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ABSTRACT

The unauthorized generation of privacy-related and copyright-infringing
content using generative-AI is becoming a significant concern for society,
raising ethical, legal, and privacy issues that demand urgent attention.
Recently, machine unlearning techniques have arisen that attempt to elim-
inate the influence of sensitive content used during model training, but
they often require extensive updates in the model, reduce the utility of
the models for unrelated content, and/or incur substantial computational
costs. In this work, we propose a novel and efficient method called Single
Layer Unlearning Gradient (SLUG), that can unlearn targeted information
by updating a single targeted layer of a model using a one-time gradient
computation. We introduce two metrics: layer importance and gradient
alignment, to identify the appropriate layers for unlearning targeted infor-
mation. Our method is highly modular and enables selective removal of
multiple concepts from the generated outputs of widely used foundation
models (e.g., CLIP), generative models (e.g., Stable Diffusion) and Vision-
Language models. Our method shows effectiveness on a broad spectrum of
concepts ranging from concrete (e.g., celebrity name, intellectual property
figure, and object) to abstract (e.g., novel concept and artistic style). Our
method also exhibits state-of-the-art efficiency with effective unlearning
and retention on the comprehensive benchmark UnlearnCanvas. Our code
is available at https://anonymous.4open.science/r/SLUG-6CDF.

1 INTRODUCTION

Modern machine learning models, including large language models (LLMs) (Achiam et al.,
2023; Leiter et al., 2024), Stable Diffusion (SD) (Salimans & Ho, 2022; Yang et al., 2023) , and
vision language mdoels (VLMs) (Zhang et al., 2024b; Liu et al., 2024a) leverage vast amounts
of data for training. While these large unsupervised datasets enhance performance under
scaling law (Kaplan et al., 2020), they also raise serious data privacy and legal compliance
(gdp, 2016; Thiel, 2023) concerns as sensitive, unsafe, and unwanted data can influence the
trained models (Thiel, 2023). Completely abandoning trained model weights and re-training
large models from scratch using scrutinized dataset is prohibitively expensive and wasteful.
Machine unlearning (Cao & Yang, 2015; Nguyen et al., 2022) is an attractive alternative,
which refers to a broad set of techniques designed to reverse the learning process, with
the specific aim to efficiently remove targeted information from a trained model without
re-training the model from scratch.

Machine unlearning has three main objectives: (1) Low computational cost, as the naïve
approach of re-training models usually achieves the best result (exact unlearning) at the
expense of large computational cost. (2) Effective unlearning, to ensure that the model
forgets the intended data completely. (3) Utility retention, maintaining the original model
performance, in terms of accuracy and utility on data/tasks unrelated to the intended
unlearning data. Current unlearning methods often fall short of meeting all these objectives
simultaneously. Traditional approaches like fine-tuning (FT) (Warnecke et al., 2023) and
gradient ascent (GA) (Thudi et al., 2022) struggle to balance effective forgetting with utility
preservation. More recent techniques such as saliency unlearning (SalUn) (Fan et al., 2024)
and selective synaptic dampening (SSD) (Foster et al., 2024) attempt to address this by
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Figure 1: Overview of our proposed Single Layer Unlearning Gradient (SLUG) framework. Given
an unlearning query, we curate a forget set and retain set, then compute corresponding gradients.
The gradient alignment guide identifying single layer updates for unlearning. A binary search helps
determine the step size λ, effectively erasing specified concepts while preserving the model’s utility.

identifying and updating only salient parameters. While these methods improve overall
unlearning performance, they still face the following challenges. First, they usually involve
iterative updates over the model parameters, resulting in high computational costs (Fan
et al., 2024). Second, the significant weights targeted for updates are often spread throughout
the model, offering limited insight into the model structure. Finally, they require careful
hyperparameter tuning, including learning rate, number of iterations, and parameters for
selecting suitable masks in saliency approaches.

In this paper, we propose a novel and efficient method for targeted unlearning, namely
Single Layer Unlearning Gradient (SLUG). We push the boundaries of efficiency as our
algorithm identifies and updates a single layer using a single gradient computation to
achieves effective unlearning without affecting the general utility of the large pretrained
models. Figure 1 provides an overview of our proposed framework. We first calculate
gradients of forget and retain losses with respect to the model weights using a designated
or curated forget and retain set. The forget and retain sets contain images associated with
concepts that are targeted to be removed from, and retained in the model, respectively. Based
on these gradients, we introduce two metrics — layer importance and gradient alignment,
to identify the appropriate layers for unlearning targeted concepts. To determine a suitable
step size for model weight updates, SLUG employs binary search along the direction
of forget gradients. We demonstrate that SLUG outperforms state-of-the-art methods in
unlearning models involving CLIP, and SD, across various tasks and architectures. We
also evaluate SLUG on a comprehensive unlearning benchmark UnlearnCanvas Zhang et al.
(2024c), showcase its superiority in efficiency and balancing trade-off between unlearning
targeted concept and retaining model utility. In addition to its efficiency and effectiveness,
our methods offers higher modularity and better interpretability compared to Fan et al.
(2024); Foster et al. (2024). SLUG precisely identifies layers associated with distinct concepts,
which provides insights into the features learned by different layers and their functionalities,
offering generalized guidance for new tasks and model architectures design.

2 BACKGROUND

2.1 MACHINE UNLEARNING PRELIMINARIES

The goal of machine unlearning is to remove the influence of a specific subset of training
data, Df ⊂ D, on a pre-trained model Fθ(D) with parameters θ. The challenge is to make
this process more efficient than re-training the model on the retain set Dr = D \ Df. The
unlearning algorithm U should produce an unlearned model Fθf = U(Fθ(D), D, Df) that is
functionally equivalent to a model retrained only on Dr, i.e., Fθr(Dr). We can formulate the
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unlearning problem as

min
θ

1
Nr

∑
(xr,yr)∈Dr

ℓ(Fθ(xr), yr)︸ ︷︷ ︸
Lretain

− α

Nf
∑

(xf,yf)∈Df

ℓ(Fθ(xf), yf)︸ ︷︷ ︸
Lforget

, (1)

where N is the number of elements in D, α is a balancing factor, and ℓ is the loss function.

Naïve gradient ascent (GA) on the forget set increases forget loss but risks over-unlearning
(i.e., reducing accuracy on the retain set). Fine-tuning (FT) on the retain set is poor at
unlearning but can mitigate over-unlearning when combined with GA in a two-stage
approach (Fan et al., 2024), which we call GAFT (equation 1).

Recent methods like SalUn and SSD (Fan et al., 2024; Foster et al., 2024) focus on updating
only salient parameters, determined through gradient analysis, to stabilize unlearning.
SalUn (Fan et al., 2024) applies hard thresholds on forget-loss gradients, while SSD (Foster
et al., 2024) dampens important weights for both the forget and retain sets. Despite im-
proving unlearning performance, these methods involve complex hyperparameter tuning
and lack interpretability. This motivates us to develop a hyperparameter-free, interpretable
method.

