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Abstract

Off-the-shelf pre-trained models are increasingly common in machine
learning. When deployed in the real world, it is essential that such models
are not just accurate but also demonstrate qualities like fairness. This
paper takes a closer look at recently proposed approaches that edit a pre-
trained model for group fairness by re-weighting the training data. We
offer perspectives that unify disparate weighting schemes from past studies
and pave the way for new weighting strategies to address group fairness
concerns.

1 Introduction

Pre-trained models, either as is or after minor adaptation, are increasingly used in machine
learning practice. These models are typically trained via empirical risk minimization to
maximize some notion of predictive accuracy, often producing highly accurate predictions
on in-distribution test data. However, accuracy is usually only one of many attributes
of interest in real-world applications. For example, ensuring the model does not produce
systematically biased predictions for any data sub-group is crucial in high-stakes applications
such as healthcare.
Motivated by these observations, several post-hoc approaches [9, 7, 14, 12, 18, 19] have been
proposed that either edit the pre-trained model or transform its predictions to satisfy a
desired measure of fairness, such as demographic parity and equality of opportunity. We
focus on a set of recently proposed data-centric, post-hoc techniques [15, 16, 17] that use
influence functions [6, 10] to gauge the impact of training data on fairness measures. Not
only do they offer interpretability by highlighting influential training instances, but they
also re-weight these instances — by omitting, doubling, or otherwise re-weighting them to
mitigate unfairness. Here, we show that these different re-weighting approaches can be viewed
as specific instantiations of the same optimization problem. Moreover, the optimization view
immediately suggests new re-weighting schemes that empirically improve on existing ones.
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Finally, we provide preliminary insights into the source of the favorable accuracy-fairness
tradeoff demonstrated by the re-weighted model of [16].

2 Background

Consider a standard supervised learning setup where we have access to a dataset D =
{zn = (xn, yn)}N

n=1 of N feature (xn ∈ Rp) and response (yn ∈ Y) pairs, a model hθ(x)
parameterized by θ ∈ Θ ⊆ RD, and a loss function ℓ : Y ×Y → R+. We fit the model to D by
minimizing the empirical risk, L(θ) def= 1

N

∑N
n=1 ℓ(yn, hθ(xn)), with respect to θ and denote

the empirical risk minimizer, θ̂ = argmin
θ∈Θ

L(θ). We note that for modern large language

models (LLMs), θ may be initialized by minimizing an alternate loss ℓ′ on a potentially
much larger pre-training dataset Dpre. In this scenario, the empirical risk minimization
setup described here corresponds to the supervised fine-tuning (SFT) step of training LLMs.
Our experiments with LLMs in this paper use this SFT setup.

2.1 Influence functions and the infinitesimal jackknife approximation

Next, consider the weighted empirical risk, L(θ, w) def= 1
N

∑N
n=1 wnℓ(yn, hθ(xn)), that weights

each training instance’s loss by a scalar weight wn ∈ W ⊆ R and w is a column vector
[w1, w2, . . . , wN ]T ∈ WN ⊆ RN . Observe that the optimal solution of the weighted problem,

θ∗(w) = argmin
θ∈Θ

L(θ, w) = argmin
θ∈Θ

1
N

N∑
n=1

wnℓ(yn, hθ(xn)), (1)

is a function of w, θ∗(w) : RN → RD. While, in general, the functional form of θ∗(w)
is unknown, a common strategy is to form a first-order Taylor approximation to it about
1 def= [w1 = 1, w2 = 1, . . . , wN = 1]T ,

θ∗(w) ≈ θ̂ + I(w − 1), (2)

where I ∈ RD×N is shorthand for the Jacobian matrix ∇wθ∗(w)
∣∣∣∣
w=1

and we have used

the fact that θ∗(1) = θ̂. When L(θ) is twice differentiable in θ, and at a stationary point
of L(θ), i.e., when ∇θL(θ) = 0, an analytical expression for each column of the Jacobian
matrix becomes available from the application of the implicit function theorem [11]1,

