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ABSTRACT

Clustering is one of the most important tools for analysis of large datasets, and
perhaps the most popular clustering algorithm is Lloyd’s algorithm for k-means.
This algorithm takes n vectors V = [v1, ..., v,] € R¥™ and outputs k centroids
c1,...,c, € RY these partition the vectors into clusters based on which cen-
troid is closest to a particular vector. We present a classical e-k-means algorithm
that performs an approximate version of one iteration of Lloyd’s algorithm with
time complexity O(%%(k + logn)), exponentially improving the depen-
dence on the data size n and matching that of the “g-means” quantum algorithm
originally proposed by Kerenidis, Landman, Luongo, and Prakash (NeurIPS’19).
Moreover, we propose an improved g-means quantum algorithm with time com-
plexity O(%@(\/ﬁ + Vd)(Vk + log n)) that quadratically improves the
runtime of our classical e-k-means algorithm in several parameters. Our quan-
tum algorithm does not rely on quantum linear algebra primitives of prior work,
but instead only uses QRAM to prepare simple states based on the current itera-
tion’s clusters and multivariate quantum mean estimation. Our upper bounds are
complemented with classical and quantum query lower bounds, showing that our
algorithms are optimal in most parameters. Finally, we conduct numerical exper-
iments that evidence the substantially improved runtime our classical algorithm
over the standard Lloyd’s algorithm, thus being one of the first cases of a practical
dequantised algorithm.

1 INTRODUCTION

Among machine learning problems, data clustering and the k-means problem are of particular rel-
evance and have attracted much attention in the past (Hartigan & Wong, 1979; Krishna & Murty,
1999; Likas et al., 2003). Here the task is to find an assignment of each vector from a dataset of
size n to one of k labels (for a given k& assumed to be known) such that similar vectors are as-
signed to the same cluster. To be more precise, in the k-means problem we are given n vectors
v1,...,v, € R? as columns in a matrix V' € R%*" and a positive integer k, and the task is to find
k centroids ¢y, . .., cx € R? such that the cost function Diem) Mije] [|lvi — ¢ 2, called residual

sum of squares, is minimized, where ||v; — ¢;|| is the Euclidean distance between v; and ¢; and
[n] :={1,...,n}forn e N:={1,2,...}.

Since the k-means problem is known to be NP-hard (Dasgupta, 2008; Vattani, 2009; Mahajan et al.,
2012), several classical polynomial-time algorithms have been developed to obtain approximate so-
Iutions (Kanungo et al., 2002; Jaiswal et al., 2014; Ahmadian et al., 2017; Bhattacharya et al., 2020).
One such algorithm is the k-means algorithm (also known as Lloyd’s algorithm) introduced by Lloyd
(1982), a heuristic algorithm that iteratively updates the centroids cy, . . ., ¢, until some desired pre-
cision is reached. At each time step ¢, the algorithm clusters the data into k clusters denoted by the
sets C; C [n], j € [k], each with centroid cz-, and then updates the centroids based on such clus-

tering. More precisely, the k-means algorithm starts with initial centroids Y, .. ., cg € R, picked
either randomly or through some pre-processing routine as in the k-means++ algorithm (Arthur &
Vassilvitskii, 2007), and alternates between two steps:

1. Each vector v;, i € [n], is assigned a cluster C}f2 where £} = argmin;ep [|[vi — c§|;
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2. The new centroids {c*'} ¢ [ are updated based on the new clusters, /"' = ﬁ e ¢t Vi

11 + t+1 . . .
The above steps are repeated until ¢ 3.y, [[¢; — ¢;" || < 7 for a given threshold 7 > 0, in which
case we say that the algorithm has converged. The naive runtime of a single iteration is O(nkd).

On the other hand, the subfield of quantum machine learning aims to offer computational advantages
in machine learning, with many new proposed algorithms (Lloyd et al., 2014; Kerenidis & Prakash,
2017; 2020a; Chakraborty et al., 2019; Lloyd et al., 2013; Allcock et al., 2020; Ambainis et al.,
2025). A notable line of work in this subfield is quantum versions of the k-means algorithm (Aimeur
et al., 2013; Lloyd et al., 2013). More notably, Kerenidis et al. (2019) proposed a quantum version
of Lloyd’s algorithm called g-means. They use quantum linear algebra subroutines and assume
the input vectors are stored in QRAM (Quantum Random Access Memory) (Giovannetti et al.,
2008a;b) and that all clusters are of roughly equal size. Their per-iteration runtime depends only
polylogarithmically on the size n of the dataset, an exponential improvement compared to prior
works. However, their quantum algorithm only performs each iteration approximately. The authors
showed that g-means performs a robust version of k-means called (¢, v)-k-means, and then showed
through experiments that the approximation does not worsen the quality of the centroids. In the
(e, v)-k-means algorithm, two noise parameters ¢, > 0 are introduced in the distance estimation
and centroid update steps. It alternates between the steps:

1. A vector v; is assigned a cluster Cj, where £} € {j € [k] : [[vi—c}|* < minjep [Jvi—ch | +v};

2. The new centroids {c/"'} ;) are updated such that [|cf*! — \Tlﬂ Ziec; vi|| <e.

The overall idea behind g-means from Kerenidis et al. (2019) is to first create the quantum state
n"l/2%, e 1) |¢¢) using distance estimation and quantum minimum finding (Diirr & Hgyer,
1996), followed by measuring the label register |¢%) to obtain |C§\*1/ 3 icct |i) for some random
j € [k]. The g-means algorithm then proceeds to perform a matrix multiplication with matrix V' by
using quantum linear algebra techniques, followed by quantum tomography (Kerenidis & Prakash,
2020b) in order to retrieve a classical description. Since quantum linear algebra techniques are used,

the final runtime depends on quantities like the condition number (V') of the matrix V" and a matrix
dependent parameter (V') which is upper-bounded by the Frobenius norm || V|| p of V.

Fact 1 ((Kerenidis et al., 2019, Theorem 3.1)). For ¢ > 0 and dataset matrix V. € R*™ with
V2,00 := max;epy |lvill > 1 and condition number k(V'), the q-means algorithm outputs cen-

troids consistent with the (g,v)-k-means algorithm in 5(%”‘/”%’%,{(1/)(”(‘/) + %HVH%OO) +
I;%”VH;OOH(V);L(V)) time per iteration.

In this work, we provide exponentially improved classical and quantum (e, v)-k-means algorithms
that match the logarithmic dependence on n of the g-means algorithm from Kerenidis et al. (2019),
while substantially improving the dependence on other parameters.

2 COMPUTATIONAL MODELS

For z € RY let [z, = (Xe(q 2il")7 for v € [1,00] and ||z = [|z]2. Let DS and DI be the

2
i—. For

distributions over [d] with probability density functions Dg(gl)(i) = ﬁ and Dg)(i) = ”iw.
V € R4 let the matrix norms:

. ||V|| = MaXgzcRn: |z =1 ||V$|| (spectral norm); N HV”Q,l _ Eie[n] H'Ullls

* IVIE = (Ciep Xieg Vid)? (Frobenius norm): o 17|, = max;epy [[oi]]-

Vil = Xiem e Vil = 2Ziepy lvillss

itis known that [V 300 < V]| < [VIlp < IV]lax < [V and [Vi]p < v/mim{m, dF|V] <
/nmin{n, d}||V

l2.00 and [|V][1.1 < VA||[V]21 < Vnd|V||p < nvV/d||V]2,00- Let DI} be the
distribution over [n] x [d] with probability density function D\ (i, 1) = 1Vl

— Vil
Ve
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Little background on quantum computing is required for our paper and we point the reader to Nielsen
& Chuang (2010) for more information. A quantum system is described by a unit vector from a
complex Hilbert space, denoted by the ket notation |-). A qubit, the quantum equivalent of a bit,
is a quantum system described by a unit vector in C?, i.e., «|0) + §|1) with a, 3 € C such that
|a|? + |B|> = 1, while an n-qubit system is described by a unit vector in C2". The evolution of a
quantum state |¢)) € C2" is described by a unitary operator, or quantum gate, U € C2"*2" such that
UU' = I where U is the Hermitian conjugate of U. In order to extract classical information from a
quantum system, a quantum measurement is performed, which is a set { £, },,, of positive operators
E,,, > 0 that sum to identity, > . E,, = I. The probability of measuring E,,, on |1)) is ()| E,, |1).
We let |0) denote the state [0) ® - - - ® |0) where the number of qubits is clear from context.

In this work, we assume a standard computational model — wherein arithmetic operations require
O(1) time — enhanced by a special low-overhead classical/quantum data structures that allows for
efficiently querying and sampling the dataset and centroid matrices V € R%*™ and C' € R¥**,

Definition 2 (Classical query access). We say we have (classical) query access fo a matrix V. =
[V1,...,0,] € RX™if V is stored in a data structure that supports the following operations:

. Reading an entry of V in O(log(nd)) time;
. Finding ||v;|| in O(log n) time for any given i € [n];
. Finding ||V ||21 or ||V |11 in O(1) time;

ANOwWw N~

. 1 . v
. Sampling from DE“")JJ'”) (i) = Hy/\b”,l

n
j=1

in O(logn) time;

. Sampling from Dq(,f)(l) =

T vl

V[?‘? or DV (i,1) = Yl in O(log(nd)) rime.

V1,

)

Definition 3 (Quantum query access). We say we have quantum query access to a matrix V. =
[V1,...,0,] € RX™ifV is stored in a data structure that supports the following operations:

1. Reading an entry of V in O(log(nd)) time;
2. Finding ||v;|| in O(log n) time for any given i € [n];
3. Finding ||V |21 or ||V |11 in O(1) time;

4. Mapping [0) = 3=,c () 1/ Hl“;’“il‘,l |7) in O(log n) time;

5. Mapping [0) = 3 ; e fn)x[d) %h, 1) in O(log(nd)) time;

6. Mapping [i)[0) = 3¢ %h,l) in O(log(nd)) time;

7. Mapping |i,1)|0) — |i,1)|V};) in O(log(nd)) time;
8. Mapping |i)|0) — |i)|v;) = |i)|Viiy - .., Vas) in O(dlog(nd)) time.