2.1.1 VISION LANGUAGE ALIGNMENT

Traditional machine unlearning approaches often struggle with high computational costs
and limited scalability, which restricts their application to small-scale image classification
models (Jia et al., 2023; Foster et al., 2024). In contrast, our method breaks away from these
constraints by offering superior scalability and flexibility, making it suitable for large multi-
modal foundation models such as CLIP (Radford et al., 2021), Stable Diffusion (Rombach
et al., 2022), and vision language models (VLMs) (Liu et al., 2024a).

CLIP (Radford et al., 2021), in particular, is pivotal in advancing multi-modal models by
aligning visual and textual representations through contrastive loss (Chopra et al., 2005):

ℓ =
1

2N

N

∑
i=1

(ℓi2t(i) + ℓt2i(i)) , (2)

ℓi2t(i) = − log
exp(cos(vi, ti)/τ)

∑N
j=1 exp(cos(vi, tj)/τ)

, ℓt2i(i) = − log
exp(cos(ti, vi)/τ)

∑N
j=1 exp(cos(ti, vj)/τ)

. (3)

Here, vi is the normalized image embedding from the vision model fv, and ti is the normal-
ized text embedding from the text model ft. The temperature τ controls the sharpness of
the softmax probability distribution, while cosine similarity is defined as cos(vi, tj) = vi · tj.
Minimizing this contrastive loss aligns the vision and language representations in the
embedding space. In unlearning, one of our goals is to break these learned alignments.

2.1.2 LOSS FUNCTIONS FOR GRADIENT CALCULATION

Selection of an appropriate loss functions to perform unlearning is critical. For image
classification models, cross-entropy loss can be directly used as both retain loss and forget
loss. However, the scenario for contrastive learning is different. For the retain set, we can
still use the original contrastive loss as in equation 2:

Lretain =
1

2N

N

∑
i=1

(ℓi2t(i) + ℓt2i(i)) . (4)

For the forget set, we employ the cosine embedding loss:

Lforget(vi, tj) = 1− cos(vi, tj). (5)

This loss directly pushes the embeddings of positive pairs away while not tampering with
the embeddings of negative pairs. Using the original contrastive loss as forget loss will
result in ineffective unlearning.
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3 SINGLE LAYER UNLEARNING GRADIENT (SLUG)

Our proposed approach SLUG performs three main steps using given unlearning query with
retain and forget sets: (1) calculate one-time gradients for the forget and retain losses; (2)
identify a single layer with high importance to the forget set and low relevance to the retain
set; (3) update the targeted layer along a linear path using one-time calculated gradient. The
framework is illustrated in Figure 1. Our approach improves the state-of-the-art along three
axes: (1) low computational cost, (2) effective unlearning, and (3) high retention of general
utility.

3.1 LAYER IDENTIFICATION

We are inspired by how different layers in deep networks learn distinct features; early layers
capture basic patterns like edges, while later layers focus on more specific details (Zeiler &
Fergus, 2014; Olah et al., 2017; Ghiasi et al., 2022). To efficiently unlearn, we aim to modify
only those layers that directly hold the information related to the unlearning task, avoiding
changes to layers processing abstract features unrelated to the data to be forgotten. Our
goal is to identify the layers most critical to unlearning while preserving the model’s overall
functionality. We achieve this by performing unlearning within the “nullspace” of the retain
set, focusing on layers that minimally impact retained data performance while effectively
removing the targeted features. This approach improves the precision of unlearning and
provides insights into how the model handles data retention and unlearning.

To measure the influence of each parameter, similar to (Aich, 2021; Foster et al., 2024), we
use the Fisher information matrix(Kay, 1993; Hassibi et al., 1993; Kirkpatrick et al., 2017),
approximated by its diagonal for simplicity:

ID(θ) = −E

[
∂2

∂θ2 log L(θ; D)

]
= E

[(
∂

∂θ
log L(θ; D)

)(
∂

∂θ
log L(θ; D)

)T
]

. (6)

The diagonal elements reflect the sensitivity of the log-likelihood to parameter changes,
and we extend this to layers by aggregating sensitivities. The importance of a layer is
determined by the ratio of the ℓ2 norm of the forget loss gradients to the ℓ2 norm of the
layer’s parameters:

Importance of layer l: Importance(l) =
√
IDf(θl)

∥θl∥2
=
∥∇θlLforget(θ, Df)∥2

∥θl∥2
. (7)

Importance of layer alone is insufficient. We also ensure that forget gradients are nearly
orthogonal to the retain gradients by minimizing the gradient alignment:

Gradient alignment: Alignment(l) = cos
(
∇θlLforget(θ, Df),∇θlLretain(θ, Dr)

)
. (8)

Small alignment would prevent unlearning updates from negatively affecting the retain set.

To balance both objectives, we use the concept of a Pareto optimal set (Marler & Arora, 2010),
optimizing both importance and gradient orthogonality. Figure 2 illustrates the Pareto front
for unlearning a person identity from CLIP ViT-B-32, showing layers (as colored dots) that
achieve optimal trade-offs between these objectives, where improving one metric would
necessarily worsen the other.

3.2 LINEARIZING UNLEARNING TRAJECTORY IN A SINGLE GRADIENT DIRECTION

Existing unlearning methods calculate gradients at each iteration to update model parame-
ters, which significantly increases computational complexity. Inspired by task arithmetic
(Ilharco et al., 2023) and the linear nature of many optimization problems (LeCun et al.,
2015), we observe that repeated gradient calculations can be redundant. Instead, we propose
calculating the gradient only once for the initial model and updating the parameters θl of
any layer l in a weight-arithmetic fashion. Specifically, the weights are updated along a
fixed gradient direction:

θ∗l ← θ
(0)
l − λ∗∇θlLforget(θ, Df)

∣∣∣
θ=θ(0)

, (9)
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Figure 2: Layer identification (a,d) and unlearning with a single gradient (b,e). The first column shows
gradient alignment and importance metrics for vision and language models from CLIP ViT-B-32,
highlighting layers on the Pareto front for unlearning an identity. The second column demonstrates ef-
fective unlearning by updating identified layers along a single gradient direction without significantly
impacting retain set performance. The third column shows that iterative methods (GA and GAFT)
offer no advantage over a single gradient and require early stopping to prevent over-unlearning.

where θ∗l represents the parameters of layer l for the unlearned model and θ
(0)
l represents

the initial parameters. The gradient ∇θlLforget(θ, Df)
∣∣∣
θ=θ(0)

is calculated only once, based

on the forget loss Lforget evaluated on the forget set Df. The step size λ∗ controls the update
magnitude.