In = ∂θ∗(w)
∂wn

∣∣∣∣
w=1

= −H−1gn, (3)

where In is the nth column of I, H def= ∇2
θL(θ)|θ=θ̂, and gn

def= ∇θℓ(yn, hθ(xn))|θ=θ̂. In

measures how θ∗(w) varies as we re-weight the nth training instance and is popularly called
the influence function [6, 10]. This expression allow us to form a linear approximation,
the infinitesimal jackknife (IJ) [8] approximation, to the solution of Equation 1 given a
pre-trained model (θ̂), a weight vector w, and G = [g1, . . . , gN ] ∈ RD×N ,

θ∗(w) ≈ θ̂ − H−1G(w − 1). (4)

2.2 Group Fairness

We assume that each data instance has an additional sensitive attribute sn ∈ [k], i.e.,
D = {zn = (xn, sn, yn)}N

n=1, that encodes the group membership of the nth data instance.
Here, the responses yn ∈ {0, 1} are binary labels associated with each data instance. In this
setup, the goal is to learn accurate classifiers that minimize disparities in predictions across
groups.

1For a detailed derivation see Appendix A of [10], or Appendix J of [5]
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To quantify disparities, we rely on common fairness metrics — demographic (or statistical)
parity (DP) [2] and equality of odds (EO) [7]. Let X and S denote random variables
representing the features and the sensitive attribute. DP requires the classifier’s predictions
to be statistically independent of the sensitive attribute, hθ(X)⊥S, and EO requires the
classifier’s predictions to be statistically independent of the sensitive attribute conditioned
on the true outcome, hθ(X)⊥S | Y For a binary sensitive attribute, DP implies, P (hθ(X) =
1 | S = 1) = P (hθ(X) = 1 | S = 0) while EO implies P (hθ(X) = 1 | S = 1, Y = y) =
P (hθ(X) = 1 | S = 0, Y = y) for both y = 0 and y = 1. Difference in Equality of Opportunity
(DEO) [7] is a special case of equality of odds that requires the predictions to be conditionally
independent of the sensitive attribute given positive true outcome. We use smooth surrogates
to the absolute difference in demographic parity and equality of odds as our model editing
loss functions,

F∆DP
Dval

(θ) = |EpDval (X=x|S=1)[hθ(x)] − EpDval (X=x|S=0)[hθ(x)]|

F∆EO
Dval

(θ) =
1∑

y=0
|EpDval (X=x|S=0,Y =y)[hθ(x)] − EpDval (X=x|S=1,Y =y)[hθ(x)]|.

(5)

We use these particular surrogates because they are widely used in the literature to regularize
for fairness in the literature [20]. However, the approaches we study here are surrogate
agnostic and others could [3] be used just as easily.

2.3 Fairness Influence

We can use the influence function machinery to understand how re-weighting a training
instance affects the fairness disparity. For illustration, consider the case of demographic
parity, other cases follow analogously. Equation 3 and the chain-rule allows us to quantify
how demographic parity changes with re-weighting of the nth training instance,

IFDP,n
def=

∂F∆DP
Dval

(θ∗(w), w)
∂wn

∣∣∣∣
w=1,θ∗(w)=θ∗(1)

= ∇θF∆DP
Dval

(θ∗(w), w)
∣∣∣∣T
w=1,θ∗(w)=θ∗(1)

∂θ∗(w)
∂wn

∣∣∣∣
w=1

,

= −∇θF∆DP
Dval

(θ∗(w), w)
∣∣∣∣T
w=1,θ∗(w)=θ∗(1)

H−1gn,

= −gT
DPH−1gn,

(6)

which we refer to as the fairness influence.

3 Editing pre-trained models for fairness

Several recent works [15, 16, 17] have used this notion of fairness influence to edit pre-trained
models such that they exhibit smaller fairness disparity. The key idea is to estimate a
training instance’s influence on a desired fairness disparity and then to drop, by setting
the corresponding weight (wn) to zero (or up-weight by setting wn to two), instances that
increase (or decrease) the fairness disparity. Finally, they recover the fair model either by
explicitly minimizing Equation 1 [17, 15] or by leveraging the IJ approximation [16].
Moving beyond these intuitive yet heuristic data reweighting schemes, here we seek to find a
re-weighting of the data, w∗, such that,

w∗ = argmin
w∈WN

F∆a
Dval

(θ∗(w), w), (7)

where a ∈ [DP, EO, DEO] is a desired fairness discrepancy. Unfortunately, each evaluation
of the objective in Equation 7 requires solving the weighted risk minimization problem of
Equation 1 thus rendering a direct optimization of the objective in Equation 7 computationally
prohibitive for most problems of interest encountered in practice.
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To cope, we consider a linearization F∆a
Dval

