ and

|0̄⟩ 7→ 1√
n

∑
i∈[n] |i⟩, respectively, followed by the mapping |i⟩|0̄⟩ 7→ |i⟩|ℓti⟩. In Lemma 15 we show

how to implement the mapping |i⟩|0̄⟩ 7→ |i⟩|ℓti⟩ in O(
√
kd log 1

δ log n) time using O(
√
kd log 1

δ)
quantum queries. In summary,

1. BV requires O(d) quantum queries and O(d log n+ kd log k) time;4

2. UV requires O(
√
kd log 1

δ) quantum queries and O(
√
kd log 1

δ log n) time;

3. BI requires no quantum queries and O(k log k) time;

4. UI requires O(
√
kd log 1

δ) quantum queries and O(
√
kd log 1

δ log n) time.

Collecting all the terms, the total number of quantum queries is Õ((p + q)
√
kd), while the overall

time complexity is

Õ
(
(p+ q)

√
kd(

√
k + log n)

)
= Õ

((√
k
∥V ∥√
n

+
√
d
∥V ∥2,1
n

)
k

3
2 d

ε
(
√
k + log n)

)
.

4If one has access to a quantum random access gate (Ambainis, 2007; Allcock et al., 2024), which is the uni-
tary that performs |i⟩|b⟩|x1, . . . , xN ⟩ 7→ |i⟩|xi⟩|x1, . . . , xi−1, b, xi+1, . . . , xN ⟩ in O(logN) time, then BV

requires O(d logn) time and the final runtime of Algorithm 3 becomes Õ
((√

k ∥V ∥√
n
+
√
d
∥V ∥2,1

n

)
k3/2d

ε
logn

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Lemma 15 (Exact quantum cluster assignment). Let δ ∈ (0, 1) and assume quantum query ac-
cess to matrices V = [v1, . . . , vn] ∈ Rd×n and [ct1, . . . , c

t
k] ∈ Rd×k. There is a quantum al-

gorithm that performs the mapping |i⟩|0̄⟩ 7→ |i⟩|Lt
i⟩ using O(

√
kd log 1

δ) quantum queries and in
O(

√
kd log 1

δ log n) time such that, upon measuring |Lt
i⟩ on the computational basis, the outcome

equals argminj∈[k] ∥vi − ctj∥ with probability at least 1− δ.

Proof. First we describe how to perform the mapping |i, j⟩|0̄⟩ 7→ |i, j⟩|∥vi − ctj∥⟩. Starting from
|i, j⟩|0̄, 0̄⟩|0̄⟩, we query 2d times the QRAM oracles used in Definition 3 to map

|i, j⟩|0̄, 0̄⟩|0̄⟩ 7→ |i, j⟩|vi, ctj⟩|0̄⟩.
This operation is followed by computing the distance ∥vi − ctj∥ between the vectors vi and ctj in
O(d) size and O(log d) depth by using a classical circuit, which leads to

|i, j⟩|vi, ctj⟩|0̄⟩ 7→ |i, j⟩|vi, ctj⟩|∥vi − ctj∥⟩.
Uncomputing the first step leads to the desire state. Overall, the map |i, j⟩|0̄⟩ 7→ |i, j⟩|∥vi − ctj∥⟩
uses O(d) queries to the matrices V and [ct1, . . . , c

t
k].

Fix i ∈ [n]. The mapping |j⟩|0̄⟩ 7→ |j⟩|∥vi − ctj∥⟩ can be viewed as quantum access to the vector
(∥vi − ctj∥)j∈[k]. Therefore, we can assign a cluster ℓti := argminj∈[k] ∥vi − ctj∥ to the vector
vi by using (controlled on |i⟩) quantum minimum finding subroutine (Fact 11), which leads to the
map |i⟩|0̄⟩ 7→ |i⟩|Lt

i⟩, where upon measuring |Lt
i⟩ on the computational basis, the outcome equals

ℓti = argminj∈[k] ∥vi − ctj∥ with probability at least 1− δ. The time cost of finding the minimum is
O(

√
k log 1

δ) queries to the unitary performing the mapping |i, j⟩|0̄⟩ 7→ |i, j⟩|∥vi − ctj∥⟩, to a total
time complexity of O(

√
kd log 1

δ log n) and O(
√
kd log 1

δ) quantum queries.