Updating weights of a layer along a fixed gradient direction is equivalent to linearizing
the unlearning trajectory. This approach reduces computational complexity while ensuring
effective unlearning. To select the appropriate step size λ∗, we perform a binary search along
the linearized path, halting when the evaluation metric indicates satisfactory unlearning
without harming performance on the retain set. For example, we stop at λ ≈ 0.75 in Figure
2b, where the forget accuracy is near zero and test accuracy is high. This method strikes a
balance between computational efficiency and precision, maintaining model utility while
achieving unlearning goals.

3.3 GENERALIZATION TO STABLE DIFFUSION AND VLMS

By harnessing effective unlearning in CLIP models, our technique can be extended to larger
models built on CLIP, such as Stable Diffusion (Rombach et al., 2022; Salimans & Ho, 2022)
and VLMs like LLaVA (Liu et al., 2024a; 2023).

Unlearn Stable Diffusion. Diffusion models, known for generating high-quality images
from text, use a text encoder (e.g., CLIP ViT-H/14 in Stable Diffusion) to embed prompts
into a high-dimensional space. The text embedding guides the denoising process through
cross-attention, starting from an initial noise xT and iteratively updating the noisy image at
each step:

xt−1 =
√

αt (xt − γt∇x log p(xt|e)) +
√

1− αtzt. (10)

Here, xt is the noisy image at step t, zt is the noise added at step t, αt is a time-dependent
parameter controlling the noise balance, γt is the learning rate, e = ft(txt) is the text
embedding, and ∇x log p(xt|e) is the gradient of the log-probability of the noisy image
given the text embedding, guiding the denoising process. We freeze the CLIP vision model
and only update the language model to achieve unlearning.
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Unlearn VLMs. Vision-Language Models (VLMs) enable LLMs to process multi-modal
information. LLaVA-1.5 (Liu et al., 2023) uses a pretrained CLIP vision encoder ViT-L/14-
336px to extract the visual features e = fv(img), which are projected as visual tokens
Hv = W · e through an MLP W. These tokens are then concatenated with language tokens
Hq as input H = [Hv; Hq] to the language model. Since VLMs rely on the vision encoder,
unlearning specific concepts in the CLIP vision model can directly influence the language
model’s output.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENT SETUP

Unlearning scenarios. We investigate three main types of unlearning scenarios for practical
and generalizable impact: (1) Unlearning identity information to counter privacy concerns;
(2) Unlearning copyrighted content for compliance with legal standards. We primarily focus
on large-scale multimodal models that include CLIP (Radford et al., 2021), Stable Diffusion
(Rombach et al., 2022), and VLMs (Liu et al., 2024a); and (3) Unlearning artistic style and
object concepts in UnlearnCavas Zhang et al. (2024c).

Models. We performed experiments on various models to demonstrate the broad appli-
cability of our unlearning method. For CLIP models, we used architectures ranging from
ViT-B-32 to EVA01-g-14, trained on LAION-400M dataset (Schuhmann et al., 2021), and
model weights sourced from the OpenCLIP repository (Cherti et al., 2023). For Stable
Diffusion models, we used the latest version from StabilityAI, which incorporates the
CLIP-ViT-H-14 trained on the LAION-5B dataset. For VLMs, we used the improved LLaVA-
v1.5 model from HuggingFace, which employs a CLIP ViT-L/14-336px model, trained by
OpenAI, as the visual extractor.

Datasets. We used publicly-available datasets to construct the forget, retain, and evaluation
sets. For unlearning target identities, we curated the forget set by filtering the LAION-400M
dataset to isolate 1,000 to 6,000 image-text pairs per identity. The retain set consists of a
single shard from LAION-400M, containing approximately 7,900 images (due to expiring
URLs). To assess unlearning effectiveness, we used the CelebA dataset (Liu et al., 2015),
sampling 100 frequently appearing celebrities from LAION-400M. Post-unlearning, model
utility was evaluated using the ImageNet dataset for zero-shot classification. UnlearnCanvas
Zhang et al. (2024c) was used to test unlearning of artistic styles and objects in Stable
Diffusion.

Evaluation metrics. For CLIP models, we measure unlearning performance using forget
accuracy, defined as the zero-shot classification accuracy on unlearned content. Following
the standard zero-shot paradigm (Radford et al., 2021), predictions are based on the highest
cosine similarity between image and text embeddings. Utility is assessed via zero-shot
accuracy on ImageNet and CelebA. In addition to quantitative results for CLIP, we provide
qualitative results from Stable Diffusion (image generation) and VLMs (question-answering)
before and after unlearning. The UnlearnCanvas benchmark evaluates unlearning using
diverse metrics, including computation and storage efficiency.

Comparing methods. We compare with the state-of-the-art methods along with classical
methods. For unlearning in CLIP models, we compare with classical fine tuning (FT)
(Warnecke et al., 2023), gradient ascent (GA) / negative gradient (NG) (Thudi et al., 2022),
and recent salient parameters based saliency unlearning (SalUn) (Fan et al., 2024), and
selective synaptic dampening (SSD) (Foster et al., 2024). For unlearning in Stable Diffusion
models, we compare with 9 methods in Table 2 included in UnlearnCanvas.

4.2 UNLEARNING FOR CLIP

Unlearning identities. We demonstrate that modifying a single layer suffices to unlearn
an identity or concept while preserving the model’s overall utility. Figure 3 presents an
example of unlearning identity for Elon Musk images. Each cell in these matrices shows
the cosine similarity between the embeddings of an image-text pair. Before unlearning
(Figure 3a), we observe high similarity (bright spots) along the diagonal, indicating strong
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Figure 3: Cosine similarity matrix of image-text pairs before & after unlearning “Elon Musk” as an
example. (a) original CLIP correctly associate images and text of distinct identities with high similarity.
(b) after unlearning, the image-text pair of “Elon Musk” is no longer matched, while other identities
are only slightly affected.

Table 1: Performance comparison of different unlearning methods on CLIP zero-shot classification.
FA@{1, 5} stands for top-{1, 5} forget accuracy (%), i.e., accuracy of unlearned identity. TA_IN@1 and
TA_CA@1 stands for the top-1 test accuracy (%) on ImageNet and CelebA dataset, respectively. K and
k denotes the number of epochs for training and iterations for unlearning, respectively (K = 32 and
k = 10 in our experiments). N is the size of whole training set, which is much larger than our sampled
forget set (Nf) and retain set (Nr). We report results for two learning rates. Best performing results
are highlighted in red color.

