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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a power-
ful learn-to-reason paradigm for large reasoning models to tackle complex tasks.
However, the current RLVR paradigm is still not efficient enough, as it works in a
trial-and-error manner. To perform better, the model needs to explore the reward
space by numerously generating responses and learn from fragmented reward sig-
nals, blind to the overall reward patterns. Fortunately, verifiable rewards make the
natural language description of the reward function possible, and meanwhile, LLMs
have demonstrated strong in-context learning ability. This motivates us to explore
if large reasoning models can benefit from a motivation of the task, i.e., awareness
of the reward function, during the reinforcement finetuning process, as we humans
sometimes do when learning. In this paper, we introduce Motivation-enhanced
Reinforcement Finetuning (MeRF), an intuitive yet effective method enhancing
reinforcement finetuning of LLMs by involving “telling LLMs rules of the game”.
Specifically, MeRF directly injects the reward specification into the prompt, which
serves as an in-context motivation for the model to be aware of the optimization
objective. This simple modification leverages the in-context learning ability of
LLMs, aligning generation with optimization, thereby incentivizing the model to
generate desired outputs from both inner motivation and external reward. Empirical
evaluations demonstrate that MeRF achieves substantial performance gains over
the RLVR baseline. Moreover, ablation studies show that MeRF performs better
with greater consistency between the in-context motivation and the external reward
function, while the model also demonstrates an ability to adapt to misleading
motivations through reinforcement finetuning.
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Figure 1: Validation Accuracy of MeRF and RLVR baseline on K&K Logic Puzzles. Simply “telling
LLMs rules of the game” with in-context motivation during training, MeRF significantly outperforms
the RLVR baseline with better efficiency, demonstrating the effectiveness of leveraging in-context
motivation for more efficient RL training.
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1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language understanding and generation tasks, such as instruction following (Ouyang et al.,
2022; Zhou et al., 2023; Taori et al., 2023), code generation (Chen et al., 2021; Nijkamp et al., 2022;
Zhuo et al., 2024), and medical diagnosis (Singhal et al., 2025; Zhang et al., 2023; Wang et al., 2023).
To further improve the reasoning capabilities of LLMs, Reinforcement Learning with Verifiable
Rewards (RLVR) (Lambert et al., 2024; Team et al., 2025) has emerged as a promising alternative
to conventional supervised fine-tuning approaches (Radford et al., 2018; Brown et al., 2020), as
demonstrated by DeepSeek-R1 (Guo et al., 2025) and OpenAI-o1 (Jaech et al., 2024). RLVR treats
reasoning as a sequential decision-making process and optimizes models using objective reward
signals that can be automatically verified with explicit rules, such as matching mathematical answers
to ground truth (Lambert et al., 2024; He et al., 2024), or checking code correctness through unit
tests (Le et al., 2022; Liu et al., 2023). By optimizing models toward meeting the clearly defined
success criteria, RLVR enables LLMs to iteratively refine their reasoning capabilities, achieving
significant performance improvements on complex tasks.

Following and extending the success of the conventional RL paradigm in gaming, Go, and robotics to
the field of language models, RLVR relies on external reward signals to guide the training process of
LLMs (Zeng et al., 2025; Yu et al., 2025; Hu et al., 2025; Chen et al., 2025). However, in the same
way as conventional reinforcement learning, RLVR is not very efficient, as it works in a trial-and-error
manner, where the model can suffer from the sparse reward space and needs to learn the patterns of
the task and reward function by repeatedly collecting and comparing its outputs and corresponding
rewards. It requires a larger amount of training data and computational resources for LLMs to learn
from and generate enough responses to reach the expected behavior and then get positive feedback.
As we continue expecting LLMs to solve more and more complex tasks, the reward function can be
more sophisticated and the expected behavior can be harder to reach, making it even more important
to improve the efficiency of the current RLVR paradigm.

In RLVR, the model receives feedback on the correctness of its outputs, but lacks explicit awareness
of the optimization objectives during training. As the verifiable reward function (with explicit rules)
has demonstrated the desired behavior of the model, which can be described in natural language, and
the in-context learning ability enables LLMs to learn from the given context, an intuitive question
is why not tell the LLMs what is the expected behavior, or how is their output get evaluated,
during the training? This is similar to how humans learn: when we have a task, we often benefit
from understanding the rules and objectives before we start working on it. This understanding helps
us to align our efforts with the desired outcomes, resulting in more efficient and effective learning.

In this paper, we introduce Motivation-enhanced Reinforcement Finetuning (MeRF), a simple yet
powerful method that injects the reward specification directly into the prompt, serving as an in-context
motivation for the model to be aware of the optimization objective. Unlike current RLVR paradigm
leaving the model blind to the optimization objective during generation, relying on the transcendent
reward function to guide the training process, MeRF explicitly informs the model about the reward
structure and what constitutes a good response with in-context motivation, incentivizing the model to
generate desired outputs from both inner motivation and external reward, leading to more efficient
reinforcement finetuning as shown in Figure 1.

Our core contributions are summarized as follows:

• We propose MeRF, a novel motivation-enhanced reinforcement finetuning method for LLMs,
enabling the model to be aware of the optimization objective by in-context motivation, to achieve
more efficient and effective reinforcement finetuning of large reasoning models.

• Extensive experiments on the reasoning benchmarks: K&K Logic Puzzles, AIME24&25, AMC23,
MATH500, and CountDown, show that MeRF significantly outperforms the RLVR baseline,
validating its effectiveness and efficiency in improving reasoning capabilities in complex tasks.

• We provide a comprehensive analysis on the effectiveness of MeRF, including the impact of the
consistency between the in-context motivation and the actual reward function, offering insights
into the aligned in-context learning with reinforcement finetuning for self-evolving LLMs.
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2 METHOD

In this section, we introduce the Motivation-enhanced Reinforcement Finetuning (MeRF) for more
efficient reinforcement learning with verifiable rewards of large reasoning models, which enables
LLMs to be aware of the objective of the task in the reward space by in-context motivation.
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Figure 2: (Left) Illustration of the RLVR pipeline and the in-context motivation introduced by MeRF.
Compared to the indirect way (reward samples generated and through parameter updates) to learn
the reward patterns, MeRF enables the model to be aware of the overall reward space by in-context
motivation. (Right) We validate models in two settings: w/ motivation and w/o motivation in the
prompt. Different from the base model, the RLVR model achieves a slightly better performance in
validation w/ motivation than w/o motivation after the RLVR training, even while the motivation
is not involved in the training process, indicating a connection between the in-context motivation
validation and the RLVR training guided by the reward function (as the motivation describes).