In our classical computation model, all arithmetic operations require O(1) time. We refer to any
operation in Definition 2 as a classical query. Our computational model thus assumes classical
query access to V, meaning that the dataset matrix has been pre-processed beforehand and all oper-
ations from Definition 2 can be performed with their respective stated time complexities. The pre-
processing phase, which takes O(nd) time, basically requires computing all the norms {||v;| }ie[n
[IV|l2,1, and ||V||1,1, plus inserting V' into a RAM structure in order to efficiently read any of its
entries and into specialised binary trees (Prakash, 2014; Kerenidis & Prakash, 2017) in order to ef-
ficiently sample from the distributions Dgﬁliw K D), and DIV The centroid matrix C' € R4<*
is not assumed to be pre-processed, since it chénges throughout the k-means algorithm, and thus, if
we ever require classical query access to C, we must pay the pre-processing price of O(kd) time.
We note that norm sampling is a well-established technique in machine learning (Hazan et al., 2011;
Song et al., 2016) and randomised linear algebra (Frieze et al., 2004; Drineas et al., 2008; Kannan
& Vempala, 2017), so the data structures from Definition 2 are reasonable. Finally, we define a
measure of (classical) time complexity as the sum of the times of all arithmetic and classical queries
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comprising some given computation. In other words, if a computation is composed of m arithmetic
operations and g classical queries, its time complexity is at most O(m + ¢ log(nd)).

In our quantum computation model, all single and two-qubit quantum gates require O(1) time, and
more generally, all arithmetic operations require O(1) time. We refer to any operation in Definition 3
as a quantum query, except Item 8 which comprises d quantum queries. Our quantum model assumes
quantum query access to the dataset matrix V', meaning that it has been pre-processed beforehand
and all operations from Definition 3 can be performed with their respective stated time complexities.
In Definition 3, the unitaries from Items 7 and 8 are known as a quantum random access memory
(QRAM) (Giovannetti et al., 2008a;b) and can be seen as the quantum equivalent of a classical RAM.
As part of the pre-processing stage, we assume that V' has been ported into a QRAM structure, for
which several several proposals exist (Giovannetti et al., 2008a;b; Zoufal et al., 2019; Park et al.,
2019; Hann et al., 2019; Chen et al., 2021; Niu et al., 2022; Phalak et al., 2022; Niu et al., 2022;
Agliardi & Prati, 2022; Allcock et al., 2024; Wang et al., 2025); see Hann (2021); Phalak et al.
(2023); Jaques & Rattew (2023) for a few surveys. In this work, we simply assume that a QRAM
requires a running time proportional to its circuit depth, i.e., logarithmitically in the memory size it
accesses. Although a somewhat controversial resource, there have been recent results which suggest
that the cost of QRAM is much smaller than previously assumed (Hann et al., 2021; Mehta et al.,
2024; Dalzell et al., 2025). Besides, an experimental QRAM implementation have been recently
reported in Shen et al. (2025). Finally, QRAM mimics the classical RAM model in the quantum
setting as closely as possible and we thus view it as a fair comparison to our classical model.

On the other hand, the classical data structure that allows the operations from Items 4 to 6 is usually
known as a KP-tree and was proposed in Prakash (2014); Kerenidis & Prakash (2017). In a nutshell,
a KP-tree is a rooted binary tree which contains the partial sums of the entries of a given vector in
its nodes. We note that a KP-tree can also be used to performed the classical sampling operations
from Definition 2. Finally, we define a measure of (quantum) time complexity as the sum of the
times of all arithmetic and quantum queries comprising some given computation. In other words, if
a computation is composed of m arithmetic operations and ¢ quantum queries, its time complexity
is at most O(m + qlog(nd)).

3 OUR ALGORITHMS

Classical algorithms. In this work, we provide exponentially improved classical (g, v)-k-means
algorithms that match the logarithmic dependence on n of the g-means algorithm from Kerenidis
et al. (2019). Our first classical algorithm, named EXMeans' and described in Algorithm 1, is an
approximate version of the standard k-means algorithm wherein the quantities > iect Vi and |C]t|

for each j € [k] are estimated using the classical query access of Definition 2, from which the new

s o |ot]-1 ‘ - - - ¢
centroids ¢ = |C]] Ziec; v; can be approximated. In more details, the cluster sizes |C}| are

estimated by first sampling a set of indices P C [n] uniformly at random, while the sums 3, . v;
J

are estimated by first sampling a set of indices ) C [n] from the distribution Déﬁlw , i.e., by
ill)i=1

¢1-sampling from the vector of V’s column /3-norms. EKMeans then mimics the standard k-means
algorithm in that it finds the closest centroid to each vector v;, @ € P U @, by exactly computing
||v; — c§- |? in O(d) time. We then prove that the subset P; C P of sampled vectors closest to ¢’ well

J
approximates (LTRPS %\Cﬂ with high probability. Likewise, the subset ; C @ of sampled vectors

[P

closest to cé- can be used to approximate Zier ”‘%T’l H?;zf”
assuming that all clusters {C; }jelw are of roughly the same size, we can show that the number of
required samples is independent of n. The precise query and time complexities of EKMeans are
described in Table | below, while its proof is postponed to Appendix A. Interestingly enough, the
proof of correctness employs the advanced Freedman’s inequality for martingales (see Fact 6). Note
that EKMeans is consistent with a (¢, v=0)-k-means algorithm since the cluster assignment is done
exactly and that it requires the operations from Items 1 to 4 of Definition 2.

~ Y icct Vi With high probability. By

The dependence on n comes from sampling the indices P, @ C [n] in O((|P] + |Q]) log n) time
under Definition 2, which is performed once before every iteration. Importantly—in practice—it

"Pronounced [i:k mi:nz].
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Algorithm 1 Classical (¢, v = 0)-k-means algorithm EKMeans

Input: Classical query access to data matrix V = [vy,...,v,] € R4*", parameters 6, ¢.
1: Select k initial centroids cJ, ..., ¢
2: for t = 0 until convergence do

3:  Samplep = O(W’g—i log %) indices P C [n] uniformly from [n]

4 Sample ¢ = O(”Vn#’;—i log %) indices @ C [n] from Dgﬁ;”)n
5. Forie€ PUQ,label £; = argminjcp [Jv; — ¢ -
6:  Forje [k],let P; :={i € P|{! = j}and Q; := {i € Q|¢ = j}
7.

8

; (o it — _p V2.1 v
For j € [k], let the new centroids c;™ = v 2ic; o

: end for

is possible to draw P, () only once before the first iteration and reuse the same samples throughout
the clustering procedure by slightly increasing the sizes of P and (). More precisely, a union bound
over all T iterations leads to P, () which are good enough for all iterations with probability 1 — ¢
by sampling a factor of log(7"/d)/log(1/4) more indices. The time dependence on n can thus be
amortised over all iterations. In Section 4 we shall evaluate EKMeans on real-world datasets and we
observe that its empirical runtime depends very weakly on n, supporting our complexity claims.

We then propose a second classical algorithm (Algorithm 2 in Appendix A) similar to Algorithm 1

but where the distances ||v; — c§» || are now approximated up to error 5 via an £2-sampling procedure
31I?
J

(Lemma 10), which yields the approximate labels ¢! € {j € [k] : ||v; — ¢
c’||* + v}. The f3-sampling subroutine to estimate [|v; —
in Tang (2019), requires sampling from the distribution Dg) and uses a median-of-means estimator.
Another main difference from Algorithm 1 is that our (&, v)-k-means Algorithm 2 samples entries

S minjre[k] ||’Uz —
2, which has been employed before

of V via the distribution DS ) instead of sampling columns of V' via the distribution Dgﬁi e in
ill)i=1

order to improve the complexity dependence on d (at the cost of worsening the dependence on other
parameters). The precise query and time complexities of Algorithm 2 are described in Table 1 below,
while its analysis is postponed to Appendix A. Note that Algorithm 2 requires the operations from
Items 1 to 3 and 5 of Definition 2.

Quantum algorithms. Beyond classical algorithms, we also propose improved guantum algo-
rithms that avoid the need for quantum linear algebra subroutines as in Kerenidis et al. (2019) and
still keep the logarithmic dependence on the size n of the dataset, while improving the complex-
ity of the original g-means and of our classical (e, r)-k-means algorithms in several parameters.
Similar to our classical algorithms, we approximate separately the quantities |C§| and ), ct Vi for

j € [k], but now employing inherently quantum subroutines. Similar to Kerenidis et al. (2019), our
first quantum algorithm (Algorithm 3 in Appendix B) constructs states of the form 3, ﬁh)

and Zie["] %h) using quantum query access to V' from Definition 3. By quantumly call-

ing a classical circuit to exactly compute the distances ||v; — ¢£||* in O(d) time (how to do so is
standard in quantum computing, see Nielsen & Chuang (2010)) plus the quantum minimum finding
subroutine from Diirr & Hgyer (1996) to find the minimum ¢} = arg min ¢y [|v; — ¢} in O(Vkd)

quantum queries, we then obtain the states 3, |, ﬁh, ;) and 37,0/ H‘J/"I"‘ZHJ |3, £%). Up to this
point, Algorithm 3 behaves similarly to g-means from Kerenidis et al. (2019), but instead of perform-
ing quantum linear algebra transformations and quantum tomography, we input such states (or more
precisely the unitaries behind them) into the multivariate quantum mean estimator from Cornelissen
et al. (2022). Their subroutine, although highly non-trivial, basically outputs an estimate to the mean
> weo P(w)X (w) of some multivariate random variable X : € — R over a probability space

(2,29, P) by assuming access to the unitaries [0) — > v/P(w)|w) and |w,0) — |w, X (w)).
Applied to our case, the state Zie[n] ﬁ\z, %) encodes the uniform probability distribution over

[|va ]
V2,1

[n] used to approximate |Cf|, while Y ien] |i,¢%) encodes the probability distribution
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Table 1: Query and time complexities per iteration of our classical and quantum algorithms as-
suming [C}| = Q(%) for all j € [k]. The error (,v) refer to the error v in assigning a vec-

tor v; to a cluster C}f, with £ € {j € [k] : [Jo; = ¢||* < minjiep [lvi — ¢%]]* + v} and the
error ¢ in computing the new centroids as ||ci™ — |C!|™! Ziect vi|]| < e. The matrix norms
are [V = max,epaoi—t [Vl [VIe = (Cicppue Vid)? | = Yicmleia Vil
= i IVills [[V]l2,00 = maxiepn) [|vi]|. The quantum runtimes can be slightly improved
given access to a special gate called QRAG (Ambainis, 2007; Allcock et al., 2024) (see Footnotes 4

and 5). All complexities are up to polylog factors in k, d, 1, 1, ”‘\//U{ .
Alg. | Error Query complexity Time complexity
A |0 (Ll ) b (WJr%)@(logmk)
ggsz- (&) (an||2+wnuzil> \|V||F|7\LVH;OOE% ( ||VHU) HV||F|LVHM 5 logn
g?gn; (,0) (\/EMJrﬁnvum)@ <\f||VH+\fHVH21> 144 (1og 1 v/R)
glllgni (e,v) (f\\V||+\f||vuu) IVl [V e B (xf}Jr\/uvnu)(uvw%nm S I d)

Déﬁl e used to approximate ) _, .+ v;, similar to our classical algorithms. The random variables
vii=1 J
are basically X (4,7) = (0°=1,1,0=9-1) in one case and X (i,j) = (0U~19, o ,0(k=i—1)d)

in the other. The outputs of the two multivariate quantum mean estimators are thus good approxi-
mations to |CY|,...,|CL| and Ziecg Viyoens Zz‘ec; v;. The precise query and time complexities of

quantum (&, v =0)-k-means Algorithm 3 are shown in Table | below, while its analysis is postponed
to Appendix B. Note that Algorithm 3 uses the operations from Items 1 to 4, 7 and 8 of Definition 3.