Method FA@1 (↓) FA@5 (↓) TA_IN@1 (↑) TA_CA@1 (↑) Compute Time (O)

Original 73.05 92.22 60.12 61.38 O(K · N)

learning rate = 10−6 / 10−7

FT (Warnecke et al., 2023) 66.08/70.50 90.10/92.22 60.36/60.26 60.70/61.35 O(k · Nr)
GA (Thudi et al., 2022) 0.00/0.00 0.00/4.91 35.88/60.03 24.92/53.86 O(k · Nf)
GAFT (equation 1) 0.00/2.67 0.00/15.89 55.52/60.13 25.71/55.22 O(k · (Nf + Nr))
SalUn (Fan et al., 2024) 0.00/3.33 0.00/15.69 55.45/60.26 26.11/55.81 O(Nf) +O(k · (Nf + Nr))

SSD (Foster et al., 2024) 0.00 0.00 51.84 35.96 O(Nf + Nr)
SLUG (ours) 0.00 0.00 59.96 58.32 O(Nf + Nr)

alignment between images and their corresponding text descriptions across all identities.
After unlearning Elon Musk (Figure 3b), we see a marked decrease in similarity for the Elon
Musk image-text pairs (visible as a darkened region), while other identities remain largely
unaffected. This demonstrates our method’s precision in selectively removing specific
information. Similar results for additional identities and model architectures are presented in
Figure 6 in the Appendix, further supporting the generalizability of our approach. Moreover,
Figure 8 in the Appendix showcases our method’s capability to simultaneously unlearn
multiple identities, highlighting its scalability and flexibility.

Unlearning without losing utility. One noteworthy attribute of our method is that the
performance on unrelated tasks, like ImageNet for common object recognition, remains
intact. Table 1 presents the quantitative performance and comparison of different methods
for classification with ImageNet and CelebA. Note that for closely related tasks such as
CelebA, which focuses on face recognition, there is a slight impact on performance. As
shown in Table 1, our method outperforms other comparing methods in terms of forget
and retain accuracy. Furthermore, the overall computational complexity of our method is
minimal as it computes a one-time gradient (for forget and retain set, thus O(Nf + Nr)) to
perform unlearning. In contrast, other methods require k iterative calculations of gradients,
and careful tuning of hyper-parameters, such as learning rate, to achieve a balance between
unlearning effectiveness and utility preservation. See Table 1, where if the learning rate
is high (e.g., 10−6), utility is compromised; and if the learning rate is low (e.g., 10−7),
unlearning is not effective.

Localizing layers. Our method efficiently identifies critical layers for updates, reducing
the search space from hundreds to just a few. Figures 2, 7, and 12 show which layers
are selected for unlearning different identities. This is achieved by combining two key
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metrics: layer importance, which measures how sensitive the forget loss is to changes
in each layer, and gradient alignment, ensuring updates minimally affect the retain set.
These metrics help identify Pareto-optimal layers that balance effective unlearning with
preserving model utility (explained further in Section 3). Our approach also reveals the
distinct roles of layers in different architectures. Across various identities (see Figure 7)
and architectures (see Figure 12), final projection layers of vision and language models are
often updated due to their role in transforming complex features into final predictions. We
also observe that the late attention layers in vision models and early attention layers in
language models are selected for updates. Vision transformers utilize attention mechanisms
to focus on different parts of an image and aggregate contextual information from various
spatial regions. The late attention layers in these models are closer to the output; thus,
more specialized in refining and utilizing contextually rich, high-level features. In contrast,
language models often employ attention mechanisms right from the early layers to capture
and process the sequential and contextual dependencies inherent in the textual data. Early
attention layers are crucial for establishing a foundational understanding of the language
structure, including syntax and semantics. By focusing on early layers, modifications can
influence the foundational processing of input text, effectively guiding the subsequent
layers’ interpretation and response to the content.

4.3 UNLEARNING FOR STABLE DIFFUSION

Stable Diffusion (SD) models exhibit remarkable capabilities in text comprehension and the
generation and manipulation of personal images. For instance, when prompted with “A
portrait of Elon Musk”, SDs can produce a high-fidelity portrait. Moreover, by altering the
prompt, one can generate imaginative content, such as a vivid depiction of “Elon Musk on
Mars”. However, the potential misuse of such powerful tools raises significant concerns
regarding the harm they can cause to the data provider (Yang et al., 2024).

Unlearning identity. In this study, we demonstrate how to effectively erase personal
information from the image generation model, ensuring that prompts related to the erased
individual fail to produce accurate results. Figure 4 presents examples of images generated
by SDs before and after unlearning. Our approach to unlearning Elon Musk interestingly
results in representations of electronic circuits, consistently across various prompts, without
compromising the model’s general capability to generate a diverse range of other objects. In
contrast, other methods not only struggle to accurately render portraits of other individuals
but also degrade the image quality of unrelated objects. We provide additional results
on unlearning more celebrity identities, and other case studies on unlearning copyright-
protected content and novel concept, in Section H.

Evaluation on UnlearnCanvas benchmark. To further demonstrate the unlearning effective-
ness and efficiency of SLUG, we also evaluate its performance on UnlearnCanvas (Zhang
et al., 2024c), a benchmark focused on unlearning artistic style and object concepts in Stable
Diffusion. It introduces a comprehensive set of metrics for both evaluating effectiveness
and efficiency, including UA (Unlearn Accuracy), IRA (In-domain Retain Accuracy), and
CRA (Cross-domain Retain Accuracy). The benchmark targets unlearning styles and objects
from an SDv1.5 model fine-tuned to generate 20 different objects in 60 distinct styles. The
benchmark utilizes target SD with the prompt: “A [object name] in [style name] style,”
to generate the unlearning dataset, comprising 20 images for each object-style pair (i.e., 400
images per style and 1,200 images per class), resulting in 24,000 images in total. We curate
forgets set with images associated with each style/object for each unlearning objective.

In Table 2, we report the unlearning performance of SLUG in benchmark metrics, along
with other state-of-the-art unlearning methods reported in UnlearnCanvas. Our method
minimizes storage and computational time by only requiring the gradient values of a
few layers on the Pareto front to be stored, and performing a one-step update along the
gradient for unlearning. Despite being extremely efficient, our method does not suffer from
significant performance degradation in any metric or task in UnlearnCanvas. Our method
achieves excellent trade-off between unlearning and retaining accuracy. For qualitative
evaluation, we provide visual examples in Section H.
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Original SD

Unlearned 
“Elon Musk”

with SLUG (ours)

‘Elon Musk on 
Mars’

‘A portrait of 
Elon Musk’

‘A portrait of Mark 
Zuckerberg’

‘A cute cat 
jumping on a bed’

‘A photo of an 
astronaut riding a 

horse on mars’

‘A sea turtle in 
the ocean’

Unlearned 
“Elon Musk”
with SalUn

Unlearned 
“Elon Musk”

with ESD

Figure 4: Images generated by different SDs using column captions as prompts. First row: images
generated by the original pretrained SD. Second row: outputs of the SD after “Elon Musk” is unlearned
using SLUG. We can see that “Elon Musk” is effectively unlearned, whereas other objects are unaffected.
Bottom two rows: outputs of the SDs after “Elon Musk” is unlearned by existing methods (SalUn and
ESD). We observe images generated for other unrelated prompts are also affected to some degree.