2.1 MOTIVATION-ENHANCED REINFORCEMENT FINETUNING

Reinforcement learning of LLMs performs in a similar way as the human learning process, gaining
improvements by learning from the feedback from the environment. The feedback is critical for
the learning process, for it determines the direction of the optimization, which is often in the form
of rewards, reflecting how well the model performs on the task. However, it is not easy for the
model to learn the reward patterns before exploring the reward space extensively, especially when
the reward space is sparse and the expected behavior is hard to reach. It can be inefficient and
computationally expensive for LLMs, and at the beginning, most of the responses generated are bad
and non-rewarded. Models work in a blind way, i.e., randomly respond to the question, and somehow
the precious fragments of sparse positive rewards help the model to learn the reward patterns and
expected behavior. This RLVR paradigm is not efficient enough and sometimes even fails to work,
when the current model can hardly generate any good responses to get better rewards.

The cause of the problem is: the model is optimized in an indirect way with a black-box manner:
the model is unaware of the overall optimization objective of training during the generation, gaining
reward signal information by fragments (reward samples by the exploration of the model), and through
the parameter updates (policy gradient). The reward information can be local and one-sided when
exploration fails to sufficiently cover the overall reward space (which is challenging), preventing the
model from reaching the global optimum and leading instead to reward hacking toward local optima.
As shown in Figure 2 (Left), in current RLVR pipeline, the model can’t learn how to achieve the +10
reward if none of the generated responses can reach it, trapped in a paradoxical learning situation:
you need to learn something that you don’t know how to do, or even don’t know it exists.

Fortunately, the problem can be alleviated in RLVR and LLMs. In the RLVR pipeline, the reward is
verifiable with explicit rules, which means the reward function can be described by natural language,
and meanwhile, LLMs have demonstrated strong in-context learning ability to learn from the given
context. We propose to improve the information flow of reward signals in a more direct way, by
in-context motivation, i.e., language description of the reward function, in the training process, to
make the model aware of the optimization objective.

In Figure 2 (Right), we conduct an experiment, comparing the performance of the Base model and
RLVR model with and without motivation in the inference time, where we find that the Base Model
does not benefit from the motivation in the inference time, while the RLVR model, trained with the
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reward function described in the motivation, achieves an improvement when validated with in-context
motivation. Moreover, when we involve the motivation during the training process (MeRF), we find
a significant performance improvement over the RLVR baseline, demonstrating the effectiveness of
MeRF in improving the efficiency and effectiveness of reinforcement finetuning of LLMs.

2.2 MOTIVATION WITH VERIFIABLE REWARD

Following the previous work (Xie et al., 2025) of RLVR, we utilize a verifiable reward function for
the K&K Logic Puzzle dataset and demonstrate how the motivation is designed based on the reward
function. The reward function contains two components: (i) Correctness Score and (ii) Format Score.
It is implemented by rule-based verification and capable of being described in natural language,
enabling the motivation to be injected into the training process. Here is the System Prompt and
Motivation for K&K puzzle:

System Prompt and Motivation for K&K Puzzle

<|im_start|>system
You are a helpful assistant. The assistant first thinks about the reasoning process in the mind
and then provides the user with the answer. The reasoning process and answer are enclosed
within <think> </think> and<answer> </answer> tags, respectively, i.e., <think> reasoning
process here </think><answer> answer here </answer>. Now the user asks you to solve a
logical reasoning problem. After thinking, when you finally reach a conclusion, clearly state
the identity of each character within <answer> </answer> tags. i.e., <answer> (1) Zoey is a
knight (2) ... </answer>.
You will get evaluated following Evaluation Scoring Rules:
- Correctness Score:

- If your final answer is correct, score 2
- If your answer is understandable but wrong, score -1.5
- If your answer is not parsable or incomplete, score -2

- Format Score:
- If you follow the tag format exactly as above, score 1
- Otherwise, score -1

You will get the final score as their sum. Example:
(1) The format follows the required structure: +1
(2) The final answer is correct: +2
(3) Total evaluation score: 3
Think carefully, follow the structure, and consider the evaluation rules.<|im_end|>

<|im_start|>user
{input the puzzle} <|im_end|>

<|im_start|>assistant
<think>

By injecting the motivation into the training process, we enable the model to be aware of the
motivation of the task, which describes the reward function of the RLVR pipeline. The motivation
provides a clear specification of what is expected and how to do it correctly, aligning the generation
with the transcendent optimization objective. This approach leverages the in-context learning ability
of LLMs to improve their reasoning capabilities in a more efficient and effective manner.

3 EXPERIMENT

In this section, we present the experimental results of our proposed method MeRF. We compare
the performance of MeRF with the RLVR baseline to demonstrate the effectiveness of MeRF in
improving the reasoning capabilities of LLMs in the reinforcement finetuning process.
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Table 1: Performance comparison across models on tasks with varying difficulty by number of people
of K&K Puzzles. MeRF demonstrates a significant improvement over the RLVR baseline in both
in-domain and OOD scenarios. Notably, all the results are validated without in-context motivation.

Model Difficulty by Number of People Avg.
3 4 5 6 7 Avg. 2 (OOD) 8 (OOD)

o3-mini-high 0.98 0.97 0.95 0.94 0.89 0.95 0.99 0.83 0.94
o1-2024-12-17 0.51 0.38 0.38 0.35 0.30 0.38 0.83 0.20 0.42
Deepseek-R1 0.73 0.77 0.78 0.75 0.88 0.78 0.91 0.83 0.81

GPT-4o 0.57 0.49 0.32 0.23 0.21 0.36 0.68 0.11 0.37
GPT-4o-mini 0.42 0.34 0.17 0.09 0.10 0.22 0.63 0.01 0.25
NuminaMath-7B-CoT 0.13 0.12 0.05 0.01 0.00 0.06 0.28 0.00 0.08
Deepseek-Math-7B 0.21 0.08 0.06 0.02 0.00 0.07 0.35 0.00 0.10
Qwen2.5-7B-Base 0.34 0.16 0.09 0.00 0.00 0.12 0.41 0.00 0.14

Qwen2.5-7B-Instruct 0.24 0.10 0.06 0.04 0.04 0.10 0.43 0.00 0.13
+RLVR (Baseline) 0.68 0.67 0.57 0.43 0.22 0.51 0.71 0.28 0.51
+MeRF (Ours) 0.78 0.73 0.68 0.62 0.42 0.65 0.76 0.39 0.63

3.1 EXPERIMENTAL SETUP

Models and RL Algorithm. We conducted the experiments with Qwen2.5 series (Yang et al.,
2024) and DeepSeek-R1-Distill series (Guo et al., 2025), including: Qwen2.5-7B-Base, Qwen2.5-
7B-Instruct, Qwen2.5-7B-Instruct-1M, Qwen2.5-14B-Instruct, DeepSeek-R1-Distill-Qwen-1.5B,
DeepSeek-R1-Distill-Llama-8B. The models are across different model sizes, model families, and
instruction-tuning stages, allowing us to comprehensively evaluate the effectiveness of MeRF in
enhancing reinforcement finetuning of LLMs. We use GRPO as the RL algorithm for reinforcement
finetuning. GRPO is an effective and efficient reinforcement learning algorithm for LLMs finetuning,
which is suitable for our experiments to demonstrate the effectiveness of MeRF and RLVR baseline
in the reinforcement finetuning process without demanding excessive computational resources.

