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Abstract

Designing functional proteins is a critical yet challenging problem due to the intri-
cate interplay between backbone structures, sequences, and side-chains. Current ap-
proaches often decompose protein design into separate tasks, which can lead to ac-
cumulated errors, while recent efforts increasingly focus on all-atom protein design.
However, we observe that existing all-atom generation approaches suffering from
an information shortcut issue, where models inadvertently infer sequences from
side-chain information, compromising their ability to accurately learn sequence
distributions. To address this, we introduce a novel rationalized information flow
strategy to eliminate the information shortcut. Furthermore, motivated by the advan-
tages of Bayesian flows over differential equation—based methods, we propose the
first Bayesian flow formulation for protein backbone orientations by recasting orien-
tation modeling as an equivalent hyperspherical generation problem with antipodal
symmetry. To validate, our method delivers consistently exceptional performance
in both peptide and antibody design tasks. Our code, checkpoint, and designed
PDBs can be found in https://github.com/GenSI-THUAIR/ProBayes.

1 Introduction

Proteins are fundamental to life, carrying out essential functions in biological processes [Clark and
Pazdernik, 2012, Whitford, 2013]. Designing functional protein stands as a grand scientific challenge
with great potential to modulate life processes Notin et al. [2024]. Prevalent approaches to protein
design often decompose this task into a set of more manageable sub-problems, i.e. generating partial
protein components (e.g. backbone), and subsequently designing the remaining components (e.g.
sequence and side-chain) conditioned on those generated sub-units [Watson et al., 2023, Yim et al.,
2023a, Bose et al., 2023, Lin and AlQuraishi, 2023].

However, in such a loosely connected pipeline, each compartment can only capture a partial protein
component, which may lead to an incongruous whole. Furthermore, the three-dimensional structure of
protein is simultaneously determined by both the backbone and the side chain [Schulz and Schirmer,
2013] while each model in pipelines can only capture and design a partial protein component.
Moreover, early fixed inaccurate partial components accumulate and propagate errors downstream
[Kong et al., 2023]. These issues all call for a unified end-to-end all-atom protein design model.

Understandably, achieving all-atom modeling is inherently challenging, due to dependency between
the sequence and the coordinates (namely, the number and arrangement of side-chain atoms vary with
the sequence. e.g. Lysine residue has four side-chain rigid groups while the Valine residue only has
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one, see Fig. 1). We observe that existing all-atom modeling practices [Li et al., 2024, Chu et al., 2024,
Kong et al., 2023, Zhu et al., 2024] suffer from an information shortcut issue: when the network is
trained to jointly denoise both the sequence and the side chain, the network can infer sequence from
even noised side-chain for hacking the training loss, thereby failing to properly learn the sequence
distribution. In this paper, we propose to address this by designing a rationalized information flow,
which avoids such problem while still preserving network’s ability to capture all-atom geometry.

Furthermore, current works employ stochastic differential equations (SDE) (e.g. diffusion models
[Song et al., 2020, Ho et al., 2020]) or ordinary differential equations (ODE) (e.g. flow matching
[Lipman et al., 2022, Chen and Lipman, 2023]) to generate each protein component. However, these
SDE and ODE methods are known to be prone to discretization errors, which can hinder both the
quality and efficiency of the generation process [Karras et al., 2022, Tong et al., 2024, Sabour et al.,
2024]. Bayesian Flow Networks (BFNs) [Graves et al., 2023] are a new class of generative models
that build a generation process through Bayesian inferences over noised data, which effectively
circumvents the discretization error without the need to discretize continuous differential equations '
and has been verified to be effective in molecule generation tasks [Song et al., 2023, Wu et al., 2025].

Motivated by this, we introduce ProBayes, a new all-atom protein design model with Bayesian flows.
A key theoretical challenge needs to be tackled: The orientations of the protein backbone frame are
SO(3) matrices { R : R € R3*® RR” = I, det(R) = I}, while there is no existing Bayesian flow
workable on SO(3). Directly conducting Bayesian inference on SO(3) is impractical, because current
SO(3) distributions (e.g. IGSO(3)) cannot guarantee conjugacy under Bayesian inference, which is
pivotal to build Bayesian flow. To overcome this issue, we propose to transform the problem into an
equivalent hypersphere one, by generating SO(3) elements on hypersphere with antipodal symmetry.
Additionally, ProBayes demonstrates clear advantages over the current prevalent SO(3) flow matching
method [Yim et al., 2023a], which relies on a hand-crafted inference annealing technique to adjust
the generation flow. Our contributions can be summarized as follows:

* We introduce ProBayes, a new protein generation approach with Bayesian flow, by transform-
ing SO(3) generation into an equivalent problem of hypersphere generation with antipodal
symmetry.

* We identify and resolve the issues of information shortcut in all-atom protein generation
with a novel rationalized information flow.

» Extensive experiments demonstrate that ProBayes consistently achieves significant improve-
ments over existing methods on peptide design and antibody design tasks, e.g. achieving a
DockQ score of 0.74 on PepBench.

2 Preliminary

Hypersphere and hypertorus Given an Eu-
clidean space R?, the hypertorus T¢ is repre-
sented as the Cartesian product of d flat toruses
T! = {9 : ¥ € [0,27)}. The hypersphere S?~!
located in RY is defined as: S*~! = {z : x €
R, ||z||2 = 1}. Superscript d denotes the de-
gree of freedom.

Protein representation A protein P is a
biomolecule composed of L amino acid residues,
each defined by its type, backbone frame, and
side-chain angles Fisher [2001]. All amino-
acid types form the protein sequence S =
[$1,...,8z], where s; € {1,...,20},V¥] € Figure 1: Illustration of protein representation.
{1,2,...,L}. The backbone frame of each Note the pattern that different residue types have
residue is parameterized by the position vector  different numbers of side chain torsion angles.

of the C,, atom, p € R?, an orientation matrix

'There exists a study [Xue et al., 2024] attempting to connect continuous-time BFNs with SDEs. However,
we clarify that the discrete-time BFN functions as gradient-free generative models involving no differential
operations, which is fundamentally different from SDEs. Further discussion is provided in Appendix G.



R € SO(3) that determines the relative positions of the N and C atoms, and a torsion angle 1) which
governs the position of the O atom [Engh and Huber, 2006, Jumper et al., 2021, Yim et al., 2023b].
The side-chain can be represented by up to four rigid groups with x denoting the flexible torsion
angle between rigid groups. The number of side chain torsions and arrangements depend on the
specific residue type as shown in Fig. 1.

Bayesian flow networks As a new class of generative models, Bayesian flow networks (BFNs)
[Graves et al., 2023] build a generation process through Bayesian inferences using noised data, which
is fundamentally different from diffusion models [Song and Ermon, 2019, Ho et al., 2020, Song et al.,
2020] and flow matching [Lipman et al., 2022].

Formally, BFN parameterizes a belief for clean data @ over the space with a distribution family, e.g.
Gaussian distribution for £ € R. The belief starts from an uninformative prior 8y, which is updated
according to the received noised data y; ~ ps(y;|x, o), € {1,2,...,n} with different levels of
signal-to-noise ratio parameter «;. The update transition from 6;_; to 6; is termed Bayesian update
function 0; = h(0;_1,y;, «;), which is derived from the Bayesian theorem according to the form of
the belief distribution and noise distribution pg. With each 6;_1 as input, the neural network W is
trained to transform the belief @;_; as receiver distribution pg, to minimize the evidence lower-bound
based training loss:

L(Y) = nExmpyBinv 1.0y Eo, 1~pr DrLlps(yilz, ai)|lpr(y: | Y(0i-1), )] €))

where pr is the Bayesian flow distribution representing the distribution of 8 at time step i. Com-
pared to diffusion models and flow matching, BFN enjoys the following advantages: (1) free from
discretization error without the need to discretize continuous differential equations; (2) precisely
adjusted step sizes according to the entropy parameter «;, allowing fast and accurate generation
demonstrated in [Song et al., 2023, Wu et al., 2025]. Motivated by these advantages, we aim to design
anew SO(3) Bayesian flow as a more effective and efficient approach to protein design.