Mirroring our classical algorithms, we propose a second quantum algorithm (Algorithm 4 in Ap-
pendlx B) similar to Algorithm 3 but where the distances ||v; — ¢||* are approximated up to error
5 by using a quantum subroutine (Lemma 17) based on quantum amplitude estimation (Brassard
et al., 2002) and quantum variable-time minimum finding (Ambainis, 2012). Another difference

from Algorithm 3 is that we create a quantum superposition over the distribution Dg,l ) instead of

Dgﬁim o sien o el x[d] HVH1 -|i,1), in order to improve the complexity dependence on d.

The unitaries behind the states } -, f|z, ) and 37 e a \/ HVH1 -1i, 1, £;), now with labels

e {j e[k : |lvi—ch||* < minjiep [|vi — ¢ || + v}, are once again inputted into the multivariate
quantum mean estlmator from Cornehssen etal. (2022). The precise query and time complexities are
described in Table 1, while its analysis is postponed to Appendix B. Note that Algorithm 4 requires
the operations from Items 1 to 3 and 5 to 8 of Definition 3.

Lower bounds. In Appendix C we prove classical and quantum query lower bounds that show
that our algorithms are optimal in most parameters. Our lower bounds come from reducing the
problem of approximating the centroids |C;|~* ", ec, Vi given classical/quantum query access to
matrix V € R?*™ and classical description of clusters {C}} jeqx) from the problem of approximat-
ing the Hamming weight of some bit-string, whose query complex1ty is well known (Nayak & Wu,
1999). More specifically, we construct a dataset matrix V' for which all points within the same
cluster C; have the same £,-norm for any r € [1, 0c], so access to ||v; ||, does not give any meaning-
ful information about the centroids. An algorithm for approximating |C;|~* >icc, vi would then

give an algorithm for approximating ©(kd) independent Hamming weights on ©(3) bits each to

precision O ( k|\v|| ) for which lower bounds are well known.

Below we provide our lower bounds and a simplified version of our algorithms’ query complexity.

Result 1. Let e,v > 0 and 6 € (0,1). Assume classical/quantum query access to V= € RIX",
Assume all clusters satisfy |C;| = Q(%). There are classical and quantum algorithms that out-
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put centroids consistent with (e,v)-k-means with probability 1 — 6 and with per-iteration query
complexity (up to polylog factors in k, d, L, 1, %, % )

LA

_ 2 1.2 2 V12 VIZIV 12 3
C,ass,.ca,:0<mm{||V||FM, (llvnF+|| ||1,1)| [EIVIBo k })

n g2 n n? n g2y

~ Vrk2d 1% 1% VIFIV 900 k2
Quantum:0<min{ ||\/|7|€F€(\/%+\/;i)a (\/%”\/UEF—’_\/E' 7!11)” ”F%HZ EV})

Moreover, with entry-wise query access to V€ R¥™™ and (||vi||+);ejn) for any r € [1,00] and
classical description of partition {C;}jex) of [n], any classical or quantum algorithm that outputs

Cly...,Ck € R? with ch — ﬁ Ziecj w” < ¢ has query complexity
V|2 kd Vg kd
Classical: ) <min{ IV — nd}); Quantum: () <min{”F, nd})
n e N

4 EXPERIMENTAL RESULTS

We conduct numerical experiments to validate the theoretical performance of our proposed classical
algorithm, EKMeans (Algorithm 1), against the standard k-means algorithm. The experiments are
designed to demonstrate the scalability of our approach with respect to the dataset size, n, and were
conducted in C++ on an Intel® Core™ i5-9300H CPU @ 2.40GHz x 8 using only one core.

All experiments were performed on synthetic datasets created as follows: a number of k auxiliary
vectors u; € [—1,1]% were uniformly sampled entry-wise, and for each j € [k], a number of %

dataset vectors were obtained as v; = u; + w;, where each w; € -1, 1]d is a vector with uniformly
random entries in [—1, 1]. In summary, the vectors v; were uniformly sampled around % uniformly
sampled auxiliary centers u;, thus creating k clusters of dataset vectors on average.

We analyse the performance of EKMeans and the standard k-means on varying dataset of sizes
n € {100000, 150000, 200000, 250000, 300000, 350000, 400000, 450000, 500000} as our main nu-
merical experiment. For both algorithms, we set the number of clusters £k = 5, the dimension
d = 30, and the convergence threshold 7 = 0.1. The results are averaged over 4325 repetitions with
different random seeds for dataset V' and centroid initialisation ¢?, ..., c?, but keeping the same
seed for two executions of EKMeans and standard k-means.

For EKMeans, we set the approximation parameter ¢ € {0.2,0.4,0.6,0.8,1.0} and the probability
parameter 6 = 0.01. The sample sizes p and ¢ were calculated dynamically based on the dataset

VI3, k2 , . . .
- I n‘lf'l ’;—2 In %] according to Theorem 8 but ignoring

overall constant factors. As a sense of size, for ¢ = 0.2, p = 20000 and ¢ ~ 128000 on average,
while for e = 1.0, p ~ 800 and ¢ ~ 5100 on average. Furthermore, to optimise performance, the
samples were drawn only once at the beginning of the clustering process rather than at each iteration.

properties as p = [M’:—jln Eland g = |

Figures la and 1b show the total runtime required to compute centroids ¢}, ..., ci which satisfy
the convergence criteria 1 Y. ek [ch — céfl || < 7. This includes sampling the sets P,Q C [n].
As predicted by the theoretical complexity O(nkd), the total runtime for standard k-means grows
linearly with the dataset size n. In contrast, the total runtime for EKMeans remains nearly constant
across different n’s (a more thorough analysis on the dependence on n is left to Appendix D).
This empirically validates that time complexity of our algorithm barely scales with n, a massive
improvement over the standard approach: for n = 500000, k-means requires ~ 9 s on average to
run, while EKMeans with ¢ = 1.0 requires only = 45 ms on average to run, a 200-fold improvement!

In Figure 1c, we compare the accuracy performance of EKMeans compared to k-means measured by
their residual sum of squares RSS := 3~ minje ) [lvi — c4||. More precisely, we analyse the
relative difference (RSS. — RSSy)/ RSSy between the RSS. of EKMeans with approximation pa-
rameter € and the RSS of k-means. Even at larger values of ¢, EKMeans is only around 0.5% worse
relative to k-means, a small deviation that is more than outweighed by the faster runtimes. There is
thus little degradation in clustering with a constant number of samples according to EKMeans.
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Figure 1: Total runtime time, residual sum of squares (RSS) difference, and number of iterations as
a function of the dataset size n. Here £k = 5, d = 30, 6 = 0.01, and 7 = 0.1. The standard k-means
is depicted as € = 0. Each point is the average of 4325 random datasets and centroid initialisations.

Furthermore, in Figure 1d we evaluate the number of iterations required to reach the same centroid
movement tolerance. We observe that EKMeans consistently requires more iterations to converge
than standard k-means on average. This is an expected consequence of the approximation in the
centroid update step. However, despite the higher number of iterations, the total clustering time
for EKMeans is substantially lower than for k-means, especially for larger datasets, as evident in
Figure la. This demonstrates the practical advantage of our algorithm: the dramatic reduction in
per-iteration cost more than compensates for the modest increase in the number of iterations needed
for convergence. Finally, we conduct further numerical experiments in Appendix D.

As a final remark, during the experiments we observed that, at times for larger ¢, one of the initial
centroids c? would fall into a “empty” region of the d-dimensional space and its associated cluster
C;’ would end up empty. Nonetheless, EKMeans would still converge and yield a good result in terms
of its RSS. This is thus evidence that the requirement that |C}| = Q(3) for all j € [k] might not
be needed on average for certain datasets. Still, since p < ¢ on the vast majority of cases, the
bottleneck thus being the approximation of Eiecjﬁ v;, we find it beneficial to artificially increase
p by a small constant factor in order to avoid smaller cluster sizes and increase the accuracy of
estimating |C}|, specially since this quantity will be inverted at the end of the iteration — as |C§|_1.

5 RELATED INDEPENDENT WORK

We briefly mention related works that have appeared online around the same time or later than ours.
First, the independent work of Jaiswal (2023) (see also Shah & Jaiswal (2025)) quantised the highly
parallel, sampling-based approximation scheme of Bhattacharya et al. (2020) and thus obtained a
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quantum algorithm for the k-means problem with provable guarantees, as opposed to our results,
which are heuristic. Due to such a guarantee, though, their final runtime depends exponentially
in k and é (but maintains the polylogarithmic dependence on n). Another related work is Xue
et al. (2023), who proposed a quantum algorithm to compute coresets for k-means, a compressed
representation of the dataset which preserves the optimal residual sum of squares up to some small
multiplicative error e. By employing O(\/%dg /€) QRAM calls, the authors obtained a coreset
of size O(% poly log n) Their coreset can then be used by classical algorithms for obtaining
provable guarantees. Our work, on the other hand, is based on Lloyd’s iteration which is heuristic.
Nonetheless, our query complexities are independent on n, far better than Xue et al. (2023).