(θ∗(w), w) about w = 1,

F̄∆a
Dval

(θ∗(w), w) ≈ F∆a
Dval

(θ∗(1), 1) + ∇wF∆a
Dval

(θ∗(w), w)
∣∣∣∣T
w=1,θ∗(w)=θ∗(1)

(w − 1),

= F∆a
Dval

(θ∗(1), 1) + IT
Fa(w − 1),

(8)

where IFa
def= [IFa,1, . . . , IFa,N ]T ∈ RN , and IFa,n = −gT

a H−1gn from Equation 6. Without
any constraints on w, the linearized surrogate F̄∆a

Dval
(θ∗(w), w) can be trivially minimized by

setting the components of w to −∞. For non-trivial solutions, we need to constrain w. We
thus consider the following problem instead,

w∗ = argmin
w∈WN

F̄∆a
Dval

(θ∗(w), w) + 1
λ
D(w, 1), (9)

where, D : WN × WN → R+, is a proximal regularizer that encourages w to stay close to
1, and λ ∈ R+ controls the regularization strength. Beyond avoiding trivial solutions, the
proximal regularization restricts w to regions where both the error in Equation 2, and the
error stemming from the linearlization of F are expected to be small and can be driven to
zero by setting λ = 0. Moreover, for many reasonable choices of W and D Equation 9 can be
minimized analytically without requiring iterative gradient based minimization.

3.1 Existing weighting rules use Hamming distance as the proximal regularizer

Discrete W We begin by showing that when W = {0, 1} and D is the Hamming distance,
i.e., D(w, 1) =

∑N
n=1 1[wn ̸= 1], where 1[a ̸= b] is an indicator function that takes a value

of one when a ̸= b, and zero otherwise, we recover the drop-K re-weighting rule proposed
in [16] and subsequently used in [15]. Following [16] we alternatively refer to this as the
Fair-IJ weighting rule.
Proposition 3.1 (drop-K / Fair-IJ weighting rule). Let WN = {0, 1}N be the set of
all N dimensional binary vectors, and D(w, 1) be the Hamming distance between w and
1, then Equation 9 is minimized by setting the weights of the K largest positive influence
training instances to zero.

Proof. Plugging in the constraint and the proximal regularizer in Equation 9, we have,

w∗ = argmin
w∈{0,1}N

F̄∆a
Dval

(θ∗(w), w) + 1
λ

H(w, 1) = argmin
w∈{0,1}N

F̄∆a
Dval

(θ∗(w), w) + 1
λ

N∑
n=1

|wn − 1|,

where in the second equality we have plugged in the definition of Hamming distance for binary
vectors. Expanding the linearization term, gives us the following minimization problem,

min
w∈{0,1}N

F∆a
Dval

(θ∗(1), 1)+IT
Fa(w−1)+ 1

λ

N∑
n=1

|wn−1| = min
w∈{0,1}N

N∑
n=1

(
IFa,n(wn−1)+ 1

λ
|wn−1|

)
+constant.

Ignoring the constant independent of w, we have the equivalent problem,

min
w∈{0,1}N

N∑
n=1

1[IFa,n > 0]
(
IFa,n(wn−1)+ 1

λ
|wn−1|

)
+

N∑
n=1

1[IFa,n < 0]
(
IFa,n(wn−1)+ 1

λ
|wn−1|

)
,

where 1[a > b] is an indicator function that takes a value of one when a > b and zero
otherwise. We arrive at the result by observing that this objective is minimized when the
second summation is zero, i.e., by setting wn = 1, when IFa,n < 0. Furthermore, from the
first summation we see that setting wn = 0 when IFa,n > 0 reduces the objective by −IFa,n

at the cost of 1
λ . The first term is thus minimized by sorting the positive influences and

proceeding in descending order, setting the corresponding wn = 0 until the Kth instance
such that K

λ >
∑K

n=1 IFa,n.

