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Abstract

Recent work has shown that systems for speech001
translation (ST) – similarly to automatic speech002
recognition (ASR) – poorly handle person003
names. This shortcoming does not only lead to004
errors that can seriously distort the meaning of005
the input, but also hinders the adoption of such006
systems in application scenarios (like computer-007
assisted interpreting) where the translation of008
named entities, like person names, is crucial.009
In this paper, we first analyse the outputs of010
ASR/ST systems to identify the reasons of fail-011
ures in person name transcription/translation.012
Besides the frequency in the training data, we013
pinpoint the nationality of the referred person014
as a key factor. We then mitigate the problem015
by creating multilingual models, and further016
improve our ST systems by forcing them to017
jointly generate transcripts and translations, pri-018
oritising the former over the latter. Overall, our019
solutions result in a relative improvement in020
token-level person name accuracy by 47.8% on021
average for three language pairs (en→es,fr,it).022

1 Introduction023

Automatic speech translation (ST) is the task of024

generating the textual translation of utterances. Re-025

search on ST (Anastasopoulos et al., 2021; Ben-026

tivogli et al., 2021) has so far focused on compar-027

ing the cascade (a pipeline of an automatic speech028

recognition – ASR – and a machine translation –029

MT – model) and the direct paradigms (Bérard030

et al., 2016; Weiss et al., 2017), or on improving031

either of them in terms of overall quality. Quality032

is usually measured with automatic metrics such033

as BLEU (Papineni et al., 2002) and TER (Snover034

et al., 2006), possibly corroborated by manual anal-035

yses. However, the underlying assumption of these036

efforts is that the generated text is consumed by037

end users whose goal is understanding the source038

speech content, disregarding that ST has the poten-039

tial to be deployed in other application scenarios040

associated to different user needs.041

One possible application is in the context of 042

computer-assisted interpreting (CAI – Fantinuoli 043

2017a), which supports interpreters during both the 044

preparation phase (Fantinuoli, 2017b; Lim, 2020) 045

and the live interpretation (Prandi, 2018; Desmet 046

et al., 2018). During simultaneous sessions, in 047

fact, interpreters undergo a high cognitive work- 048

load in which some elements – namely named enti- 049

ties (NEs) and terminology – are known to play a 050

critical role (Jones, 1998; Gile, 2009). These ele- 051

ments i) are hard to remember (Liu et al., 2004), ii) 052

can be unknown to interpreters and difficult to rec- 053

ognize (Griffin and Bock, 1998), and iii) differently 054

from other types of words, usually have one or few 055

correct translations. As such, interpreters would 056

benefit from automatic systems that reliably recog- 057

nize and translate these critical elements, without 058

distracting them with wrong suggestions that are 059

even harmful (Stewart et al., 2018). The fluency 060

and intelligibility of the generated translations, in- 061

stead, plays a marginal role for them, as interpreters 062

are known to be better than machines on these as- 063

pects (Fantinuoli and Prandi, 2021). 064

However, Gaido et al. (2021) recently showed 065

on their newly created benchmark – NEuRoparl- 066

ST – that both ASR models (and thus cascade 067

ST systems) and direct ST systems are currently 068

inadequate to meet these needs. Indeed, they 069

perform poorly on person names, with transcrip- 070

tion/translation accuracy of ~40%. Hence, as a first 071

step toward the long-term goal of integrating ST 072

models in assistant tools for live interpreting, this 073

work focuses on i) identifying the factors that lead 074

to the wrong transcription and translation of per- 075

son names, and ii) proposing dedicated solutions 076

to mitigate the problem. 077

To achieve these objectives, our first contribution 078

(§3.1) is the annotation1 of each person name occur- 079

ring in NEuRoparl-ST with information about their 080

nationality and the nationality of the speaker (as a 081

1To be released upon paper acceptance.
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proxy of the native language) – e.g. if a German082