3 Bayesian flow for SO(3) generation

In this section, we introduce the first known Bayesian flow for generating SO(3) data,” which is
derived from constructing a Bayesian Flow on the hypersphere S® with antipodal symmetry.

3.1 Theoretical challenge in directly building SO(3) Bayesian flow

Difficulty in guaranteeing Bayesian conjugacy The Bayesian inference approach used in BFN
requires the Bayesian conjugacy of the distribution, i.e. the posterior distribution after observing
the noised data should be in the same distribution family as the prior belief distribution. However,
existing SO(3) distributions (e.g. the IGSO(3) distribution used in Yim et al. [2023a,b], Bose et al.
[2023]) are intractable to derive an analytical Bayesian update to ensure its conjugacy due to its
infinite sum. Furthermore, other well-known existing statistical distributions over rotation matrix
[Watson, 1966, Downs, 1972, Khatri and Mardia, 1977] also involve intractable probability density
function to guarantee their Bayesian conjugacy, e.g. matrix Fisher distribution.

Therefore, we resort to other widely used rotation representations such as Euler angles, axis-angle
and unit quaternions, instead of the rotation matrix. As discussed below, we demonstrate that both
Euler angles and the axis-angle representation fail to adequately capture the group structure of SO(3),
whereas unit quaternions are able to do so effectively, which is used in this paper. Additionally, the
unit quaternion’s intrinsic manifold, i.e. the hypersphere, is significantly simpler than the structure of
SO(3), and there exists a normal distribution over the hypersphere which satisfies Bayesian conjugacy.

Non-covering of Euler angle and axis-angle representation We observe that some rotation rep-
resentations cannot capture the group structure of SO(3). For example, Euler angles suffer from
the singularity problem of gimbal lock [Hoag, 1963]. From the perspective of topology, such prob-
lems reveal the fact that the hyper-torus T3 cannot cover the SO(3). Practically, we validate the
ineffectiveness of Euler angles and axis-angle representation via toy data generation experiment (see
Appendix C). The definition of the cover map is as follows:

2 Although the position vector and the orientation matrix form SE(3), measure on SE(3) can be disintegrated
into measure on SO(3) and R3 [Yim et al., 2023a, Bose et al., 2023]. Therefore, we can focus on SO(3)
generation only.
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Figure 2: Intuitive illustration of the equivalent transformation from SO(3) generation to hypersphere
generation with antipodal symmetry. Extending the modeled space to a hypersphere yields a more
symmetric and tractable manifold.

Definition 1 (Covering Map, Hatcher [2005]). Given topological space X and Y, a covering
map is a surjective continuous map f : X — Y such that: every element y € Y has an open
neighborhood U, C'Y where f~(U,) is a disjoint union of open sets, each of which is mapped by
f homeomorphically onto U,.

The quaternion representation of rotation can be used to build an SO(3) Bayesian flow because the
space of this representation (i.e. the hypersphere) can cover SO(3). Intuitively, we aim to build a
generative model in a larger topological space while preserving the original group structure of SO(3).

3.2 Transforming SO(3) generation into hypersphere S* generation

Fig. 2 provides an intuitive illustration of transforming SO(3) generation into hypersphere S® genera-
tion. Firstly, we introduce the group structure of unit quaternion rotation representation, i.e. SU(2)
group and its corresponding manifold hypersphere S. Then, we explain the proposed key constraint
of antipodal symmetry to equivalently transform SO(3) generation into hypersphere S* generation,
and introduce a simple approach to satisfy such constraint.

SU(2) group SU(2) is the special unitary group composed by unitary matrices U € {U : U €
C2x2, yUT = I, det(U) = 1}. SU(2) is diffeomorphic to the hypersphere S? [Hall, 2013]. Hence,
we can represent SU(2) elements using four real numbers, namely the quaternion ¢ = [a, b, ¢, d]* with

atbi c+di ) ca,b,e,d € Rya? + 0% + 2 + d? =1}

unit 2-norm constraint: SU(2) = {( et di a—bi

Double covering between SO(3) and SU(2) In fact, SU(2) is the double covering group of SO(3)
[Hall, 2013] and there exists a surjective homomorphism ¢ : SU(2) — SO(3) such that for every
gsu(2) € SU(2), we have ¢(gsu(2)) = ¢(—gsu(z)) = gso(3) € SO(3). Therefore, we can transform
the representations of these two groups between one another. Specifically, given a unit quaternion
q = a + bi + ¢j + dk, the corresponding rotation matrix R = ¢(gq) = ¢(—q) can be obtained by:

1—2¢2 —2d? 2bc — 2da 2bd + 2ac
R = 2bc + 2da 1 —2b% —2d? 2cd — 2ab [Shoemake, 1985] )
2bd — 2ac 2cd + 2ab 1—2b% —2¢2

Inversely, rotation matrix R can be transformed into the corresponding double unit quaternion
g1 =a+bi+cj+dkand g = —(a + bi + ¢j + dk) from Eq. (2):

1 1

s = mﬂ = E’b = s(R32 — Rg3),c = s(Ri3 — Ra31),d = s(Ra1 — Ri2) (3)
As illustrated above, each rotation matrix R corresponds to two unit quaternions q and —g, which are
equivalent when representing the three-dimensional rotation operation. This phenomenon is termed
as SU(2)’s double-covering of SO(3) [Altmann, 2005], which results in the discrepancy between
generating rotation matrices and directly generating unit quaternions. We propose a natural solution to
this problem, by adding an antipodal symmetry constraint to the modeled unit quaternion distribution
on the hypersphere S?:

Definition 2 (Antipodal Symmetry). For a distribution p(x) supported on S, we say this distribution
is antipodal invariant if p(x) = p(—x),Vx € S%. Correspondingly, we say a function f operating
q € S3 is antipodal equivariant if f(—q) = —f(q).



Now, with antipodal symmetry, we can transform the generative modeling problem of SO(3) data
into an equivalent one on S* with antipodal symmetry. We formulate the proposed transformation
with the following preposition:

Proposition 1. Every distribution psos)(R) supported on SO(3) can be bijectively mapped to a
distribution pss (q) supported on S® which satisfies pss (q) = pss (—q).

In fact, we find that antipodal equivariance can be easily ensured by implementing the Invariant
Point Attention (IPA) module [Jumper et al., 2021] based on quaternion representation (instead of the
rotation matrix) without extra operations or complexity.

3.3 Bayesian flow on hypersphere S?

Equipped with Proposition 3, we can now derive a Bayesian flow for generating SO(3) on the
hypersphere S3. In this section, we introduce the first derivation of the Bayesian flow on S¢, which
can be applied to generate unit quaternions with d = 3 for SO(3) generation.