Dataset. We evaluate MeRF on K&K (Logic Puzzles), MATH benchmarks: AIME24&25, AMC23,
MATH500 (Lightman et al., 2023), and CountDown (Number Game) (Pan et al., 2025). The K&K
dataset contains 7 different difficulty levels of logic puzzles, ranging from 2 people to 8 people in
the task. We utilize the 3 to 7 people puzzles for training, the corresponding test set for in-domain
evaluation, and the 2 and 8 people puzzles for out-of-distribution (OOD) evaluation. There are 900
samples for training in each difficulty level and 100 samples for evaluation. The total number of
samples in the training set is 4500, and 700 samples for evaluation. For MATH benchmarks, we
follow the previous work (Yu et al., 2025), using a subset of the DAPO-Math-17K dataset for training
and evaluating on AIME24&25, AMC23, and MATH500. We modify the original prompt of the
training data for motivation design. For CountDown, we follow the previous work (Pan et al., 2025),
using the same training and evaluation set. CountDown is a number game, where the model needs to
use the given numbers and arithmetic operations to reach the target number. The given numbers can
only be used once, and the number of given numbers is 3 or 4 in our experiments.

3.2 MAIN RESULTS

To demonstrate the effectiveness of MeRF in the reinforcement finetuning process, we compare the
performance of MeRF with the RLVR baseline on the K&K Logic Puzzle. The results in Figure 1 and
Figure 3 show that MeRF consistently achieves a significant improvement over the RLVR baseline in
the validation accuracy during the training process, across different model sizes and model families,
revealing the remarkable effectiveness of the motivation-enhanced reinforcement finetuning, with
simply injecting the in-context motivation.

The results in Table 1 present the validation accuracy in the evaluation of different difficulty levels,
comparing the performance of MeRF with the RLVR baseline, startpoint model, and other well-
known models. MeRF achieves a significant improvement on the logic reasoning tasks from the
startpoint Qwen2.5-7B-Instruct, with only hundreds of training steps, outperforming the RLVR
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Figure 3: Validation Accuracy of MeRF and RLVR baseline on two DeepSeek-R1-Distill models of
different sizes and from different model families on K&K. MeRF consistently outperforms the RLVR
baseline, demonstrating the effectiveness and generalization of MeRF.

Table 2: Comparison between RLVR baseline and MeRF on math reasoning datasets. We report
pass@k for k ∈ {1, 2, 4, 8} on AIME24&25, AMC23, and MATH500 datasets. Best results are
in bold; Average block highlights overall performance and shows absolute gains over Baseline in
parentheses. MeRF consistently outperforms the RLVR baseline across these datasets and metrics.

Method AIME24 AIME25 AMC23

pass@1 pass@2 pass@4 pass@8 pass@1 pass@2 pass@4 pass@8 pass@1 pass@2 pass@4 pass@8

RLVR (Baseline) 16.7 20.0 20.0 26.7 6.7 16.7 16.7 20.0 47.5 57.5 70.0 72.5
MeRF (Ours) 20.0 20.0 26.7 30.0 6.7 10.0 16.7 26.7 55.0 67.5 72.5 77.5

Method MATH500 Average (all datasets)

pass@1 pass@2 pass@4 pass@8 pass@1 pass@2 pass@4 pass@8
RLVR (Baseline) 62.6 72.8 77.0 82.6 33.38 41.75 45.93 50.45
MeRF (Ours) 65.4 74.0 81.8 85.6 36.78 (+3.40) 42.88 (+1.13) 49.43 (+3.50) 54.95 (+4.50)

baseline and even some commercial models in all difficulty levels including OOD scenarios. The
results of the other baseline models suggest that K&K logic puzzles are challenging tasks for LLMs,
and unseen in the training of most models, which further proves the fitness of K&K logic puzzles for
analyzing the reasoning capabilities of RLVR models in our experiments, and the effectiveness of
MeRF in the reinforcement finetuning process.

Table 2 shows the performance comparison between MeRF and the RLVR baseline on MATH
benchmarks, with Qwen2.5-7B-Base model as the startpoint. We report the pass@k performance for
k ∈ {1, 2, 4, 8} on AIME24&25, AMC23, and MATH500 datasets, where MeRF achieves consistent
improvements over the RLVR baseline in most metrics across all datasets, with an average gain
of 3.40%, 1.13%, 3.50%, and 4.50% in pass@1, pass@2, pass@4, and pass@8, respectively. The
results demonstrate the effectiveness of MeRF in enhancing the reasoning capabilities of LLMs in
the reinforcement finetuning process on mathematical tasks.

4 ANALYSIS ON THE MECHANISM BEHIND MERF

In this section, we further analyze the effectiveness of MeRF by answering the following questions:

Q1: Does the performance improvement of MeRF come from the in-context inference?