person says “Macron is the French president”, the083

speaker nationality is German, while the referent084

nationality is French. Drawing on this additional085

information, our second contribution (§3.2-3.3) is086

the analysis of the concurring factors involved in087

the correct recognition of person names. Besides088

their frequency, we identify as key discriminating089

factor the presence in the training data of speech ut-090

tered in the referent’s native language (e.g. French091

in the above example). This finding, together with092

an observed accuracy gap between person name093

transcription (ASR) and translation (ST), leads to094

our third contribution (§4): a multilingual ST sys-095

tem that jointly transcribes and translates the input096

audio, giving higher importance to the transcrip-097

tion task in favour of a more accurate translation of098

names. Our model shows relative gains in person099

name translation by 48% on average on three lan-100

guage pairs (en→es,fr,it), producing useful transla-101

tions for interpreters in 66% of the cases. A manual102

analysis of the outputs concludes our work (§5),103

highlighting that most of the errors still produced104

fall into two categories: omissions and replace-105

ments with a different person name. These insights106

can be the starting point for future work aimed at107

tackling the identified issues.108

2 Related Work109

When the source modality is text, person names110

can often be “copied”, i.e. replicated unchanged,111

into the output. This task has been shown to be well112

accomplished by both statistical and neural transla-113

tion systems (Koehn and Knowles, 2017). On the114

contrary, when the source modality is speech (as in115

ASR and ST), systems struggle due to the impossi-116

bility to copy the audio source. The recognition of117

person names from speech is a complex task that118

has mostly been studied in the context of recogniz-119

ing a name from a pre-defined list, such as phone120

contacts (Raghavan and Allan, 2005; Suchato et al.,121

2011; Bruguier et al., 2016). The scenario of an122

open or undefined set of possible names is instead123

under-explored. Few studies (Ghannay et al., 2018;124

Caubrière et al., 2020) focus on comparing end-125

to-end and cascade approaches in the transcription126

and recognition of NEs from speech. They do not127

directly investigate person names though, as they128

do not disaggregate their results by NE category.129

Similarly, Porjazovski et al. (2021) explore NE130

recognition from speech in low-resource languages,131

and propose two end-to-end methods: one adds a 132

tag after each word in the generated text to define 133

whether it is a NE or not, and one uses a dedicated 134

decoder. However, they do not provide specific 135

insights on the system ability to correctly generate 136

person names and limit their study to ASR, without 137

investigating ST. Closer to our work, Gaido et al. 138

(2021) highlight the difficulty of ASR/ST neural 139

models to transcribe/translate NEs and terminology. 140

Although they identify person names as the hardest 141

NE category by far, they neither analyse the root 142

causes nor propose mitigating solutions. 143

3 Factors Influencing Name Recognition 144

As shown in (Gaido et al., 2021), the translation 145

of person names is difficult both for direct and cas- 146

cade ST systems, which achieve similar accuracy 147

scores (~40%). The low performance of cascade 148

solutions is largely due to errors made by the ASR 149

component, while the MT model usually achieves 150

nearly perfect scores. For this reason, henceforth 151

we will focus on identifying the main issues related 152

to the transcription and translation of person names, 153

respectively in ASR and direct ST. 154

We hypothesize that three main factors influence 155

the ability of a system to transcribe/translate a per- 156

son name: i) its frequency in the training data, as 157

neural models are known to poorly handle rare 158

words, ii) the nationality of the referent, as dif- 159

ferent languages may involve different phoneme- 160

to-grapheme mappings and may contain different 161

sounds, and iii) the nationality of the speaker, as 162

non-native speakers typically have different accents 163

and hence different pronunciations of the same 164

name. To validate these hypotheses, we inspect 165

the outputs of Transformer-based (Vaswani et al., 166

2017) ASR and ST models trained with the config- 167

uration defined in (Wang et al., 2020). For the sake 168

of reproducibility, complete details on our experi- 169

mental settings are provided in the Appendix.2 170

3.1 Data and Annotation 171

To enable fine-grained evaluations on the three fac- 172

tors we suppose to be influential, we enrich the 173

NEuRoparl-ST benchmark by adding three (one 174

for each factor) features to each token annotated 175

as PERSON. These are: i) the token frequency in 176

the target transcripts/translations of the training 177

set, ii) the nationality of the referent, and iii) the 178

2Upon paper acceptance, we will release both the code and
the trained models used in our experiments.
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nationality of the speaker. The nationality of the179