Table 2: Performance overview of different unlearning methods on UnlearnCanvas. The best perfor-
mance for each metric is highlighted in green, and significantly underperforming results, in benchmark
criteria, are marked in red. Our method SLUG shows no significant underperforming, and achieves
the best trade-off among unlearning, retaining, and efficiency.

Method
Effectiveness Efficiency

Style Unlearning Object Unlearning FID (↓) Time Memory Storage
UA (↑) IRA (↑) CRA (↑) UA (↑) IRA (↑) CRA (↑) (s) (↓) (GB) (↓) (GB) (↓)

ESD (Gandikota et al., 2023) 98.58% 80.97% 93.96% 92.15% 55.78% 44.23% 65.55 6163 17.8 4.3
FMN (Zhang et al., 2024a) 88.48% 56.77% 46.60% 45.64% 90.63% 73.46% 131.37 350 17.9 4.2

UCE (Gandikota et al., 2024) 98.40% 60.22% 47.71% 94.31% 39.35% 34.67% 182.01 434 5.1 1.7
CA (Kumari et al., 2023) 60.82% 96.01% 92.70% 46.67% 90.11% 81.97% 54.21 734 10.1 4.2
SalUn (Fan et al., 2024) 86.26% 90.39% 95.08% 86.91% 96.35% 99.59% 61.05 667 30.8 4.0
SEOT (Li et al., 2024b) 56.90% 94.68% 84.31% 23.25% 95.57% 82.71% 62.38 95 7.34 0.0
SPM (Lyu et al., 2024) 60.94% 92.39% 84.33% 71.25% 90.79% 81.65% 59.79 29700 6.9 0.0
EDiff (Wu et al., 2024) 92.42% 73.91% 98.93% 86.67% 94.03% 48.48% 81.42 1567 27.8 4.0

SHS (Wu & Harandi, 2024) 95.84% 80.42% 43.27% 80.73% 81.15% 67.99% 119.34 1223 31.2 4.0
SLUG (Ours) 86.29± 1.79% 84.59± 1.63% 88.43± 1.61% 75.43± 2.91% 77.50± 2.60% 81.18± 1.46% 75.97 39 3.61 0.04

4.4 UNLEARNING FOR VLMS

VLMs demonstrate impressive ability in visual understanding and question answering. For
example, when provided with an image of a person, VLMs can accurately identify and
name the individual depicted. Figure 5 demonstrates this by showing that when given an
image of Elon Musk and asked, “What’s the name of the person in this image?”, the model
correctly identifies him.

Our experiments focused on LLaVA-1.5, a popular VLM architecture. This model uses a
pre-trained CLIP visual encoder to extract visual features from images. These visual features
are then transformed into a format that can be understood by the language model. This
transformation is done using a neural network layer that projects the visual information into
the same space as word embeddings. The resulting visual tokens are then combined with
language tokens and fed into the language model to generate responses. The key insight
of our method is that the vision capability of VLMs heavily relies on the visual encoder.
Therefore, by unlearning certain concepts from the CLIP vision model, we can influence the
language model’s understanding and generation of responses without directly modifying
the language model itself. Figure 5 demonstrates the effectiveness of our approach. When
given an image of Elon Musk and asked to identify the person, the original model correctly
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What's the name of the person in this image?

The person in 
this image is 
Elon Musk.

User 
Prompt

Answer 
Original

The person in this 
image is Mark 
Zuckerberg.

The person in 
this image is 

Michael 
Jackson.

The person in this 
image is Mark 
Zuckerberg.

Answer
Unlearned

What's the content of the image?

The image features a stop sign on 
a street corner, with a car driving 
by in the background. There are 

also people walking on the 
sidewalk, and a lion statue 

nearby. The scene takes place in 
an Asian city, with a red and

The image features a stop 
sign on a street corner, 

with a red building in the 
background. There is also 
a statue of a lion nearby.

The image features two cats 
lying on a pink couch, both 

sleeping peacefully. One cat 
is located on the left side of 
the couch, while the other 
cat is on the right side. The 

couch is covered with a

The image features a couch with two 
cats lying on it, both sleeping 

peacefully. One cat is located on the 
left side of the couch, while the other 

is on the right side. The couch is 
pink, and

Describe this image in detail.

Input 
Image

Figure 5: Effects of SLUG unlearning “Elon Musk” on LLaVA 1.5. The third row with yellow boxes
shows the answers of the original model, and the forth row with green boxes shows the output of the
unlearned model, where Elon Musk is effectively unlearned, whereas other concepts are unaffected.

names him. After applying our unlearning method, the model incorrectly identifies Elon
Musk as Michael Jackson, indicating that the specific identity information has been suc-
cessfully removed. This alteration does not significantly impact the model’s overall utility.
Additional examples of this phenomenon are discussed in Section I.

5 CONCLUSION

In this work, we introduced SLUG, an efficient machine unlearning method that requires
just a single gradient computation and updates only one layer of the model. SLUG enhances
unlearning feasibility on large models, especially with constrained hardware, while preserv-
ing overall model utility. Our experiments with CLIP, Stable Diffusion, and VLMs show
that SLUG outperforms existing methods, particularly in unrelated tasks, with minimal
computational overhead. SLUG’s key innovation is its ability to identify and update only the
most relevant layers, typically the late layers in vision models, when unlearning concepts
like identities or copyrighted content.

This paper demonstrates that highly targeted, minimal interventions can be surprisingly
effective for concept removal, suggesting that knowledge in neural networks may be more
localized than previously thought. This has implications for our understanding of how
information is encoded and stored in deep learning models. The ability to identify specific
layers most relevant for particular concepts also provides new insights into the internal
representations learned by different parts of neural networks. This contributes to the
ongoing effort to improve the interpretability and transparency of AI systems.

Limitations. While SLUG shows clear advantages, there are limitations. Our experiments
focused on vision-language models, and further testing is needed to evaluate its general-
izability to other architectures, such as pure language models or graph neural networks.
Additionally, we did not extensively explore long-term stability, adversarial resistance (Goel
et al., 2022), or the ability to unlearn more abstract concepts. More work is needed to ensure
robustness in adversarial scenarios and over extended periods or retraining.