We conduct experiments to investigate where the performance improvement mainly comes from.
As shown in Figure 2 (Right), we observe that for both RLVR and MeRF model, motivation
validation leads to slightly better performance (4% and 2%) than non-motivation validation. However,
compared to the performance improvement of MeRF over RLVR in both non-motivation validation
and motivation validation (27% and 25%), the performance improvement of MeRF is mainly from
the motivation-enhanced reinforcement finetuning process, demonstrating the effectiveness of the
in-context motivation in the training process. The results in Figure 8 also show that the performance
of both models does not benefit much from the in-context motivation validation, indicating that the
performance improvement of MeRF is not from the in-context inference.
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Figure 4: Entropy of models during the training process. MeRF maintains a higher entropy than
the RLVR baseline, indicating that MeRF encourages more exploration by the in-context motivation
during the training process, which contributes to its improved performance.

pass@1 pass@2 pass@4 pass@8
Pass@k

0

20

40

60

80

Ac
cu

ra
cy

Final RLVR pass@1 = 40.4

Final RLVR pass@2 = 52.0

Final RLVR pass@4 = 61.8
Final RLVR pass@8 = 70.0

12.2
18.8

31.0

46.2

STEP 70

pass@1 pass@2 pass@4 pass@8
Pass@k

37.0

50.6

64.2

75.8
STEP 140

pass@1 pass@2 pass@4 pass@8
Pass@k

40.8

53.4

68.2

78.2
STEP 210

pass@1 pass@2 pass@4 pass@8
Pass@k

49.0

63.6

74.6
81.4STEP 280

MeRF (Ours)
RLVR (Baseline)
Final RLVR Model
Initial Model (step0)

Figure 5: Pass@k performance of MeRF and RLVR baseline during the training process (from
0 to 280 steps) on K&K Logic Puzzle. We compare the pass@1, pass@2, pass@4, and pass@8
performance at each step, where MeRF consistently outperforms the RLVR baseline in all metrics.
More importantly, MeRF demonstrates a significant training efficiency over RLVR baseline, for
example, achieving better pass@4 and pass@8 performance at step 140 than the final RLVR model (at
step 280), while RLVR’s performance of pass@4 and pass@8 hardly improves after step 140.

Q2: If the performance improvement is not from in-context inference, how does the in-context
motivation help to enhance the reinforcement finetuning process?

0 50 100
Training Step

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

MATH500 Pass@8

MeRF (Ours)
RLVR (Baseline)

0 50 100
Training Step

0.3

0.4

0.5

0.6

0.7
MATH500 Pass@1

MeRF (Ours)
RLVR (Baseline)

Figure 7: Comparison of pass@8 and pass@1 perfor-
mance of MeRF and RLVR baseline on MATH500
dataset during the training process. MeRF outperforms
the RLVR baseline consistently in both pass@8 and
pass@1 metrics, while RLVR pass@8 performance
hardly improves after step 80, demonstrating the ef-
fectiveness of MeRF in improving the math reasoning
capabilities of LLMs.

To further understand how the in-context
motivation helps the reinforcement finetun-
ing process, we analyze the pass@k perfor-
mance and entropy of the models during
the training process. The results in Figure 5
show that MeRF consistently outperforms
the RLVR baseline in all pass@k metrics,
demonstrating the effectiveness of MeRF
in improving the reasoning capabilities of
LLMs. More importantly, while RLVR’s
performance of pass@4 and pass@8 hardly
improves after step 140, MeRF achieves
better pass@4 and pass@8 performance at
step 140 than the final RLVR Model (at
step 280). The results in Figure 7 also
show that MeRF outperforms the RLVR
baseline consistently in both pass@8 and
pass@1 metrics on the MATH500 dataset,
while RLVR pass@8 performance hardly
improves after step 80. Pass@k metrics serve as an indicator of the model’s ability to explore diverse
reasoning paths and reach a correct answer (Zeng et al., 2025; Shao et al., 2024). Better pass@k per-
formance and continuous pass@k improvement during the training process suggest the model is more
likely to reach a positive reward for optimization and performance improvement. As 8 is the rollout
group size of GRPO in our experiments, the growing improvement of pass@8 performance of MeRF
over the RLVR baseline indicates that training process progressively amplifies the initial pass@8
improvement with better exploration ability, initially benefiting from the in-context motivation,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 25 50 75 100
Training Step

0.2

0.3

0.4

0.5

0.6

0.7
CountDown Validation Accuracy

MeRF (Ours)
RLVR (Baseline)

25 50 75 100
Training Step

0.25

0.50

0.75

1.00

1.25

CountDown Entropy

MeRF (Ours)
RLVR (Baseline)

0 50 100
Training Step

0.55

0.60

0.65

0.70

0.75
CountDown Pass@4CountDown Pass@4

MeRF (Ours)
RLVR (Baseline)

Figure 6: Validation accuracy, Entropy, and Pass@4 on CountDown dataset. MeRF outperforms the
RLVR baseline with better accuracy and pass@4 performance, while maintaining a higher entropy
during the training process.

which also explains why the motivation validation only leads to slightly better performance than
non-motivation validation but significant performance improvement of MeRF over RLVR baseline
in Figure 2 (Right). The results in Figure 4 show that MeRF maintains a higher entropy than the
RLVR baseline during the training process, indicating that MeRF encourages more exploration by the
in-context motivation, avoiding the entropy collapse issue of RL for LLMs (Cui et al., 2025), which
contributes to its improved performance. The results in Figure 6 also show that MeRF outperforms
the RLVR baseline with better accuracy and pass@4 performance on the CountDown dataset, while
maintaining a higher entropy during the training process. The results suggest that MeRF benefits
from the exploration ability encouraged by the in-context motivation, leading to better performance
in the reinforcement finetuning process.

Takeaway: The performance improvement of MeRF is not mainly from the in-context inference,
but mainly from the training process. Training process progressively amplifies the initial pass@k
improvement with better exploration ability, initially benefiting from the in-context motivation.

Q3: Does the training and validation gap (validation without motivation) affect the performance?
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Figure 8: Validation accuray w/ motivation and
w/o motivation in the prompt. Both models
achieve comparable performance between two
validation settings, indicating the negligible im-
pact of the training and validation gap.

As MeRF includes the in-context motivation in
the training process, while the validation is con-
ducted without motivation, there exists a training
and validation gap, which may affect the perfor-
mance of MeRF. To investigate the impact of the
training and validation gap on the performance,
we conduct experiments to validate the models
with and without motivation.

The results are shown in Figure 8, where we com-
pare the performance of Qwen-2.5-7B-Instruct
and DeepSeek-R1-Distill-Qwen-1.5B (Guo et al.,
2025) trained with MeRF in the two validation
settings. We find that both models achieve com-
parable performance between the two validation
settings, indicating the negligible impact of the
training and validation gap on the performance of
these models. The results suggest that the model
is capable of generalizing to non-motivation
validation when trained with in-context motivation, which is essential for MeRF to be effective.

Q4: How do the different motivations (suboptimal, adverse) affect the performance?