Von Mises Fisher distribution and Bayesian update function - We choose von Mises Fisher (vMF)
distribution [Mardia and Jupp, 2009] to parameterize the belief over S? because of its tractability and
Bayesian conjugacy. With the location parameter x and concentration parameter «, the probability
density function of the von Mises—Fisher distribution is:

v

fo(x; p, k) = vMEF (x|, k) = Cp(k) exp(kpu’ x) = (27)”?71[1/(“) exp(rp’x), 4)
where ||p|] = ||z|| = 1,v =d/2 — 1,k > 0, I,,(k) denotes the modified Bessel function of the first

kind at order v. Given the prior belief parameterized by vMF distribution with parameter f;—1, f;—1,
the noised sample y; from sender distribution with unknown clean «, and the accuracy «; describing
the entropy of y;, the Bayesian update function i for von Mises Fisher distribution is deducted as:

h({pi—1, Ki—1}, Yis ;) = {ps, K }, where Ky = Ki—1 i1 + o y; )

The proof of the above Eq. (5) can be found in Appendix B. This update function operates in
an intuitive manner, analogous to the moment equation in physics, where the accuracy/entropy

parameters « and « represent the mass, and p and y denote the velocity. We define 8 &ef K to
compactly denote the parameter of the vMF distribution {x, pt}.

Bayesian flow distribution Based on the Bayesian update function, the Bayesian flow distribution on
hypersphere S over vMF distribution can be obtained by conducting a series of Bayesian inferences.

With the notation o, def {a1,as,...,a;}, the Bayesian flow distribution is expressed as (details in
Appendix B):

0;|lx;00.) = E 6(0; — i35 6

pF( |:c aL: ) vMF (yi|z,a1)..oMF(y;|2z,a;) ( ;ajyj) ©

Now with Eq. (6) and Proposition 3, we are able to generate the orientation of the backbone frame
with a Bayesian flow, which is free from discretization error and enjoys entropy-adjusted dynamic
step size. The antipodal symmetry of the modeled distribution is guaranteed as follows:

Proposition 2. With ¥ as an antipodal equivariant function, i.e. V(—09) = —VU(09), and
uniform prior p(03) on S®, the marginal distribution defined by multiple Markov transitions
pw(02) =p(07) [T pr (07 |V (07 ,); a1.;)dOT.,_, is antipodal invariant, which is equivalent to
a distribution py (R).

Note that, as the rotation and orientation are ubiquitous in geometric deep learning, such SO(3)
Bayesian flow can be used in other applications, e.g., molecular docking [Corso et al., 2022].

4 Rationalized all-atom protein design

In this section, we present our approach to jointly generating the complete protein structure, including
the sequence, backbone and sidechain. We emphasize that such a co-design process is inherently
tricky, and naive joint training risks information shortcut between sequence and side-chain.



ProBayes parameterizes the belief over the protein space via each modality’s belief parameter
0% = {6°,67,0% 0% 60X} with a predefined number of generation steps n. For training, we first
sample the time index ¢ ~ U{1,...,n} and 0;,_1 ~ pp for each modality. The neural network
U (@F i) is trained to minimize the training loss according to Eq. (1). After sufficient training, the
data distribution pgq, is well captured by the neural network W. As for sampling, each modality starts
from an uninformative prior 6}, which is to be updated according to the network output ¥ (67 7)
and the Bayesian flow distribution till ¢ = n.

4.1 Bayesian flow for each protein modality

We explain the definition of the Bayesian flow for each protein modality. For detailed training and
sampling algorithm, please see Appendix D.

Bayesian flow for orientation matrix R generation We utilize the proposed Bayesian flow Eq. (6)
to generate the orientation of the protein backbone frame R. We begin by uniformly converting
the orientation matrix R into its corresponding quaternion representation, yielding one of the two
equivalent quaternions {q, —g} with equal probability. The SO(3) Bayesian flow distribution is:

ph(0F|R; ;) = (7

E E 6(09 — oy
g~U{¢~ (R)} vMF(y1|q,af)..vM F(y;|q,a?) (©; ; ]y])

where o is the predefined accuracy to make the entropy of Eq. (7) linearly decrease with respect
to time step 7. Sampling 67 from p, the training objective is derived based on Eq. (1) and the KL
divergence between vMF distributions (details in Appendix B):

L(¥)=n E ol M(l — dot(g, ¥9(67 1)) (8)

) i q
q~Pagaa,i~U{1,n},08 ~pl Iu(ai)

where dot represents the dot product between two quaternions, and W9 represents the quaternion part
of the network prediction. We prove in Appendix B that such a loss is proportional to the geodesic
distance between the predicted and ground truth orientation matrix up to a constant, which further
solidifies the transformation between SO(3) and SU(2).

Bayesian flow for C,, position p generation The C,, positions of the backbone frame are in Euclidean
space p € R3. Therefore, we use the Gaussian distribution Bayesian flow [Graves et al., 2023] to
generate them. The Bayesian flow distribution of C, position p is:

(P |pst) = N (1P |y(t)p, 7(t)(1 — 7(t))I), where 7(t) = 1 — o} ©)
where o is the hyperparameter controlling the entropy of the Bayesian flow at ¢ = 1. The variance

of the belief Gaussian distribution In 0?(¢) = In(1 — v(¢)) /¢ does not need to be modeled because it
is deterministic w.r.¢. time steps.

Bayesian flow for sequence S generation Given that sequences are discrete variables, we utilize

the discrete Bayesian flow [Graves et al., 2023] to generate the sequence. With the notation of

- . . def def
projection from the class index j to the length K one-hot vector (€;); = §,, where e; € R¥ jes =

(€s,,---,€s,) € REXL the Bayesian flow distribution of sequence S is defined as:

Y05 ) (10)

S(pS S
0° | S;t) = E 0° — ——————
P (67 | ) N(y|BS (t)(Kes—1xx1),85(t)KIxxrixL) ( 22{:1 ev:(00)F

where 35(t) is the predefined accuracy schedule.

Bayesian flow for angles 1), x generation The torsional angles 1) and x are periodic variables on
the hypertorus. Hence, we use the periodic Bayesian flow [Wu et al., 2025] to generate them:

X|ye X ) — X X o X o
pr(mx; o) = E d(m* — atan2 X cosy;, a¥siny;)) (11)
( | 1) vM (y1]x,0%)... oM (yi|x,a) ( (; / ! ; / )
We illustrate our method using x; the Bayesian flow for ¢ has the same form. While both lie on the
same manifold, unlike Li et al. [2024], we treat them differently. Specifically, we distinguish x from
the backbone torsion ) because x carries partial sequence information. We expand on this in the
next section.
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Figure 3: (a): Illustration of information shortcut measured by KL divergence. (b)-(d): Training
curves demonstrating the negative impact of the shortcut. As shown in Fig. 3b, the network with a
shortcut achieves a smaller loss initially, but exhibits a larger loss towards the end. As for the metric,
the shortcut results in a worse validation AAR in Fig. 3c. Additionally, we observe that the shortcut
also hurts the performance of other modalities, such as the SO(3) in Fig. 3d.

4.2 The information shortcut problem

As discussed in Sec. 2 and Fig. 1, the residue type S reflects the types of the side-chain with varying
numbers of side-chain torsion angles from O to 4 [Jumper et al., 2021, Li et al., 2024]. However,
diffusion-like models (e.g. FM and BFNs) are inflexible in capturing varying numbers of random
variables. Prior practices [Li et al., 2024, Zhu et al., 2024] tried to address this by padding the
number of variables with a fixed padding value (e.g. 0 in [Li et al., 2024]), then mixing the side chain
information with the sequence and backbone.