referents was manually collected by the authors180

through online searches. The nationality of the181

speakers, instead, was automatically extracted from182

the personal data listed in LinkedEP (Hollink et al.,183

2017) using the country they represent in the Eu-184

ropean Parliament.3 All our systems are trained185

on Europarl-ST (Iranzo-Sánchez et al., 2020) and186

MuST-C (Cattoni et al., 2021), and evaluated on187

this new extended version of NEuRoparl-ST.188

3.2 The Role of Frequency189

As a first step in our analysis, we automatically190

check how the three features added to each PER-191

SON token correlate with the correct generation of192

the token itself. Our aim is to understand the impor-193

tance of these factors and to identify interpretable194

reasons behind the correct or wrong handling of195

person names. To this end, we train a classification196

decision tree (Breiman et al., 1984). Classification197

trees recursively divide the dataset into two groups,198

choosing a feature and a threshold that minimize199

the entropy of the resulting groups with respect to200

the target label. Their structure makes them easy201

to interpret (Wu et al., 2008): the first decision202

(the root of the tree) is the most important criterion203

according to the learned model, while less discrim-204

inative features are pushed to the bottom.205

We feed the classifier with 49 features, cor-206

responding to: i) the frequency of the token in207

the training data, ii) the one-hot encoding of the208

speaker nationality, and iii) the one-hot encoding209

of the referent nationality.4 We then train it to pre-210

dict whether our ASR model is able to correctly211

transcribe the token in the output. To this end, we212

use the implementation of scikit-learn (Pedregosa213

et al., 2011), setting to 3 the maximum depth of the214

tree, and using Gini index as entropy measure.215

Unsurprisingly, the root node decision is based216

on the frequency of the token in the training data,217

with 2.5 as split value. This means that person218

names occurring at least 3 times in the training data219

are likely to be correctly handled by the models.220

Although this threshold may vary across datasets221

of different size, it is an indication on the necessary222

number of occurrences of a person name, eventu-223

ally useful for data augmentation techniques aimed224

at exposing the system to relevant instances at train-225

3 For each speech in Europarl-ST, the speaker is referenced
by link to LinkedEP.

4Speakers and referents respectively belong to 17 and 31
different nations.

ing time (e.g. names of famous people in the spe- 226

cific domain of a talk to be translated/interpreted). 227

We validate that this finding also holds for ST sys- 228

tems by reporting in Table 1 the accuracy of person 229

tokens for ASR and the three ST language direc- 230

tions, split according to the mentioned threshold of 231

frequency in the training set. On average, names 232

occurring at least 3 times in the training set are 233

correctly generated in slightly more than 50% of 234

the cases, a much larger value compared to those 235

with less than 3 occurrences. 236

All Freq. >= 3 Freq. < 3
ASR 38.46 55.81 4.55
en-fr 28.69 45.45 0.00
en-es 35.29 53.57 19.05
en-it 29.70 46.77 2.56
Average 33.04 50.40 6.54

Table 1: Token-level accuracy of person names divided
into two groups according to their frequency in the train-
ing set for ASR and ST (en→es/fr/it) systems.

The other nodes of the classification tree contain 237

less interpretable criteria, which can be considered 238

as spurious cues. For instance, at the second level 239

of the tree, a splitting criterion is “is the speaker 240

from Denmark?” because the only talk by a Danish 241

speaker contains a mention to Kolarska-Bobinska 242

that systems were not able to correctly generate. 243

We hence decided to perform further dedicated 244

experiments to better understand the role of the the 245

other two factors: referent and speaker nationality. 246

3.3 The Role of Referent Nationality 247

Humans often struggle to understand names belong- 248

ing to languages that are different from their native 249

one or from those they know. Moreover, upon man- 250

ual inspection of the system outputs, we observed 251

that some names were Englishized (e.g. Youngsen 252

instead of Jensen). In light of this, we posit that 253

a system trained to recognize English sounds and 254

to learn English phoneme-to-grapheme mappings 255

might be inadequate to handle non-English names. 256

We first validate this idea by computing the ac- 257

curacy for names of people from the United King- 258

dom5 (‘UK” henceforth) and for names of people 259

from the rest of the World (“non-UK”). Looking 260

5We are aware that our annotation is potentially subject to
noise, due to the possible presence of UK citizens with non-
anglophone names. A thorough study on the best strategies
to maximise the accuracy of UK/non-UK label assignment
is a task per se, out of the scope of this work. By now, as a
manual inspection of the names revealed no such cases in our
data, we believe that the few possible wrong assignments do
not undermine our experiments, nor the reported findings.
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Referent ASR en-fr en-es en-it Freq.
UK 52.38 59.09 63.16 41.18 46.21
non-UK 35.78 22.00 30.00 27.38 21.96
All 38.46 28.69 35.29 29.70 25.65

Table 2: Token-level accuracy of ASR and ST (en-fr,
en-es, en-it) systems for UK/non-UK referents.