We compare the performance of MeRF with different motivations, including the Motivation (Groud-
Truth), which totally matches with the reward function of the optimization process, Motivation (Sub-
optimal), which is the suboptimal motivation only describing the correctness score, and Motiva-
tion (Adverse), which is the adverse motivation misleading the model to provide the wrong answer.
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- Correctness Score:
  - If your final answer is correct, score 2
  - If your answer is understandable but wrong, score -1.5
  - If your answer is not parsable or incomplete, score -2

Motivation (Suboptimal)

- Correctness Score:
  - If your final answer is correct, score -2
  - If your answer is understandable but wrong, score 1.5
  - If your answer is not parsable or incomplete, score 2
- Format Score:
  - If you follow the tag format exactly as above, score -1
  - Otherwise, score 1

Motivation (Adverse)

- Correctness Score:
- If your final answer is correct, score 2
- If your answer is understandable but wrong, score -1.5
- If your answer is not parsable or incomplete, score -2

- Format Score:
- If you follow the tag format exactly as above, score 1
- Otherwise, score -1

Motivation (Ground-Truth)

Figure 9: (Left) The performance of MeRF with different motivations. The motivation with ground-
truth reward function achieves the best performance. Adverse motivation misleads the model to
provide the wrong answer, while the model is capable of adapting to the adverse motivation in
the process of reinforcement finetuning. (Right) Examples of different motivations. Suboptimal
motivation only describes the correctness score, while adverse motivation provides the full description
of the reward function with opposite scores.

The results are shown in Figure 9 (Left) and examples (segments) of the motivations are shown in
Figure 9 (Right). The results demonstrate that the motivation with ground-truth reward function
achieves the best performance, and the suboptimal motivation performs better than the RLVR baseline,
with an additional correctness score description included in the motivation. Adverse motivation
provides the full description of the reward function same to ground-truth motivation, while all the
score is assigned to the opposite, which misleads the model to provide the wrong answer. The
performance drop of the adverse motivation is mainly caused by the contradiction between the
in-context motivation and the reward function of the optimization process. However, after several
rounds of unstable learning dynamics, the model adapted to discount the motivation signal, either
treating the score as uninformative, or understanding the deliberately adverse motivation and opposite
scores, while the full description of the reward function is still beneficial for the model to outperform
the RLVR baseline and Motivation (Suboptimal). The results suggest that MeRF benefits from
a better consistency between the motivation and the underlying reward function, resulting in
better performance, while the model is capable of adapting to the adverse motivation in the process
of reinforcement finetuning.

Takeaway: The training and validation gap caused by in-context motivation has a negligible
impact on the performance of models with strong generalization capabilities. MeRF benefits from
a better consistency between the motivation and the underlying reward function, while the model
is capable of adapting to the adverse motivation in the process of reinforcement finetuning.

5 CONCLUSION

In this paper, we propose MeRF, leveraging the in-context learning abilities of LLMs for more
efficient reinforcement finetuning with in-context motivation. By injecting the in-context motivation
into the training process, MeRF enables the model to be aware of the objective of the task, aligning
the generation with the transcendent optimization objective, and therefore, leading to substantial
performance improvement in reasoning benchmarks. To further understand the effectiveness of
MeRF, we conduct comprehensive experiments and analysis, revealing the mechanism behind MeRF,
demonstrating the powerful capability of LLMs in adapting to adverse motivation and the potential
for more powerful large reasoning models with motivation-enhanced reinforcement finetuning.

Limitations. However, there are still some limitations in our work, presenting the potential for future
research. (1) The motivation in MeRF is static in the training process. It is possible to explore the
dynamic motivation during the training process in future work. (2) For models of weak generalization
capability, how to efficiently implement RLVR and better leverage the in-context motivation for more
efficient reinforcement finetuning is still an open question.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENTS

This work adheres to the ICLR Code of Ethics. Our research does not involve human subjects,
personally identifiable information, or sensitive personal data. All datasets used are publicly available
and commonly adopted in prior work; we followed their intended licensing and usage guidelines. We
have carefully considered potential risks of misuse, including issues of fairness, bias, and safety, and
we believe our contributions do not raise immediate ethical concerns.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The main paper provides
a complete description of the proposed method and experimental setup. The appendix includes
additional details on the training procedures, and hyperparameter settings. We will release the code,
and detailed instructions for reproducing our experiments upon acceptance.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin
Zhao, Zheng Liu, Xu Miao, Yang Lu, et al. An empirical study on eliciting and improving r1-like
reasoning models. arXiv preprint arXiv:2503.04548, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
bench: A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal
scientific problems. In Annual Meeting of the Association for Computational Linguistics, 2024.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. Rltf: Reinforce-
ment learning from unit test feedback. arXiv preprint arXiv:2307.04349, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,
Kevin Clark, Stephen R Pfohl, Heather Cole-Lewis, et al. Toward expert-level medical question
answering with large language models. Nature Medicine, pp. 1–8, 2025.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca.
html, 3(6):7, 2023.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang, and Dinggang Shen. Chatcad: Interac-
tive computer-aided diagnosis on medical image using large language models. arXiv preprint
arXiv:2302.07257, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. arXiv
preprint arXiv:2410.23123, 2024.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, and Linda Ruth Petzold.
Alpacare: Instruction-tuned large language models for medical application. arXiv preprint
arXiv:2310.14558, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

A APPENDIX

A.1 USE OF LLMS

We used Large Language Models (LLMs) as a general-purpose writing and editing tool to improve
grammar, clarity, and readability of the manuscript. LLMs were not used for research ideation,
experiment design, data analysis, or derivation of results. All technical contributions, experimental
designs, and scientific claims were developed by the authors.

A.2 RELATED WORK

Reinforcement Learning for LLMs. Reinforcement learning (RL) has become a powerful paradigm
for fine-tuning LLMs, first demonstrated by reinforcement learning from human feedback (RLHF)
to align models with human-preferred responses (Ouyang et al., 2022; Rafailov et al., 2023). More
recently, inspired by the success of DeepSeek-R1 (Guo et al., 2025), Reinforcement Learning with
Verified Reward (RLVR) (Lambert et al., 2024) has been proposed to directly enhance reasoning
performance by rewarding verifiable success criteria instead of subjective human judgments, which
is more similar to the traditional RL paradigm. RLVR has shown promising results in improving
the performance of LLMs on various reasoning tasks, including logical reasoning (Xie et al., 2025),
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coding (Le et al., 2022; Liu et al., 2023), and math problems (Zeng et al., 2025), with simple,
designed reward functions. However, these approaches demonstrate the potential of the conventional
RL paradigm for LLMs, which may not fully leverage the in-context learning abilities of LLMs, the
key to the success of LLMs in previous works (Wei et al., 2022; Brown et al., 2020). In this work, we
propose a novel method MeRF, leveraging the in-context abilities of LLMs to enhance reinforcement
finetuning for reasoning.