Remark 1. It is possible to avoid QRAM access to the centroids [ct1, . . . , c
t
k] ∈ Rd×k by accessing

them through the fixed registers
⊗

j∈[k] |ctj⟩. This, however, hinders the use of quantum minimum
finding. The index ℓti = argminj∈[k] ∥vi − ctj∥ can be found, instead, through a classical circuit on
the registers

⊗
j∈[k] |∥vi−ctj∥⟩, which modifies the time complexity of Lemma 15 toO(d(k+log n)).

Similarly to classical (ε, ν)-k-means algorithm, it is possible to approximate the distances ∥vi− ctj∥
within quantum minimum finding using inherently quantum subroutines (Lemma 17) instead of a
classical arithmetic circuit as in Algorithm 3. This allows us to replace the O(d) time overhead with
some norm of V . Algorithm 4 describes how this can be performed and the next theorem analyses
its query and time complexities.
Theorem 16 (Quantum (ε, ν)-k-means algorithm). Let ε, ν > 0, δ ∈ (0, 1), and assume quantum
query access to V = [v1, . . . , vn] ∈ Rd×n. If all clusters satisfy |Ct

j | = Ω(nk), then Algorithm 4
outputs centroids consistent with the (ε, ν)-k-means with probability 1 − δ. The complexities per
iteration of Algorithm 4 are (up to polylog factors in k, d, 1

δ , 1
ν , 1

ε , ∥V ∥F√
n

)

Quantum queries: Õ
((√

k
∥V ∥√
n

+
√
d
∥V ∥1,1
n

)∥V ∥F ∥V ∥2,∞√
n

k
3
2

εν

)
,

Time: Õ
((√

k
∥V ∥√
n

+
√
d
∥V ∥1,1
n

)(∥V ∥F ∥V ∥2,∞√
n

k
3
2

εν
log n+

k2d

ε

))
.

Proof. The proof is similar to Theorem 14. The unitaries UI and BI are still the same,

UI : |0̄⟩ 7→
∑
i∈[n]

1√
n
|i, ℓti⟩, BI : |i, j⟩|0⟩⊗k 7→ |i, j⟩|0⟩⊗(j−1)|1⟩|0⟩⊗(k−j−1),

but the unitaries UV and BV are now replaced with

UV : |0̄⟩ 7→
∑

(i,l)∈[n]×[d]

√
|Vli|

∥V ∥1,1
|i, ℓti, l⟩,

BV : |i, j, l⟩|0⟩⊗kd 7→ |i, j, l⟩|0⟩⊗((j−1)d+(l−1))| sgn(Vli)⟩|0⟩⊗((k−j−1)d+(d−l−1)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 4 Quantum (ε, ν)-k-means algorithm

Input: Quantum query access to data matrix V = [v1, . . . , vn] ∈ Rd×n, parameters δ, ε, ν.
1: Select k initial centroids c01, . . . , c

0
k

2: for t = 0 until convergence do
3: Build quantum query access to [ct1, . . . , c

t
k] ∈ Rd×k

4: Using Lemma 17 to obtain |i⟩|0̄⟩ 7→ |i⟩|ℓti⟩ such that ℓti ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤
minj′∈[k] ∥vi − ctj′∥2 + ν}, construct the unitaries

UI : |0̄⟩ 7→
∑
i∈[n]

1√
n
|i, ℓti⟩, UV : |0̄⟩ 7→

∑
(i,l)∈[n]×[d]

√
|Vli|

∥V ∥1,1
|i, ℓti, l⟩,

BI : |i, j⟩|0̄⟩⊗k 7→ |i, j⟩|0̄⟩⊗(j−1)|1⟩|0̄⟩⊗(k−j),

BV : |i, j, l⟩|0⟩⊗kd 7→ |i, j, l⟩|0⟩⊗((j−1)d+(l−1))| sgn(Vli)⟩|0⟩⊗((k−j−1)d+(d−l−1))

5: Apply the multivariate quantum mean estimator (Fact 13) with p = Õ
(∥V ∥√

n
k3/2

ε

)
queries to

the unitaries UI and BI to obtain P ∈ Rk

6: Apply the multivariate quantum mean estimator (Fact 13) with q = Õ
(∥V ∥1,1√

n
k
√
d

ε

)
queries

to the unitaries UV and BV to obtain Q ∈ (Rd)k

7: For j ∈ [k], record the new centroids ct+1
j =

∥V ∥1,1

n
Qj

Pj

8: end for

The new unitary UV can be thought of as preparing a superposition over the probability space with
distribution PV given by

