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ABSTRACT

With the development of video sharing websites, numerous users desire to cre-
ate their own attractive video montages. However, it is difficult for inexperienced
users to create a well-edited video montage due to the lack of professional ex-
pertise. In the meantime, it is time-consuming even for experts to create video
montages of high quality, which requires effectively selecting shots from abundant
candidates and assembling them together. Instead of manual creation, a number of
automatic methods have been proposed for video montage generation. However,
these methods typically take a single sentence as input for text-to-shot retrieval,
and ignore the semantic cross-sentence coherence given complicated text script
of multiple sentences. To overcome this drawback, we propose a novel model
for video montage generation by retrieving and assembling shots with arbitrary
text scripts. To this end, a sequence consistency transformer is devised for cross-
sentence coherence modeling. More importantly, with this transformer, two novel
sequence-level tasks are defined for sentence-shot alignment in sequence-level:
Cross-Modal Sequence Matching (CMSM) task, and Chaotic Sequence Recover-
ing (CSR) task. To facilitate the research on video montage generation, we con-
struct a new, highly-varied dataset which collects thousands of video-script pairs
in documentary. Extensive experiments on the constructed dataset demonstrate
the superior performance of the proposed model. The dataset and generated video
demos are available at https://github.com/RATVDemo/RATV.

1 INTRODUCTION

In recent years, with the rapid development of video sharing websites, users can conveniently share
their own edited short videos (i.e., video montages), resulting in numerous video content creators
that desire to create attractive video montages. However, editing video montage well is not easy for
most of users due to the lack of professional expertise and aesthetic knowledge for video editing. In
addition, for experts that master the video editing skills, it is time-consuming and cumbersome to
create a video montage of high quality, because they have to carefully select shots from abundant
candidates and then assemble the selected shots into a consecutive video montage that precisely
expresses the desired content. Automatically generating video montages from descriptive sentences
thus becomes topical, which aims to effectively retrieve shots from candidates and assemble them
according to given text scripts.

Over the past few years, a number of previous methods have been proposed to address this task based
on deep learning (Truong et al., 2016; Wang et al., 2019; Xiong et al., 2021). QuickCut (Truong
et al., 2016) presents an interactive tool for narrated video editing, which can quickly create the
story outline from raw video footage. It focuses on speeding up the process of establishing the
script, but requires the users to manually select the shots from candidates. Write-A-Video (Wang
et al., 2019) and Transcript-to-Video (Xiong et al., 2021) propose automatic methods to retrieve
shots with given texts from a huge shot gallery and then arrange them. However, they only take
a single sentence as input for text-to-shot retrieval without modeling the cross-sentence coherence,
which limits their performance given complicated text script of multiple sentences.

In this work, we propose a novel model to automatically Retrieve and Assemble shots with arbitrary
Text scripts for Video montage generation (abbreviated RATV). Our proposed RATV consists of
three main components: a textual encoder, a visual encoder, and a sequence consistency transformer.
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Table 1: Brief comparison among our RATV and existing works. Sentence Num. denotes the
number of sentences contained in the input text. Retrieved shots denotes whether the method uses
the retrieved shots for retrieval. Seq. Con. Trans. is short for sequence consistency transformer.

Method Retrieval Assembly
Sentence Num. Retrieved Shots Strategy Text Used

QuickCut† (Truong et al., 2016) Multiple No DP Algorithm No
Write-A-Video† (Wang et al., 2019) Single No Predefined Rules No
Transcript-to-Video† (Xiong et al., 2021) Single Yes Score of Classifier No
RATV (ours) Multiple Yes Seq. Con. Trans. Yes

Similar to Write-A-Video (Wang et al., 2019), the textual encoder and visual encoder aim to encode
texts and shots into a joint feature space for matching video-script pairs. Differently, we directly
employ a large-scale pre-training visual-language model (CLIP (Radford et al., 2021)) to obtain our
textual encoder and visual encoder instead of training them with text-shot pairs with keywords from
scratch. Note that CLIP is trained on text-image retrieval task, but we generalize it to text-video
matching task by simply considering the average of the frame embeddings as the embedding of
corresponding video. Based on the embeddings extracted by textual encoder and visual encoder,
the novel sequence consistency transformer learns to match sentence sequence and shot sequence,
which can better retrieve shots according to complicated texts of multiple sentences and assemble
the retrieved shots. Specifically, with this transformer, we devise two novel training tasks for better
sentence-shot alignment in sequence-level: Cross-Modal Sequence Matching (CMSM) task and
Chaotic Sequence Recovering (CSR) task. The CMSM task is induced to explicitly encourage the
model to learn sentence-shot alignment by distinguishing the positive and negative samples. The
CSR task enforces the model to learn to recover the order of chaotic shot sequences according to
paired texts, which benefits to learning both the sequence coherence and sentence-shot alignment.
Overall, the difference between our proposed RATV and existing methods is shown in Table 1.

To our best knowledge, there is no publicly available dataset for the research on video montage
generation. Furthermore, despite the significant progress in video understanding datasets (Xu et al.,
2016; Fouhey et al., 2018; Miech et al., 2019), these datasets focus on human actions (mainly with
a single shot per video), which can not meet the demand of video montage generation with text
script. Therefore, to fill the gap in dataset construction for this task, we create a new, highly varied
dataset (Video-Script Pairs in Documentary, VSPD) to facilitate the community, which consists of
rich and diverse video-script pairs collected from publicly available documentaries.

Our main contributions are four-fold: (1) We propose a novel model to automatically generate video
montages by retrieving and assembling shots with arbitrary text scripts. (2) We devise novel Cross-
Modal Sequence Matching (CMSM) and Chaotic Sequence Recovering (CSR) tasks, which are
beneficial to learning both sentence-shot alignment in sequence-level and the coherence of shot se-
quence with text scripts. (3) To fill the gap in the dataset construction for video montage generation,
we introduce the VSPD dataset that consists of diverse and highly varied video-script pairs from
documentary videos. Meanwhile, we establish a benchmark for video montage generation task to
facilitate the community. (4) Extensive experiments on the constructed VSPD dataset demonstrate
the effectiveness and superior performance of our proposed method.