Shortcut induced by paddings However, we prove that such padding and mixing operations cause
information leakage from the even noised side chain information to the sequence prediction. To
illustrate the idea, we design a simple threshold-based shortcut function to "predict" the ground truth
sequence for residue Alanine and Glycine, which have no side chain torsion angles i.e. x = [0, 0,0, 0]:

11 if ci X
shorteut(6X) = {[21, 2,10, o 0] ) if c1rc.mean(0 ) < 0.5 (12)
(5553550 357+ -» 55) otherwise

where circmean is the circular mean of periodic variables [Mardia and Jupp, 2009], with the first two
elements representing the predicted probability of Alanine and Glycine, respectively. We compare the
KL divergence between the predicted categorical distribution shortcut(6X) and the ground-truth
one-hot distribution &, against the KL divergence between the noised sequence ¢; and S, as shown
in Fig. 3a. The results demonstrate that the shortcut prediction achieves significantly lower KL
divergence than the noised sequence most of the time. This indicates the network can exploit shortcut
information from the number of side-chain angles/paddings to minimize sequence training loss, rather
than genuinely denoising the sequence by learning the underlying sequence distribution.

Shortcut induced by inherent side-chain distributions Moreover, we emphasize that the informa-
tion shortcut can still exist even in the absence of padding. This is because the side-chain torsion
distributions themselves (i.e., the non-padded values) are inherently dependent on the residue types, as
shown in Fig. 4. Consequently, the network can exploit these statistical regularities in the side-chain
distributions to reduce the sequence prediction loss, thereby hindering the proper learning of the true
sequence distribution.

Rationalized information flow Therefore, we propose a rationalized network information flow to
avoid the possibility of shortcuts, as illustrated in Fig. 5. Concretely, we avoid involving side-chain
information with the sequence ¥ = ¥ (8¢, 6P, 9F 9% 6X), while maintaining network’s capacity
to capture the all-atom geometry by the backbone and side-chain mixing module for denoising other
modalities. For side-chain prediction, the loss is computed only for non-padded values to prevent the
network from learning harmful patterns. The detailed implementation is provided in Appendix F.

Excluding side-chain information from sequence prediction does not negatively impact the perfor-
mance ceiling of sequence generation. This stems from the fundamental unfair relationship between
sequence and side-chain in the data distribution: The sequence serves as the primary determinant
of residue types, while side-chain configurations are dependent on the sequence for both side-chain
atom types and conformational specifications.
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Figure 4: Visualization of the side-chain angle distributions by residue type in PepBench. The
side-chain angle distributions of the two residues differ significantly, and the network can similarly
exploit the statistical characteristics of side-chain distributions to "predict" the sequence just like
Eq. (12).
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Figure 5: Illustration of the proposed rationalized information flow.

5 Related work

Protein generation There is a body of meaningful protein generation practices focusing on single
protein component, e.g. backbone only Yim et al. [2023b], Bose et al. [2023], Geffner et al. [2025],
Watson et al. [2023], sequence only Madani et al. [2020], Dauparas et al. [2022], and side-chain
only Zhang et al. [2023]. Recently, motivated by the advantages of joint modeling, an increasing
number of sequence—structure co-design approaches have emerged, e.g., backbone—sequence co-
design [Campbell et al., 2024, Lisanza et al., 2024] and all-atom protein generation [Martinkus et al.,
2024, Li et al., 2024, Chu et al., 2024, Kong et al., 2024, Zhu et al., 2024]. However, the increased
information of all-atom geometry also brings challenges: We observe that all-atom generation is
prone to the information shortcut problem due to the dependency between sequence and side-chain,
which is highlighted and resolved in this paper.

BFN for molecule generation Inspired by BEN’s unified generative modeling for continuous and
discrete data, GeoBFN [Song et al., 2023] first incorporates molecular geometric constraints into
the BFN framework and achieves exceptional generation performance and efficiency. Recently, Wu
et al. [2025] proposed to build BFN on the hypertorus for periodic material generation, demonstrating
a superior sampling efficiency. However, the rigidity of the protein backbone requires generative
modeling on SO(3), which is inherently difficult due to the intractability of ensuring Bayesian
conjugacy with SO(3) distributions. In this paper, we address the problem by transforming the
modeled space into a simpler one, thereby allowing Bayesian inferences.



Table 1: Evaluation on peptide co-design. On each target, 40 candidates are generated for evaluation.

Energy Native Likeness Design
Dataset  Method )" "Success(f) DockQ(t) RMSDc,(}) Valid(1) V&Div(t) V&Novel(})
PepBench Test Set -35.25 95.70 1.0 0.0 0.989 - -
RFDiffusion -24.61  69.86 0.265 412 0943 0439 0.670
PepFlow ~ -23.09  59.20 0.677 281 0848 0453 0.623
PepGLAD  -21.94 5597 0.656 3.35 0330 0245 0.226
ProBayes 2877  72.85 0.742 2.27 0998  0.449 0.727
PepBDB  TestSet  -35.96  95.79 1.0 0.0 - ; ;
PepFlow 2245  65.60 0.517 471 0615 0379 0.521
PepGLAD  -24.53 4847 0.472 5.44 0.165  0.163 0.128
ProBayes  -30.55  85.78 0.605 3.39 0950 0423 0.725

Table 2: Evaluation on binding conformation generation. Baseline results are from Kong et al. [2024].

Model PepBench PepBDB
RMSDc,, (1) RMSDyom(1)  DockQ(T) RMSDc,, (1) RMSDyom(l)  DockQ(?T)
AlphaFold 2 8.49 9.20 0.355 - - -
DiffAb 423 7.60 0.586 13.96 13.12 0.236
PepGLAD 4.09 5.30 0.592 8.87 8.62 0.403
ProBayes 2.62 3.81 0.672 3.64 4.91 0.563

6 Experiments

We verify the effectiveness of ProBayes on two protein design tasks, including peptide design and
antibody design. For peptide design task, our evaluation configurations follow Kong et al. [2024],
including peptide co-design and peptide binding conformation generation. The description of metrics
and implementation details can be found in Appendix F. We also include a toy dataset experiment in
Appendix C of SO(3) Bayesian flow compared to SDE / ODE methods [Bose et al., 2023].

6.1 Peptide design

Datasets The datasets used for evaluation include PepBench and PepBDB [Wen et al., 2019].
PepBench is constructed from the Protein Data Bank [Berman et al., 2000], containing 6105
complexes and the LNR dataset Tsaban et al. [2022] is utilized as the test set with 93 complexes.
PepBDB is a protein-peptide complex dataset containing 8434, 370, and 190 items for training,
validation, and test, respectively.

Baselines We evaluate our approach against the following baselines: PepFlow [Li et al., 2024], a
peptide design model utilizing Riemannian flow matching; PepGLAD [Kong et al., 2024], which
employs latent diffusion techniques for all-atom peptide modeling; and RFDiffusion, a multi-stage
protein design framework [Watson et al., 2023] integrated with ProteinMPNN [Dauparas et al., 2022]
for sequence generation.

Results We report the results on PepBench and PepBDB in Table 1 and Table 2 for seq-structure co-
design and binding conformation generation task, respectively. Across both PepBench and PepBDB
datasets, ProBayes outperforms existing methods in energy, native structural fidelity, and design
quality. For peptide binding conformation generation task, our method significantly outperforms all
baselines. It achieves the lowest RMSDc¢_, RMSD,m, and DockQ, indicating ProBayes’s superior
all-atom structure generation accuracy.