PV (i, j, l) =

{
|Vli|

∥V ∥1,1
if j = ℓti,

0 if j ̸= ℓti,

while the unitary BV can be thought of as binary encoding the random variables XV : [n] × [k] ×
[d] → (Rd)k given by XV (i, j, l) = (0, . . . , 0, sgn(Vli), 0, . . . , 0), where the non-zero entry is the
((j − 1)d+ l)-th entry. Note that∑

(i,j,l)∈[n]×[k]×[d]

PV (i, j, l)XV (i, j, l) =

(∑
i∈Ct

1

vi
∥V ∥1,1

, . . . ,
∑
i∈Ct

k

vi
∥V ∥1,1

)
.

Therefore, the multivariate quantum mean estimator (Fact 13) returns P ∈ Rk and Q ∈ (Rd)k such
that, with probability at least 1− δ and for some ε1, ε2 > 0 to be determined,∣∣∣∣Pj −

|Ct
j |
n

∣∣∣∣ ≤ ε1 and

∥∥∥∥∥Qj −
∑
i∈Ct

j

vi
∥V ∥1,1

∥∥∥∥∥
∞

≤ ε2 ∀j ∈ [k].

Similar to Theorem 14, by a triangle inequality,

∥c∗ t+1
j − ct+1

j ∥ ≤ ∥V ∥√
|Ct

j |
2n

|Ct
j |
ε1 +

2
√
d∥V ∥1,1
|Ct

j |
ε2.

It suffices to query the unitaries UI and BI a number of p = Õ
(∥V ∥√

n
k3/2

ε

)
times within quantum

multivariate mean estimator to get ε1 = O
(√

n
∥V ∥

ε
k3/2

)
. By the same toke, it suffices to query the

unitaries UV and BV a number of q = Õ
(∥V ∥1,1

n
k
√
d

ε

)
times within quantum multivariate mean

estimator to get ε2 = O
(

n
∥V ∥1,1

ε
k
√
d

)
. This yields ∥c∗ t+1

j − ct+1
j ∥ ≤ ε as wanted.

We now show how to perform the unitaries UV , UI , BV , BI . The binary-encoding unitary BV is
1 quantum query (O(log n) time), followed by 1 controlled-SWAP on kd qubits (O(kd log(kd))
time (Berry et al., 2015)), while BI is simply 1 controlled-SWAP on k qubits. On the other hand, the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

probability-distribution-encoding unitariesUV , UI can be performed via the initial state preparations

|0̄⟩ 7→∑
(i,l)∈[n]×[d]

√
|Vli|

∥V ∥1,1
|i, l⟩ and |0̄⟩ 7→ 1√

n

∑
i∈[n] |i⟩, respectively, followed by the mapping

|i⟩|0̄⟩ 7→ |i⟩|ℓti⟩. In Lemma 17 we show how to implement the mapping |i⟩|0̄⟩ 7→ |i⟩|ℓti⟩, where

ℓti ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤ minj′∈[k] ∥vi − ctj′∥2 + ν}, using Õ
(∥V ∥F√

n

√
k∥V ∥2,∞

ν

)
quantum

queries and Õ
(∥V ∥F√

n

√
k∥V ∥2,∞

ν log n
)

time. In summary,

1. BV requires O(1) quantum queries and O(log(nd) + kd log(kd)) time;5

2. UV requires Õ
(∥V ∥F√

n

√
k∥V ∥2,∞

ν

)
quantum queries and Õ

(∥V ∥F√
n

√
k∥V ∥2,∞

ν log n
)

time;

3. BI requires no quantum queries and O(k log k) time;

4. UI requires Õ
(∥V ∥F√

n

√
k∥V ∥2,∞

ν

)
quantum queries and Õ

(∥V ∥F√
n

√
k∥V ∥2,∞

ν log n
)

time.

Collecting all the term, the total number of quantum queries is Õ
(
(p + q)∥V ∥F√

n

√
k∥V ∥2,∞

ν

)
, while

the overall time complexity is

Õ

(
(p+ q)

(∥V ∥F√
n

√
k∥V ∥2,∞
ν

log n+ kd

))
= Õ

((√
k
∥V ∥√
n

+
√
d
∥V ∥1,1
n

)(∥V ∥F ∥V ∥2,∞√
n

k
3
2

εν
log n+

k2d

ε

))
.