2 RELATED WORK

Video Montage Generation. Video montage generation with text script has been proposed for a
long time (Chua & Ruan, 1995; Ahanger & Little, 1998), but it was barely studied in the commu-
nity. In recent years, with the rapid development of video sharing websites, the demand of video
montage generation becomes higher, and thus this task starts to draw more attention (Shen et al.,
2009; Leake et al., 2017; Truong et al., 2016; Wang et al., 2019; Xiong et al., 2021). Particularly,
QuickCut (Truong et al., 2016) presents an interactive tool for narrated video editing, which aims
to help users to efficiently create the story outline of narrated videos. However, it only supplies the
video segments corresponding to selected footage and requires users to manually select shots from
them. In contrast, Write-A-Video (Wang et al., 2019) presents an interactive tool that enables users
to automatically retrieve shots from a huge shot gallery and assembly them based on pre-defined
rules. Transcript-to-Video (Xiong et al., 2021) proposes an automatic method to retrieve and as-
semble shots according to given texts. Although they can automatically generate video montages
from texts without extra manual work, they only consider one sentence as input during retrieval and
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Figure 1: The statistics of text scripts and videos contained in our VSPD dataset.

assembly, which limits their performance given complicated texts containing multiple sentences. In
this work, we propose a novel automatic method to retrieve and assemble shots with texts for video
montages generation, which expands the input from only one sentence to a sequence of sentences.

Vision-Language Representation Learning. Visual Semantic Embeddings (VSE) (Frome et al.,
2013; Faghri et al., 2018) are commonly adopted in multi-modal tasks to learn vision-language
joint representations (Andonian et al., 2020; Huang et al., 2018; Krishna et al., 2017; Lei et al.,
2018; Tapaswi et al., 2016). Recently, large-scale pre-training has achieved great success in vision-
language representation learning (Chen et al., 2020; Li et al., 2020c; Radford et al., 2021; Jia et al.,
2021; Huo et al., 2021), and shown superior performance in various downstream tasks (e.g., action
recognition in videos, and zero-shot classification), where the extracted embeddings are directly
employed without further training. In this work, we similarly leverage the embeddings extracted by
CLIP (Radford et al., 2021) in video montage generation. Differently, we generalize the image-text
representation to video-text representation and learn video-text alignment in sequence-level.

Training Tasks for Transformer-Based Modeling. Masked Language Model (MLM) is firstly
proposed by BERT (Devlin et al., 2019) and then widely used for NLP with transformer. The MLM
task randomly replaces a word token with the mask token (or another word token) with certain prob-
ability and enforces the model to predict the original word token, which has shown its superior power
in representation learning. Inspired by BERT, ViLBERT (Lu et al., 2019) employs MLM, Masked
Object Classification (MOC) and Visual-Linguistic Matching (VLM) tasks for vision-language rep-
resentation learning. More recent works basically follow these training tasks (Li et al., 2019; 2020a;
Tan & Bansal, 2019; Su et al., 2020; Chen et al., 2020; Li et al., 2020c; Kim et al., 2021). Different
from these training tasks, we devise novel Cross-Modal Sequence Matching (CMSM) and Chaotic
Sequence Recovering (CSR) tasks to encourage our transformer-based model to better learn the
video-text joint representation as well as the sequence coherence.

3 DATASET CONSTRUCTION

A dataset for video montage generation should consist of thousands of video-script pairs, each hav-
ing a narrated video with multiple shots and a paired script with descriptive sentences. To our
best knowledge, there is no public dataset devoted to video montage generation. Similar to video
montage generation, text-video retrieval aims to retrieve desired videos from candidates accord-
ing to given texts, which has become topical in recent works (Bain et al., 2021; Lei et al., 2021;
Li et al., 2020b; Wang et al., 2021; Zhu & Yang, 2020; Yu et al., 2018) along with many public
datasets (Rohrbach et al., 2012; Xu et al., 2016; Fouhey et al., 2018; Miech et al., 2019). However,
these datasets are not suitable for video montage generation, because they mainly focus on human
actions (with a single shot per video). Furthermore, the texts in these datasets either are too general
or only cover a part of the video content. To fill the gap in dataset construction for video montage
generation, we create a new, highly varied dataset, named VSPD (shorted for Video-Script Pairs in
Documentary). Our VSPD dataset consists of 4,365 video-script pairs, with its statistics shown in
Figure 1. We randomly select 200 video-script pairs for test and the other 4,165 pairs for training.
Our considerations in collecting documentary videos are two-fold: (1) Most of documentary videos
are narrated with well-aligned captions, and thus we can conveniently collect numerous video-script
pairs that are highly consistent in semantics; (2) Documentary videos are commonly carefully edited,
resulting in extensive consecutive video clips with multiple shots. Importantly, although our VSPD
consists of videos from documentaries, our proposed RATV model can be adopted to generate videos
with various themes, which mainly depends on the input text scripts instead of theme of videos in
the gallery. More details about our VSPD dataset are given in Appendix C.
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Figure 2: A schematic illustration of our proposed RATV model. RATV learns text-video align-
ment in sequence-level for video montage generation. Our novel Cross-Modal Sequence Match-
ing (CMSM) and Chaotic Sequence Recovering (CSR) tasks are two key components for text-video
alignment, which are only considered in the training phase.

4 METHODOLOGY

4.1 MODEL OVERVIEW

Let S denote the set of candidate shots. Given an input text script t, the goal of video montage
generation is to firstly retrieve a subset of shots S̃ = {s̃i|i = 1, · · · , N} from S according to t, where
s̃i ∈ S and N is the number of retrieved shots. The retrieved shots are then arranged in a certain
order to create the final video montage V = (v1, v2, · · · , vN ), where vi ∈ S̃ and vi ̸= vj (∀i, j =
1, 2, · · · , N, i ̸= j). Note that V should be temporally consecutive and consistent with the input
text script t in semantics. To achieve this, we propose a novel model termed RATV. As illustrated in
Figure 2, the main components of our RATV are textual encoder TE, visual encoder VE and sequence
consistency transformer ST. In this work, the textual encoder and visual encoder can be formed with
CLIP (Radford et al., 2021), both of which are frozen during training. Note that we employ image
encoder of CLIP instead of other pre-trained video encoders due to its superior performance in
vision-language semantic alignment (see Sec. 5.2). Given an input text script t, we first split it into
sentences t = (t̃1, t̃2, · · · , t̃m), where t̃i denotes the i-th sentence in text script t and m is the total
number of sentences. We then encode each of them into a feature vector vTi (i = 1, 2, · · · ,m) with
the text encoder TE, and finally obtain a sequence of sentence embeddings (vT1 , vT2 , · · · , vTm). The
process of text encoding is defined as:

(vT1 , vT2 , · · · , vTm) = TE(t̃1, t̃2, · · · , t̃m) = (TE(t̃1),TE(t̃2), · · · ,TE(t̃m)). (1)

Similarly, we encode every shot in a shot sequence (s1, s2, · · · , sn) into a feature vector vSi (i =
1, 2, · · · , n) with visual encoder VE and then concatenate them into a sequence of shot embeddings
(vS1 , vS2 , · · · , vSn). Specifically, for each shot in the sequence, we sample K frames from the original
shot and encode every frame into feature vector vFi,j (i = 1, 2, · · · , n, j = 1, 2, · · · ,K) with the
image encoder VE. We simply average the feature vectors of K frames and take it as the feature
vector of the corresponding shot. Formally, the process of extracting shot feature vectors is:

vSi = Avg(vFi,1, vFi,2, · · · , vFi,K) = Avg(VE(fi,1),VE(fi,2), · · · ,VE(fi,K))), (2)

where Avg(·) is the average function and fi,j is the j-th frame of the i-th shot.

On the top of the sequences of text embeddings and shot embeddings, we propose a novel sequence
consistency transformer ST to learn the text-video joint representation in sequence-level. Note that
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our proposed sequence consistency transformer supports one or multiple shots as input for flexibil-
ity (i.e., n ≥ 0 and n is an integer). Concretely, following previous works (Kim et al., 2021; Chen
et al., 2020), different token type embeddings are firstly added to each embedding in these two se-
quence respectively to discriminate text embedding and shot embedding. We then concatenate these
two sequences into one sequence:

(ṽ1, ṽ2, · · · , ṽm+n) = (vT1 + x, vT2 + x, · · · , vTm + x, vS1 + x̃, vS2 + x̃, · · · , vSn + x̃), (3)

where x and x̃ denote the token type embedding of text and shot, respectively. Furthermore, the
embedding of special [CLS] token is appended to the start of the concatenated sequence. The
sequence consistency transformer ST is defined as:

(vc, v1, v2, · · · , vm+n) = ST (ṽc, ṽ1, ṽ2, · · · , ṽm+n), (4)

where ṽc denotes the embedding of [CLS] token. To encourage the ST to learn the text-video
joint representation in sequence-level well, we devise Cross-Modal Sequence Matching (CMSM)
Task (see Sec. 4.2) and Chaotic Sequence Recovering (CSR) (see Sec. 4.3) tasks for model training.

4.2 CROSS-MODAL SEQUENCE MATCHING (CMSM)

Similar to the Image-Text Matching (ITM) task Lu et al. (2019), we devise a novel Cross-Modal
Sequence Matching (CMSM) Task to encourage our RATV model to learn text-video alignment in
sequence-level. Specifically, we extract the representation of [CLS] token as the joint representation
of the input sequence, and then feed it into a FC layer with a sigmoid function to predict a score be-
tween 0 and 1, which indicates the probability of that the input text and shot sequences are matching.
Differently, we generate the positive and negative samples with two novel mechanisms. To create
the positive samples, we introduce a randomly-mask-tail-shots mechanism. Concretely, we sample
a script-video pair at each step during training, where the script and paired video are denoted as sen-
tence sequence (t̃1, t̃2, · · · , t̃m) and shot sequence (s1, s2, · · · , sn), respectively. We then randomly
decide the number of shots to mask and mask the desired number of shots from the tail of the shot
sequence to generate a positive sample. Formally, the randomly-mask-tail-shots mechanism is:

(s1, s2, · · · , sn−L0
) = R((s1, s2, · · · , sn), L0), (5)

where R(·,·) denotes the randomly-mask-tail-shots function and L0 is the randomly decided number
of shots to mask (0 ≤ L0 < n). Moreover, we also introduce a randomly-insert-unpaired-shots
mechanism to create the negative samples. For a text-video pair, we randomly select another shot
sequence (ŝ1, ŝ2, · · · , ŝn̂) from the training set, which is unpaired with the script. We randomly
select one of the sub-sequences of unpaired shot sequence and insert it into the paired shot sequence
in a random position. Formally, we randomly decide the length L1 and start position k (1 ≤ L1 ≤
n̂, 1 ≤ k ≤ n̂, k + L1 ≤ n̂+ 1), and obtain the sub-sequence with them:

(ŝk, ŝk+1, · · · , ŝk+L1−1) = G((ŝ1, ŝ2, · · · , ŝn̂), k, L1), (6)

where G(·, ·, ·) denotes the function of obtaining sub-sequence from the input sequence. The
randomly-insert-unpaired-shots mechanism is formally defined as:

(s1, s2, · · · , sn−L2
, ŝk, ŝk+1, · · · , ŝk+L1−1, sn−L2+1, · · · , sn)

= I((s1, s2, · · · , sn), (ŝk, ŝk+1, · · · , ŝk+L1−1), L2),
(7)

where I(·, ·, ·) denotes the random insert shots function and L2 is the randomly decided position to
insert the sub-sequence (0 ≤ L2 ≤ n). Since we create positive and negative samples by manipulat-
ing the shot sequence, the CMSM task encourages the model to learn a well-aligned text-video joint
representation space in sequence level.

During training, we randomly decide the input sample is positive or negative with probability 0.5,
and give the corresponding binary label y ∈ {0, 1} (i.e., 0 is negative and 1 is positive). We then
apply the randomly-mask-tail-shots or randomly-insert-unpaired-shots mechanism on the sample
and feed it into the sequence consistency transformer ST to obtain the matching score M. The binary
cross-entropy loss is taken on board for optimization:

LV = E
[
− (y logM + (1− y) log(1− M))

]
. (8)
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4.3 CHAOTIC SEQUENCE RECOVERING (CSR)

We further devise another novel pretext task termed Chaotic Sequence Recovering (CSR) for text-
video joint representation learning. The CSR task aims to recover the original order of the shots
in the chaotic shot sequence with the paired text. Formally, given the input sentence sequence
(t̃1, t̃1, · · · , t̃m) and its paired shot sequence (s1, s2, · · · , sn), we first shuffle the shot sequence:

(c1, c2, · · · , cn) = S(s1, s2, · · · , sn), (9)

where S(·) denotes the function of shuffling the input sequence, ci ∈ {s1, s2, · · · , sn} and ci ̸=
cj (∀i, j = 1, 2, · · · , n, i ̸= j). Meanwhile, we can obtain the original positions of all shots in
the shuffled sequence, which are defined as (p̃1, p̃2, · · · , p̃n). After feature extraction, the shuffled
sequence is transformed to a sequence of shot embeddings, which is then concatenated with the
sequence of sentence embeddings and embedding of [CLS] token. According to Eq. (3), we have
the concatenated sequence of embeddings (ṽc, ṽT1 , ṽ