In-context Learning. In-context learning (ICL) refers to the ability of large language models to learn
a task purely from examples and instructions provided in the prompt, without any gradient-based
updates to the parameters (Brown et al., 2020). This ability has been shown to be effective in various
tasks, including few-shot learning, zero-shot learning, and even one-shot learning (Wei et al., 2022).
ICL is a key feature of LLMs, enabling them to generalize from a few examples and adapt to new
tasks quickly. The success of ICL has led to the development of various prompting strategies, such
as few-shot prompting, chain-of-thought prompting, and self-consistency prompting (Wang et al.,
2022). In this work, we investigate the potential of ICL for reinforcement finetuning of LLMs, and
propose a novel method MeRF to leverage the in-context abilities of LLMs to enhance reinforcement
finetuning for reasoning, injecting the in-context motivation into the training process.

A.3 PRELIMINARY

Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024) is a reinforcement
learning paradigm for training language models on tasks with verifiable outcomes, such as math
problems or logic puzzles. The key idea is to use a reward function that can be automatically verified,
allowing the model to learn from the ultimate correctness of its outputs. Recent works (Zeng et al.,
2025; Yu et al., 2025) have shown that RLVR can significantly improve the reasoning capabilities of
LLMs, with reasoning patterns emerging from the optimization for verifiable rewards.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a reinforcement learning
algorithm designed to optimize policies by leveraging group-wise relative preference information.
As a variant of Proximal Policy Optimization (PPO) (Schulman et al., 2017), GRPO foregoes the
need for critic models and instead focuses on learning from relative comparisons of actions within
groups, significantly enhancing training efficiency for reinforcement finetuning of LLMs. For each
question x, GRPO samples a group of G outputs {yi}Gi=1 from the policy πθold(·|x), and computes
the advantage Ai for each output yi based on the outcome reward ri, where πref is a reference model.
The GRPO objective is defined as follows:

LGRPO(θ) = Ex∼D,{yi}G
i=1∼πθold (·|x)

[
1

G

G∑
i=1

min (ρiAi, clip(ρi, 1− ε, 1 + ε)Ai)

]
− βDKL (πθ||πref) , (1)

where

ρi =
πθ(yi|x)
πθold(yi|x)

(2)

is the importance ratio and the advantage is computed as:

Ai =
ri − mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG})
(3)

This normalizes the outcome rewards of the group of outputs and sets the advantage for all the tokens
in the output {yi}Gi=1. This formulation enables GRPO to learn from relative preferences within each
group without the need for a critic model, making it efficient and suitable for the implementation of
RLVR to LLMs.

The Knights and Knaves (K&K) (Xie et al., 2024) logic puzzle dataset is a widely used (Xie et al.,
2025) benchmark for reinforcement finetuning for LLMs reasoning, which provides a well-structured
difficulty level of the logic tasks and allows accurate and easy reward verification for RLVR. The
controllable difficulty levels are achieved by varying the number of people in the logic task, the more
people in the logic puzzle requiring LLMs’ more complex reasoning, and more steps to solve the task.
The K&K dataset contains 7 different difficulty levels of logic puzzles, with 2 people as the easiest
level and 8 people as the most difficult level. Here is an example of the K&K dataset with 3 people:
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An Example of K&K Puzzle with 3 People

Problem: A very special island is inhabited only by knights and knaves. Knights always tell
the truth, and knaves always lie. You meet 3 inhabitants:

Penelope, David, and Zoey. Penelope noted, "David is a knight if and only if David is a
knave". David told you that Zoey is a knave if and only if Zoey is a knight. According to
Zoey, "If Penelope is a knave then David is a knave". So who is a knight and who is a knave?

Solution: (1) Penelope is a knave (2) David is a knave (3) Zoey is a knight

In this puzzle, the 3 inhabitants are either knights, who always tell the truth, or knaves, who always
lie. The statements made by each inhabitant can be analyzed to determine their identities, leading to
a unique and verifiable conclusion that Penelope and David are knaves, while Zoey is a knight. The
K&K puzzles are challenging logic tasks systematically generated with logic templates, requiring
multiple steps of reasoning and logical deduction to arrive at the correct answer. The complexity
of the puzzles is precisely controllable by increasing the number of inhabitants. Moreover, the
puzzles are unseen in the training of most models, combined with all the above, making it a suitable
benchmark for evaluating the reasoning capabilities of RLVR LLMs.

CountDown (Pan et al., 2025) is a challenging numerical reasoning dataset that requires models
to perform arithmetic operations and logical reasoning to arrive at the correct answer. The dataset
consists of problems that involve a series of numbers and a target number, where the goal is to use the
given numbers and basic arithmetic operations (addition, subtraction, multiplication, and division) to
reach the target number. In our experiments, each problem provides a set of 3 or 4 numbers and a
target number, and the model must determine a sequence of operations that will result in the target
number. The problems in the CountDown dataset vary in difficulty, with some requiring simple
calculations while others necessitate more complex reasoning and multiple steps to solve. The dataset
is designed to test the model’s ability to understand numerical relationships, perform calculations
accurately, and apply logical reasoning to achieve the desired outcome. The CountDown dataset is
widely used as a benchmark for evaluating the numerical reasoning capabilities of language models.

An Example of CountDown dataset

<|im_start|>system
You are a helpful assistant. The assistant first thinks about the reasoning process in the mind
and then provides the user with the answer. The reasoning process and answer are enclosed
within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning
process here </think><answer> answer here </answer>. Now the user asks you to solve a
math reasoning problem. After thinking, when you finally reach a conclusion, clearly state
the equation within <answer> </answer> tags. i.e., <answer> (1 + 2) / 3 </answer>. Now, the
user will give you the math reasoning problem to solve. Think carefully, follow the structure.
<|im_end|>

<|im_start|>user
Using the numbers [2, 2, 2], create an equation that equals 8. You can use basic arithmetic
operations (+, -, *, /) and each number can only be used once. <|im_end|>

<|im_start|>assistant
<think>

Other Implementation Details We implement our method with VeRL (Sheng et al., 2024) and
Logic-RL (Xie et al., 2025) codebase. We conduct the reinforcement finetuning with batch size of 16,
a learning rate of 1e-6, 1 and 2 epochs of training. We use the rollout framework of Vllm (Kwon
et al., 2023) for sampling the outputs of the model. The group size of GRPO is set to 8, the clip range
is set to 0.2, and the KL penalty is set to 0.001.
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A.4 CASE STUDY

We provide a case study to illustrate the reasoning capabilities of the final model of MeRF. As
shown below, the model is capable of providing the correct answer with a clear reasoning process,
understanding the motivation of the task and adhering to the rules of the metrics. The model is able
to analyze the statements of each character and deduce the truthfulness of their claims, leading to the
correct conclusion. The model also provides a clear and concise explanation of the reasoning process,
demonstrating its ability to understand and apply logical reasoning in a complex scenario.