at Table 2, we notice that our assumption seems261

to hold for both ASR and ST. However, the scores262

correlate with the frequency (Freq.) of names in263

the training set6 as, on average, UK referents have264

more than twice the occurrences (46.21) of non-265

UK referents (21.96). The higher scores for UK266

referents may hence depend on this second factor.267

To disentangle the two factors and isolate the268

impact of referents’ nationality, we create a train-269

ing set with balanced average frequency for UK270

and non-UK people by filtering out a subset of271

the instances containing UK names from the origi-272

nal training set.3 To ensure that our results are not273

due to a particular filtering method, we randomly274

choose the instances to remove and run the experi-275

ments on three different filtered training sets. The276

results for the three ST language pairs and ASR277

(see Table 3) confirm the presence of a large ac-278

curacy gap between UK and non-UK names (9.22279

on average), meaning that the accuracy on non-UK280

names (23.62) is on average ~30% lower than the281

accuracy on UK names (32.84). As in this case282

we can rule out any bias in the results due to the283

frequency in the training set, we can state that the284

nationality of the referent is an important factor.285

ASR en-fr en-es en-it Avg.
UK 42.86 25.76 33.33 29.41 32.84
non-UK 29.05 22.67 23.33 19.44 23.62
∆Accuracy 13.81 3.09 10.00 9.97 9.22

Table 3: Token-level accuracy of UK/non-UK referents
averaged over three runs with balanced training sets.

3.4 The Role of Speaker Nationality286

Another factor likely to influence the correct un-287

derstanding of person names from speech is the288

speaker accent. To verify its impact, we follow a289

similar procedure to that of the previous section.290

First, we check whether the overall accuracy is291

higher for names uttered by UK speakers than for292

those uttered by non-UK speakers. Then, to ascer-293

tain whether the results depend on the proportion294

6Notice that the ASR and the ST training sets mostly con-
tain the same data, so frequencies are similar in the four cases.

of UK/non-UK speakers, we randomly create three 295

training sets featuring a balanced average frequency 296

of speakers from the two groups. 297

Speaker ASR en-fr en-es en-it Freq.
UK 41.03 32.43 36.84 29.41 34.55
non-UK 37.36 27.06 34.57 29.85 21.76
All 38.46 28.69 35.29 29.70 25.65

Table 4: Token-level accuracy of ASR and ST systems
for names uttered by UK/non-UK speakers.

Table 4 shows the overall results split according 298

to the two groups of speaker nationalities. In this 299

case, the accuracy gap is minimal (the maximum 300

gap is 5.37 for en-fr, while it is even negative for en- 301

it), suggesting that the speaker accent has marginal 302

influence, if any, on how ASR and ST systems 303

handle person names. 304

The experiments on balanced training sets (see 305

Table 5) confirm the above results, with an aver- 306

age accuracy difference of 2.78 for ASR and the 307

three ST language directions. In light of this, we 308

can conclude that, differently from the other two 309

factors, speakers’ nationality has negligible effects 310

on ASR/ST performance on person names. 311

Speaker ASR en-fr en-es en-it Avg.
UK 29.91 29.73 28.95 23.53 28.03
non-UK 33.33 22.75 25.51 19.40 25.25
∆Accuracy -3.42 6.98 3.43 4.13 2.78

Table 5: Token-level accuracy of person names uttered
by UK/non-UK speakers averaged over three runs with
balanced training sets.

4 Improving Person Name Translation 312

The previous section has uncovered that only two 313

of the three considered factors actually have a tan- 314

gible impact: the frequency in the training set, and 315

the referent nationality. The first issue can be tack- 316

led either by collecting more data, or by generating 317

synthetic instances (Alves et al., 2020; Zheng et al., 318

2021). Fine-tuning the model on additional ma- 319

terial is usually a viable solution in the use case 320

of assisting interpreters since, during their prepa- 321

ration phase, they have access to various sources 322

of information (Díaz-Galaz et al., 2015), including 323

recordings of previous related sessions. Focusing 324

on the second issue, we hereby explore i) the cre- 325

ation of models that are more robust to a wider 326

range of phonetic features and hence to names of 327

different nationalities (§4.1), and ii) the design of 328

solutions to close the gap between ASR and ST sys- 329
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Monolingual Multilingual
ASR en-fr en-es en-it ASR en-fr en-es en-it