T
2 , · · · , ṽTm, ṽS1 , ṽ

S
2 , · · · , ṽSn ). Note that we use

different symbols to distinguish the sentence and shot embeddings here for easier understanding. We
finally feed the sequence into ST and employ a FC layer with a softmax function on every outputted
shot embedding to predict the score of i-th position:

pi = SM(FC(vSi )), i = 1, 2, · · · , n, (10)

where SM(·) is the softmax function, FC(·) is the FC layer. Note that the length of shot sequence
n can vary for different input and the output dimension of FC thus can not be defined. To address
this, we follow previous transformer based methods to set the max length Lmax. If the length of
input shot sequence is less than Lmax, we pad the sequence so that its length is equal to Lmax, and
mask the padding tokens when the sequence is fed into the ST. If the length of input shot sequence is
greater than Lmax, we truncate the sequence so that its length is equal to Lmax. With this setting, the
FC layer is defined for Lmax-class classification task (i.e., pi ∈ RLmax ). The CSR task minimizes
the cross-entropy loss with (p̃1, p̃2, · · · , p̃n) as ground-truth labels:

LR = E
[ n∑
i=1

CE(pi, p̃i)
]
, (11)

where CE(·, ·) denotes the cross-entropy function. Note that the CSR task is parallel with the
CMSM task, i.e., our model is trained with these two tasks together at each step during training. The
overall loss can be defined as:

LRATV = LV + λLR, (12)
where λ is the hyperparameter to balance the two losses.

4.4 INFERENCE

In the inference phase, our proposed RATV generates video montages from given text scripts by
retrieving shots from the set of candidates S iteratively. Formally, given a query text t, we encode
it into sentence embedding sequence (vT1 , vT2 , · · · , vTm) according to Eq. (1). We then retrieve a
shot from candidates at a time, resulting in retrieved shot sequence (s̃1, s̃2, · · · , s̃t−1) at step t (the
sequence is empty when t = 1). For shot sc in leftover candidates (i.e., sc ∈ S and sc /∈ {s̃i|i =
1, 2, · · · , t− 1}), we calculate the scores in both instance-level and sequence-level, and add them as
the ensemble score for shot sc. Concretely, we get the shot embedding vSc with Eq. (2), and calculate
the score in instance-level to measure whether the shot sc and input text t are matching in semantics:

Ic = cos(Avg((vT1 , vT2 , · · · , vTm)), vSc ), (13)

where cos(u, v) = uT v/∥u∥∥v∥ denotes the cosine similarity between the two vectors u and v. In
addition, we append the shot sc to the end of retrieved shot sequence and feed it with input text to
sequence consistency transformer ST to get the output matching score Mc as the score in sequence-
level. The ensemble score is Ec = Mc + λsIc, where λs is the weight hyperparameter. The shot
with highest ensemble score is taken as the retrieved shot s̃t and appended to the end of retrieved
shot sequence. We set a threshold hyperparameter ϵ for automatically terminating the inference
process. That is, when the highest ensemble score Eh ≤ ϵ, our RATV terminates the process and
returns the retrieved shot sequence as the generated video montage. Crucially, our proposed RATV
learns video-text joint representation in sequence-level with carefully designed two mechanisms in
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Table 2: Quantitative results on the VSPD dataset. † denotes directly using the pre-trained model
for retrieval without fine-tuning. ↓ means that lower is better while ↑ means the opposite. CLIP-A
denotes that we split the input text into sentences and encode each sentence with CLIP, and then use
the average of the sentence embeddings for retrieval.

Method Automated Metrics User Study
IoU ↑ UMS ↓ SMS ↑ CS ↑ Semantic ↑ Coherence ↑

VSE (Frome et al., 2013) 0.017 4.925 0.013 0.194 2.47 3.34
VSE++ (Faghri et al., 2018) 0.020 6.141 0.007 0.040 2.14 3.08
MIL-NCE† (Miech et al., 2020) 0.011 5.431 0.002 0.116 – –
MIL-NCE 0.023 6.111 0.009 0.035 2.03 2.74
Frozen-in-Time† (Bain et al., 2021) 0.077 4.723 0.054 0.143 – –
Frozen-in-Time 0.085 5.213 0.066 0.178 2.95 3.29
CLIP† (Radford et al., 2021) 0.072 5.026 0.034 0.073 – –
CLIP-A† 0.104 4.669 0.072 0.095 3.09 3.24
Write-A-Video† (Wang et al., 2019) 0.104 4.669 0.079 0.097 3.09 3.24
Transcript-to-Video† (Xiong et al., 2021) 0.096 4.621 0.064 0.124 2.69 3.16

RATV (ours) 0.144 3.393 0.090 0.685 3.40 3.76

the CMSM task. Therefore, the matching score measures whether the candidate shot sc is matching
with the input text and retrieved shot sequence in semantics and coherence at the same time. As
a result, our RATV can directly return the retrieved shots in sequence of retrieval order without
rearranging them. The illustration of inference process is shown in Figure 6 in Appendix A.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We adopt four metrics for quantitative evaluation. (1) Intersection over Union (IoU). Recall is
considered as an important metric for retrieval task in previous works, which measures whether the
target in the top-K retrieved results (resulting in Recall@K). Note that the target in retrieval task
commonly contains a single instance, but the target in video montage generation contains multiple
shots. Therefore, we adopt IoU instead of recall, which is applied on the retrieved shots and the
(ground truth) shots paired with each query text. (2) Unmatching Score (UMS). This metric is
defined as follows: for all shots in a generated video, we find those shots not in the (ground truth)
video paired with the input/query text, then calculate the dissimilarity dsim = 1 − sim for each
of the found shots, where sim is the similarity between shot and the input text calculated by CLIP.
We finally add all dissimilarities together as the UMS. Note that ResNet50×4 (not used by any
competitors) from CLIP is used to calculate the similarity. (3) Sequence Matching Score (SMS).
This metric is used to evaluate the overall quality of the generated video montage. Specifically,
given a query/input text t, we define the paired (ground truth) shot sequence and retrieved shot
sequence as {s1, s2, · · · , sn} and {s̃1, s̃2, · · · , s̃ñ}, respectively. The SMS is defined as: SMS =
1
n

∑min(n,ñ)
i=1 B(si = s̃i), where B(·) is the indicator function (indicating whether two shots are the

same). (4) Consistency Score (CS). This metric is used to evaluate the consistency of the generated
video given the input text. To obtain this score for arbitrary video-text pair, a binary classifier is
needed to distinguish whether all shots in the video are both temporally consecutive and consistent
with the context of the text. In this work, we train the binary classifier over a large set of video-text
pairs, where the positive pairs are directly obtained from the training set but the negative pairs are
generated by shuffling the shots in the video from each positive pair. The classifier can achieve over
90% prediction accuracy on the test set. Additionally, other settings are given in Appendix B.