REPRODUCIBILITY STATEMENT

We are committed to ensuring reproducibility and have made our source code available,
along with a comprehensive README.md to guide setup, execution, and replication of our
results. Scripts and pre-computed gradients are also provided for easy reproduction of the
main experiments in this paper.
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APPENDIX A RELATED WORK

Machine Unlearning (Cao & Yang, 2015; Nguyen et al., 2022) has recently emerged as a
critical area of research, driven by privacy concerns and regulatory requirements (gdp,
2016). Existing approaches mainly focus on a single task, like image classification (Liu
et al., 2024b; neu, 2023; Guo et al., 2020; Goel et al., 2022; Chien et al., 2022; Golatkar et al.,
2020b;a; Chundawat et al., 2023; Kurmanji et al., 2023; Jia et al., 2023; Shaik et al., 2023; Fan
et al., 2024; Foster et al., 2024), image generation (Li et al., 2024a; Gandikota et al., 2023;
Zhang et al., 2024a; Gandikota et al., 2024; Kumari et al., 2023; Li et al., 2024b; Lyu et al.,
2024; Wu et al., 2024; Wu & Harandi, 2024), and LLMs text generation (Yao et al., 2024; Liu
et al., 2024c). In this work, we propose a generic approach that is applicable to a wide
range of multi-modal models including CLIP (Radford et al., 2021) for zero-shot image
classification, stable diffusion models (Rombach et al., 2022) for text-to-image generation,
and vision-language models (Liu et al., 2024a) for visual question answering.

For text-to-image diffusion models, particularly Stable Diffusion (SD), the evolution of
unlearning approaches reveals increasing sophistication. Early methods such as ESD
(Gandikota et al., 2023) and CA (Kumari et al., 2023) focused on modifying the UNet
architecture through fine-tuning with negative guidance, but these approaches often re-
sulted in widespread parameter updates across multiple layers, potentially compromising
generation fidelity. More recent work has explored more targeted and efficient interventions.
UCE (Gandikota et al., 2024) introduced a training-free unified approach using closed-
form solutions for simultaneous debiasing, style erasure, and content moderation. FMN
(Zhang et al., 2024a) achieved rapid concept removal through attention re-steering loss,
redirecting generation from unwanted concepts to pretrained alternatives. SPM (Lyu et al.,
2024) proposed an adapter-based approach using "concept-SemiPermeable Membranes"
that can be flexibly transferred across different models without re-tuning. Other approaches
include EDiff (Wu et al., 2024), which formulates unlearning as a constrained optimization
problem to preserve model utility, and SEOT (Li et al., 2024b), which focuses on content sup-
pression through text embedding manipulation and inference-time optimization. Despite
these advances, existing methods still face challenges in balancing computational efficiency,
generalization ability, and preservation of model utility, which our work aims to address
through a principled single-layer approach.

Saliency-based Methods. Recent advances in machine unlearning have seen the emergence
of saliency-based approaches, which aim to identify and modify only the most relevant
parameters for concept removal. In image classification, methods like SSD (Foster et al.,
2024) employ synaptic importance measures to selectively dampen connections, while SalUn
(Fan et al., 2024) takes a simple and heuristic threshold-based approach. In text-to-image
generation, SalUn (Fan et al., 2024) extend its framework by replacing cross-entropy loss in
the unlearning objective to diffusion loss, requiring careful tuning of a gradient threshold
for parameter selection. Diff-quickfix (Basu et al., 2024) utilizes causal inference with
CLIPSscore (Hessel et al., 2021) as a metric to pinpoint concept-salient model parameters.
MACE (Lu et al., 2024) proposes tuning the prompt-related projection matrices of the cross-
attention blocks in the UNet architecture using LoRA modules (Hu et al., 2022). Similarly,
CRE (Dong et al., 2024) identifies concept-specific causal denoising time steps in UNet layers
and performs representation editing on selected layer outputs.

While these saliency-based methods represent the existing efforts in improving the efficiency
of unlearning, their scope remains confined to specific tasks, such as image classification
or text-to-image generation. Moreover, their parameter modifications often span multiple
layers, which limits interpretability and flexibility in practical scenario. In contrast, our
approach aims to extend efficient unlearning to foundation models that cover a diverse
range of tasks (e.g., CLIP, Stable Diffusion, and vision-language models). By restricting
model edits to a layer-specific scope, our framework introduces modularity to machine
unlearning, abstracting the process into distinct layer updates along gradient vectors for
tailored unlearning requests.
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APPENDIX B ALGORITHM PSEUDO CODE

In this section, we present the pseudo code for our method, SLUG, in Algorithm 1, the search
process for Pareto-optimal layers in Algorithm 2, and the binary search for the optimal
unlearning step size in Algorithm 3.

Our implementation for the corresponding experimental models (i.e., CLIP, Stable Diffusion,
and VLM) and benchmarks (i.e., UnlearnCanvas) has been made publicly available at
https://anonymous.4open.science/r/SLUG-6CDF.

Algorithm 1 SLUG: Single Layer Unlearning Gradient

Require:
Forget set Df and retain set Dr ;
Original model Fθ with model weights θ;
The set of all layers in the model, as L;
Forget loss function Lforget and retain loss function Lretain;
Evaluation metrics forget accuracy FA and test accuracy TA.

Ensure: Unlearned model parameters θf
1: Calculate and store ∇θLforget(θ, Df),∇θLretain(θ, Dr) ▷ Single gradient calculation
2: for each layer l in L do
3: Importance(l) = ∥∇θlLforget(θ, Df)∥2/∥θl∥2 ▷ Calculate layer importance
4: Alignment(l) = cos

(
∇θlLforget(θ, Df),∇θlLretain(θ, Dr)

)
▷ Calculate layer alignment

5: end for
6: P = PO(L, Importance, Alignment) ▷ Pareto optimal algorithm 2
7: Q← ∅ ▷ Set of layers and their performances
8: for each layer l in P do
9: λ0 = Importance(l)/10 ▷ Initialize step size

10: (λ,FA,TA) = BS(λ0, l) ▷ Binary search algorithm 3
11: Q← Q ∪ {(l, λ,FA,TA)}
12: end for
13: FAmin = min(l,λ,FA,TA)∈Q FA ▷ Identify minimum FA
14: Qmin = {(l, λ,FA,TA) ∈ Q |FA = FAmin} ▷ Filter sets with minimum FA
15: (l∗, λ∗,FA∗,TA∗) = arg max(λ,FA,TA)∈Qmin

(TA) ▷ Select set with highest TA
16: return θf = θ − λ∗∇θl∗Lforget(θ, Df)

Algorithm 2 Pareto Optimal: P = PO(L, Importance, Alignment)

Require:
The set of all layers in the model, as L;
Layer importance and gradient alignment of all layers

Ensure: The set of Pareto optimal layers
1: Initialize P← ∅ ▷ Set of layers on the Pareto front is empty
2: for each layer l in L do
3: ParetoDominant← true
4: for each layer l′ in L \ l do
5: if (Importance(l′) > Importance(l) and Alignment(l′) < Alignment(l)) then
6: ParetoDominant← false
7: break
8: end if
9: end for