Lemma 17 (Approximate quantum cluster assignment). Assume quantum query access to matrix
V = [v1, . . . , vn] ∈ Rd×n. Let δ ∈ (0, 1), ν > 0, and 0 < ε ≤ ∥V ∥F√

n
. Assume quantum query

access to centroid matrix Ct = [ct1, . . . , c
t
k] ∈ Rd×k such that ∥ctj − |Ct−1

j |−1
∑

i∈Ct−1
j

vi∥ ≤ ε

with |Ct−1
j | = Ω(nk) for all j ∈ [k]. There is a quantum algorithm that performs the mapping

|i⟩|0̄⟩ 7→ |i⟩|Lt
i⟩ such that, upon measuring |Lt

i⟩ on the computational basis, the outcome equals
ℓti ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤ minj′∈[k] ∥vi − ctj′∥2 + ν} with probability at least 1 − δ. It uses

Õ
(∥V ∥F√

n

√
k∥V ∥2,∞

ν

)
quantum queries and Õ

(∥V ∥F√
n

√
k∥V ∥2,∞

ν log n
)

time, where Õ(·) hides polylog

factors in k, d, 1
δ , 1

ν , ∥V ∥F√
n

.

Proof. We first describe how to perform the map |i, j⟩|0̄⟩ 7→ |i, j⟩|wij⟩, where |wij −∥vi− ctj∥2| ≤
ν
2 with high probability. Recall from Definition 3 that we can perform the maps

OV : |i⟩|0̄⟩ 7→
∑
l∈[d]

(vi)l
∥vi∥

|i, l⟩ and OCt : |j⟩|0̄⟩ 7→
∑
l∈[d]

(ctj)l

∥ctj∥
|j, l⟩

in O(log(nd)) time. Start then with the quantum state |i, j⟩ |0⟩+|1⟩√
2

|0̄⟩ and perform the above maps

controlled on the third register |0⟩+|1⟩√
2

, i.e., perform OV if the third register is |0⟩ and OCt if it is
|1⟩. The final state is

1√
2
|i, j⟩

∑
l∈[d]

(
(vi)l
∥vi∥

|0, l⟩+
(ctj)l

∥ctj∥
|1, l⟩

)
.

After applying a Hadamard gate onto the third register, the state becomes

|i, j⟩
∑
l∈[d]

(
1

2

(
(vi)l
∥vi∥

+
(ctj)l

∥ctj∥

)
|0, l⟩+ 1

2

(
(vi)l
∥vi∥

−
(ctj)l

∥ctj∥

)
|1, l⟩

)
= |i, j⟩(√pij |0⟩|ψij⟩+

√
1− pij |1⟩|ϕij⟩,

5If one has access to a QRAG, then BV requires only O(log(nd)) time and the final runtime of Algorithm 4
is Õ

((√
k ∥V ∥√

n
+

√
d
∥V ∥1,1

n

) ∥V ∥F ∥V ∥2,∞√
n

k3/2

εν
logn+ kd

)
, where the term Õ(kd) comes from Footnote 3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where

pij =
1

4

∑
l∈[d]

(
(vi)l
∥vi∥

+
(ctj)l

∥ctj∥

)2

=
1

2
+

⟨vi, ctj⟩
2∥vi∥∥ctj∥

is the probability of measuring the third register on state |0⟩, and |ψij⟩ and |ϕij⟩ are “garbage”
normalised states. It is then possible to apply a standard quantum amplitude estimation subrou-
tine (Brassard et al., 2002) to obtain a quantum state |i, j⟩|Ψ′

ij⟩ such that, upon measuring onto the
computation basis, the outcome p̃ij is such that |p̃ij−pij | ≤ ν

4∥vi∥∥ctj∥
=⇒ |wij−∥vi−ctj∥2| ≤ ν

2

with probability at 1− δ2 for some δ2 ∈ (0, 1), where wij = ∥vi∥2 + ∥ctj∥2 − ∥vi∥∥ctj∥(2p̃ij − 1).
It is then straightforward to obtain a new state |Ψij⟩ from |Ψ′

ij⟩ which returns wij upon measure-
ment with probability 1 − δ2. For each (i, j) ∈ [n] × [k], mapping |i, j⟩|0̄⟩ 7→ |i, j⟩|wij⟩ requires

O
(∥vi∥∥ctj∥

ν log 1
δ2

)
quantum queries and O

(∥vi∥∥ctj∥
ν log 1

δ2
log(nd)

)
time.