5.2 QUANTITATIVE RESULTS

The quantitative results are shown in Table 2. It can be observed that: (1) Our RATV outperforms
all competitors with large margins on all metrics, indicating that our method can retrieve shots
from candidates more precisely and assemble them into final video montage with better coherence.
(2) CLIP-A leads to significant improvements over CLIP (Radford et al., 2021), which shows that
CLIP still suffers from large information loss when it directly encodes complicated texts of multiple
sentences. This is mainly due to the fact that only short/brief texts are used for pre-training CLIP. (3)
Among the three methods (i.e., Write-A-Video, Transcript-to-Video, and our RATV) that consider
the coherence during video montage generation, our RATV performs the best because of expanding
from instance-level modeling to sequence-level modeling.
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Table 3: Ablation study results for
our full RATV model. Base de-
notes the RATV model trained with
the ITM task. RM and RI de-
note the randomly-mask-tail-shots
and randomly-insert-unpaired-shots
mechanisms, respectively. The full
CMSM task is equal to RM+RI.

Method IoU ↑ UMS ↓ SMS ↑ CS ↑
Base 0.093 4.741 0.051 0.079
Base+RM 0.109 4.513 0.056 0.131
Base+RI 0.096 4.373 0.078 0.256
Base+CMSM 0.142 3.535 0.083 0.645
Base+CSR 0.099 4.608 0.065 0.136
Base+RM+CSR 0.116 4.235 0.070 0.164
Base+RI+CSR 0.099 4.282 0.087 0.337

RATV (ours) 0.144 3.393 0.090 0.685

RATV (ours)

Text Script Jungles are the richest places on Earth, because of one remarkable fact, they make their own weather.  
Every day, water rises from the surface of the leaves as vapour.

CLIP-A†

Write-A-Video†

MIL-NCE

VSE++

Frozen-in-Time

Ground Truth

Transcript-to-Video†

Figure 3: Qualitative results for video montage generation on the VSPD dataset. Every image here
denotes a shot, and the image in red box means that the shot falls in the ground-truth video. Each
row (except the last two rows) shows the shots in the video generated by a compared method. These
videos are all generated according to the text script in the last row. Note that the number of shots of
some generated videos is less than that of the other videos due to the earlier termination by threshold.

We further conduct user study to evaluate the quality of generated videos under human percep-
tion. Table 2 shows the user study results. As expected, our RATV outperforms all competitors on
both semantic consistency and temporal coherence. Interestingly, Write-A-Video and Transcript-to-
Video are even inferior to CLIP-A and Frozen-in-Time under human perception, showing that their
assembly techniques (using pre-defined rules or coherence classifier) are not that effective without
considering the context of input text. Details of user study are given in Appendix D.

5.3 ABLATION STUDY

We conduct ablation study to show the contribution of our proposed CMSM and CSR tasks. We
firstly adopt simple ITM task (Chen et al., 2020) to train our proposed RATV model, which is
denoted as Base. To further explore the contribution of the two novel tasks, we then gradually add
randomly-mask-tail-shots mechanism (RM), randomly-insert-unpaired-shots mechanism (RI) and
CSR task on the top of Base. When we adopt RM (RI) along, we follow the strategy of ITM task to
create negative (positive) samples. Our full RATV is actually Base+RI+RM+CSR, which is trained
with full CMSM (i.e., RI+RM) and CSR tasks. The results of ablation study are shown in Table 3.

We have the following observations: (1) The RM and RI lead to improvements on all metrics, in-
dicating that both mechanisms are beneficial to text-video joint representation learning for video
montage generation (2) The combination of RM and RI in the CMSM task yields significant im-
provements on all metrics over adopting them alone, which shows the complementarity of the two
mechanisms. Crucially, our RATV trained with the CMSM task has now outperformed CLIP-A (see
Base+CMSM in in Table 3 vs. CLIP-A† in Table 2), which directly verifies the effectiveness of our
proposed RATV framework for video montage generation. (3) When combined with either of the
two mechanisms, the CSR task leads to further improvements on all metrics, especially on the SMS
and CS. This still holds for CMSM+CSR (i.e., our full RATV).
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Figure 4: Comparative results on three subsets of the test set. These test subsets are obtained by
splitting the test set according to the number of sentences m in each input text script.

5.4 QUALITATIVE RESULTS

The qualitative results on the VSPD dataset are shown in Figure 3. Among the competitors,
VSE++ (Faghri et al., 2018), MIL-NCE (Miech et al., 2020), and Frozen-in-Time (Bain et al., 2021)
are trained on the VSPD dataset. We can observe that: (1) Compared with the other competitors, the
shots retrieved by CLIP-based methods can express the text script more precisely, which also contain
the 3 shots from the ground-truth video. (2) Based on CLIP, Write-A-Video and Transcript-to-Video
can both retrieve the shots that are well aligned with the text script. Importantly, the shots in the
generated videos are more consecutive due to the pre-defined rules and the coherence classifier (as
compared with CLIP-A). However, some shots in the generated videos are still in an unreasonable
order or not so relevant to the text script, because the context of the text script is ignored when ar-
ranging the retrieved shots. (3) Our RATV can generate the video that precisely expresses the whole
text script. Importantly, our model can consider the semantic alignment and temporal coherence in
the meantime during video montage generation. The generated video thus does not contain any shots
irrelevant to the text script. Although our model happens to miss the second shot of the ground-truth
video, this shot is not found by any competitors. More results are given in Appendix E.