Very recently, Chen et al. (2025) proposed alternative quantum algorithms to the ones presented

here by employing uniform sampling plus shifting the vectors v; by the current centroids ¢!, ..., c}.
. . ~ 5

Their algorithm uses O (k2 \/&(@ +1/d)) QRAM calls, where ¢ := - > ek Ziec;: |lv; — c§+1 |2

and ¢! = |t~} Ziec; v; for clusters {C}} e defined by ¢f, ..., ¢} Since one can write ¢ =

L5 e (Zicer il = 1CHM 1 e vil1?), then /6 < LLe . Algorithm 3, on the other hand,
J J

makes 6((\/%% + ﬂ%)%p) QRAM calls assuming |i)|0) + |i)|v;) counts as 1 QRAM
call as in Chen et al. (2025) (Definition 3 assumes that this map counts as d QRAM calls instead). If
Vo < ”—\}/ﬁ” + % (note that || V|| < ||V||F and % < %), e.g., when the distance between
vectors within the same cluster is much smaller than the distance between clusters, the complexity
from Chen et al. (2025) can be better than ours, otherwise, if v/¢ = w(# Vi + %%), our

complexity is better. Both results are thus incomparable.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We proposed improved classical and quantum approximation versions of the standard k-means algo-
rithm with runtimes depending only logarithmically on the size n of the dataset V. Our algorithms
not only match the dependence on n from the quantum g-means algorithm of Kerenidis et al. (2019)
but also improve the dependence on several other parameters like number of clusters k, dimension
d, approximation parameter ¢, and other parameters depending on V. For such, we assumed that the
dataset V' has been pre-processed beforehand to allow for efficient sampling and query operations.
The required data structures have been previously used in other (quantum) machine learning applica-
tions (Hazan et al., 2011; Song et al., 2016; Kerenidis & Prakash, 2017; Biamonte et al., 2017; Tang,
2019). We note that our classical algorithms can be seen as a “dequantised” version of our quantum
algorithms, in a similar flavor to prior dequantisation works (Tang, 2019; 2021; Gilyén et al., 2018;
2022). Moreover, our upper bounds were complemented with query lower bounds, proving that our
algorithms are optimal in several parameters, which hints at our choice for subroutines being right.

Even though our quantum algorithms require the use of QRAM, we are not aware of any inherent
reason why this model would not be physically realisable in the lab. Indeed, several new results
suggest otherwise (Hann et al., 2021; Mehta et al., 2024; Dalzell et al., 2025; Shen et al., 2025).
Nonetheless, we do believe that designing quantum algorithms in the QRAM-model, like in this
work, can help motivate the development of such architectures in the lab, and inform their role in
the algorithmic frameworks they are to be embedded in.

Finally, we conducted numerical experiments to measure the performance of our main classical
algorithm, EKMeans, compared to the standard k-means. Our findings support our theoretical results
in that EKMeans has time complexity almost independent on the dataset size n while still returning
centroids on par with k-means quality-wise. Even more impressive, EKMeans is extremely fast,
running at the order of tens of milliseconds for datasets reaching the size of millions! We believe
that EKMeans can become a competitive clustering algorithm, specially if a given dataset must be
analysed repeated times so that pre-processing it makes sense. This is probably one of the first
examples of a practically viable dequantised algorithm.

We mention a few future directions. One is to assume data vectors with special properties, e.g., well-
clusterable datasets (Kerenidis et al., 2019), in order to obtain tighter runtimes. In this direction,
Chen et al. (2025) exploited certain symmetries of k-means. Another direction is to bridge our work
and Jaiswal (2023) to obtain improved complexities in & and % together with provable guarantees.
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A CLASSICAL ALGORITHMS

We now present our classical (¢, v)-k-means algorithms, whose main idea is to employ the classical
query access from Definition 2 to separately estimate the quantities ), .. v; and |C}| for j € [K],
J

from which the new centroids c§-+1 ~ \C§|_1 D ic ct Vi are approximated. For our first algorithm, we

[lvall
[Vl2,1

To approximate |Cjt| we sample columns of V' uniformly at random instead.

sample columns of V' with probability

and select those closer to ¢} to approximate Ziec; ;.

Before presenting and proving the correctness of our classical algorithm, we recall the following
useful concentration inequalities and approximation lemma.

Fact 4 (Chernoft’s bound). Let X := Zz‘e[N] X, where X1, ..., XN are independently distributed
in [0,1). Then Pr[|X — E[X]| > €E[X]] < 2¢=<EX)/3 for all ¢ > 0.
Fact 5 (Median-of-means (Lerasle, 2019, Proposition 12)). Let X () .= % ZiE[N] Xi(j ) for j €

[K], where {Xi(j)}ie[N},je[K] are i.i.d. copies of a random variable X. Then, for all ¢ > 0 and
0% > Var(X),

1 o? 2
P ian(XW .. XE)) _E[X]| > €] < 2K =——= | |
r[|med1an( ey ) (X _6] < exp 5 Ne2
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Fact 6 (Freedman’s inequality (Freedman, 1975, Theorem 1.6) & (Tropp, 2011, Theorem 1.1)). Let
{Y; : i € NU{0}} be a real-valued martingale with difference sequence {X; : i € N}. Assume that
X; < B almost surely for all i € N. Let W; := Zje[i] E[XJZ|X1, ..., Xj_1] fori € N. Then, for
alle > 0and o > 0,
Pr[3i > 0:Y; > eand W; < 02 < /2
r[F Y, > eandW; <o) <exp| ————— | .
= P\ 021 Bes3
Claim 7. Let G,a € Ry be such that |a — @] < ¢, where € € [0,%]. Then |% — 1| < 25
Theorem 8 (Classical (g, 0)-k-means algorithm). Lete > 0, § € (O, 1), and assume classical query
access to' V.= [vy,...,0p] il = Q(%), then Algorithm 1 outputs
centroids consistent with the (e, v = 0)-k-means algorithm with probability 1 — 6. The complexities
per iteration of Algorithm | are

V2 VB k2,
Classicalqueries:O((” | +|| ”2’1)log),

n n? g2 ]
. V2 IVIEL k2d k
Time: O((n t (k+l g(nd))logg .

Proof Let % 5 € R™ be the characteristic vector for cluster j € [k] at iteration ¢ scaled to ¢;-norm,

e, (Xj)i = |C‘\ ifi € Ctand 0if i ¢ C}. Fori € [n], let £f := argminepy [|v; — cj||. Sample
p indices P C [n] uniformly from [n]. Let \; = %Inl where P; := {i € P|{! = j}. On the
other hand, sample ¢ indices () C [n] from the distribution Dgﬁlim;;l (i) = H%fﬂl .Foreachi € Q,
let X; € R%*" be the matrix formed by setting the i-th column of X to ||V|2.1 7o and the rest to

zero. Define V := 1 ZzeQ X;. ThenE[V] = V.

We start with the error analysis. We note that the outputs of the standard k-means and Algorithm 1

can be stated, respectively, as c; t+l - = Vx} and cH'l =\ VXJ = nlllgj\ >icq, vaz’l Tory» Where
Q; = {i € Q|¢} = j}. In order to bound [} L ;"H ||, first note that, by the triangle inequality,
lle; = < Iy = LIV + NIV = VXS

QHV 2MVXT and ||(V V)XJH < 2\,\ [

Notice that | P;| is a binomial random variable with mean p|C%|/n. By a Chernoff bound (Fact 4),

so we aim at bounding |A\; — 1| < Let us start with |\; — 1].

[Pl n £ 2p|Ci|
—— =1 > | L2exp | —— 5 | - 1
G5l AV IS A8n V121X
24t 277/
It suffices to take p = % In2k = Of “‘2” % log %) in order to estimate [A; ' — 1| <
m with probability at least 1 — 2 (using that ICH = Q). IVXEI < Vx5, and

[x5lI? = 1/|C%)). The bound on |)\;1 — 1| implies that |\; — 1| < W, where we used Claim 7
and that |\;| < 2 with high probability — which is already implied by the bound in Eq. (1). By the

union bound, the bound on \; holds for all j € [k]| with probability at least 1 — g.

Regarding the bound on V, we use Freedman’s inequality to prove ||(‘~/ VXl < § < 2|§\,|
(again using that |A;| < 2). For such, let f(X1,...,X,) = ||(‘~/ — V)X ||. First, for all i € [q],
1 2[[Vl2.a
J

Second, we bound the variance: for all ¢ € [¢],

2 1 2

B PO X Xy = F X X)) < g B[ - XD

4 iz A T Tt A T AVII5
< qujlg[llXinH ]=q7(xj) E[X X]Xj—7 X5) IV 121 diag((lvil)ien))x; < PP
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We employ Freedman’s inequality with the Doob martingale Y; := E[f(X1,..., X )| X1,..., X]]
for ¢ € [¢]. Then Fact 6 with B = 2V gpd 02 = ¢ - V15 leads to

alcil a[CiT?
P17 -Vl > 5] < ls
g Xl =74 =P AVIE, | elVilaa
qlci|? 64|C:|
2 ~
It suffices to take ¢ = O(ma { an‘lf L ’;z, Wl & £1log ?) to approximate |[(V — V)x}|| < § with

probability at least 1 — = (already using that \Ct| = (%)) Allin all, we have ||c} i+l _ Hl | <e
with probability at least 1 — ¢ for all the centr01ds (usmg a union bound).

We now turn our attention to the query and time complexities. In order to compute the clusters
{C!}jeqn), foreach i € P UQ and j € [k], we exactly compute the distance [|v; — ||, which
requires O(dlog(nd)) time: O(dlog(nd)) time to read a vector of d components v; and O(d) time
to compute the distance. In total, we need access to at most p + ¢ vectors, so O((p + g)d) classical
queries, while the time complexity is O((p + ¢q)(kd + dlog(nd))), accounting for the O(kd) cost in
computing all distances ||v; — ¢} || between v; and the k centroids stored in memory. Finally, the k
new centroids are obtained by summing ¢ d-dimensional vectors in O(gd) time. In summary,

* Sampling P, ) C [n] and querying the corresponding vectors {v; };c pug takes O((p+q)d)
queries and O((p 4 g)dlog(nd)) time;

* Obtaining the labels {¢%};c pug requires O((p + ¢)kd) time;

+ Computing new centroids {c§-+1 }jelw) by adding g d-dimensional vectors takes O(qd) time.

This means the overall query complexity is O((p + ¢)d) and the time complexity is

n n?