WER (↓) BLEU (↑) WER (↓) BLEU (↑)
Europarl-ST 13.65 32.42 34.11 25.72 13.29 33.92 35.59 26.55
MuST-C 11.17 32.81 27.18 22.81 11.86 33.34 27.72 23.02

Token-level Person Name Accuracy (↑) Avg. ∆
Overall 38.46 28.69 35.29 29.70 46.15 38.52 44.54 36.63 +8.43
UK 52.38 59.09 63.16 41.18 66.67 59.09 63.16 52.94 +6.51
non-UK 35.78 22.00 30.00 27.38 42.20 34.00 41.00 33.33 +8.84

Table 6: Transcription/translation quality measured respectively with WER and SacreBLEU7 (Post, 2018) and
token-level person name accuracy, both overall and divided into UK/non-UK referents. Avg. ∆ indicates the
difference between multilingual and monolingual systems averaged over the ASR and the three ST directions.

tems attested by previous work (Gaido et al., 2021)330

and confirmed by our preliminary results shown in331

Table 1 (§4.2).332

4.1 Increasing Robustness to non-UK333

Referents334

As illustrated in §3.3, one cause of failure of our335

ASR/ST models trained on English audio is the ten-336

dency to force every sound to an English-like word,337

distorting person names from other languages. Con-338

sequently, we posit that a multilingual system,339

trained to recognize and translate speech in dif-340

ferent languages, might be more robust and, in turn,341

achieve better performance on non-English names.342

We test this hypothesis by training multilin-343

gual ASR and ST models that are fed with audio344

in different languages, and respectively produce345

transcripts and translations (into French, Italian,346

or Spanish in our case). The ST training data347

(*→es/fr/it) consists of the en→es/fr/it sections348

of MuST-C and the {nl, de, en, es, fr, it, pl, pt,349

ro}→es/fr/it sections of Europarl-ST. Notice that,350

in this scenario, the English source audio consti-351

tutes more than 80% of the total training data, as352

MuST-C is considerably bigger than Europarl-ST353

and the English speeches in Europarl-ST are about354

4 times those in the other languages.8 For ASR, we355

use the audio-transcript pairs of the *-it training set356

defined above. Complete details on our experimen-357

tal settings are provided in the Appendix.2358

We analyze the effect of including additional359

languages both in terms of general quality (mea-360

sured as WER for ASR, and BLEU for ST) and361

in terms of person name transcription/translation362

accuracy. Looking at the first two rows of Table363

6, we notice that the improvements in terms of364

generic translation quality (BLEU) are higher on365

7BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0
8For instance, in *-fr the training set amounts to 671 hours

of audio, 573 (i.e. 83%) having English audio.