Thus Fair-IJ is a special case within our framework. Moreover, when WN is the space of
ternary vectors, minimizing Equation 9 recovers the drop-K, upweight-M re-weighting rule
employed by [17]. See Appendix C for details.
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3.2 Mahalanobis distance based regularizers yield new weighting schemes

Continuous W Next, we consider weights vectors w that are not constrained to be binary
or ternary but instead live in RN .
Proposition 3.2 (I-JACK weighting rule). Let WN = RN and D(w, 1) be the squared ℓ2
norm, 1

2 ||w − 1||22, then Equation 9 is minimized by setting, w∗ = −λIFa + 1.

Proposition 3.3 (SIM-JACK weighting rule). Let WN = RN and D(w, 1) be the squared
Mahalanobis distance 1

2 (w − 1)T C−1(w − 1), where C ∈ SN×N
+ is a symmetric positive

definite matrix, then Equation 9 is minimized by setting, w∗ = −λCIFa + 1.

Both these results follows from setting the gradient of Equation 9 to zero and rearranging
terms. See for a simple proof Appendix C of these results. Differently from the other rules,
SIM-JACK through the matrix C, allows us to model correlated weights. Such correlated
weights can be particularly useful if the influence estimation itself is noisy, due to numerical
imprecision or approximations stemming from computational considerations. By encouraging
similar data instances to have similar influences SIM-JACK can provide a degree of robustness
to noisy influence estimation.
While various parameterizations of C are possible, working with a full rank N × N matrix is
prohibitively expensive for large N . Instead, we use linear kernels of the form C = ΦT Φ + εI,
where Φ = [ϕ(z1), . . . , ϕ(zN )] ∈ RP ×N , and ε is a small positive number to ensure invertibility
of C and P << N . While various feature transformations ϕ(zn)) are possible, we find that
while simply using an intermediate layer of the pre-trained model, i.e., ϕ(zn) = lθ̂(xn), where
l is an intermediate layer of the network works well for tabular data, for natural language it
is often beneficial to use an auxiliary encoder-only transformer (for example, the RoBerta
family of models were used in our experiments).

3.3 Updating for fairness without sacrificing empirical risk

Plugging in the different weighting rules into Equation 4 provides us with different rules for
updating the model parameters.

Fair-IJ update rule
θfair = θ̂ +

∑
m

H−1gm, (10)

where m ranges over training instance indices corresponding to the K largest positive
influence (−gT

mH−1ga > 0) instances. Note that since gT
a (H−1gm) < 0, the Newton ascent

defined in Equation 10 reduces the fairness discrepancy of interest denoted by a.

I-JACK update rule

θfair = θ̂ − H−1

(
λ
∑

n

gngT
n

)
H−1ga. (11)

SIM-JACK update rule

θfair = θ̂ − H−1

(
λ
∑

n

gn

(∑
m

CnmgT
m

))
H−1ga. (12)

In all the above a ∈ [DP, EO, DEO]. Contrasting with the standard gradient update, θ̂−λga,
we immediately see that all three IJ based updates account for the curvature of L(θ) via
H while the gradient update does not. In particular, the spectral decomposition of H−1 is∑D

p=1
1

νp
upuT

p
2, where νp, up are the pth eigenvalue, eigenvector pair of H. For any vector

v ∈ RD, the update,

θ̂ − H−1v = θ̂ −
∑

p

uT
p v
νp

up, (13)

2assuming H is positive definite. In practice, we will add a small diagonal for positive definiteness
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deemphasizes update directions corresponding to large νp. Since eigenvectors associated
with the larger eigenvalues point in directions where L(θ) increases faster, updates of the
form H−1v, encourage θfair to lie in flatter regions of L(θ). This property allows the IJ
based updates to find θfair that do not substantially increase the original training loss.
Moreover, I-JACK and SIM-JACK adaptively control the degree to which larger eigenvalues
are penalized, and smaller emphasized. Moreover, in the I-JACK update rule the scaled
empirical covariance of the per-sample gradients λ