2 2 2
Ol apdlieog(nd) = O<<”V” i ”VM) : d(’“ + log(nd)) log ]§> O

orithm 1 computes the distances ||v; — c%||, and thus the labels {¢%};c puo, In an exact way via
Algorithm 1 putes the dist ! d thus the labels {¢!};cpug t way

classical arithmetic circuits in O((p + q)kd) time (O(d) time for each pair (v;, ¢ ;)) Similarly, the

t+1

new centroids ¢, are computed by adding ¢ d-dimensional vectors, ZZEQ It is possible,

Hv [
however, to approximate lv; — cé- || via a sampling procedure, which allows to trade the dependence
on d with some norm of V. Algorithm 2 describes how this can be performed and the next theorem
analyses its query and time complexities.

Theorem 9 (Classical (e, v)-k-means algorithm). Let e,v > 0, § € (0,1), and assume classical

query access 1oV = [vy, ..., v,] € R Ifall clusters satisfy |Ct| = Q(%), then Algorithm 2 out-
puts centroids consistent with the (&, v)-k-means algorithm with probability 1 — 4. The complexities
per iteration of Algorithm 2 are (up to polylog factors in k, d, 5 ; %, HVHF)

2 WV V2|V |12 3
Classical queries: O((”VH I H >|| 1%l Hzoo k >

n n? n €2V2
2 14 %4 1%
rimes B (VI VIR IVEIVIE 10y
n n? n g2p2

Proof. The proof is similar to Theorem 8. Let X; € R™ be such that (XE) = ct\ ifi € C and 0 if

i & Cl. Fori € [n], let £} € {j € [k] : [lvi — c4||> < mingep [loi — > + u} Again we sample

‘Plln‘,whereP = {i € P|¢! = j}. On

the other hand, we now sample ¢ indices ) C [n] x [d] from the distribution Dg/ (i,1) = H%Z ‘ .

For each (i,1) € Q, let X;; € RY*™ be the matrix formed by setting the ([,i)-th entry of X to

p indices P C [n] uniformly from [n] and let \;
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Algorithm 2 Classical (e, v)-k-means algorithm

Input: Classical query access to data matrix V = [vy,...,v,] € R4*", parameters 6, ¢, v.
1: Select k initial centroids cJ, ..., ¢
2: for ¢t = 0 until convergence do

3: Samplep:O(”V” E

4 Sample g = O(”Vn# E log &) rows Q C [n] x [d] from p\})

5:  Forie Pand (i,-) € Q,compute £} € {j € [k] : [[v; — c§||* < minjepy [Jvi — & ||* + v}
using Lemma 10

6: For (j,1) € [k] x [d], let P; := {i € P|¢; = j}and Q;; := {(i,") € Q|(¢%, ') = (5, 1)}

7: For (j,1) € [k] x [d], let the new centroids (c/™"); = P L 1)eQs HVH“ sen (Vi)

8: end for ’

> log £) rows P C [n] uniformly from [n]

(Vi) and the rest to zero. Define V := 2> (ineq Xii- Then E[V] = V. Let also
Q :={i|(i,1) € Q for some [ € [d]} for convenience.

The outputs of the standard k-means and Algorithm 1 can be stated, respectively, as c* 1l — VX;-

and (1), = A, (ij) = AP 2o (0€Q ”VHI L sgn(Vy;), where Qj; := {(i,1') € Q|(¢5,1") =

*t4+1

(4,1)}. In order to bound ||c} Hl ||, once agam, by the triangle inequality,

lle; 8 = e < I = VG + IS IV = VXS

J

and we just need to show that |\; —1| <
v k2

2HVX 0 and ||(V — Vxsll < a7x;7- Exactly as in Theorem 8,

it suffices to take p = O( > log £ ) in order to bound |\; —1| < with probability 1 — ¢

2HV 2Vl

Regarding the bound on V, we use Freedman’s inequality to prove ||(V — VIxill < § < 5Tx]
- J
(using that [A;| < 2). For such, let f(X1,...,X,) = [(V — V)x}||. First, for all i € [q],

1 2
A0 X ) = S X ) < 105 = X <
Second, we bound the variance: for all ¢ € [q],
2 1 2
X,LE,EX{ f(X1, o Xy Xg) — f(Xn, . XL X)) §? [||(X XD
4 4||V||

4 4
< S ElIXagl* = ?(Xﬁ-)T@XTX]XE = 7(XJ)THV||1 1 diag(([lvill1)iep)X; IR
i i

We employ Freedman’s inequality with the Doob martingale V; := E[f(Xq,..., X,)|Xq1,..., X}]

)

for i € [q]. Then Fact 6 with B = 2”;‘/6”,1‘ Lando? = ¢ - q”“/c”,l‘; leads to
P [||(X7 VXL > f} <e €*/32
g Nl =] =P TR, v
alCi[? 64|C;|
It suffices to take ¢ = O(ma {(= HVHl ! ’;2, ”VL‘“ g} log %) to approximate I(V — Vx5l < § with
probability at least 1 — 2 (already using that |Cf| = Q(%)). Allin all, we have ||} R t'+1 [ <e

with probability at least 1 — % for all the centroids (using a union bound).

‘We now turn our attention to the query and time complexities. Another main difference to Theorem 8
is that the clusters {C}} ;<) are computed by approximating the distances |[v; — || using an £,-

sampling procedure explained in Lemma 10. More precisely, for any ¢ € [n] we can compute

the {j € [k] : v — §||2 < min [lv; — ¢ ,||2+u}
J'€lk]
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with probability 1 — j in 5(m k“:jig”z log n) time and using O (% W) queries, where

4(p +
O( ) hides poly log factors in &, d, 5 i ”://%F . The classical query complexity in computing
{€i} e pug s thus O(”VHF = ZzePUQ |vill?) = ((p + q)M %), while the time com-

plexity has an extra O(log n) factor.” In summary, the time and query complexities are:

* Sampling P C [n],Q C [n] x [d] takes O(p + q) queries and O((p + ¢) log(nd)) time;

)HVH%IIV\Ig,m k

» Computing the labels {},p 5 takes 6((p +4q - £ classical queries and

O((p+q) HV” I\V\sz k logn) time;

* Querying the entries {V};}; 1)co and computing all new centroids {c?“} jelk takes O(q)
queries and O(qlog(nd)) time.

The total query complexity is thus O ((p+9q) M k )

~ VIEIVIZ . k ~ V12 V|I? VIEIVIZ .. k3
O((p+q)| 2] ||2,w210gn>20(<|| g ||1,1>|| 1V oo ;iogn).
n 14 ESV

n n? n

and the time complexity is

Lemma 10 (Approximate classical cluster assignment). Assume classical query access to matrix

V=1[v1,...,v,) € R Let§ € (0,1), v >0, and 0 < e < % Consider the centroid matrix
—1)— . —1

Ct=1c,...,ck] € R™F such that ||c! — |Cjt | =t Ziecjt_fl vi|| < e with |Cjt | = Q(%) for all

j € [k]. Foranyi € [n], there is a classical algorithm that outputs 0} € {j € [k] : [[v; — ¢}||* <

mingre ) o — b |2 ith probability 1 — 6 in O (LYLe H2l® 165 & 10g(nd d

e lvi — ¢ |I* + v} with probability in O (=22 Jog % log(nd)) time and using

O(HV”F Ellvs |1
V2

n

log %) classical queries.

Proof. Fix (i, j) € [n] x [k] and consider the random variable X (*) such that

pr[x0 = ] = o e

We can straightforwardly calculate

= 3 o2 O S ) = (e,

2
le[d] (i) fJoill le[d]
4(C l2 (i)} 2 ¢ 2
Var Z ”UIH (’U )2 ||’U ”2 = ||UZH Z(C )l = HUZH HC ”
le[d] RO le[d)

t1|? copies of X (%), we obtain

an estimate of (cj, v;) within additive error % with probablllty 1-— E (Fact 5). From this, we can

By taking the median of K = 81In £ copies of the mean of &2 ||v;||? ||c

output w;; € R such that [w;; — [lv; — c4[|?| < ¥ with probability 1 — 9. Let £t = arg min ;¢ wij.
Then ¢} € {j € [k]: [lv; — }[|* < minj gy llv; — ¢ ||* + v} with probability 1 —§ by a union bound.

’It is possible to do slightly better than ZiEPL@HmHQ < (p + q)||V||3,0 via concentration bounds.
2
Let the random variable Pr[Y (i) = o | ] =1 with mean E[Y] = WVie By a Chernoff’s bound,

Vi o)~ n nuvug,

VI3, o
Vi

2 2
Pr[ZiePHvﬂ\Zz?p%]Sexp(—ﬂ Wie )y <3ifp>3 In2. On the other hand, let the random

3nllVI3

2 v |[® VI

; N — _lvill® 7l _ [lvs l
variable Pr[Y (i) = iz = | =iy with mean E[Y]= I\V\Ia =it iz = < [VTaaTeTs = By aCher-
s 2 HVH V2,00 vz 3 V2,1 1Vl2,00 2
noff’s bound, Pr[3 7, egllviI* 2 20 =y >] < exp(~ Sy vi) S 2 423y =1

2
Thus 32, ¢ pugllvill® < 2(p + Q%) HVnHF with probability 1 — § for large enough p and q.
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Regarding the sample and time complexities, the total amount of samples is

H'UiH EARE ||Ui||2||Ct||2F EY [ lelPEIVIE, Kk
O( 2 8% ;[k | 1 v? 1ogg =0 V2 n logg ’
J

where we used that [cf[| < e + |C;_1|’1 Ziec;—l |lvs || implies

k||V|3
”Ct”F<2k6 +Z |Ct 1|2< Z ”vl|> <2k5 +Z | t 1| Z ” i20(|n|F)7

J€E[K] ieci™! ieci ™t

using that |C;*1| = Q(%) forall j € [k] and e < ”‘\//Uf. The total time complexity is simply the
sample complexity times O(log(nd)). O

B QUANTUM ALGORITHMS

We now describe our quantum (&, v)-k-means algorithms. Similarly to our classical algorithm from
the previous section, we approximate the quantities Ziec;: v; and |C§| for all j € [k] separately.
This time, however, we employ quantum query access from Definition 3 to build quantum unitaries
which are fed into the multivariate quantum mean estimator from Cornelissen et al. (2022). As an
intermediary step, the quantities /; = arg min;e ) [lv; — || are computed in superposition as part
of these unitaries (Lemma 15).

Before presenting and proving the correctness of our quantum algorithm, recall a few subroutines
that will serve as building blocks: the quantum minimum finding subroutine from Diirr & Hgyer
(1996), its generalisation with variable times due to Ambainis (2010; 2012), and the multivariate
quantum mean estimation subroutine from Cornelissen et al. (2022).