the Europarl-ST than on the MuST-C test set – most 366

likely because the additional data belongs to the 367

Europarl domain – while in terms of speech recog- 368

nition (WER) there is a small improvement for 369

Europarl-ST and a small loss for MuST-C. Turning 370

to person names (third line of the table), the gains 371

of the multilingual models (+8.43 accuracy on av- 372

erage) are higher and consistent between ASR and 373

the ST language pairs. 374

By dividing the person names into the two cat- 375

egories discussed in §3.3 – UK and non-UK refer- 376

ents – we see that results become less consistent 377

across language pairs. On ST into French and Span- 378

ish, the accuracy of UK names remains constant, 379

while there are significant gains (respectively +12 380

and +11) for non-UK names. These results seem to 381

support the intuition that models trained on more 382

languages are able to recognize a wider range of 383

phonetic content and, having learned phoneme-to- 384

grapheme mappings also for other languages, they 385

better handle non-English names. However, the 386

results for ASR and for ST into Italian seemingly 387

contradict our hypothesis, as they show higher im- 388

provements for UK names (~11-14) than for non- 389

UK names (~6-7). 390

We investigate this behavior by further divid- 391

ing the non-UK group into two sub-categories: the 392

names of referents whose native language is in- 393

cluded in the training set (“in-train” henceforth), 394

and those of referents whose native language is not 395

included in the training set (“out-of-train”). For 396

in-train non-UK names, the monolingual ASR ac- 397

curacy is 33.33 and is outperformed by the multilin- 398

gual counterpart by 16.66, i.e. by a margin higher 399

than that for UK names (14.29). For the out-of- 400

train names, instead, the gap between the mono- 401

lingual ASR accuracy (36.71) and the multilingual 402

ASR accuracy (39.24) is marginal (2.5). Similarly, 403

for ST into Italian the in-train group accuracy im- 404

proves by 8.70 (from 34.78 to 43.48), while the 405

5



Model WER (↓)
ASR

BLEU (↑) Person Accuracy
en-es en-fr en-it ASR en-es en-fr en-it ST Avg. ASR-ST

Base 13.29 35.86 33.99 26.80 46.15 44.54 38.52 36.63 39.90 6.25
Triangle 14.25 37.42 35.44 28.20 42.31 43.70 41.80 41.58 42.36 -0.05
λASR=0.8, λST =0.2 13.75 36.48 34.85 27.30 47.69 44.54 43.44 50.50 46.16 1.53

Table 7: WER (for ASR), SacreBLEU (for ST), and token-level person name accuracy computed on the NEuRoparl-
ST test set. For triangle models, ASR scores are computed on the transcript output of the *-it model, as throughout
the paper we evaluate ASR on the English transcript of the en-it section. ST Avg. is the the average accuracy on the
3 language pairs (en→es,fr,it) and ASR-ST is the difference between the ASR and the average ST accuracy.

out-of-train group accuracy has a smaller gain of406

4.92 (from 24.59 to 29.51). These results indicate407

that adding a language to the training data helps the408

correct handling of person names belonging to that409

language, even when translating/transcribing from410

another language. Further evidence is exposed in411

§5, where we analyse the errors made by our sys-412

tems and how their distribution changes between a413

monolingual and a multilingual one.414

4.2 Closing the Gap Between ASR and ST415

The previous results – in line with those of Gaido416

et al. (2021) – reveal a gap between ASR and417

ST systems, although their task is similar when418

it comes to person names. Indeed, both ASR and419

ST have to recognize the names from the speech,420

and produce them as-is in the output. Contextually,421

Gaido et al. (2021) showed that neural MT models422

are good at “copying” from the source or, in other423

words, at estimating p(Y |T ) – where Y is the tar-424

get sentence and T is the textual source sentence425

– when Y and T are the same string. Hence, we426

hypothesize that an ST model can close the per-427

formance gap with the ASR by conditioning the428

target prediction not only on the input audio, but429

also on the generated transcript. Formally, this430

means estimating p(Y |X,T ′), where T ′ denotes431

a representation of the generated transcript, such432

as the embeddings used to predict them; and this433

estimation is what the triangle architecture (Anas-434

tasopoulos and Chiang, 2018) actually does.435

The triangle model is composed of a single en-436

coder, whose output is attended by two decoders437

that respectively generate the transcript (ASR de-438

coder) and the translation (ST decoder). The ST439

decoder also attends to the output embeddings (i.e.440

the internal representation before the final linear441

layer mapping to the output vocabulary dimension442

and softmax) of the ASR decoder in all its layers.443

In particular, the output of the cross-attention on444

the encoder output and the cross-attention on the445

ASR decoder output are concatenated and fed to a446

linear layer. The model is optimized with a multi- 447

loss objective function, defined as follows: 448

L(X) = −
∑
x∈X

(
λASR ∗

∑
t∈Tx

log(pθ(ti|x, ti−1,...,0))

+ λST ∗
∑
y∈Yx

log(pθ(yi|x, T, yi−1,...,0))
) 449

where T is the target transcript, Y is the target 450

translation, and x is the input utterance. λASR and 451

λST are two hyperparameters aimed at controlling 452

the relative importance of the two tasks. Previ- 453

ous works commonly set them to 0.5, giving equal 454

importance to the two tasks (Anastasopoulos and 455

Chiang, 2018; Sperber et al., 2020). To the best of 456

our knowledge, ours is the first attempt to inspect 457

performance variations in the setting of these two 458

parameters, calibrating them towards the specific 459

needs arising from our application scenario. 460

In Table 7, we compare the multilingual models 461

introduced in §4.1 with triangle ST multilingual 462

models trained on the same data (second row). Al- 463

though the transcripts are less accurate (about +1 464

WER), the translations have higher quality (+1.4- 465

1.6 BLEU on the three language pairs). Person 466

names follow a similar trend: in the transcript the 467

accuracy is lower (-3.84), while in ST it increases 468

(on average +2.46). Interestingly, the accuracy 469

gap between ASR and ST is closed by the triangle 470

model (see the ASR-ST column), confirming our 471

assumption that neural models are good at copy- 472

ing. However, since the accuracy in the transcript 473

is lower (42.31), the ST accuracy (42.36) does not 474

reach that of the base ASR model (46.15). The 475

reason of this drop can be found in the different 476

kind of information required by the ASR and ST 477

tasks. Chuang et al. (2020) showed that the se- 478

mantic content of the utterance is more important 479

for ST, and that joint ASR/ST training leads the 480

model to focus more on the semantic content of the 481

utterance, yielding BLEU gains at the expense of 482

higher WER. As person names are usually close 483

in the semantic space (Das et al., 2017), the higher 484
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Figure 1: Correct person names and the categories of errors of the baseline and multilingual ASR systems.