A Example of Model Response

[Puzzle]
A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 3 inhabitants: Evelyn, Benjamin, and William. Evelyn said
that if Benjamin is a knight then William is a knight. In a statement by Benjamin: "Evelyn is
not a knave". William commented, "Evelyn is a knight". So who is a knight and who is a
knave?
[Model Response]
<think> To solve this, we will analyze each statement based on the rules that knights always
tell the truth and knaves always lie.
1. Analyze Evelyn’s statement: "If Benjamin is a knight then William is a knight."

- If Evelyn is a knight, Benjamin must be a knight and William must be a knight. (T->T)
- If Evelyn is a knave, the statement must be false, so Benjamin being a knight would

imply that William is a knave. (F->F)
2. Analyze Benjamin’s statement: "Evelyn is not a knave."

- If Benjamin is a knight, his statement must be true, so Evelyn must be a knight.
- If Benjamin is a knave, his statement would be false, so Evelyn would be a knave.

3. Analyze William’s statement: "Evelyn is a knight."
- If William is a knight, his statement is true, so Evelyn is a knight.
- If William is a knave, his statement is false, so Evelyn is a knave.

From Benjamin’s statement, if he is a knight, Evelyn must be a knight.
From William’s statement, if he is a knight, Evelyn must be a knight.
If Evelyn is a knight, for Benjamin’s statement to hold, Benjamin must also be a knight.
This configuration satisfies all statements consistently and rules out other scenarios, leading
to all three being knights.
Therefore, Evelyn, Benjamin, and William are all knights. </think>

<answer>
(1) Evelyn is a knight
(2) Benjamin is a knight
(3) William is a knight </answer>
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B ADDITIONAL RESULTS DURING REBUTTAL
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Figure 10: This is multiple runs of MeRF with adverse motivation on K&K Logic Puzzle dataset,
showing the similar unstable learning dynamics of the training process, after which the model adapts
to discount the motivation signal and achieves better performance.
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Figure 11: This is the correct ratio of generated answers of the training set during the training process
on K&K Logic Puzzle dataset. MeRF consistently outperforms the RLVR baseline, demonstrating
the better exploration ability encouraged by the in-context motivation for the model to get the best
reward during the training process.
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Figure 12: This is the comparison between MeRF, RLVR and RLVR with higher temperature (increase
from 1 to 1.2) on K&K Logic Puzzle dataset. Higher temperature leads to higher entropy as expected
(comparable with MeRF), but not necessarily a better performance.
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Figure 13: This is the performance of MeRF and RLVR with reward function of different density
(the default by ground-truth reward function is the densest, the medium-sparse is binary + format
reward, and the sparse is only binary reward) on K&K Logic Puzzle dataset. For naive RLVR, the
performance increases with denser reward function in this case (denser reward function provides more
informative reward signal for backward optimization), while MeRF also benefits more from denser
reward function (providing more informative motivation signal for forward in-context learning).
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Figure 14: MeRF (motivation included in the training prompt) consistently outperforming RLVR (no
motivation in training prompt) across all prompt variants with significant presence of motivation,
highlighting the robustness of MeRF to different prompt formulations.
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Figure 15: On the agentic task of using search engine for reasoning, MeRF also outperforms
RLVR baseline with effective utilization of in-context motivation, demonstrating the general-
izability of MeRF to more complex reasoning tasks. Accuracy is evaluated on Natural Ques-
tions (NQ)(Kwiatkowski et al., 2019) dataset.

(a) Attention on groundtruth motivation tokens (b) Attention on adverse motivation tokens

Figure 16: This the attention heatmap in the final model of MeRF on K&K Logic Puzzle dataset with
different motivations. Attention is calculated when generating <answer>.
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Table 3: Performance comparison across models on tasks with varying difficulty by number of people
of K&K Puzzles. MeRF demonstrates a significant improvement over the RLVR baseline in both
in-domain and OOD scenarios. Notably, all the results are validated without in-context motivation.

Model Difficulty by Number of People Avg.
3 4 5 6 7 Avg. 2 (OOD) 8 (OOD)

o3-mini-high 0.98 0.97 0.95 0.94 0.89 0.95 0.99 0.83 0.94
o1-2024-12-17 0.51 0.38 0.38 0.35 0.30 0.38 0.83 0.20 0.42
Deepseek-R1 0.73 0.77 0.78 0.75 0.88 0.78 0.91 0.83 0.81

GPT-4o 0.57 0.49 0.32 0.23 0.21 0.36 0.68 0.11 0.37
GPT-4o-mini 0.42 0.34 0.17 0.09 0.10 0.22 0.63 0.01 0.25
NuminaMath-7B-CoT 0.13 0.12 0.05 0.01 0.00 0.06 0.28 0.00 0.08
Deepseek-Math-7B 0.21 0.08 0.06 0.02 0.00 0.07 0.35 0.00 0.10

Qwen2.5-7B-Base 0.34 0.16 0.09 0.00 0.00 0.12 0.41 0.00 0.14
+RLVR (Baseline) 0.48 0.53 0.30 0.21 0.16 0.34 0.59 0.17 0.35
+MeRF (Ours) 0.54 0.53 0.45 0.36 0.16 0.41 0.70 0.18 0.42

Qwen2.5-7B-Instruct 0.24 0.10 0.06 0.04 0.04 0.10 0.43 0.00 0.13
+RLVR (Baseline) 0.68 0.67 0.57 0.43 0.22 0.51 0.71 0.28 0.51
+MeRF (Ours) 0.78 0.73 0.68 0.62 0.42 0.65 0.76 0.39 0.63

Qwen2.5-7B-Instruct-1M 0.40 0.25 0.11 0.06 0.02 0.17 0.49 0.01 0.19
+RLVR (Baseline) 0.52 0.44 0.36 0.18 0.12 0.32 0.60 0.16 0.34
+MeRF (Ours) 0.68 0.62 0.48 0.42 0.20 0.48 0.76 0.25 0.49

Qwen2.5-14B-Instruct 0.46 0.31 0.20 0.09 0.11 0.23 0.63 0.06 0.27
+RLVR (Baseline) 0.90 0.82 0.78 0.70 0.55 0.75 0.90 0.42 0.72
+MeRF (Ours) 0.95 0.92 0.84 0.78 0.66 0.83 0.99 0.65 0.83