Fact 11 (Quantum min-finding (Diirr & Hgyer, 1996)). Given 6 € (0, 1) and oracle U, : |i)|0) —
|i)|2;) for x € RN, there is a quantum algorithm that outputs |V ) using O(v/N log 1) queries to
U, such that, upon measuring |V ) in the computational basis, the outcome is arg min;cn x; with
probability 1 — §

Fact 12 (Variable-time quantum min-finding (Ambainis, 2010)). Let § € (0,1), z € R", and
{Ui}icin) a collection of oracles such that U; : |0) — |x;) in time O(t;). There is a quantum
algorithm that runs in time O((3_ ;¢ n t2)= log 1) and outputs |V,) such that, upon measuring
|W,) in the computational basis, the outcome is arg min,c|n) x; with probability 1 — 4.

Fact 13 ((Cornelissen et al., 2022, Theorem 3.3)). Consider a bounded N -dimensional random
variable X : Q — R™ over a probability space (Q,2%,P) with mean i =y ., P(w) X (w) and
such that || X || < 1. Assume access to unitaries Up : |0) — > o \/P(w)|w) and Bx : |w)|0) —

|w)| X (w)). Given 6 € (0,1), m € N, and an upper bound Ly > E[||X||], there is a quantum
< VEaloa(Nis)

algorithm that outputs i € RY such that || — [i]|so with success probability at
least 1 — 6, using O(m poly log m) queries to the oracles Up and Bx, and in time O(mN).?

Theorem 14 (Quantum (&, 0)-k-means algorithm). Let ¢ > 0, 6 € (0,1), and assume quantum
query access to' V. = [vy,...,v,] € R™>™ [If all clusters satisfy IC%| = Q(%), then Algorithm 3

outputs centroids consistent with the (¢,v = 0)-k-means with probability 1 — . The complexities

3The time complexity of the mean estimation subroutine is not analysed in Cornelissen et al. (2022), so we
give a sketch of its analysis here. The last step of the algorithm needs to perform N parallel inverse QFTs on
m qubits, which requires (:)(mN ) gates since we need to touch every qubit at least once. It remains to show
that we can implement the rest of the algorithm in time 5(mN ). In the preprocessing step, we compute the

£2-norm of the random variable in time O(N), a total of 9} (m) times. The main routine, subsequently, runs
with m repetitions, within each of which we perform arithmetic operations such as computing the inner product
of two N-dimensional vectors, in O(N) time, and do quantum singular value transformations. This last step

is used to turn a so-called probability oracle into a phase oracle, and takes 5(1) time to implement. The total
time complexity of this step thus also becomes O(mN).
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Algorithm 3 Quantum (g, v = 0)-k-means algorithm

Input: Quantum query access to data matrix V = [vy,...,v,] € R9*", parameters 6, ¢.

1: Select k initial centroids cJ, ...,
2: for ¢t = 0 until convergence do
3: Build quantum query access to Lc‘i, NCARS Rxk
4: Using Lemma 15 to obtain [)[0) — [i)[¢}) where £} = argmin;e ) lv; — ¢4 ||, construct
the unitaries
Ur:10) > 3 =it o 3 Tl
iem V" i€ln] >

By : i, ))[0)F > |3, §)|0)®G =D |1)[0) k=i =D
v o i, D0V ER s[4, 7)[0Y2GD)y, /|lv; [0y E R =i =D

5: Apply the multivariate quantum mean estimator (Fact 13) with p = O( 35/2 ) queries to
the unitaries U; and B; to obtain P € RF
6: Apply the multivariate quantum mean estimator (Fact 13) with ¢ = O( I N d) queries

to the unitaries Uy and By to obtain Q € (R%)*

t+1 _ [[VIl2a Q5
n P;

7: For j € [k], record the new centroids ¢;
8: end for

per iteration of Algorithm 3 are (up to polylog factors in k, d, 5 6, T

Quantumqueries:a \/E”V”+\/g”‘/”21 W2 d ;
vn n

(G

m\w o™

(f+ log n))

Proof. We start with the error analysis. Consider the unitaries

V; . = . R i — i
o 3 i, By R0 o 153006 o),

i€[n]
- 1 . A A @ (— - i
v ) e Y ﬁwm By 1.0 o [1,3)[0)20 VL¢3,
i€[n]

The unitaries Uy and U7 can be thought of as preparing a superposition over probability spaces with
distributions Py, and Py, respectively, given by

”viH if 1 = é’? 1 i gt
P 7;’ ) = ”VH2’1 = v and P i7 ) = {n . ]_ 79
v {0 if j # £, D=0 i

while the unitaries By, and B; can be thought of as binary encoding the random variables Xy : [n] x
[k] = (RY)* and X7 : [n] x [k] — R¥, respectively, given by Xy (i,7) = (0,...,0, 7%,0,...,0)

Pl

and X;(¢,7) = (0,...,0,1,0,...,0), where the non-zero entry is the j-th entry. Note that

> Prlid)XvGd) = < me)

(6:.3)€n]x[k]

Z Pl(ivj)XI(ivj): (|(§|”|Cf|>

(@,9)€n]x[k]

ieCt
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Therefore, the multivariate quantum mean estimator (Fact 13) returns P € R* and Q € (R%)* such
that, with probability at least 1 — § and for some 1,5 > 0 to be determined,

e and < &9 Vi e [kl
: ) - Wi | < j € 1K
i€Ct
This means that, by a triangle inequality,
Ct 1
||c;ft+1_ct,+1<‘|;3|— ’ 72% + Z
e €3] iect iec: ||V||21
For €1 small enough such that £; < min ¢ @ , then |P‘ — @‘ <g — L < 1 <
1 g 1 €[k] 2 1 nF S Cne =
2 1 . B :
iy and I - el < Ny gy wll = V61 <
VIR = 1V1//icsl. Hence
||C* t+1 Ct~+1|| |V|| 2n

J

\/> ICt ICtI

- O(H‘FH s )andey = O(HVH21 k\[)

where we used that |C}| = Q(%). In order to obtain &, = (

*t+1 t+1H S g,

It suffices to take &1 in order to obtain [|c}

£ ), we must query the unitaries

TV &3/72
Ur and By in the multivariate quantum mean estimator p = O( H\VFH k3/2) times (since | X;|| = 1
and E[||X/[|] = 1). On the other hand, in order to obtain 5 = O( TVias V) we must query the

unitaries Uy and By in the multivariate quantum mean estimator ¢ = O( V2.1 k\[)

[Xv [l = 1and B[ Xv ] = D).

times (since

Finally, we must show how to perform the unitaries Uy, U, By, Br. The binary-encoding unitary
By is d QRAM calls (O(dlogn) time), followed by a normalisation computation (O(d) time),
followed by d controlled-SWAPs on k qubits (O(kdlog k) time (Berry et al., 2015)), while B; is
simply 1 controlled-SWAP on k qubits. On the other hand, the probability-distribution-encoding

unitaries Uy, Uy can be performed via the initial state preparations |0) > i) ”U/”Hij -|i) and

|0) — ﬁ > icin) |7), respectively, followed by the mapping |i)|0) — [i)[£}). In Lemma 15 we show

how to implement the mapping |i)|0) + |i)[¢%) in O(vVEkdlog 1+ logn) time using O(Vkdlog 3)
quantum queries. In summary,

1. By requires O(d) quantum queries and O(dlogn + kdlog k) time;*
2. Uy requires O(V'kdlog +) quantum queries and O(v/kd log % log n) time;
3. By requires no quantum queries and O(k log k) time;

4. U; requires O(vkdlog +) quantum queries and O(v/kd log % log n) time.

Collecting all the terms, the total number of quantum queries is O((p + ¢)Vv/kd), while the overall
time complexity is

5<(p+q)\/Ed(\/E+logn)) 6<(\/E|\‘//ﬁ| + 2’1>1€CI(\/E+logn)>. O

“If one has access to a quantum random access gate (Ambainis, 2007; Allcock et al., 2024), which is the uni-
tary that performs |¢)|b)|x1,...,zNn) — |9)|zi)|z1,. .., Tiz1,b, Zit1,...,xN) in O(log N) time, then By

requires O(d log n) time and the final runtime of Algorithm 3 becomes O ( (\/E% + \/&%) @ logn).
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Lemma 15 (Exact quantum cluster assignment). Ler 6 € (0,1) and assume quantum query ac-
cess to matrices V.= [v1,...,v,] € R¥>*" and [c},... ct] € Rk There is a quantum al-

gorithm that performs the mapping |i)|0) ~ [i)|Lt) using O(v/kdlog $) quantum queries and in
O(Vkdlog % logn) time such that, upon measuring |L%) on the computational basis, the outcome
equals arg min ey ||v; — c5|| with probability at least 1 — 4.

Proof. First we describe how to perform the mapping |4, 7)[0) +— |4, j)[[|v; — ¢ ||). Starting from
|4,7)]0,0)|0), we query 2d times the QRAM oracles used in Definition 3 to map

|4,4)10,0)[0) + 14, 7}|vi, c)|0).
This operation is followed by computing the distance [[v; — c}|| between the vectors v; and ¢/ in
O(d) size and O(log d) depth by using a classical circuit, which leads to

[i, ) vi, €5)10) = [, ) vi, i)l v = &51))-
Uncomputing the first step leads to the desire state. Overall, the map |4, )[0) — [i,7)|[lvi — c|])
uses O(d) queries to the matrices V and [c}, ..., c}].

Fix i € [n]. The mapping [5)|0) ~— |j)[[lvi — ¢}||) can be viewed as quantum access to the vector
([lvi = ¢51)jen- Therefore, we can assign a cluster £} := argminje [lv; — 4[| to the vector
v; by using (controlled on [i)) quantum minimum finding subroutine (Fact 11), which leads to the
map |i)|0) — |i)|Lt), where upon measuring |L!) on the computational basis, the outcome equals
{; = argmin;ep [lv; — ¢} || with probability at least 1 — 6. The time cost of finding the minimum is
O(Vklog +) queries to the unitary performing the mapping |i, )[0) — |, j)||lv; — c5|[), to a total
time complexity of O(v/kd log % logn) and O(v'kdlog +) quantum queries. O

Remark 1. It is possible to avoid QRAM access to the centroids [c}, ..., cL] € Rk by accessing
them through the fixed registers X ek |c§> This, however, hinders the use of quantum minimum

finding. The index {}; = arg minc ) [|v; — C;‘ || can be found, instead, through a classical circuit on
the registers @y Il|vi —ck]), which modifies the time complexity of Lemma 15 t0 O(d(k-+logn)).