focus on semantic content may be detrimental to485

their correct handling and hence explain the lower486

person name accuracy.487

In light of this observation, we experimented488

with changing the weights of the losses in the tri-489

angle training, assigning higher importance to the490

ASR loss (third row of Table 7). In this configu-491

ration, as expected, transcription quality increases492

(-0.5 WER) at the expense of translation quality,493

which decreases (-0.8 BLEU on average) but re-494

mains higher than that of the base model. The accu-495

racy of person names follows the trend of transcrip-496

tion quality: the average accuracy on ST (46.16)497

increases by 3.8 points over the base triangle model498

(42.36), becoming almost identical to that of the499

base ASR model (46.15). All in all, our solution500

achieves the same person name accuracy of an ASR501

base model without sacrificing translation quality502

compared to a base ST system.503

5 Error Analysis504

While the goal is the correct rendering of person505

names, not all the errors have the same weight. For506

interpreters, for instance, minor misspellings of a507

name may not be problematic, an omission can be508

seen as a lack of help, but the generation of a wrong509

name is harmful, as potentially distracting and/or510

confusing. To delve into these aspects, we first511

carried out a manual analysis on the ASR outputs512

(§5.1) and then compared the findings with the513

same analysis on ST outputs (§5.2).514

5.1 ASR Analysis515

Two authors with at least C1 English knowledge516

and linguistic background annotated each error as-517

signing it to a category.9 The categories, chosen518

9The inter-annotator agreement on label assignments was
calculated using the kappa coefficient in Scott’s π formula-
tion (Scott, 1955; Artstein and Poesio, 2008), and resulted

by analysing the system outputs, are: misspelling – 519

when a person name contains minor errors leading 520

to similar pronunciation (e.g. Kozulin instead of 521

Kazulin); replacement with a different name – 522

when a person name is replaced with a completely 523

different one in terms of spelling and/or pronuncia- 524

tion (e.g. Mr Muhammadi instead of Mr Allister); 525

replacement with other words – when a proper 526

person name is replaced by a common noun, other 527

parts of speech, and/or proper nouns that do not 528

refer to people, such as geographical names (e.g. 529

English Tibetan core instead of Ingrid Betancourt) 530

omission – when a person name, or part of a sen- 531

tence containing it, is ignored by the system. 532

The results of the annotations are summarized 533

in the graphs in Figure 1. Looking at the baseline 534

system (Figure 1a), we notice that omissions and 535

replacements with a different name are the most 536

common errors, closely followed by replacements 537

with other words, although for non-UK names the 538

number of misspellings is also significant. The mul- 539

tilingual system (Figure 1b) does not only show a 540

higher percentage of correct names, but also a dif- 541

ferent distribution of errors, in particular for the 542

names belonging to the languages added to the 543

training set (non-UK in train). Indeed, the mis- 544

spellings increase to the detriment of omissions 545

and replacements with a different name and other 546

words. Omissions also decrease for UK names and 547

for names in languages not included in the train- 548

ing set (non-UK not in train). For UK names, the 549

previously-missing names fall either into the cor- 550

rect names or into the replacements with a different 551

name; for the non-UK not in train, instead, they are 552

replaced by different names or other words. 553

Considering multilingual outputs, we observe 554

that for the languages in the training set (including 555

in 87.5%, which means “almost perfect” agreement in the
standard interpretation (Landis and Koch, 1977).
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Figure 2: Correct person names and the categories of errors of the baseline and multilingual ST-into-Italian systems.
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Figure 3: Correct person names and the different cat-
egories of errors of the ST-into-Italian triangle system
with λASR=0.8, λST =0.2 expressed in percentages.