6.2 Antibody design

In this experiment, we focus on designing the Table 3: Results of antibody design task on RAbD.

third Complementarity-Determining Region

of the antibody heavy chain (CDR-H3), as it Method  AART RMSD| Eoul AG]
exhibits the greatest variability and plays a Test Set 100.0 0.00 -16.76  -15.33
dominant role in antigen binding [MacCallum dyMEAN  40.05 236 123929 61275
et al., 1996] DiffAb 35.04 2.53 495.69  489.42
? ’ AbX 41.27 2.40 28129  237.22
Dataset We utilize the SAbDab database AbDPO 31.29 2.79 270.12  116.06
[Dunbar et al., 2014] of antibody—antigen com- ~ AbDPO++ 3625 248 33814  223.73
ProBayes 42.12 2.27 54.68 44.12

plexes as our training dataset and evaluate
model performance using the RAbD bench-




mark [Adolf-Bryfogle et al., 2018]. The data-processing procedures, evaluation configurations, and
baseline results are from [ Ye et al., 2024]

Baselines We compare our method against three existing approaches: dyMEAN [Kong et al., 2023]
employs a full-atom geometric encoder with iterative non-autoregressive generation; DiffAb [Luo
et al., 2022] jointly diffuses categorical residue types, C, coordinates, and residue orientations;
AbDPO and its variant AbDPO++ [Zhou et al., 2024] are methods tailored for optimizing antibody
energy based on direct preference optimization.

Results The results are listed in Tab. 3. With consistently better AAR and RMSD, ProBayes also
demonstrates significant improvements in energy-based metrics, achieving state-of-the-art results
with a lower order of magnitude, surpassing even the energy-optimization-focused models AbDPO
and AbDPO++.

6.3 Ablation study ’(ll“ab.Ie 4: R]fsults of ablation study on the antibody
esign task.

We validate our design considerations through

the following ablation experiments using the Method AAR?T RMSD| Epam | AG|
antibody design task. Results can be found in ProBayes 42.12% 227 54.68 44.12
Tab. 4: (1) antipodal symmetry: we break the  w/o anti. symm. 40.17% 240 171.33 104.15
model’s antipodal symmetry by removing equiv- w/ shortcut ~ 32.51% 242 203.29 86.76

ariance in the Markov transition i.e. we replace ~ W/ Rosettapack 42.12% 227  76.11 49.28
our quaternion-based implementation with the

original IPA implementation [Jumper et al., 2021], which leads to a significant drop in energy-related
metrics, demonstrating the necessity of enforcing the proposed constraints. (2)information shortcut:
we reintroduce the information shortcut by incorporating side-chain information during sequence
prediction. This experiment results in a ~10% drop in AAR and hurts performance across other
metrics, indicating the detrimental impact of such shortcuts on model performance. (3) all-atom
capability: we replace model-generated side-chains with those obtained from Rosetta’s side-chain
packing [Alford et al., 2017]. Our model achieves superior performance on energy-based metrics,
demonstrating its capability to generate high-fidelity side-chain structures.

7 Conclusion

We introduce ProBayes, a novel all-atom protein design model using Bayesian flows, which effectively
resolves critical issues of information shortcut that plagues existing methods. Achieving significant
improvements over prior methods on peptide and antibody design tasks, ProBayes demonstrates a
more robust pathway towards generating functional proteins.
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A Proofs of propositions

Proposition 3. Every distribution pgos)(R) supported on SO(3) can be bijectively mapped to a
distribution pss (q) supported on S® which satisfies pss (q) = pss (—q).

Proof. Given each distribution pgo 3y (R) support on the SO(3) group, we can build the correspond-
ing S* measure pgo(s) (R) using the surjective homomorphism ¢ : SU(2) — SO(3):
Vg € S, ps2(q) == pso) (¢~ (R))/2 (13)

Now we prove that pgs (q) satisfies all the probability distribution axioms and the antipodal symmetry:
1. Non-negativity: Vg € S3, pss (q) = pSO(3)(q§_1(R))/2 >0

2. Normalization: [g; psa(q)dS® = § [ p(R)dS® = 5[5, p(R)dSO(3) = 1

3. Antipodal symmetry: pzs (q) = Spsos) (6~ (R)) = pss(~q)
For pss (q) = pss (—q), we can also build pgo(s)(R) := 2pss(q) = 2ps3(—q), VR € SO(3). We
can check that pg(3) (R) > 0 and fSO(?,) Pso(3)(R)dSO(3) = 1. Therefore, pso(s) is a probability
density function on SO(3). O

Proposition 4. With U as an antipodal equivariant function, i.e. V(—09) = —V(09), and
uniform prior p(03) on S3, the marginal distribution defined by multiple Markov transitions
pw(09) =p(03) [T pp (07 V(07 ,); cn.;)dOT.,,_; is antipodal invariant, which is equivalent to
a distribution py (R).

Proof.
po(-07) = p(-08) [ pul-62,] - 6E)d6E,
n—1
—p(-6) [ T pol-0%.1 — 21061,
t=0
n—1
—p(-68) [ ] pe(-62,al0(-67 ) cn)db,
t=0
n—1
= p(—OS)/ H pF(—0?+1| — V(07 ,); 1.4)db],,
t=0
n—1
—p(-68) [ T pe®19(62 ):cn)abt,
t=0
n—1
—5(03) [ ] pe®71w(62 ):an)ast,
t=0
=pu(07).
Therefore, the marginal distribution p(62) is antipodal invariant. O
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Figure 6: Visualization of the von Mises Fisher distribution with different parameters with d = 2.
Those figures are from Frisch and Hanebeck [2023].

B Detailed derivation of SO(3) Bayesian flow

B.1 Hypersphere and von Mises Fisher distribution
Given an Euclidean space R?, the hypersphere S¢~! located in R? is defined as:
St ={z:x c R ||z|| = 1} (14)

The von Mises Fisher distribution [Mardia and Jupp, 2009] is a uni-modal distribution on S~ with
the location parameter @ and concentration parameter . The parameters p and x are analogous to
the mean ;. and variance 1/0? in the normal distribution: p represents the central location around
which the distribution is concentrated, and x serves as a measure of concentration. We provide a
visualization of vMF distribution with different ¢ and « in Fig. 6. The probability density function of
vMF distribution is:

v

fo(®; p, k) = VM F (|, k) = Cp(r) exp(rp’ @) = (27T)”i—11u(/€) exp(rp’®),  (15)
where ||p|] = ||z|| = 1,v =d/2 — 1,k > 0, I,,(k) denotes the modified Bessel function of the first
kind at order v. The differential entropy of v M F'(u, %) is:
_ IV+1(’<'7)
HwMF(p,k)=—-k—F—=+ ¥+ 1) In2n+x+Inl, (k) —vink (16)

I,(k)

We use vMF’s entropy Eq. (16) to determine the accuracy schedule in the following sections.

B.2 Bayesian update function h

Sender distribution For each time step i, the sender corrupts the clean data  ~ pq,, using the
sender distribution pg and the signal-to-noise ratio parameter ;, gets the noised information y ~ pg,
and send y to the receiver. Here, we use the vMF distribution to instantiate pg for hypersphere data
x €S L

ps(ylz; a) = vMF(y|z, o) (17)

Input distribution As for the receiver, its belief over the ground truth data x is formulated by a
distribution family with parameter 0, e.g., Gaussian distribution with i and o for Euclidean space
data z € R!, which can be expressed as:

pr(x|0) = vMF(x|p, k) (18)

Bayesian update function For each time step ¢, the receiver updates its prior belief 8;_; according
to the observed noised data y; with known accuracy «; according to the Bayesian theorem. This
process is formulated as the Bayesian update function 8; = h(0;_1, y;, «;). The Bayesian update
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function h for von Mises Fisher distribution is derived as follows:

p(zly) = p(ylz; a)p(x; pi-1, Ki-1)/p(y)
o p(yle; a)p(x; pi-1, Ki—1)
=oMF(y|lx,a)vMF(x|pi—1, Ki—1)
o< exp{aa’y + ki 11}
= vMF(x|pi, ki)

where x;p; = K;—1pi—1 + o;y;. Therefore, the Bayesian update function is:

h({pi-1, Ki—1},Yir o) = {pi, i}, where ki = Ki—1pio1 + oqy; (19)
We define 6 & K to compactly denote the parameter of the vMF distribution {&, pt}.