DeepSeek-R1-Distill-Qwen-1.5B 0.08 0.01 0.00 0.00 0.00 0.02 0.30 0.00 0.06
+RLVR (Baseline) 0.20 0.16 0.16 0.10 0.04 0.13 0.29 0.01 0.14
+MeRF (Ours) 0.25 0.20 0.12 0.08 0.04 0.14 0.43 0.04 0.17

DeepSeek-R1-Distill-Llama-8B 0.26 0.22 0.14 0.06 0.05 0.15 0.24 0.11 0.15
+RLVR (Baseline) 0.92 0.89 0.84 0.79 0.64 0.82 0.90 0.58 0.79
+MeRF (Ours) 0.95 0.94 0.92 0.87 0.71 0.88 0.99 0.64 0.86

System Prompt and Motivation for Math

<|im_start|>system
You are a helpful assistant. The assistant first thinks about the reasoning process and
then provides the user with the answer. Now the user asks you to solve a math problem.
After thinking, when you finally reach a conclusion, present the answer in LaTeX format:
\boxed{Your answer}. i.e., The answer is \boxed{\frac{14}{3}}.
You will get evaluated following Evaluation Scoring Rules:
- Correctness Score:

- If your final answer is correct, score 1
- If your answer is understandable but wrong, score 0.4
- If your answer is not parsable or incomplete, score 0

Now, the user will give you the math problem to solve. Think carefully, follow the structure.
<|im_end|>

<|im_start|>user
{input the question} <|im_end|>

<|im_start|>assistant
Let’s think step by step.
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System Prompt and Motivation for CountDown

<|im_start|>system
You are a helpful assistant. The assistant first thinks about the reasoning process in the mind
and then provides the user with the answer. The reasoning process and answer are enclosed
within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning
process here </think><answer> answer here </answer>. Now the user asks you to solve a
math reasoning problem. After thinking, when you finally reach a conclusion, clearly state
the equation within <answer> </answer> tags. i.e., <answer> (1 + 2) / 3 </answer>.
You will get evaluated following Evaluation Scoring Rules:

- if your answer has an equation that uses only the allowed numbers and evaluates exactly
to the target, score 1

- if there’s an equation that is readable, but either it uses wrong numbers, or it doesn’t
evaluate to the target, or it can’t be evaluated properly, score 0.4

- if no equation can be extracted from your answer, score 0
Now, the user will give you the math problem to solve. Think carefully, follow the structure.
<|im_end|>

<|im_start|>user
{input the question} <|im_end|>

<|im_start|>assistant

A Example of Correct Model Response

<think>
Let’s analyze the statements one by one:
1. Penelope: "Penelope is a knight and Jacob is a knight."
2. Alexander: "Penelope is a knave or Jacob is a knight."
3. Jacob: "Alexander is a knave if and only if Sophia is a knight."
4. Sophia: "Penelope is a knave or Jacob is a knight."

If Penelope is a knight, then both parts of her statement must be true. This would mean she is
a knight and Jacob is a knight. However, if Jacob is a knight, and by Sophia’s statement, if
Jacob is a knight, then Sophia’s statement becomes "Penelope is a knave or Jacob is a knight"
which is true if Jacob is a knight (regardless of whether Penelope is a knave or knight). This
doesn’t immediately create a contradiction, so let’s try this scenario:
- Assuming Penelope is a knight:

- For Penelope to be telling the truth, Jacob must be a knight.
- In this case, Sophia’s statement would be true ("Penelope is a knave or Jacob is a knight")

since Jacob is a knight.
- Now, Alexander’s statement "Penelope is a knave or Jacob is a knight" would be a true

statement because Jacob is a knight.
- However, if Penelope is a knight, Alex’s statement is also true, which means he should be a
knight but no self-contradiction yet.

Let’s now test the scenario with Penelope as a knave:
- If Penelope is a knave, her statement is false. So, at least one part must be incorrect:

either Penelope is not a knight or Jacob is not a knight.
- If Jacob is a knave, Sophia still has to decide:

1. For Sophia: If Jacob is a knave, Penelope is a knave, then we need to check Alex’s and
Jacob’s statements.
- Alexander: "Penelope is a knave or Jacob is a knight" (false or true). Since it can’t be false,
we have a true statement.
- Jacob: "Alexander is a knave if and only if Sophia is a knight" (false if-and-only-if true).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Both Alexander and Sophia have to share the same truth identity. Given Penelope as a knave
and Jacob as a knave, suggesting Alexander is a knight and Sophia must also be a knight to
satisfy the "if-and-only-if" truth statement.

Thus:
- Penelope: knave
- Jacob: knave
- Alexander: knight
- Sophia: knight

Let’s verify:
- Penelope (knave): "Penelope is a knight and Jacob is a knight" is false.
- Alexander (knight): "Penelope is a knave or Jacob is a knight" is true.
- Jacob (knave): "Alexander is a knave if and only if Sophia is a knight" (false if-and-only-if
true, meaning Alexander and Sophia are the same, hence true since provided knight).
- Sophia (knight): "Penelope is a knave or Jacob is a knight" is true.
All statements hold. </think>

<answer>
(1) Penelope is a knave
(2) Alexander is a knight
(3) Jacob is a knave
(4) Sophia is a knight </answer>

The above is a correct response from the model after being trained with MeRF, with a clear rea-
soning process and the correct final answer. The highlighted parts in blue show the model’s clear
understanding of the statements and logical deductions leading to the final conclusion.

The following is an example of a wrong response from the RLVR model in early training stage.

A Example of Wrong Model Response

<think> We will analyze each statement and compare the implications for each person.
From Chloe’s statement: "Evelyn is a knight if and only if Riley is a knight". This is a
biconditional statement. It means both must be the same (both knights or both knaves).
Given this statement, we tentatively conclude directed roles. </think>
<answer>
(1) Riley is a knight
(2) Evelyn is a knight
(3) Logan is a knight
(4) Avery is a knight
(5) Chloe is a knight </answer>

This is a wrong response. The model fails to analyze the puzzle carefully with logical reasoning, only
focusing on the first statement and suspected to reward hacking for the format reward, by simply
trying to make all the characters knights without verifying the statements.

21


	Introduction
	Method
	Motivation-enhanced Reinforcement Finetuning
	Motivation with Verifiable Reward

	Experiment
	Experimental Setup
	Main Results

	Analysis on the mechanism behind MeRF
	Conclusion
	Appendix
	Use of LLMs
	Related Work
	Preliminary
	Case Study

	Additional results during rebuttal