English), in 66% of the cases the system gener-556

ates a name that could be helpful for an interpreter557

(either correct or with minor misspellings). Con-558

fusing/distracting outputs (i.e. replacements with a559

different person name) occur in about 15% of the560

cases. Future work should precisely assess whether561

these scores are sufficient to help interpreters in562

their job, or which level of accuracy is needed.563

Moreover, we notice that the system is able to564

discern when a person name should be generated565

(either correct, misspelled, or replaced by a differ-566

ent name) in more than 80% of the cases. This567

indicates their overall good capability to recognize568

patterns and/or appropriate contexts in which a per-569

son name should occur.570

5.2 ST Analysis571

The same analysis was carried out for ST systems572

translating into Italian (see Figure 2) by two na-573

tive speakers, co-authors of this paper. Although574

results are lower in general, when moving from the575

monolingual (Figure 2a) to the multilingual (Fig-576

ure 2b) system we can see similar trends to ASR,577

with the number of omissions and replacements578

with a different name that decreases in favor of a579

higher number of correct names and misspellings.580

Looking at the analysis of the triangle model with581

λASR=0.8, λST=0.2 presented in §4.2 (Figure 3), 582

we observe that misspellings, omissions, and re- 583

placements with other words diminish, while cor- 584

rect names increase. Moreover, both the accuracy 585

(i.e. correct in the graphs) and the error distri- 586

butions of this system are similar to those of the 587

ASR multilingual model (Figure 1b). On one side, 588

this brings to similar conclusions, i.e. ST models 589

can support interpreters in ∼66% of the cases, and 590

can discern when a person name is required in the 591

translation in ∼80% of the cases. On the other, 592

it confirms that the gap with the ASR system is 593

closed, as observed in §4.2. 594

6 Conclusions 595

Humans and machines have different strengths and 596

weaknesses. Nonetheless, we have shown that 597

when it comes to person names in speech, they 598

both struggle in handling names in languages they 599

do not know and names that they are not used to 600

hear. This finding seems to insinuate that humans 601

cannot expect help from machines in this regard, 602

but we demonstrated that there is hope, moving the 603

first steps toward ST systems that can better handle 604

person names. Indeed, since machines are faster 605

learners than humans, we can train them on more 606

data and more languages. Moreover, we can design 607

dedicated architectural solutions aimed to add an 608

inductive bias and to improve the ability to handle 609

specific elements. Along this line of research, we 610

have shown that a multilingual ST model, which 611

jointly predicts the transcript and conditions the 612

translation on it, has relative improvements in per- 613

son name accuracy by 48% on average. We also 614

acknowledge that much work is still needed in this 615

area, with large margin of improvements available, 616

especially to avoid the two most common type of 617

errors pointed out by our analysis: omissions and 618

replacements with different person names. 619
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A Experimental Settings889

Our ASR and ST models share the same architec-890

ture. Two 1D convolutional layers with a Gated891

Linear Unit non-linearity between them shrink the892

input sequence over the temporal dimension, hav- 893

ing 2 as stride. Then, after adding sinusoidal po- 894

sitional embeddings, the sequence is encoded by 895

12 Transformer encoder layers, whose output is 896

attended by 6 Transformer decoder layers. We use 897

512 as Transformer embedding size, 2048 as inter- 898

mediate dimension of the feed forward networks, 899

and 8 heads. In the case of the triangle model, we 900

keep the same settings and the configurations are 901

the same for the two decoders. The number of pa- 902

rameters is ∼74M for the base system and ∼117M 903

for the triangle model. 904

We filter out samples whose audio segment lasts 905

more than 30s, extract 80 features from audio seg- 906

ments, normalize them at utterance level, and apply 907

SpecAugment (Park et al., 2019). The target text 908

is segmented into subwords using 8,000 BPE (Sen- 909

nrich et al., 2016) merge rules with SentencePience 910

(Kudo and Richardson, 2018). 911

Models are optimized with Adam (Kingma and 912

Ba, 2015) to minimize the label smoothed cross 913

entropy (Szegedy et al., 2016). The learning rate 914

increases up to 1e-3 for 10,000 warm-up updates, 915

then decreases with an inverse square-root sched- 916

uler. We train on 4 K80 GPUs with 12GB of RAM, 917

using mini-batches containing 5,000 tokens, and 918

accumulating the gradient for 16 mini-batches. We 919

average 5 checkpoints around the best on the val- 920

idation loss. All trainings last ∼4 days for the 921

multilingual systems, and ∼3 days for the base 922

system. 923
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