B.3 Bayesian flow distribution pr(0;|x; a1.;)

Given time index ¢ and clean data x, the Bayesian flow distribution for 6; is defined as the marginal
distribution after conducting multiple Bayesian updates over noised data y;:

Gi 3 i) = E 502— iYi 20
pF( |$ 041,) vMF (yy|z,a1)...oMF(y;|x,0;) ( ;ajyj) 20)

For determining the accuracy schedule «.; according to entropy, we first formalize the entropy of
the Bayesian flow:

H(t) < E H(pr(6;)), where i = nt + 1 2D
pr(0:| x;501:0)

The entropy of the Bayesian flow is dominated by the accuracy schedule «;.,,. Although Eq. (21) is not
tractable, we can evaluate its value at each step given the accuracy schedule «;.,,. For synchronizing
the entropy across each modality, we find the accuracy schedule that ., such that the entropy of
this Bayesian flow linearly decreases with respect to time:

H(t) = (1—t)H(0) + tH(1) (22)

Although Eq. (22) is not analytically tractable, we can solve this equation using binary search to find
each «; at each step .

B.4 Discrete-time loss with n steps L™ (x)

Receiver distribution Given 6; from the Bayesian flow distribution as input, the receiver uses the
network W to improve its belief considering interdependency across modalities and dimensions,
which is referred to as the output distribution. We choose to parameterize the output distribution as
delta distribution to directly predict the ground truth « following [Graves et al., 2023]:

To approximate the sender’s distribution, the receiver’s distribution is obtained by convolving the
output distribution with the sender’s distribution:

Pr(Y]0istis ) = By (wr|w(o,,0)Ps (Y2 i) = vMF (y| %% (0;,;), o) (24)

Discrete-time loss with n steps The discrete time loss is defined as the KL divergence between
sender and receiver distribution:

L"(x) = E D NP | ity 25
G=n_  E o Dl (lee) [l 8itia)) @9

I 1 (ay)
—n E 0 R () o, w(0, ¢ 26
i~nU{1,n},pr(0;|z;on.::) ¢ I,,(O[i) ( ( ( Z))) ( )

In fact, the term (1 — dot(x, ¥(0,t;))) in Eq. (25) is proportional to the geodesic distance between
the corresponding orientation matrix R = ¢(x) and R = ¢ = (&) = ¢(V(0,t;)).
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Proposition 5. The training loss defined in Eq. (8) is proportional to the geodesic distance between

the predicted orientation matrix R = ¢(09(07 1)) and the ground truth orientation matrix R up to
a constant.

Proof. We first introduce the (w, v) representation for unit quaternions. Specifically, for a unit
quaternion q = [a, b, ¢, d|*, we define the scalar part as w = a and the vector part as v = bi+cj+dk,
so that the quaternion can be written as ¢ = w + v, where ¢, j, k are the standard basis elements
corresponding to the three Cartesian axes. This representation is particularly convenient because the
rotation angle 9 of the rotation matrix R = ¢! (q) satisfies the relation

w = a = cos(¥/2) [Shoemake, 1985] (27)

Using the (w, v) representation, the geodesic distance between two unit quaternions ¢ = w; + v
and g = wo + v on S3 is given by:

dss (g, q) = arccos ((q, ) = arccos (w1wz + (v1,v2)), (28)
where (-, -) denotes the standard Euclidean inner product.

The geodesic distance between the corresponding rotation matrices R = ¢(q) and R= @(q) in the

rotation group SO(3) is the rotation angle of the relative rotation R,, = RT R. This angle can be
computed via the quaternion representation of R,:

g-=0¢ HR,) =q ' x4 =[wiws + (v1,v2), W1v2 + wWav1 + V1 X Vo). (29)

The corresponding rotation angle ) of R, is then:
dso@) (R, R) =9 = 2arccos (wiws + (v1,v2)) = 2dss(q, §). (30)

The proof is done. U

C SO(3) toy data experiment

In this section, we use the synthetic dataset in Brofos et al. [2021] to verify the effectiveness of the
proposed SO(3) Bayesian flow over SDE/ODE based methods following [Bose et al., 2023].

Toy dataset network The antipodal equivariance of the toy dataset network is achieved by the
following formula:

U, (09,t) = Normalize(p ® MLP(up” | k,t) 4+ @) (31)

where ® denotes the element-wise product between two vectors, and Normalize(g) = q/||q||2.

Metrics The metrics W1 and W2 refer to the Wasserstein p-distance between the generated distri-
bution and the ground truth test distribution with p = 1 and p = 2, respectively. These two metrics
measure the distributional distance between the generated distribution and the ground truth data
distribution.

Results We present the visualized generated results in Fig. 7 and the corresponding evaluation
metrics in Tab. 5. As shown in Fig. 7, ProBayes produces higher-quality samples with fewer outliers
compared to the SDE and ODE baselines. This observation is consistent with the improved W1 and
W2 scores reported in Tab. 5, further demonstrating the effectiveness of the proposed SO(3) Bayesian
flow.

We further validate the ineffectiveness of the Euler angle and axis-angle rotation representations
in Fig. 7f and Fig. 7g, as discussed in the main text. Specifically, we employ the hypertorus
BFN [Wu et al., 2025] to generate the Euler angle representation, and a combination of the hypertorus
and hypersphere BFN to produce the axis-angle representation. As shown, both representations
fail to capture the underlying SO(3) group structure, resulting in poor SO(3) generative modeling
performances.
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(a) data dist. (b) FoldFlow-base

(e) ProBayes (f) Euler angle (g) Axis-angle

Figure 7: The data is visualized using the Euler-angle representation of the rotation matrices. (a)-(d)
are from Bose et al. [2023]

Table 5: Toy dataset performance comparison. Baseline results are from [Bose et al., 2023].
Method W1 (x1072, ) W2(x1071, )

FoldFlow-base 5.39 + 0.88 1.52 +0.27
FoldFlow-OT 4.96 +0.27 1.25+0.12
FoldFlow-SFM 4.92 4+ 1.56 1.26 £ 0.49
Simulated SDE 5.13 +1.36 1.33£0.44
ProBayes 3.23 +0.68 0.99 + 0.33

D Detailed training and sampling procedure

We describe the training loss functions used for the remaining modalities:

C,, position p training loss Sampling ¥ | from p%., the training loss for position p is calculated as
the discrete time loss for continuous Euclidean space variable:

Ep:g(l—af/n

||p - l115‘11(97)715)”2

) i~nU{1,n},pR (0f_ Ipiti—1) O_fz/n

(32)

Sequence S training loss Sampling 85 from p$, the training loss is the n-step discrete-time loss for
discrete variable:

Ls=mn E In N o; (Kes —1),0;,K1
S UL} S (05185t 1) N (] (Kes—1),a: KT) (v [ ai(Kes —1), K1)