Similarly to classical (&, v)-k-means algorithm, it is possible to approximate the distances ||v; — /||
within quantum minimum finding using inherently quantum subroutines (Lemma 17) instead of a
classical arithmetic circuit as in Algorithm 3. This allows us to replace the O(d) time overhead with
some norm of V. Algorithm 4 describes how this can be performed and the next theorem analyses

its query and time complexities.

Theorem 16 (Quantum (e, v)-k-means algorithm). Lete,v > 0, 6 € (0,1), and assume quantum
query access o V = [vy,...,v,] € R¥™. If all clusters satisfy |Ct| = (%), then Algorithm 4
outputs centroids consistent with the (¢, v)-k-means with probability 1 — . The complexities per

iteration of Algorithm 4 are (up to polylog factors in k, d, %, % % % )

~ 1% 1% Ve[V 2.0 k2
Quantumqueries:0(<\/E| n”—&-\/gH n|1’1>” [NV, 2)>

\/> \/ﬁ eV
Time: LAY , V Ve, 1 .
e O(<\/E \/TL +\/Zl n \/ﬁ Ev osn €

Proof. The proof is similar to Theorem 14. The unitaries Uy and B are still the same,
_ 1 i ) o
Up:|0) = Gz[:] EIME% By : [i, j)[0)* = |3, 5)|0)2VU =V [1)|0) k=1,

but the unitaries Uy, and By, are now replaced with

_ Vil

Uy :[0)— ) Vil ;e oy,
4 V111
(3,1)€[n] x[d]

By : ‘Z"j7l>|0>®kd N \i,j,l>|0>®((j_1)d+(l‘1))| Sgna/li»‘0>®((k—j—1)d+(d—l—1))_
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Algorithm 4 Quantum (g, v)-k-means algorithm

Input: Quantum query access to data matrix V = [vy, ..., v,] € R¥*", parameters 6, ¢, v.
1: Select k initial centroids cJ, ...,
2: for ¢t = 0 until convergence do
3: Build quantum query access to [c}, ..., cL] € R¥*F

4: Using Lemma 17 to obtain |3)[0) ~ [¢)|¢}) such that £} € {j € [k] : [lv; — ¢i]* <

min; e [lvi — ¢4 ||* + v}, construct the unitaries

_ ) "
vrlor Z\F" i) Uy :10) = Z l/ﬁ'l,m,
i€[n] () el x[d
By : i, 5)[0)#% = [, 5)|0) 2V~ D[1)[0) =+,
By - [i, j, D0)2* s 3, 5, 1)[0) G =Dd+=D)| gy (1, [0) @ (k—i—Dd+(d—1=1))

5: Apply the multivariate quantum mean estimator (Fact 13) with p = O(% kas/z

the unitaries U; and B; to obtain P € R*
6: Apply the multivariate quantum mean estimator (Fact 13) with ¢ = O( ”‘1/”5 ke d) queries

to the unitaries Uy and By to obtain Q € (R9)*

t+1 _ VI Q5
n Pj

) queries to

7: For j € [k], record the new centroids c;
8: end for

The new unitary Uy, can be thought of as preparing a superposition over the probability space with
distribution Py, given by

[ Vil et
Py (i,4,1) = {wm if j ; ﬁt

while the unitary By can be thought of as binary encoding the random variables Xy : [n] x [k] X
[d] — (R%)* given by Xy (i,7,1) = (0,...,0,sgn(V),0,...,0), where the non-zero entry is the
((5 — 1)d + I)-th entry. Note that
Vi
1)

Z PV(ivjvl)XV { .77 - (Z
(i,5,)€[n] x [k] x [d] €cy

Therefore, the multivariate quantum mean estimator (Fact 13) returns P € R* and Q € (R?%)* such

that, with probability at least 1 — § and for some 1,5 > 0 to be determined,

IG5 Q-3

P — =L
J n
ieCy

||V||11

<eg and < &9 Vi € [k].

||V||11

Similar to Theorem 14, by a triangle inequality,

||C* t+1 _C7§+1|| < ”V” 2n

——€1 + d 1’15
; ~ At <2
’ fler 61 Ic]

o ~ 3/2y . .
It suffices to query the unitaries Uy and ; a number of p = O(”—\VF”%) times within quantum

multivariate mean estimator to get €; = O( HVH o /2) By the same toke, it suffices to query the
unitaries Uy and By a number of ¢ = O( Vi ’“f) times within quantum multivariate mean

estimator to get e = O (71— e kf) This ylelds I T — | < e as wanted.

We now show how to perform the unitaries Uy, Ur, By, Br. The binary-encoding unitary By is
1 quantum query (O(logn) time), followed by 1 controlled-SWAP on kd qubits (O(kdlog(kd))
time (Berry et al., 2015)), while B; is simply 1 controlled-SWAP on £ qubits. On the other hand, the
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probability-distribution- encoding unitaries Uy, U can be performed via the initial state preparations
|0) 2o Gem]x[d] IVH1 -[i,1) and [0) \/15 > ien) |©), respectively, followed by the mapping
[1)]0) — |)]¢%). In Lemma 17 we show how to implement the mapping |)|0) > |i)|¢%), where
ttefjelk]: v- Ct”Z (HVHF \vaHzoc)
IVIe VEIVI2.00
= log n)

minr e |vi — ¢ /Hz + v}, using O quantum

queries and O( time. In summary,

1. By requires O(1) quantum queries and O(log(nd) + kdlog(kd)) time;’

quantum queries and 6( H‘\//!TF % log n) time;

2. Uy requires O( \F fI\VHzoo)

3. By requires no quantum queries and O(k log k) time;

f\IVHz oo)

4. U requires O( quantum queries and O ( time.

IVIe VEIVI2.00
N R— logn)

\fHVHzoc)

Collecting all the term, the total number of quantum queries is O((p + q) while

the overall time complexity is

(s (e AVl 1))

~ 14 14 VIIF|V]200 k2 k2d
o( (ViDL VI Y (IVIeVIae 2 | Y .
Vn n Vn ev €
Lemma 17 (Approximate quantum cluster assignment). Assume quantum query access to matrix
V= [vi,...,v,) € R>" Lets € (0,1), v > 0,and 0 < ¢ < % Assume quantum query

access to centroid matrix C* = [c},.. ., c}] € R such that ||c§ — |Ci! |7 Yo vif| < e
J

with \C;fl| = Q() for all j € [k]. There is a quantum algorithm that performs the mapping
[)[0) + |i)|Lt) such that, upon measuring |Lt) on the computational basis, the outcome equals
te {j e k]« lvi = lI? < mingep lvi — ¢ ||* 4 v} with probability at least 1 — 6. It uses

6(% M) quantum queries and 6( lef % log n) time, where 5() hides polylog

. 11 Ve
factorsin'k, d, 5, -, NG

Proof. We first describe how to perform the map |i, )|0) — [i, 7)|wijz), where Jwq; — [[v; — ¢ ||*| <
5 with high probability. Recall from Definition 3 that we can perform the maps

v )]0y = ) ﬁz)ﬁli,b and Z [ tH

leld) le[d]

in O(log(nd)) time. Start then with the quantum state |i, j) 10)+411) Hl |0) and perform the above maps

[0)+]1)
controlled on the third register 72

|1). The final state is

, i.e., perform Oy if the thlrd register is |0) and O¢- if it is

1 i (vi)i (ch)i
\@“”2%<n10”+4M”0'

After applying a Hadamard gate onto the third register, the state becomes

i 1 (o) | (5 1 (o) (5
“”2%(20mn+wm>“”+2<mn ww)“”)
— L FTIO) + VT=PaIss)

>If one has access to a QRAG, then By requires only O(log(nd)) time and the final runtime of Algorithm 4
is 5((\/%% + \/allvll’l ) ”VHF\“/;H?"’" % logn + kd), where the term O(kd) comes from Footnote 3.
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where

2
1 (Ui)l (Cz')l 1 <1}i,C§->
PijZ( T eEr ) T 3 T aianen
42 vl lles] 2 2ffuillll< ]
is the probability of measuring the third register on state |0), and |¢;;) and |¢;;) are “garbage”
normalised states. It is then possible to apply a standard quantum amplitude estimation subrou-
tine (Brassard et al., 2002) to obtain a quantum state |i, j)|W;;) such that, upon measuring onto the
computation basis, the outcome p;; is such that |pi; —pi;| < g = lwi; —[[vi— A7) <

with probability at 1 — &, for some &, € (0,1), where w;; = |lvg]|> + [|¢4 ]| — [Jvgll |4 ]| (2pi; — 1)
It is then straightforward to obtain a new state [W;;) from |W} ) which returns w;; upon measure-
ment with probability 1 — d2. For each (4,7) € [n] x [k], mapping |4, 7)|0) — |4, j)|w;;) requires

llos 5 I
v

et .
O( Hox ez log é) quantum queries and O(

174

1 .
log 5~ log(nd)) time.
Fix ¢ € [n]. The mapping |i,j)|0) + |, j)|w;;) can be viewed as quantum access to the vector

(wij)jefx)- We thus employ the (variable-time) quantum minimum finding subroutine (Fact 12) in

order to obtain the map |i)|0) — |i)|L!), where upon measuring | L!) on the computation basis, the
outcome equals £} = arg mine ) wi; € {j € (k] : lv; — ¢4[|* < mingiepy lvi — ¢&[1? 4 v} with
probability 1 — d;. According to Fact 12, the query complexity of [i)|0) — \z>|Lt) is

lvill / ) = IVIie VEIV 200 | 1
J

where we used that 3- i [[c5[1? = ||C’*||2F = O(k%) as in Lemma 10 and [|v;]| < ||V |2,00s
while the time complexity is O(log(nd)) times the query complexity.