5.5 FURTHER EVALUATION

Number of Input Sentences. We make further comparison under different test conditions. Con-
cretely, we split the test set into three subsets according to the number of sentences m (m ≤ 2,
m = 3, m ≥ 4) in each input text script, and report comparative results on each test subset in Fig-
ure 4. We can observe that our RATV consistently outperforms all competitors on three (i.e., IOU,
UMS, and CS) out of four metrics over all test subsets. When it comes to SMS, our RATV is slightly
inferior to CLIP-A and Write-A-Video when m ≤ 2. However, as m increases, the performance of
CLIP-A and Write-A-Video in terms of SMS decreases sharply, thus becoming worse than that of
our RATV. Overall, the superior performance of our RATV with m > 2 shows that our RATV is
indeed effective in video montage generation given complicated text script of multiple sentences.

Wild Text Scripts. Although the VSPD dataset contains the videos from documentaries, the goal
of our RATV is not to generate documentaries only. In contrast, it devotes to generating videos on
various themes which mainly depend on the input text scripts. To demonstrate this, we deploy our
RATV to generate travel vlog with narrated text scripts, MV for music with lyrics, and background
video with poem, which are shown in Figure 10 in Appendix F. The results suggest that our RATV
has a good ability of generating videos on various themes with wild text scripts.

6 CONCLUSION

In this work, we have proposed a novel framework termed RATV to automatically generate video
montages by retrieving and assembling shots with arbitrary text scripts. Due to the novel Cross-
Modal Sequence Matching (CMSM) and Chaotic Sequence Recovering (CSR) tasks, our proposed
RATV can effectively learn the text-video joint representation in sequence-level and also the co-
herence of shot sequence. To our best knowledge, our RATV is the first model for video montage
generation based on text-to-sequence retrieval, which can generate video montages more consistent
with the input text scripts. To fill the gap in dataset construction for video montage generation, we
create a new, highly varied dataset called VSPD, which contains thousands of diverse video-script
pairs. Extensive experiments on the VSPD dataset demonstrate the effectiveness of our RATV.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Gulrukh Ahanger and Thomas D. C. Little. Automatic composition techniques for video production.
IEEE Transactions on Knowledge and Data Engineering, 10(6):967–987, 1998.

Alex Andonian, Camilo Fosco, Mathew Monfort, Allen Lee, Rogério Feris, Carl Vondrick, and
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A SUPPLEMENTAL ILLUSTRATION

We provide the supplemental illustration of the comparison between our RATV and existing methods
in Figure 5. For easier understanding, we also provide the visualization for inference pipeline in
Figure 6. The detailed descriptions about these two figures have been given in Sec. 2 and Sec. 4.4
of the main paper, respectively.
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Figure 5: Pipelines of existing methods and our proposed RATV for video montage generation.
Input text of existing methods is typically a single sentence.
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Figure 6: The inference pipeline of our proposed RATV. At each step, RATV retrieves one shot from
shot gallery with search engine. Note that we adopt the ensemble technique to exploit the similarity
between input text and candidates in both instance-level and sequence-level for text-to-shot retrieval.

B SETTINGS

Implementation Details. For extracting the shot embeddings with the pre-trained CLIP (Radford
et al., 2021), we follow previous works (Miech et al., 2020; Bain et al., 2021) to resize all selected
frames in the shot videos to 256 × 256 and centrally crop them into 224 × 224 (i.e., the input
image size of CLIP). In the training phase, we set the batch size to 64 and total epochs to 200 to
train our RATV model (with pre-trained CLIP frozen). We adopt 2-layer (with 512 hidden units
and 8 heads) transformer as our Sequence Consistency Transformer. For better training stability, we
adopt AdamW (Loshchilov & Hutter, 2019) with the learning rate 5e-5, β0 = 0.9, β1 = 0.98 as
the optimizer for training. We adopt the strategy of applying weight decay as in ViLT (Kim et al.,
2021). The hyperparameters are empirically set to λ = 1, λs = 0.75 and ϵ = 1.1. Our RATV is
trained on PyTorch with a single TITAN RTX GPU, which takes about 2 hours for training.

Baseline Methods. Since cross-modal retrieval is one of the core steps of video montage gen-
eration, we directly employ existing cross-modal retrieval methods as baseline methods for video
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montage generation, in addition to the state-of-the-art methods (Wang et al., 2019; Xiong et al.,
2021). Concretely, we compare our RATV with VSE (Frome et al., 2013), VSE++ (Faghri et al.,
2018), MIL-NCE (Miech et al., 2020), Frozen-in-Time (Bain et al., 2021), CLIP (Radford et al.,
2021), Write-A-Video (Wang et al., 2019) and Transcript-to-Video (Xiong et al., 2021). VSE and
VSE++ are retrained with the default setting on our VSPD dataset, which originally focus on image-
text retrieval but can be generalized to text-shot retrieval by averaging the frame embeddings as shot
embedding. MIL-NCE and Froze-in-Time both devote to text-video retrieval, which are pre-trained
on HowTo100M (Miech et al., 2019) and WebVid2M (Bain et al., 2021), respectively. CLIP is a
large-scale visual-language pre-training model, which is pre-trained over 400M text-image pairs for
text-image retrieval. We generalize CLIP to text-shot retrieval just as VSE and VSE++. Further, we
also split the input text into sentences and encode each sentence with CLIP, similar to our RATV.
The average of the sentence embeddings is considered as embedding of the input text and then used
for retrieval, which is denoted as CLIP-A. Note that all of cross-modal retrieval methods arrange the
retrieved shots in descending order by similarity. We re-implement Write-A-Video by replacing the
backbone of its retrieval network with CLIP and adopting the pre-defined rules introduced in Wang
et al. (2019). Similarly, for Transcript-to-Video, we also replace its backbone with CLIP and em-
ploy the beam search strategy with an extra coherence classifier trained on VSPD for re-implement
it, which encodes the input texts like CLIP-A. Note that the threshold for terminating the retrieval
process has influence on the final results, which requires carefully design for different methods. To
alleviate this, we set the max length of retrieved shot sequence to 10 for all competitors because
more than 90% videos in the VSPD dataset contain less than 10 shots. For performance evaluation,
we generate 200 video montages with the text scripts in the test set of our VSPD using each com-
pared method. The shot candidates consist of all shots from the 200 ground-truth videos in the test
set. We average the results of 200 generated videos as the final results for each method.