L K
- Zln (Zp(od)(k | 05t )N (y(d) | o (Kep —1) 7OéiKI)> (33)
k=1

d=1
where I € REXLXL gpnd 1 € REXD,

Angle x, ¢ training loss Sampling 8% from p’¥, the training loss is the n-step discrete-time loss for
periodic variable:

I (o)
(073
inU{1,n},p, (0% |x01.4)  Lo()

Ly=n (1—cos(x — W(OF |, t;i—1)) (34)

Note that for x, we only calculate the loss for those non-padded values. Also, sampling 8% from p?,
the training loss for v is:
I (o)

Ly=n E «; 1 — cos —\IIBZ,ti, 35)
Y e et S To(an) (% =20, b)) (
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Algorithm 1 Training

—
—

Exooo\lo\m.bw o =

: Require: n, K € Z, 01 € RY, 1 e R, 0%, a¥,, 0%, € RT, Ag, As, Ap, Axs Ay, App € RT

1:n>»

: Input: sequence S, position p, orientation R, backbone torsion v, sidechain torsion x, x mask MaskX
: Sample i ~ U{1,n},t + Lnl)

: #randomly select one from the two quaternions

tq~U{o (R)}

: # sampling from the Bayesian flow distribution of each modality

07 ~pi(0]|R; o)

0 05 ~pS (65| S;t)

1P~ b (P |pi0),07 {7}

XNp ( ‘X7alz) C NpF( |X7a¥z)

s mX +— mX- Mast(\I/S) cX[1 - Maskx( %)) + 1, 0% « {mX, cX}

12: m;b NpF( w|w,al i) c NpF( vaal 1), 07 {mz ,cw}

13: # feed all protein modalmu into the network

14: 87 « {6°,07 6% 0V 0%}

15: wS, 0P OB w¥ wx  w(97, 1)

16: # calculate losses

17: Lq « nal %“;))(1 — dot(g, U9(07,1)))

18: [:5 < nEN(Y|D¢1(Kes 1),a; KI) lnN(y | (677 (Kes — 1) ,aiKI)

19: ~ i In (Zk (P (R 105t (59 | i (Kew — 1), aiKT) )
_wP (gP

20: Ly« 3 (1- 01 o=t o7 ol W?Ee 2

. x I1(a) x

21: Ly +na] Tota) (1 — cos(x — UX(OF 1, t;1))

22: Ly < Ly - MaskX(S)

230 Ly <= na ??an)(l —cos(¢p — (8 1, t:i-1))

24: Optimize A\gLq + AsLs + ApLp + AxLx + Ay Loy

Algorithm 2 Sampling

Require: n, K € Z, 01 € R", 81 € RT, 0¥, af.,,0f, € RT

# initialize the prior parameters

nd ~Ugs, k7 0,07 «— {p? k7}; 05 « %th; pP 0,07 « {uP}

mX U(O 2m), e = 0 0% — {mX,cX}; mY « U(0,2n),c¥ « 0,0% « {m", c*}
fori<1,--- ,n;t < =L do

# use networ l\ to do inter- -dependency modeling across dimensions of all modalities
0% — {6°,67, 0% 0¥, 6%}
TS P Uk uv X  w(97 1)
if i = n then
break
end if
# update each modality with Bayesian flow
07 ~ pf (07|W™; o)
0° ~ p3 (6° | TS;t)
OF  p? ~ pp(pPIp:t)
m ~Pr ( X|X’a1 7,) C NpF( |X7a¥z)’
mX mX Maskx(\lls) cX[1— Maskx( SN] < 1, 0% {m ,cX}
mi NpF w‘ql)?alz) C NpF( w‘w7a11)70 <_{mz7 z}

end for
Return U° OP ¥R ¢¥ gX

E

Limitations and broader impacts

Limitations Despite the promising results of ProBayes, we acknowledge that the binding affinities
and complex stability assessed by Rosetta serve as an initial screening step. Real-world properties of
the generated candidates still require validation through costly wet-lab experiments. However, this
challenge is shared across the research community.
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Broader impacts Our work contributes to the advancement of unified, end-to-end protein design,
potentially enabling more accurate generation of functional proteins. This has implications for
therapeutic discovery, enzyme engineering, and synthetic biology. However, as with any generative
biological technology, careful oversight is essential to prevent unintended misuse, such as the design
of harmful or dual-use proteins.

F Experiment details

Algorithm 3 Invariant point attention with quaternion implementation (IPAq)
Reqllll’e {3 } {zu} { } Nhead = 1270 = 167 Nquerypoints = 4; Npoint values — 8
1: g kI v! = LinearNoBias(s;) {gl Kkl vl e R he{1,..., Npead}}
2: fp, kf” = LinearNoBias(s;) q!”p, kf‘p €R? p e {1,..., Nyuery points }
3: vlhp = LinearNoBias(s;) 'vlhp eER3pedl,..., Nooint values }
4: b?j = LinearNoBias(z;;)
5

. _ 2
: wC - 9Nquery points
6: wy, = \/g

h 2
7: al; = softmax; < (\}qh—rkh + b}y — < > H ogql” —7%0 k;‘p

.ol =
8: o =) a”z”
ol —
9: 0} =) ]a” j

10: th (I to > alhj ( o ’Ujhp)

11: §; = Linear ( concaty, , (o}, of, o ||ohp\|))

12: return {§;}

We provide our code in https://github.com/GenSI-THUAIR/ProBayes.

F.1 Rationalized information flow implementation

In fact, the rationalized information flow can be implemented in various ways using different parame-
ter sizes or by mixing modules, with the only constraint being the input and output specifications
of each module. Here we illustrate our instantiations for each module. Firstly, we explain the key
component, i.e., [PA with quaternion implementation.

Invariant point attention with quaternion implementation We illustrate the invariant point atten-
tion [Jumper et al., 2021] implemented by the unit quaternion in Algorithm 3 using the orange color to
denote the modification compared to the original IPA. Specifically, we only replace the original imple-
mentation of the SE(3) transformation based on rotation matrix and translation T; = { R, ¢} with the
quaternion-based one = {q,t}. For a point with homogeneous representation p = [z, v, z, 0]7
and , the transformation is:

op=gqxpx(q) '+t (36)

where X is the Hamilton product for two quaternions [Hazewinkel et al., 2006] and the inverse
transformation (7/~)~! = {(g)~!, —t}. Such operations are antipodal invariant because g X p x
(@)~ = (—q) x p x (—q)~!. Therefore, the IPAq module defined in Algorithm 3 is an antipodal
invariant transformation.

Sequence&Backbone Mixing Module implementation The implementation of this module builds
upon the graph attention-based architecture FramePred [Yim et al., 2023b], with the following
modifications: 1) The initial node embedding is mixed with the noised sequence 8°, the noised
backbone torsion angles ¥, and the timestep ¢ via an MLP as follows:

& = MLP(hg, embed® (§5), embed” (8%), embed’ (£)) (37)
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where embed® , embed?, embed! are embedders for sequence, angles, and time, respectively. 2) The
IPA module is modified as stated above and also in Algorithm 3. 3) The prediction of v is removed
and repositioned at the end of the Backbone & Side-chain Mixing module.

Backbone&Sidechain Mixing Module implementation To capture all-atom geometry during
backbone prediction, we introduce an additional multilayer perceptron (MLP) that embeds sidechain
features. This sidechain embedding is then passed to the BackboneUpdate module [Jumper et al.,
2021], enabling refined updates to the backbone frame. The sidechain embedding module com-
prises three linear layers with bias terms, followed by a LayerNorm layer. Conversely, to in-
corporate backbone information into sidechain design, we employ another MLP-based module
consisting of linear layers with bias terms—which jointly encodes the node embeddings from the
Sequence&Backbone Mixing Module alongside the sidechain features.