∑
n gngT

n
3 adaptively control the degree

to which larger eigenvalues are penalized, and smaller emphasized. When λ
∑

n gngT
n is well

approximated by the identity matrix, the I-JACK update is θ̂ −
∑

p

uT
p ga
ν2

p
up an even stronger,

quadratic regularization towards flat regions of L(θ), while for a well-specified generalized
linear model, and ℓ is the negative log-likelihood, as N → ∞, both 1

N

∑
n gngT

n and 1
N H

tend to the Fisher information matrix, we recover Equation 13. The SIM-JACK update is
similar, but replaces the outer product gngT

n with the outer-product between gn and the
linear combination

∑
m CnmgT

m, where Cnm capture a user defined notion of similarity
between training instances n and m. The update collapses to the I-JACK update when C is
a N × N identity matrix.

4 Experiments

Experimental Setup: We empirically validate the proposed methods on two datasets:
the tabular Adult dataset and the natural language CivilComments dataset. Both have
been used in prior work to benchmark post-hoc fairness algorithms [16]. We assess fairness
using the EO, DEO, and DP metrics. For the Adult dataset, our model is a 1-hidden layer
MLP with 100 units and SeLU non-linearities. For the CivilComments dataset, we employ a
T5-base model adapted via soft prompt-tuning. We experiment with different number of
soft-prompt or virtual tokens. In the SIM-JACK setup, a pre-trained RoBERTa model is used
for feature transformation. Further details are available in the appendix.
Datasets: The Adult dataset contains demographic attributes such as age, race, and gender,
with the goal of predicting if an individual’s income surpasses a specific threshold. We
use gender as the sensitive attribute and standardize all features. The CivilComments
dataset’s task is to determine if a comment is toxic. We’ve noted, as have others, that model
performance can vary across demographics. In our experiments, we identify Muslim as the
sensitive group and apply our approach to ensure fairness according to the EO and DEO
metrics.
Results: The Adult dataset results are in Figure 1. SIM-JACK consistently out-performs
FairIJ [16] (the Drop-K variant of our approach) in error rate for comparable fairness
metrics. We also compare against strong bias mitigation baselines from the literature. For
post-processing methods, we include FST [18] and HPS [7] which operate on the logits or
probability of the predictions and transform them to achieve better fairness. These often
are restricted in the amount of change that that they can impose on pre-trained models, as
also seen in Figure 1. For in-processing methods, we compare against a HGR [13] based
regularizer and a mixup based approach, FairMixup [4]. We also compare to fine-tuning to
directly minimize the fairness measure in Table 2 (appendix). Both in-processing and fine-
tuning approaches are able to improve fairness but substantially increased error rates. This
highlights the benefit of the re-wieghting based approaches of first learning an ERM model
and carefully editing it to achieve fairness. In the case of CivilComments, we compare the
three rewieghting approaches — SIM-JACK, I-JACK, and Fair-IJ. We find that SIM-JACK
typically provides a better fairness-accuracy tradeoff compared to Fair-IJ and I-JACK by
either producing more accurate predictions at the same level of fairness or producing more
fair predictions at the same accuracy depending on the number of virtual tokens used. The
results are available in the appendix (Table 3).

3recall that we are in the vicinity of a stationary point,
∑

n
gn ≈ 0, hence the covaraiance is

≈ E[gngT
n ]
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Figure 1: Performance of various bias mitigation algorithms on the Adult dataset averaged over 10
runs. The error bars represent two standard errors.

5 Discussion

In this paper, we took a closer look at influence function based approaches to fairness
and showed that various existing approaches can be unified under a single optimization
framework. We additionally provided insights into the favorable fairness-accuracy tradeoffs
of these approaches.
While effective in many cases, these approaches to fairness editing are local in nature, wherein
they search for edited models within the vicinity of the empirical risk minimized model.
Their utility might be limited when finding an useful edited model requires hopping between
different minima of the loss. Additionally, their reliance on the loss landscape’s curvature
can pose computational challenges. Yet, even crude (diagonal) curvature approximations
can result in valuable model edits.
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A Practical Considerations