In order to analyse the success probability (see (Chen & de Wolf, 2023, Appendix A) for a sim-
ilar argument), on the other hand, first note that we implement the unitary U : [i,5)|0) —
i, 5) (V1 = 82|wi;) + /82|wy5)), where |w;;) contains the approximation w;; — [[v; — ¢t ||?| < &
and |wj;) is a normalised quantum state orthogonal to |w;;). Ideally, we would like to implement
U : i, §)|0) — i, j)|wi;). Also

Vig): U = D0 = (1 - VT= 52+ 8 = /2 2/T— 0, < /255,
using that /1 — d3 > 1 — J5. Since (variable-time) quantum minimum finding does not take into
account the action of U onto states of the form |3, j)|0+) for |01) orthogonal to |0), we can, without
of loss of generality, assume that ||[U — U|| < /202. The success probability of (variable-time)

quantum minimum finding is 1 — §; when employing the unitary U. However, since it employs U
instead, the success probability decreases by at most the spectral norm of the difference between
the “real” and the “ideal” total unitaries. To be more precise, the “ideal” (variable-time) quantum
minimum finding is a sequence of gates A = U E\UsE, ---UnEn, where U; € {U,U'}, E; is
a circuit of elementary gates, and [V is the number of queries to U, which can be upper-bounded
as O(\f log 5 ) The “real” implementation, on the other hand, is A= U1E1 U2E2 U ~NEN,

where U; € {U,U'}. Then | A — A|| < N|U — (~f|| < N+/2)5. The failure probability is thus

01 + N+/209. By taking 61 = O(J) and 02 = O(NQ) the success probability is 1 — §. The final
complexities are obtained by replacing d; and J into Eq. (2). O

C LOWER BOUNDS

In this section we prove query lower bounds to the matrix V = [v1, ... ,v,] € R?*™ for finding new
centroids c1, ..., c; € R? given k clusters {C;},¢(x that form a partition of [n]. We note that the
task considered here is easier than the one performed by (e, v/)-k-means, since the clusters {C; } e[z
are part of the input. Nonetheless, query lower bounds for such problem will prove to be tight in
most parameters. The main idea is to reduce the problem of approximating ﬁ Eiecj v; for all
j € [k] from the problem of approximating the Hamming weight of some bit-string, whose query
complexity is given in the following well-known fact.
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Fact 18 ((Nayak & Wu, 1999, Theorem 1.11)). Ler x € {0,1}" be a bit-string with Hamming
weight |z| = ©(n) accessible through queries. Consider the problem of outputting w € [n] such
that ||z] — w| < m for a given 0 < m < n/4. Its randomised classical query complexity is
O(min{(n/m)?,n}), while its quantum query complexity is ©(min{n/m,n}).

Before presenting our query lower bounds for (£, v)-k-means, we shall need the following fact.

Lemma 19. Given v € R? such that ||z||; < € fore > 0, there is S C [d] with |S| > [4] such that
|| < %Eforalli € s.

Proof. Arrange the entries of z is descending order, i.e., - > |ag,| Let S =
{k(a )1 ka}. Thene > STUE) |2y | > 4]2;| Vi € S, which implies ;| < ZVie S, O

Theorem 20. Letn, k,d € N and e > 0. With entry-wise query accessto' V = [vy,. .., v,] € R¥*"
and (||v;|) i) for any r € [1, 00] and classical description of partition {C; } jeri) of [n] with |C;| =
Q(%), outputting centroids c1,. .., ¢ € RY such that ||c; — \Tl| Diec; vi|| < e forall j € [k] has

randomised and quantum query complexity Q(mln{ “VLHF =, nd}) and Q(mm{ “VULF nd}) re-
spectively.

Proof. Let{C;} ;e besuchthatC; = {(j—1)2+1,(j— )%4—2 ,jZ}for all j € [k]. Consider
the ‘initial centroids Y, ..., ¢} € Rd defining {C;} je[) as c = (0,0,...,0, %) i.e., its last entry
s 7. Now let @ € Ry be a positive number to be determlned later and W := {w € {0,1}% :
wg = 0and [w| = [951]}. Note that [[wl|, = [452]+ forall w € W and 7 € [1,00]. Let then
V = [v1,...,vn] € R be such that, for each j € [k], the vectors {v; }iec, are v; = ac? + aw;
(here the multlphcatlon by « is done entry-wise), where w; is randomly picked from W7 To be

more precise, we pick the first [ 5 | bits of w; completely randomly and the next | 41| bits as the
complement of the previous ones (plus wy—1 = 0 if d is even, while wy = 0 by deﬁmtlon) This

means that the vectors {v; };c¢, belong to the (d — 1)-sphere of diameter ©(av/d) centered at acy

. 1
and on the hyperplane orthogonal to c . Moreover, by construction, ||v;, = OZ(L + L%J) T s
constant for all i € C;, so access to Hvl || does not give any meaningful information about c;. Now,

notice that

dtl_ ,d+] IVIr V2
VI = a2 +uy|? < a? — a> ]
V% = « E Y e+ wi? < ZZ — NN ES

€[k] i€C; k] i€C;
Assume we have an algorithm that outputs 1, ..., ¢, € R? such that ||¢; — \T1| Dice, Vi | <efor
J ,
all j € [k]. This allows us to output w; := |%‘(cj - ac?) = 2(cj— ac?). Consider the first | 452 |

bits of w; and ;. w; only. Then

L(d-1)/2] P
s R B
(=1 1€C; i€C;

for all j € [k]. According to Lemma 19, for each j € [k] there is S; C [[ 451 ]] with [S;] > |42

such that |w;, — ZiGC wie] < k‘i;LL for ¢ € S;, i.e., the number wj, approx1mates Zzecj Wip

up to additive error k‘f;LL forall £ € S; and j € [k]. This means that we can approximate the
Hamming weight of k| 952 | independent bit-strings on |C;| = % bits up to additive error k4”§_ -

(the first L L | bits of w; are independent by construction). Accordlng to Fact 18, the randomized
and quantum query lower bounds for approximating k Ld ! | independent Hamming weights on =

. o . 47’7,5 .
bits each to precision — T are, respectively,

n? a?k%d n [V kd
Q(kdmm{k2 2.2 7k}) :Q<m1n{ . 827nal}),
. [nakvd n\ [ IV]F kd
Q(kzdmln{kne7k}> —Q(mln{ NG — nd O
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Figure 2: Total runtime time, residual sum of squares (RSS) difference, and number of iterations as
a function of the dimension d. Here n = 300000, k = 5, 6 = 0.01, and 7 = 0.1. The standard
k-means is depicted as ¢ = 0. Each point is the average of 1750 random datasets and centroid
initialisations.

D FURTHER NUMERICAL EXPERIMENTS

In this section we conduct further numerical experiments exploring the dependence of EKMeans and
standard k-means on the dimension d (Figure 2) and number of centroids & (Figure 3), in a similar
fashion to Section 4. All experiments were performed on the synthetic datasets from Section 4.
We set the dataset size n = 300000, the convergence threshold 7 = 0.1, approximation parameter
e € {0.2,04,0.6,0.8,1.0}, probability parameter 6 = 0.01. The samples sizes are once again
2

p= ML mE andg = [E22 L.

Figure 2 collects our results regarding the total runtime, RSS, and number of iterations of EKMeans
and k-means with respect to the dimension d € {10, 20, 30,40, 50,60}. Here the number of cen-
troids is fixed to £ = 5. Once again, EKMeans is substantially faster than k-means for all dimensions
as shown in Figures 2a and 2b, although the relative advantage is slightly smaller for larger d. As
an example, for d = 10, k-means runs in =~ 2.7 s, while EKMeans with ¢ = 1.0 runs in = 8 ms, a
~ 330-fold improvement. For d = 60, this decreases to a ~ 60-fold advantage (= 9.5 s for k-means
against ~ 160 ms for EKMeans with £ = 1.0).

Figure 2c shows, similarly to Figure 1d, that EKMeans returns good centroids compared to k-means
across all dimensions as measured by the relative difference of RSS. On the other hand, in Figure 2d
we can observe that EKMeans still requires more iterations until convergence for all dimensions.
Interestingly enough, the number of iterations decreases for larger dimensions for both k-means
and EKMeans. This is an artifact our dataset generation: for a fixed dataset size n and number
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Figure 3: Total runtime time, residual sum of squares (RSS) difference, and number of iterations
as a function of the number of centroids k. Here n = 300000, d = 30, 6 = 0.01, and 7 = 0.1.
The standard k-means is depicted as € = 0. Each point is the average of 400 random datasets and
centroid initialisations.

of centroids k, a larger dimension d translates to clusters being farther away from each other, so
centroids quickly converge to the average of vectors within each isolated cluster.

In Figure 3 we explore the same properties — total runtime, RSS, and number of iterations — but
now with respect to the number of centroids k¥ € {2,4,6,8,10,12}. Here the dimension is fixed
to d = 30. Figures 3a and 3b show that EKMeans is still faster than k-means for all number of
centroids. However, the advantage decreases as k increases, a direct result of increasing the number
of samples p and ¢ quadratically with k. While the quadratic dependence of the number of samples
on k comes from rigorous theoretical results, p and ¢ should obviously be capped at n or even at
a constant factor of n. The sample complexity of EKMeans can thus be made independent of k for
large values k and its runtime follow the linear dependence from the standard k-means.

Figure 3c shows that once again EKMeans returns centroids with quality compared to k-means as
measured by the relative RSS difference, while Figure 3d concludes that EKMeans still requires
more iterations to converge than k-means. The number of iterations actually increases with k for
both algorithms for the same reason it decreased with dimension d in Figure 2d: for fixed n and d, a
larger k translates to more clusters overlapping, so centroids take longer to converge to the average
of vectors within their corresponding cluster.

As mentioned in Section 3, the runtime dependence on n comes, at least theoretically, from sampling
the sets of indices P, @ C [n], being O((p + ¢) logn) under Definition 2. Such a dependence, if
any, is hardly observed in Figure 1 given the different runtime scales. In Figure 4 we explore the
runtime dependence on n of EKMeans by covering a wide range of dataset sizes from 2 - 10 to
2-107. Here we fixed k = 5, d = 5, and € = 0.5. The total runtime includes sampling the sets P, )
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Figure 4: Total runtime time as a function of the dataset size n. Here k = 5,d = 5, = 0.5, § =
0.01, and 7 = 0.1. Each point is the average of 255000 random datasets and centroid initialisations.

and performing all iterations until convergence, i.e., until 1 > cp ¢ — <7 =0.1. As can
be observed, there is some dependence on n coming from the sampling step, although quite small:
a 10%-fold increase in the dataset set only adds a few milliseconds to the total clustering time. We
note that sampling should be mostly independent of the dimension d, while the iterative clustering
part is not. As a result, for larger d the effect of sampling is even less pronounced compared to
the total runtime. Ultimately, though, the dependence on n (at least classically) is mostly an issue
regarding how fast computers can access data in a RAM-like fashion. Sampling P, (), specially @,
in our numerical experiments was done by converting a vector of floats into a distribution using the
discrete_distribution function from the C++ library random. A more thorough analysis of
sampling numbers from discrete distributions in C++ or other computational languages is beyond
the scope of this work.
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