C DATASET CONSTRUCTION

Note that video montage generation task is a highly subjective task, in which there can be multiple
generated samples that could be almost equally good. Therefore, establishing a dataset to well
evaluate this task is extreme challenging. To alleviate this issue, we collect video-script pairs from
videos that have been well edited by the experts (e.g., movie, cartoon and MV). However, these
thress types of videos are not good choice: (1) The captions of movie and cartoon are commonly
not consistent with the shots because most of captions are dialogues. (2) The shots in MV are
commonly not temporal coherence. As a result, we propose to collect the video-script pairs from
documentaries, whose captions are descriptive and consistent with the temporally consecutive shots
(as stated in the Section 3). More importantly, the documentaries are commonly shot and edited
by the experts that have professional expertise. Therefore, the collected videos (i,e., the continuous
clips of documentaries) in our VSPD dataset can indeed be considered as the perfect videos w.r.t.
semantic consistency, temporal coherence and aesthetics, i.e., they can be used as the ground-truth
for training and evaluation. With evaluation on such dataset, a model has to consider all of the factors
(e.g., text-video alignment, temporal coherence, and aesthetics) for video montage generation..

In this work, we search documentary videos on YouTube and filter them with the type of ‘movie’.
These candidate videos are then filtered according to their themes to remove those unsuitable for
this work. We also remove the videos without available caption files. We finally download 51 docu-
mentary videos with their caption files. Note that these videos consist of documentaries with various
themes (e.g., animal, ocean and forest), resulting in a large diversity of shots in our VSPD dataset.
As the shot is the basic unit in video montage generation, we divide these chosen videos into shots
with a accurate shot boundary detector (Souček & Lokoč, 2020). The captions in the caption files
are also split into a series of short texts of multiple sentences automatically. Concretely, we consider
each line of a caption text file as the basic unit, which contains the timestamp and several words (not
a complete sentence sometimes). We firstly combine the consecutive words into a sentence accord-
ing to stop punctuation and process the timestamp at the same time. Further, if the time interval
between two sentences is less than one second, we consider they are semantically relevant and com-
bine them into a short text script, and also fuse the timestamps of these two sentences. Finally, we
obtain a series of short text scripts and their timestamps. Note that the timestamps are used to obtain
the shots that correspond to the text script. To avoid meaningless or wrong text scripts, we manually
check all text scripts and remove some inappropriate ones (e.g., dialogue) by ourselves. We then
form each video-script pair by combining the short text scripts and the corresponding shots in the
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Figure 7: Samples of video shots in our constructed VSPD dataset. Each picture here denotes a shot.

Across the continent, from the deepest forests, to the most impossible peaks,  a hidden world pulsing with life.

Angel Falls, the highest waterfall in the world. Its waters drop unbroken for almost 1 ,000 metres. 
Such is the height of these falls, that long before the water reaches the base in the devil's canyon, it's blown away as a fine mist.

For just a few weeks each year, winged termites, alates, leave the safety of their mounds in millions. 
High in calories, these alates are exactly what the falcons need, to fuel their oceanic crossing, the longest made by any bird of prey.

Figure 8: Samples of script-video pairs in our constructed VSPD dataset. Each row shows the
video and its corresponding text script. Each picture denotes a shot in the video and the shots are
arranged in chronological order from left to right in each row. The red arrow denotes the two shots
are contiguous.

original video. We provide some samples of our constructed VSPD dataset. The samples of video
shots in our VSPD dataset are shown in Figure 7. We can observe that the shots in our VSPD dataset
are highly varied due to the large diversity of the themes of our collected documentaries. Further,
we also provide the samples of script-video pairs in our VSPD dataset, which are shown in Figure 8.
It can be clearly seen that the videos are highly consistent with the corresponding text scripts in
semantics. More importantly, the order of shots in the videos is also basically consistent with that of
the words in the text scripts. Our VSPD dataset is available at the anonymous GitHub link1, where
we can download the whole set of complete videos instead of only pictures.

1https://github.com/RATVDemo/RATV

15



Under review as a conference paper at ICLR 2023

RATV (ours)

Text Script Spinners are the most vocal of all the dolphins. They use echolocation, a kind of sonar, to find their prey. Each hunter sends out 
a series of clicks, and then listens for returning echoes, allowing them to scan for distant prey, hundreds of metres away.

CLIP-A†

Write-A-Video†

MIL-NCE

VSE++

Frozen-in-Time

Ground Truth

Transcript-to-Video†

VSE

Figure 9: Qualitative results for video montage generation on the VSPD dataset. Every image here
denotes a shot, and the image in red box means that the shot falls in the ground-truth video. Each
row (except the last two rows) shows the shots in the video generated by a compared method. These
videos are all generated according to the text script in the last row. Note that the number of shots of
some generated videos is less than that of the other videos due to the earlier termination by threshold.

D USER STUDY ON PERFORMANCE EVALUATION

Specifically, with each method, we randomly select 50 text scripts from the test set and generate
videos according to these scripts. We then invite volunteers to score all generated videos (i.e.,
400 videos in total for all methods) according to the semantic consistency and temporal coherence,
which are shortened as ‘Semantic’ and ‘Coherence’, respectively. We recruited volunteers from
our university and finally selected 6 male volunteers and 4 female volunteers for user study, which
include 3 undergraduate students, 3 master students and 4 Ph.D students. Among 10 volunteers, 8
of them are inexperienced for video creation/editing and the other 2 volunteers have created video
montages by themselves. Importantly, all of them are active users of video sharing websites (e.g.,
YouTube and TikTok), which ensures the results of user study are convincing. In this paper, ten
independent volunteers are asked to score the videos from 1 to 5 (higher is better), and the chosen
text scripts for video montage generation are different for different volunteers. Table 2 of the main
paper shows the user study results averaged over all ten volunteers.

E ADDITIONAL QUALITATIVE RESULTS

In this section, we provide more qualitative results for video montage generation with text scripts
on our constructed VSPD dataset. Specifically, we compare our proposed RATV with VSE Frome
et al. (2013), VSE++ Faghri et al. (2018), MIL-NCE Miech et al. (2020), Frozen-in-Time Bain
et al. (2021), CLIP Radford et al. (2021), Write-A-Video Wang et al. (2019) and Transcript-to-
Video Xiong et al. (2021). Note that Write-A-Video and Transcript-to-Video are the state-of-the-
art methods for video montage generation, and the other methods belong to existing cross-modal
retrieval methods that can be directly employed as baseline methods for video montage generation.
The quality results are shown in Figure 9. We can observe that: (1) VSE, VSE++ and MIL-NCE can
not retrieve the shots that express the given text script precisely. (2) Frozen-in-Time and CLIP-A can
find the shots that are more relevant to the text scripts, which contain the 2 shots from the ground-
truth video. However, they make mistakes in retrieving the word ‘dolphins’, resulting in the ‘whale’
and ‘penguin’ in the videos (e.g., the last but one and the last but two shots in the video generated
by Frozen-in-Time, and the fifth shot in the video generated by CLIP). (3) Based on CLIP, Write-A-

16



Under review as a conference paper at ICLR 2023

We embark from Argentina to the antarctic, and have a wonderful journey in this winter vacation. When the ship travels on the vase sea, it rolls in 
the waves heavily, we thus have to stay in the room to have a rest. As the time time goes on, it becomes cold gradually, and we can see icebergs 

floating on the sea now. There are many penguins walking on the ice.