We note that the machinery presented in the main paper assumes that we are at a stationary
point of the L(θ), i.e., ∇θL(θ) = 0. However, modern machine learning models, trained
with SGD, and potentially employing early stopping rarely satisfy this criteria. However,
recent work [5] establish that the error in Equation 3 grows smoothly with distance from the
stationary point, allowing the analytical influence expression to still be useful in the vicinity
of a stationary point. Moreover, [1] show that influence functions computed at non-converged
solutions, when employing a Fisher information matrix with a dampner as an approximation
to the Hessian, can be viewed as linear approximations to a particular proximal Bregman
response function. This is the view we adapt in this paper and approximate the Hessian
with the Fisher (and add a diagonal dampner). In preliminary experiments with the 100 unit
MLP on Adult data we further found a conjugate gradient based approach for computing the
inverse Fisher vector products needed by our influence based re-estimation schemes did not
consistently out-perform a diagonal empirical Fisher matrix approximation to the Hessian.
Since, the diagonal approximation is efficient to compute, store, and invert, our experiments
use it to explicitly perform the required inverse matrix vector products, doing away with the
expensive conjugate gradient method.
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B Experimental Details

Dataset statistics Table 1 summarizes the different datasets used in this paper.

Table 1: A summary of different datasets used in Section 4.
Dataset Y |Dtrain| |Dval| |Dtest|
Adult 0, 1 21815 10746 12661

Civil Comments 0, 1 269038 45180 133782

Fairness experiments For our experiments on the Adult dataset we use 21815, 10746
and 12661 as the training, validation and test instances, respectively. Each training run
uses a random split of the datasets and we average the results over 10 runs. We search
for λ among 50 uniformly chosen values in the range 0.01 − 10 and pick the one with the
lowest fairness discrepancy as measured on the validation set. Each training run, including
searching for the optimal λ took less than 2 hours on a single NVIDIA A100 Tensor Core
GPU. Table 2 additionally compares fine-tuning for fairness against SIM-JACK. Observe that
while fine-tuning can lower the fairness disparity this comes at a substantial cost — much
lower accuracy compared to ERM and SIM-JACK.

Method Test Error Test DP Test EO Test DEO
SIM-JACK 0.190±0.020 0.005 ± 0.002 0.040 ± 0.022 0.020 ± 0.015
Fine-tuning-DP 0.240±0.010 0.003 ± 0.001
Fine-tuning-EO 0.240±0.002 0.003 ± 0.007
Fine-tuning-DEO 0.350±0.210 0.020 ± 0.023

Table 2: Results of fine-tuning with respect to different fairness objectives on the ADULT
test split. Fine-tuning-DP, Fine-tuning-EO, Fine-tuning-DEO are used to indicate pre-
trained models fine-tuned to minimize DP, EO, and DEO on the ADULT validation split.
We compare against SIM-JACK trained on the same validation split. We note that while
fine-tuning does reduce the fairness discrepancy it is trained to minimize it also produces
substantially less accurate models, resulting in noticeably worse fairness-accuracy trade-offs.

For the CivilComments experiments, we used soft prompt-tuning to adapt T5-base models.
We experimented with different number of virtual tokens — 20, 40, and 60. We used an
auxiliary model, RoBERTa-base, for computing the similarity matrix C needed by SIM-JACK.
In particular, we use the RoBERTa-base model’s hidden-state of the first token of the last
layer to encode each training instance. In order to find the optimal λ, we do a logarithmic
search between the range of 0.01 and 50. The numbers in Table 3 reports the performance
of SIM-JACK, I-JACK, Fair-IJ for each choice of the number of virtual tokens averaged over
five random initializations.

C Proofs

Proposition C.1 (Drop-K Upweight-M weighting scheme). Let W = {0, 1, 2}N be the
set of all N dimensional ternary vectors, and D(w, 1) be the Hamming distance between w
and 1, then Equation 9 is minimized by setting the weights of the K largest positive influence
training instances to zero and the M smallest negative influence training instances to two.