10: if ParetoDominant then
11: P← P ∪ {l} ▷ Identified a Pareto optimal layer
12: end if
13: end for
14: return P ▷ Return the set of Pareto optimal layers
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Algorithm 3 Binary Search for Optimal Step Size: (λ∗,FA∗,TA∗) = BS(λ0, l)

Require:
Initial step size λ0;
Maximum number of steps K;
Model parameters θ;
Forget gradient of layer l: Gl = ∇θLforget(θ, Df)

Ensure: Optimal λ∗, forget accuracy FA, test accuracy TA
1: λlow ← 0
2: λhigh ← ∞
3: λ← λ0
4: k← 0
5: Initialize P← ∅ ▷ Performance set
6: while k < K do
7: FA,TA = eval(θ − λGl)
8: P← P ∪ {(λ,FA,TA)} ▷ Store results
9: if FA > 0 then

10: λlow ← λ ▷ Should increase step size to unlearn
11: else
12: λhigh ← λ ▷ Should reduce step size to avoid over-unlearning
13: end if
14: if λhigh == ∞ then
15: λ← 2λ
16: else
17: λ← (λlow + λhigh)/2
18: end if
19: k← k + 1
20: end while
21: FAmin = min(λ,FA,TA)∈P FA ▷ Identify minimum FA
22: Pmin = {(λ,FA,TA) ∈ P |FA = FAmin} ▷ Filter sets with minimum FA
23: (λ∗,FA∗,TA∗) = arg max(λ,FA,TA)∈Pmin

(TA) ▷ Select set with highest TA
24: return λ∗,FA∗,TA∗ ▷ Select the set with lowest FA which has the highest TA
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APPENDIX C MORE EXAMPLES ON UNLEARNING IDENTITIES

In addition to the experiment on unlearning “Elon Mask” identity in the CLIP model, as dis-
cussed in Sec. 4.2 of the main text, we performed similar experiment on a broader set of iden-
tities: {Kanye West, Barack Obama, Bruce Lee, Fan Bingbing, Lady Gaga}.
These names were selected from the CelebA dataset to represent a diverse cross-section
of ethnicities and genders. Our method effectively identified the crucial layers associated
with each name. These layers can then be specifically targeted to efficiently unlearn the
corresponding identity from the CLIP model.

Figure 6 demonstrates that our approach successfully removes the desired names from
the CLIP model (i.e., image-text alignment or cosine similarity becomes extremely low) .
Figure 7 illustrates the Pareto-front plots that are used to identify important layers selected
by our method for unlearning different identities.
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(b) Cosine similarity matrix after unlearning

Figure 6: Cosine similarity matrix of image and text pairs before and after unlearning Elon Musk. After
unlearning, the image and text pair of Elon Musk are not matched, while other persons are only slightly
affected. Here the vision attention out projection layer at the 9th resblock (as-
sociate with 9.attn.out_proj in the pareto front legend) is unlearned. CLIP model: ViT-B-16

APPENDIX D JOINT UPDATE FOR UNLEARNING MULTIPLE IDENTITIES

We study the composite effect of our approach where we unlearn multiple tasks simulta-
neously. For instance, in the task of unlearning multiple identities, we use the gradients
calculated for each identity on the original model and corresponding forget sets to identify
the layers that are most significant for the respective identities, and then perform layer
updates to simultaneously unlearn all of them. For joint updating, we follow the same
updating scheme as described in Sec. 3. Firstly, different identities have different step size
initialization from their respective gradients, and later on the step size is updated separately
using binary search based on the unlearning result of the respective identity. We present our
results in Figure. 8, where we successfully unlearn (a) {Elon Musk, Mark Zuckerberg}
and (b) {Elon Musk, Taylor Swift}.

We also investigate how the unlearning performance varies as the number of identities to be
forgotten increases. The identified layers are then updated in parallel to achieve unlearning
of N identities. Figure 9 demonstrate the effectiveness of our approach in unlearning N
identities for different values of N. Figure 7 presents details on identifying layers associated
with different identities and updating them to achieve unlearning of multiple identities at
once.
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(a) Vision layer Pareto - Mark Zuckerberg
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(b) Language layer Pareto - Mark Zuckerberg
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(c) Vision layer Pareto - Jeff Bezos
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(d) Language layer Pareto - Jeff Bezos
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(e) Vision layer Pareto - Taylor Swift
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(f) Language layer Pareto - Taylor Swift
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(g) Vision layer Pareto - Kim Kardashian
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(h) Language layer Pareto - Kim Kardashian
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(i) Vision layer Pareto - Kanye West

10 3 10 2 10 1 100

Gradient Alignment

10 5

10 4

10 3

10 2

10 1

Im
po

rt
an

ce
 o

f L
ay

er
s

text_projection
0.attn.out_proj
0.attn.in_proj
5.mlp.c_fc
0.mlp.c_fc
5.attn.in_proj

(j) Language layer Pareto - Kanye West
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(k) Vision layer Pareto - Barack Obama
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(l) Language layer Pareto - Barack Obama
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(m) Vision layer Pareto - Bruce Lee
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(n) Language layer Pareto - Bruce Lee
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(o) Vision layer Pareto - Fan Bingbing
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(p) Language layer Pareto - Fan Bingbing
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(q) Vision layer Pareto - Lady Gaga
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(r) Language layer Pareto - Lady Gaga

Figure 7: Scatter plots of layers for unlearning more identities, same setting as Figure 2. CLIP model
ViT-B-32. Figures (a) - (r) shows the importance and gradient alignment of different vision model
and language model layers as we unlearn different identities.
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(a) Cosine similarity matrix after unlearning
Elon Musk and Mark Zuckerberg
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Figure 8: Cosine similarity matrix of image and text pairs after unlearning multiple name identities
(see Figure. 6a for cosine similarity matrix on original model). (a) Unlearning Elon Musk and Mark
Zuckerberg. (b) Unlearning Elon Musk and Tylor Swift. In both cases, the image and text pair of
selected identities are not matched after unlearning, while other identifies are only slightly affected.
We selected and updated the vision layer 9.attn.out_proj for Elon Musk and the vision layer
11.attn.out_proj for the other identity according to the pareto fronts in Fig. 7a and Fig. 7e, in
both (a) and (b). We used CLIP model: ViT-B-32 for these experiments.