I go and lie down where the wood drake rests in his beauty on the water, and the great heron feeds. I come into the peace of wild things who do not 
tax their lives with forethought of grief. I come into the presence of still water. And I feel above me the day-blind stars waiting for their light. 

You raise me up so I can stand on mountains. You raise me up to walk on stormy seas.

Figure 10: Samples of videos generated by our RATV with wild text scripts. Each row shows the
generated video and its corresponding text script. Each picture denotes a shot in the video and the
shots are arranged in chronological order from left to right in each row. The red arrow denotes the
two shots are contiguous.

Video and Transcript-to-Video can both retrieve the shots that are well aligned with the text script,
but they can not arrange the retrieved shots well. For example, Write-A-Video reverses the two
shots from the ground-truth video and places the shot of penguin after that of dolphin (i.e., the forth
and the fifth shots). The possible reason for this is that the pre-defined rules used in Write-A-Video
ignore the context of the input text script, which thus leads to misunderstanding the content of the
shots and arranging them in an unreasonable order. Similarly, Transcript-to-Video also suffers from
this problem. (4) Our RATV can generate the video that precisely expresses the whole text script.
Furthermore, our model considers the semantic alignment and temporal coherence in the meantime
during video montage generation. As a result, the video generated by our RATV does not contain
any shots irrelevant to the text script, and the retrieved shots are also arranged in a reasonable order.
Importantly, our model retrieve all shots (including the shot missed by the other competitors) from
the ground-truth video. The corresponding generated video in Figure 9 and more videos generated
by our RATV are available at the anonymous GitHub link (RATVDemo).

F QUALITATIVE RESULTS FOR WILD TEXT SCRIPTS

Although the VSPD dataset contains the videos from documentaries, the goal of our proposed RATV
is not to generate documentaries only. In contrast, it devotes to generating videos with various
themes which mainly depend on the input text scripts. To demonstrate this, we consider the shots in
the test set of VSPD as candidates (799 shots in total), and feed wild text scripts into our RATV to
generate videos with different themes, which are shown in Figure 10. We find that our RATV can
generate travel vlog with narrated text scripts (first row), MV for music with lyrics (second row),
and background video with poem (last row), all of which are well aligned with the input text scripts.
Note that some shots in these videos can not express some words precisely (e.g., the last two shots
in the second video and the fifth shot in the last video) because there are no proper shots in the
candidate set, which can be alleviated by adopting larger shot gallery during generation. In addition
to these three themes, users can also adopt our RATV to generate videos on other diverse themes
as they desired in practice. The corresponding generated videos in Figure 10 are available at the
anonymous GitHub link (RATVDemo).
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Table 4: Results for different length distributions
of positive and negative samples.

Method IoU ↑ UMS ↓ SMS ↑ CS ↑
Pos More 0.093 4.741 0.051 0.079
Neg More 0.109 4.513 0.056 0.131

RATV 0.144 3.393 0.090 0.685

Table 5: Length distributions of positive and
negative samples under different settings.

Method Positive Negative

Pos More 3.06 ± 2.24 5.43 ± 2.70
Neg More 2.57 ± 1.97 6.84 ± 2.28

RATV 2.57 ± 1.97 5.43 ± 2.70

G USER STUDY ON DATASET CONSTRUCTION

To show the impact of subjectivity of our VSPD dataset, we conduct the user study to investigate
whether people can achieve the goal of video montage generation task well on the VSPD dataset.
Note that it is very time-consuming for volunteers to select desired shots according to the give texts
from all candidates in the test set of VSPD dataset, which consists of about 800 shots. Therefore, to
make the user study more feasible, we randomly select 50 video-script pairs from test set to construct
a subset for user study, which consists of 179 shots. We then invite 5 volunteers to manually select
shots from candidates according to given texts, and arrange selected shots. Specifically, we shuffle
the 50 texts and then averagely divide these texts into 5 parts. Each volunteer is given 10 texts in one
part, and is asked to select shots from candidates according to each text and arrange the retrieved
shots to form a consecutive video. The resultant IoU and SMS is 0.728 and 0.558, respectively.
Note that the volunteers are not the experts in video editing. Therefore, these two results indicate
even inexperienced people that lack professional expertise can find the ground-truth shots from the
candidates and arrange the retrieved shots in the correct order well. The results of this user study
thus demonstrate that our proposed VSPD dataset is beneficial to evaluating a model’s ability of
text-shots alignment and shot sequence arrangement. Furthermore, the videos in VSPD dataset
are continue clips of documentaries, which are well edited by the experts that have professional
expertise. Therefore, the impact of subjectivity for VSPD dataset is relatively minor.

H IMPACT OF DIFFERENCE IN LENGTH DISTRIBUTION

To investigate how the difference in the length distributions affects the training, we conduct two
experiments below: (1) Firstly, we modify the constraint of the random number L0 to 0 ≤ L0 < n/2,
so that the positive samples contain more shots (denoted as ’Pos More’). (2) Secondly, we modify
the constraint to the length of negative samples (denoted as ’Neg More’). If the length of the selected
unpaired shot sequence is less than (or equal to) 5, we directly insert the whole sequence into the
paired shot sequence in a random position. If the length of the unpaired sequence is greater than 5,
we follow the statement in Section 4.2 in the main paper to obtain a sub-sequence of it but guarantee
the sum of k+L1 is greater than 5. The obtained results for differenct length distribution are shown
in Table 4. Furthermore, the mean and standard deviation of each length distribution is also shown in
Table 5. We can observe that both reducing and expanding the difference between the distributions
of the lengths of sequences of positive and negative samples make the results worse, which indicates
that the difference in the length distributions indeed affects the training and the intuitive setting of
our RATV can achieve the best results. In addition, these results also demonstrate that our RATV
can indeed learn the knowledge to generate video montage well from give texts, but not shortcut
about the difference in the length distributions.
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