Proof. Plugging in the constraint and the proximal regularizer in Equation 9, we have,

w∗ = argmin
w∈{0,1,2}N

F̄∆+
Dval

(θ∗(w), w) 1
λ

H(w, 1) = argmin
w∈{0,1,2}N

F̄∆+
Dval

(θ∗(w), w) 1
λ

N∑
n=1

|wn − 1|,
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Metric / Method ERM Fair-IJ I-JACK SIM-JACK

|Vt| = 20
BA 0.61±0.01 0.57±0.00 0.57±0.00 0.58±0.02
∆EO 0.14±0.01 0.10±0.00 0.10±0.00 0.10±0.02
BA 0.61±0.01 0.57±0.01 0.57±0.00 0.59±0.02
∆DEO 0.14±0.01 0.09±0.01 0.09±0.00 0.09±0.01

|Vt| = 40
BA 0.62±0.01 0.57±0.00 0.57±0.00 0.62±0.03
∆EO 0.16±0.02 0.11±0.00 0.11±0.01 0.11±0.02
BA 0.62±0.01 0.57±0.00 0.57±0.00 0.62±0.02
∆DEO 0.16±0.02 0.11±0.00 0.11±0.00 0.08±0.03

|Vt| = 60
BA 0.61±0.02 0.57±0.00 0.55±0.03 0.56±0.02
∆EO 0.12±0.01 0.09±0.01 0.07±0.03 0.06±0.02
BA 0.61±0.02 0.57±0.00 0.57±0.00 0.57±0.00
∆DEO 0.12±0.01 0.09±0.01 0.09±0.00 0.06±0.02

Table 3: Comparison of bias mitigation on CivilComments dataset with sensitive attribute muslim.
We report balanced accuracy (BA), EO, and DEO across three runs for different choices of the
number of virtual tokens |Vt|. The error bars report two standard errors over five runs.

the second equality follows from our choice of encoding a ternary vector using {0, 1, 2}.
Following arguments analogous to the ones made in proving Proposition C.1, we arrive at
the following minimization problem,

min
w∈{0,1,2}N

N∑
n=1

1[IF,n > 0]
(
IF,n(wn−1)+ 1

λ
|wn−1|

)
+

N∑
n=1

1[IF,n < 0]
(
IF,n(wn−1)+ 1

λ
|wn−1|

)
,

where 1[a > b] is an indicator function that takes a value of one when a > b and zero
otherwise. Next, observe that that setting wn = 0 when IF,n > 0 reduces the objective by
−IF,n at the cost of 1

λ , while setting wn = 2 when IF,n < 0 reduces the objective by −|IF,n|
also at the cost of 1

λ . The objective is thus minimized by sorting the influences by their
magnitudes and proceeding in descending order, setting wn = 0, if IF,n > 0 and wn = 2 if
IF,n < 0 until K

λ + M
λ >

∑K+M
n=1 |IF,n|, where K is the number of entries of w set to zero

and M is the number of entries of w set to 2.

Proposition C.2 (I-JACK weighting rule). Let W = RN and D(w, 1) be the squared ℓ2
norm, 1

2 ||w − 1||22, then Equation 9 is minimized by setting,

w∗ = −λ∇wF∆
Dval

(θ∗(w), w)
∣∣∣∣
w=1,θ=θ̂

+ 1 = −λIF + 1.

Proof. We arrive at the result by setting the gradient ∇wF̄∆+
Dval

(θ∗(w), w) 1
2λ (w − 1)T (w − 1)

to zero and rearranging terms,

∇wF̄∆+
Dval

(θ∗(w), w) 1
2λ

(w − 1)T (w − 1) = 0 =⇒ IF + 1
2λ

2w − 1
λ

1 = 0

=⇒ w = −λIF + 1.

Proposition C.3 (SIM-JACK weighting rule). Let W ∈ RN and D(w, 1) be the squared
Mahalanobis distance 1

2 (w − 1)T C−1(w − 1), where C ∈ SN×N
+ is a symmetric positive

definite matrix, then Equation 9 is minimized by setting,
w∗ = −λCIF + 1.
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Proof. We arrive at the result by setting the gradient ∇wF̄∆+
Dval

(θ∗(w), w) 1
2λ (w−1)T C−1(w−

1) to zero and rearranging terms,

∇wF̄∆+
Dval

(θ∗(w), w) 1
2λ

(w − 1)T C−1(w − 1) = 0

=⇒ IF + 1
2λ

2C−1w − 1
λ

C−11 = 0

=⇒ w = −λCIF + 1.
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