Fix i ∈ [n]. The mapping |i, j⟩|0̄⟩ 7→ |i, j⟩|wij⟩ can be viewed as quantum access to the vector
(wij)j∈[k]. We thus employ the (variable-time) quantum minimum finding subroutine (Fact 12) in
order to obtain the map |i⟩|0̄⟩ 7→ |i⟩|Lt

i⟩, where upon measuring |Lt
i⟩ on the computation basis, the

outcome equals ℓti = argminj∈[k] wij ∈ {j ∈ [k] : ∥vi − ctj∥2 ≤ minj′∈[k] ∥vi − ctj′∥2 + ν} with
probability 1− δ1. According to Fact 12, the query complexity of |i⟩|0̄⟩ 7→ |i⟩|Lt

i⟩ is

O

(∥vi∥
ν

log
1

δ1
log

1

δ2

√∑
j∈[k]

∥ctj∥2
)

= O

(∥V ∥F√
n

√
k∥V ∥2,∞
ν

log
1

δ1
log

1

δ2

)
, (2)

where we used that
∑

j∈[k] ∥ctj∥2 = ∥Ct∥2F = O
(
k
∥V ∥2

F

n

)
as in Lemma 10 and ∥vi∥ ≤ ∥V ∥2,∞,

while the time complexity is O(log(nd)) times the query complexity.

In order to analyse the success probability (see (Chen & de Wolf, 2023, Appendix A) for a sim-
ilar argument), on the other hand, first note that we implement the unitary Ũ : |i, j⟩|0̄⟩ 7→
|i, j⟩(

√
1− δ2|wij⟩ +

√
δ2|w⊥

ij⟩), where |wij⟩ contains the approximation |wij − ∥vi − ctj∥2| ≤ ν
2

and |w⊥
ij⟩ is a normalised quantum state orthogonal to |wij⟩. Ideally, we would like to implement

U : |i, j⟩|0̄⟩ 7→ |i, j⟩|wij⟩. Also

∀|i, j⟩ : ∥(U − Ũ)|i, j⟩|0̄⟩∥ =

√
(1−

√
1− δ2)2 + δ2 =

√
2− 2

√
1− δ2 ≤

√
2δ2,

using that
√
1− δ2 ≥ 1 − δ2. Since (variable-time) quantum minimum finding does not take into

account the action of U onto states of the form |i, j⟩|0̄⊥⟩ for |0̄⊥⟩ orthogonal to |0̄⟩, we can, without
of loss of generality, assume that ∥U − Ũ∥ ≤

√
2δ2. The success probability of (variable-time)

quantum minimum finding is 1 − δ1 when employing the unitary U . However, since it employs Ũ
instead, the success probability decreases by at most the spectral norm of the difference between
the “real” and the “ideal” total unitaries. To be more precise, the “ideal” (variable-time) quantum
minimum finding is a sequence of gates A = U1E1U2E2 · · ·UNEN , where Ui ∈ {U,U†}, Ei is
a circuit of elementary gates, and N is the number of queries to U , which can be upper-bounded
as O

(√
k log 1

δ1

)
. The “real” implementation, on the other hand, is Ã = Ũ1E1Ũ2E2 · · · ŨNEN ,

where Ũi ∈ {Ũ , Ũ†}. Then ∥A − Ã∥ ≤ N∥U − Ũ∥ ≤ N
√
2δ2. The failure probability is thus

δ1 + N
√
2δ2. By taking δ1 = O(δ) and δ2 = O

(
δ2

N2

)
, the success probability is 1 − δ. The final

complexities are obtained by replacing δ1 and δ2 into Eq. (2).

C LOWER BOUNDS

In this section we prove query lower bounds to the matrix V = [v1, . . . , vn] ∈ Rd×n for finding new
centroids c1, . . . , ck ∈ Rd given k clusters {Cj}j∈[k] that form a partition of [n]. We note that the
task considered here is easier than the one performed by (ε, ν)-k-means, since the clusters {Cj}j∈[k]

are part of the input. Nonetheless, query lower bounds for such problem will prove to be tight in
most parameters. The main idea is to reduce the problem of approximating 1

|Cj |
∑

i∈Cj
vi for all

j ∈ [k] from the problem of approximating the Hamming weight of some bit-string, whose query
complexity is given in the following well-known fact.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Fact 18 ((Nayak & Wu, 1999, Theorem 1.11)). Let x ∈ {0, 1}n be a bit-string with Hamming
weight |x| = Θ(n) accessible through queries. Consider the problem of outputting w ∈ [n] such
that ||x| − w| ≤ m for a given 0 ≤ m ≤ n/4. Its randomised classical query complexity is
Θ(min{(n/m)2, n}), while its quantum query complexity is Θ(min{n/m, n}).