F.2 Peptide design

Metrics Consistent with previous research [Kong et al., 2024], we generate 40 candidate structures
per receptor for the sequence-structure co-design task and 10 candidates for each receptor-ligand pair
in the binding conformation generation task. The evaluation metrics are detailed as follows:

AG [Kong et al., 2024] The binding energy (in kcal/mol) calculated by Rosetta [Alford et al., 2017]
to evaluate the binding affinity of the generated peptide using the function InterfaceAnalyzer.

Success rate [Kong et al., 2024] The proportion of successful designs i.e., those with AG < 0, out
of all generated candidates.

DockQ [Basu and Wallner, 2016] A comprehensive metric that evaluates the all-atom similarity at
the interface between a candidate and the reference complex.

RMSDc_, [Kong et al., 2024] The root mean square deviation (RMSD) of the C,, coordinates between
a candidate and the reference structure, measured in Angstréms (A).

Validity [Lin et al., 2024] refers to the proportion of peptides that are chemically valid, determined
by whether the generated atomic bond lengths are within 0.5A above and below the ideal value.

Diversity [Lin et al., 2024] is measured by the average pairwise distance of the generated peptides
using TM score and sequence similarity.

Novelty [Lin et al., 2024] A generated peptide is considered novel if both its TM-score and sequence
overlap with the reference are both below 0.5.

Note that the diversity and novelty are evaluated combining the validity to avoid false positives.

RMSD,,, [Kong et al., 2024] on all atoms to measure the quality of the all-atom geometry for the
binding conformation generation task.

Baselines For RFDiffusion, we set the number of cycles to one and disable the empirical force
field refinement to ensure a fair comparison with other methods. For PepFlow, we use the official
implementations and retrain the models on the same datasets using the default hyperparameters
provided in its repository. For PepGLAD, most evaluation metrics are taken directly from the original
paper, while the design metrics are computed using the official checkpoint available in its repository.

F.3 Antibody design

Following Ye et al. [2024], we generate 64 candidates for each receptor in the sequence-structure
co-design task and report the average performance across these candidates.

Metrics The metrics for antibody design include:

AAR [Ye et al., 2024] The amino acid recovery rate, calculated as the number of residues in the
generated CDR-H3 sequences that match the reference antibodys;

RMSD [Ye et al., 2024] The root-mean-square deviation, measured between the generated and natural
antibodies using the Ca: coordinates of the CDR-H3 region.

Eotar [Ye et al., 2024] The total energy computed using Rosetta’s full-atom score function with the
default REF15 weight set, evaluated on the CDR-H3 regions.
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AG [Ye et al., 2024] The binding energy, analogous to that used in peptide design, but here evaluated
between the CDR-H3 region and the antigen.

Baselines We directly borrow the baseline results reported in [Ye et al., 2024].

F.4 Other implementation details

Computation resources All experiments in this paper are conducted on a node with 8 NVIDIA A100
80GB. Each training task requires 4 GPUs.

Relaxation For peptide design, we adopt the relaxation procedure described in Kong et al. [2024],
which optimizes the full all-atom structure. In contrast, for antibody design, we employ the protocol
from Ye et al. [2024], which performs relaxation exclusively on side-chain atoms while keeping the
backbone atoms fixed.

Hyperparameters For all experiments, the network is configured with a node embedding size of
128 and an edge embedding size of 64. Node embeddings in the IPAq module have 128 dimensions,
and edge embeddings have 64 dimensions. The IPAq attention mechanism comprises 8 heads,
with 8 query-key points and 12 value points for geometric attention. Additionally, a sequence
transformer is integrated into the encoder, featuring 4 attention heads and 2 layers to enhance
contextual representation. The entire encoder architecture consists of 6 stacked IPAq blocks, enabling
deep and expressive modeling of the input molecular graph structure. Finally, the network consists of
7.02 million parameters. For optimization, we set the learning rate to 5 x 10~ and use a batch size
of 40 per distributed node with Adam optimizer.

G Comparison between BFN and SDEs/ODEs

A recent study by Xue et al. [2024] explores potential connections between continuous-time Bayesian
Flow Networks and SDEs. However, we clarify that the BFNs are fundamentally distinct from
SDE/ODE with evidence as follows:

1. The Bayesian flow distribution, as defined in Graves et al. [2023], does not involve differen-
tial terms, which are central to the formulation of SDEs and ODEs.

2. The Bayesian flow formulation employed in this work is discrete-time and does not rely
on any discretization of continuous-time dynamics, in contrast to SDEs- and ODEs-based
approaches.

3. In both the hypertorus Bayesian flows [Wu et al., 2025] and the hypersphere Bayesian flows
introduced in this paper, the accumulated accuracy parameters «; are inherently stochastic.
These stochastic components cannot be fully represented or captured within a conventional
SDE framework.

4. The connection proposed in Xue et al. [2024] is not mathematically rigorous: it introduces
a truncation of the time domain from [0, 1] to [0, 1 — 7], where 7 is a parameter, thereby
deviating from the standard continuous-time SDE formulation.

H More results

H.1 Error bars

Table 6: Peptide design task results with error bars representing standard deviations from three
independent experiments using distinct random seeds.

Energy Native Likeness Design
AG) Success(T) DockQ(1)  RMSDc, (1) Valid (1) V&Div(T) V&Novel(1)

PepBench  ProBayes -28.63+0.39 72.92+0.79  0.7404+0.037  2.2840.036  0.998+0.00012  0.449+0.0021 0.728+0.0014

Dataset Method

We report the error bars for the protein design task, as shown in Tab. 6, based on three independent
experiments using different random seeds.
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H.2 Visualization

We provide the visualization of designed peptides and antibodies in Fig. 8 and Fig. 9.

-.." vn:»/'/'

‘?"‘.

(a) Reference: AG = -34.21, (b) Generated: AG = -39.42, (c) PepGLAD: AG = -30.71,
PDB=4cu4 PDB=4cu4 PDB=4cu4

(d) Reference: AG = -33.32, (e) Generated: AG = -33.88, (f) PepGLAD: AG = -13.39,
PDB=3pkn PDB=3pkn PDB=3pkn

Figure 8: Visualization of designed peptides.

" S

(a) Reference: AG = -18.76, (b) Generated: AG = -23.64, (¢) dyMEAN: AG
PDB=5j13 PDB=5j13 +23911.25, PDB=5j13

(d) Reference: AG = -0.45, (e) Generated: AG = -7.42, (f) dyMEAN: AG
PDB=4dvr PDB=4dvr +11654.77, PDB=4dvr

Figure 9: Visualization of designed antibodies.
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I Further discussion of information shortcut

Protpardelle [Chu et al., 2024] tries to remedy the information leakage by noising all 37 unique atom
position inputs instead of only the atoms corresponding to the sequence. However, we have proved
in the main text that even noisy side-chain information can create an information shortcut for the
sequence prediction. Therefore, the information shortcut still exists in Protpardelle.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our main experiment and ablation study support our claims.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Appendix E.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the proof of the propositions in Appendix A.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide our implementation details in Appendix F

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided our code link.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the training and test details in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide the error bars in Appendix H.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide this in Appendix F.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the discussion of broader impacts in Appendix E.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We provide the discussion in Appendix E.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We provide this in Appendix F.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We provide the documentation for our code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: We provide the discussion of this in Appendix E.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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