Before presenting our query lower bounds for (ε, ν)-k-means, we shall need the following fact.
Lemma 19. Given x ∈ Rd such that ∥x∥1 ≤ ε for ε ≥ 0, there is S ⊆ [d] with |S| ≥ ⌈d

2⌉ such that
|xi| ≤ 2ε

d for all i ∈ S.

Proof. Arrange the entries of x is descending order, i.e., |xk1
| ≥ |xk2

| ≥ · · · ≥ |xkd
|. Let S =

{k⌊ d
2 ⌋+1, . . . , kd}. Then ε ≥∑⌊d/2⌋

j=1 |xkj | ≥ d
2 |xi| ∀i ∈ S, which implies |xi| ≤ 2ε

d ∀i ∈ S.

Theorem 20. Let n, k, d ∈ N and ε > 0. With entry-wise query access to V = [v1, . . . , vn] ∈ Rd×n

and (∥vi∥r)i∈[n] for any r ∈ [1,∞] and classical description of partition {Cj}j∈[k] of [n] with |Cj | =
Ω(nk), outputting centroids c1, . . . , ck ∈ Rd such that

∥∥cj − 1
|Cj |
∑

i∈Cj
vi
∥∥ ≤ ε for all j ∈ [k] has

randomised and quantum query complexity Ω
(
min

{∥V ∥2
F

n
kd
ε2 , nd

})
and Ω

(
min

{∥V ∥F√
n

kd
ε , nd

})
, re-

spectively.

Proof. Let {Cj}j∈[k] be such that Cj = {(j−1)nk+1, (j−1)nk+2, . . . , j nk } for all j ∈ [k]. Consider
the initial centroids c01, . . . , c

0
k ∈ Rd defining {Cj}j∈[k] as c0j = (0, 0, . . . , 0, jk), i.e., its last entry

is j
k . Now let α ∈ R+ be a positive number to be determined later and W := {w ∈ {0, 1}d :

wd = 0 and |w| = ⌊d−1
2 ⌋}. Note that ∥w∥r = ⌊d−1

2 ⌋ 1
r for all w ∈ W and r ∈ [1,∞]. Let then

V = [v1, . . . , vn] ∈ Rd×n be such that, for each j ∈ [k], the vectors {vi}i∈Cj are vi = αc0j + αwi

(here the multiplication by α is done entry-wise), where wi is randomly picked from W . To be
more precise, we pick the first ⌊d−1

2 ⌋ bits of wi completely randomly and the next ⌊d−1
2 ⌋ bits as the

complement of the previous ones (plus wd−1 = 0 if d is even, while wd = 0 by definition). This
means that the vectors {vi}i∈Cj belong to the (d − 1)-sphere of diameter Θ(α

√
d) centered at αc0j

and on the hyperplane orthogonal to c0j . Moreover, by construction, ∥vi∥r = α
(
jr

kr + ⌊d−1
2 ⌋
) 1

r is
constant for all i ∈ Cj , so access to ∥vi∥r does not give any meaningful information about cj . Now,
notice that

∥V ∥2F = α2
∑
j∈[k]

∑
i∈Cj

∥c0j + wi∥2 ≤ α2
∑
j∈[k]

∑
i∈Cj

d+ 1

2
= nα2 d+ 1

2
=⇒ α ≥ ∥V ∥F√

n

√
2√

d+ 1
.

Assume we have an algorithm that outputs c1, . . . , ck ∈ Rd such that
∥∥cj − 1

|Cj |
∑

i∈Cj
vi
∥∥ ≤ ε for

all j ∈ [k]. This allows us to output w̃j :=
|Cj |
α (cj −αc0j) = n

αk (cj −αc0j). Consider the first ⌊d−1
2 ⌋

bits of w̃j and
∑

i∈Cj
wi only. Then

⌊(d−1)/2⌋∑
ℓ=1

∣∣∣∣∣w̃jℓ −
∑
i∈Cj

wiℓ

∣∣∣∣∣ ≤
√⌊

d− 1

2

⌋∥∥∥∥∥w̃j −
∑
i∈Cj

wi

∥∥∥∥∥ ≤ nε

αk

√⌊
d− 1

2

⌋
for all j ∈ [k]. According to Lemma 19, for each j ∈ [k] there is Sj ⊆ [⌊d−1

2 ⌋] with |Sj | ≥ ⌊d−1
4 ⌋

such that |w̃jℓ −
∑

i∈Cj
wiℓ| ≤ 4nε

αk
√
d−1

for ℓ ∈ Sj , i.e., the number w̃jℓ approximates
∑

i∈Cj
wiℓ

up to additive error 4nε
αk

√
d−1

for all ℓ ∈ Sj and j ∈ [k]. This means that we can approximate the

Hamming weight of k⌊d−1
4 ⌋ independent bit-strings on |Cj | = n

k bits up to additive error 4nε
αk

√
d−1

(the first ⌊d−1
2 ⌋ bits of wi are independent by construction). According to Fact 18, the randomized

and quantum query lower bounds for approximating k⌊d−1
4 ⌋ independent Hamming weights on n

k

bits each to precision 4nε
αk

√
d−1

are, respectively,

Ω

(
kdmin

{
n2

k2
α2k2d

n2ε2
,
n

k

})
= Ω

(
min

{∥V ∥2F
n

kd

ε2
, nd

})
,

Ω

(
kdmin

{
n

k

αk
√
d

nε
,
n

k

})
= Ω

(
min

{∥V ∥F√
n

kd

ε
, nd

})
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

10 20 30 40 50 60
Dimension d

0

2

4

6

8

10

T
ot

al
ru

n
ti

m
e

(s
)

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(a) Total runtime time

10 20 30 40 50 60
Dimension d

10−2

10−1

100

101

T
ot

al
ru

n
ti

m
e

(s
)

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(b) Total runtime time (log scale)

10 20 30 40 50 60
Dimension d

0.0

0.5

1.0

1.5

2.0

R
S

S
d

iff
er

en
ce

(%
)

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(c) Residual sum of squares (RSS) difference

10 20 30 40 50 60
Dimension d

4.0

4.5

5.0

5.5

6.0

6.5

7.0

N
u

m
b

er
of

it
er

at
io

n
s

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(d) Number of iterations until convergence

Figure 2: Total runtime time, residual sum of squares (RSS) difference, and number of iterations as
a function of the dimension d. Here n = 300000, k = 5, δ = 0.01, and τ = 0.1. The standard
k-means is depicted as ε = 0. Each point is the average of 1750 random datasets and centroid
initialisations.

D FURTHER NUMERICAL EXPERIMENTS

In this section we conduct further numerical experiments exploring the dependence of EKMeans and
standard k-means on the dimension d (Figure 2) and number of centroids k (Figure 3), in a similar
fashion to Section 4. All experiments were performed on the synthetic datasets from Section 4.
We set the dataset size n = 300000, the convergence threshold τ = 0.1, approximation parameter
ε ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, probability parameter δ = 0.01. The samples sizes are once again

p =
⌈∥V ∥2

n
k2

ε2 ln k
δ

⌉
and q =

⌈∥V ∥2
2,1

n2
k2

ε2 ln k
δ

⌉
.

Figure 2 collects our results regarding the total runtime, RSS, and number of iterations of EKMeans
and k-means with respect to the dimension d ∈ {10, 20, 30, 40, 50, 60}. Here the number of cen-
troids is fixed to k = 5. Once again, EKMeans is substantially faster than k-means for all dimensions
as shown in Figures 2a and 2b, although the relative advantage is slightly smaller for larger d. As
an example, for d = 10, k-means runs in ≈ 2.7 s, while EKMeans with ε = 1.0 runs in ≈ 8 ms, a
≈ 330-fold improvement. For d = 60, this decreases to a ≈ 60-fold advantage (≈ 9.5 s for k-means
against ≈ 160 ms for EKMeans with ε = 1.0).

Figure 2c shows, similarly to Figure 1d, that EKMeans returns good centroids compared to k-means
across all dimensions as measured by the relative difference of RSS. On the other hand, in Figure 2d
we can observe that EKMeans still requires more iterations until convergence for all dimensions.
Interestingly enough, the number of iterations decreases for larger dimensions for both k-means
and EKMeans. This is an artifact our dataset generation: for a fixed dataset size n and number

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12
Number of centroids k

0

2

4

6

8

10

12

14

16

T
ot

al
ru

n
ti

m
e

(s
)

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(a) Total runtime time

2 4 6 8 10 12
Number of centroids k

10−2

10−1

100

101

T
ot

al
ru

n
ti

m
e

(s
)

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(b) Total runtime time (log scale)

2 4 6 8 10 12
Number of centroids k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
S

S
d

iff
er

en
ce

(%
)

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(c) Residual sum of squares (RSS) difference

2 4 6 8 10 12
Number of centroids k

3.0

3.5

4.0

4.5

5.0

5.5

N
u

m
b

er
of

it
er

at
io

n
s

ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

ε = 1.0

(d) Number of iterations until convergence

Figure 3: Total runtime time, residual sum of squares (RSS) difference, and number of iterations
as a function of the number of centroids k. Here n = 300000, d = 30, δ = 0.01, and τ = 0.1.
The standard k-means is depicted as ε = 0. Each point is the average of 400 random datasets and
centroid initialisations.

of centroids k, a larger dimension d translates to clusters being farther away from each other, so
centroids quickly converge to the average of vectors within each isolated cluster.

In Figure 3 we explore the same properties — total runtime, RSS, and number of iterations — but
now with respect to the number of centroids k ∈ {2, 4, 6, 8, 10, 12}. Here the dimension is fixed
to d = 30. Figures 3a and 3b show that EKMeans is still faster than k-means for all number of
centroids. However, the advantage decreases as k increases, a direct result of increasing the number
of samples p and q quadratically with k. While the quadratic dependence of the number of samples
on k comes from rigorous theoretical results, p and q should obviously be capped at n or even at
a constant factor of n. The sample complexity of EKMeans can thus be made independent of k for
large values k and its runtime follow the linear dependence from the standard k-means.

Figure 3c shows that once again EKMeans returns centroids with quality compared to k-means as
measured by the relative RSS difference, while Figure 3d concludes that EKMeans still requires
more iterations to converge than k-means. The number of iterations actually increases with k for
both algorithms for the same reason it decreased with dimension d in Figure 2d: for fixed n and d, a
larger k translates to more clusters overlapping, so centroids take longer to converge to the average
of vectors within their corresponding cluster.

As mentioned in Section 3, the runtime dependence on n comes, at least theoretically, from sampling
the sets of indices P,Q ⊆ [n], being O((p + q) log n) under Definition 2. Such a dependence, if
any, is hardly observed in Figure 1 given the different runtime scales. In Figure 4 we explore the
runtime dependence on n of EKMeans by covering a wide range of dataset sizes from 2 · 103 to
2 · 107. Here we fixed k = 5, d = 5, and ε = 0.5. The total runtime includes sampling the sets P,Q

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

104 105 106 107

Dataset size n

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

T
ot

al
ru

n
ti

m
e

(m
s)

Figure 4: Total runtime time as a function of the dataset size n. Here k = 5, d = 5, ε = 0.5, δ =
0.01, and τ = 0.1. Each point is the average of 255000 random datasets and centroid initialisations.

and performing all iterations until convergence, i.e., until 1
k

∑
j∈[k] ∥ctj − ct+1

j ∥ ≤ τ = 0.1. As can
be observed, there is some dependence on n coming from the sampling step, although quite small:
a 104-fold increase in the dataset set only adds a few milliseconds to the total clustering time. We
note that sampling should be mostly independent of the dimension d, while the iterative clustering
part is not. As a result, for larger d the effect of sampling is even less pronounced compared to
the total runtime. Ultimately, though, the dependence on n (at least classically) is mostly an issue
regarding how fast computers can access data in a RAM-like fashion. Sampling P,Q, specially Q,
in our numerical experiments was done by converting a vector of floats into a distribution using the
discrete distribution function from the C++ library random. A more thorough analysis of
sampling numbers from discrete distributions in C++ or other computational languages is beyond
the scope of this work.

29

	Introduction
	Computational models
	Our algorithms
	Experimental results
	Related independent work
	Conclusions and future directions
	Classical algorithms
	Quantum algorithms
	Lower bounds
	Further numerical experiments