APPENDIX E MORE CLIP MODELS

We performed experiments using an expanded set of model architectures. The results for
{ViT-B-16 are discussed above in Figure 6. The results for ViT-L-14, EVA01-g-14} are
discussed in Figures 10,11, respectively. Figure 12 shows the metrics for different layers that
our method uses to identify significant layers. These results demonstrate our method offers
scalability and effectiveness across a range of model sizes, from 149.62 million parameters
(ViT-B-16) to 1.136 billion parameters (EVA01-g-14). This underscores the flexibility of
our approach to accommodate models of different scales.
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(b) Cosine similarity matrix after unlearning

Figure 10: Cosine similarity matrix of image and text pairs before and after unlearning Elon Musk.
After unlearning, the image and text pair of Elon Musk are not matched, while other persons are only
slightly affected. Here, based on the pareto front in Fig. 12c, we select and update the vision layer
23.mlp.c_fc for unlearning. CLIP model: ViT-L-14
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(b) N = 2
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Figure 9: Cosine similarity matrices as we unlearn N identities, where N ∈ {1, 2, ..., 6}. (a)–(f) Unlearn
Elon Musk, Mark Zuckerberg, Jeff Bezos, Taylor Swift, Kim Kardashian, and Kanye West in a joint
manner. To unlearn N identities, our method (SLUG) identifies up to N layers in the model using the
single gradient calculated with the original network weights. The identified layers are then updated
in parallel to achieve unlearning of N identities.
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(b) Cosine similarity matrix after unlearning

Figure 11: Cosine similarity matrix of image and text pairs before and after unlearning Elon Musk.
After unlearning, the image and text pair of Elon Musk are not matched, while other persons are
only affected. Here, based on the pareto front in Fig. 12f, we select and update the language layer
11.attn.out_proj for unlearning. CLIP model: EVA01-g-14.

APPENDIX F UNLEARN DIFFERENT CONCEPTS

In addition to unlearning identities from CLIP, we also sample 7 classes {Basketball, Beach,
Castle, Revolver, Rifle, School bus, Sunglasses} from ImageNet to evaluate the unlearning
performance of our method on object concepts. For this experiment, we use 10k ImageNet
validation images and sample images associated with target classes to create forget sets and
compute gradients to unlearning different classes from the CLIP model. For evaluation, we
use zero-shot accuracy reduction as the metric of effective unlearning target classes from
the CLIP. The results, presented in Table. 3, show the CLIP zero-shot accuracy evaluations
for both the forgetting of sampled classes and the retention of other ImageNet classes after
unlearning. Our findings indicate that our method effectively reduces the CLIP zero-shot
accuracy for the targeted classes to 0.0%, while the accuracy for remaining classes remains
high, experiencing only minimal degradation (ranging from 0.03% to 2.03%) compared
to the original pre-trained model, which indicates that the model’s original functions are
highly preserved after our unlearning.

Table 3: Unlearning performance of our method on common object concepts. FA@1 and FA@5
represents the top-1 and top-5 forget accuracy (%) of each forget class (i.e., zero-shot classification
accuracy of unlearned class). TA@1 and TA@5 represents the top-1 and top-5 accuracy (%) of all
classes of ImageNet except the corresponding Forget class. Each row shows the forget class accuracy
and average accuracy over all classes of ImageNet before and after unlearning a class. Our method
can reduce the forget accuracy of Forget classes to 0.0% while keeping the accuracy of the remaining
classes close to original model (within 0.06− 2.03% difference). CLIP model: ViT-B-32. TA@1 and
TA@5 for the original model remains almost the same for all rows; therefore, we list it once in the table.

Forget class Original Unlearned
FA@1 FA@5 TA@1 TA@5 FA@1 ↓ FA@5 ↓ TA@1 ↑ TA@5 ↑

Basketball 100.0 100.0

60.16 85.52

0.0 0.0 59.18 84.48
Beach 54.55 72.73 0.0 0.0 59.54 84.78
Castle 87.50 100.0 0.0 0.0 58.13 83.87

Revolver 100.0 100.0 0.0 0.0 59.94 85.43
Rifle 42.86 57.14 0.0 0.0 60.08 85.49

School bus 76.92 100.0 0.0 0.0 59.50 89.18
Sunglasses 44.44 55.56 0.0 0.0 60.13 85.23
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(d) Language layer Pareto - ViT-L-14
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(e) Vision layer Pareto - EVA01-g-14
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(f) Language layer Pareto - EVA01-g-14

Figure 12: More CLIP models, in addition to Sec 4.2. Unlearning name Elon Musk from different
CLIP models built in: {ViT-B-16, ViT-L-14, and EVA01-g-14}

APPENDIX G LINEARITY OF UNLEARNING TRAJECTORY OF DIFFERENT
LAYERS

In addition to the layers presented in Figure 2 (c) and (d), we show in Figure 13 that different
layers show similar unlearning behaviors if we update them along their respective gradient
direction (computed once for the original model). Nevertheless, the utility performance
may vary depending on the selected layer; thus, it is important to select the best layer from
the Pareto set for the overall best performance.
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Figure 13: More examples of unlearning different layers. Correspond to Figure 2. The performance
changes monotonically with the step size λ.

APPENDIX H MORE EXAMPLES ON STABLE DIFFUSION

To demonstrate the performance and practical utility of our method, we further consider
unlearning more celebrity names and more scenarios including unlearning copyright char-
acters, novel concepts and artistic styles on Stable Diffusion.

More celebrity names. Beyond unlearning “Elon Musk” from Stable Diffusion, which
is presented in the Figure 4, here we also provide additional qualitative evaluations on
unlearning other celebrity names {Taylor Swift, Jeff Bezos} with our method in
Figure 14.

Unlearning concepts and copyright content. In addition to identity removal for privacy
protection, we address copyright concerns that increasingly challenge generative models.
For unlearning copyrighted contents from Stable Diffusion models, we generate 500 images
using unlearning targets as prompts, and use them as the forget set. The retain set is a single
shard of LAION-400M dataset, same as for CLIP unlearning.

We successfully apply our method to remove copyright-protected content, specifically
targeting well-known characters such as Marvel’s “Iron Man” and Walt Disney’s “Mickey
Mouse.” Figure 15 illustrates that our technique precisely unlearns the targeted concepts,
effectively disabling the generation of images associated with these copyrighted entities
while preserving the ability of the model to produce images of other concepts. These results
demonstrate the use of SLUG in protecting intellectual property from generative AI.

Novel concept. One of the intriguing properties of the Stable Diffusion is its ability to
generalize image generation to novel concepts that are infrequently or never observed in the
real world. In this experiment, we explore the unlearning of a unique concept, “Avocado
chair” from Stable Diffusion. We first generate 500 image using SD with the prompt “An
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Figure 14: Qualitative evaluation on unlearning celebrity names Taylor Swift and Jeff Bezos from the
Stable Diffusion.

avocado chair” to create the forget set, and use the same retain set as other experiments,
which is is a single shard of LAION-400M dataset. In Figure 16, we show that our method
successfully unlearn the concept “Avocado chair” from SD, resulting in the model’s inability
to generate images corresponding to this specific concept.

It is noteworthy that the model’s capability to generate images related to the constituent
atomic concepts (namely “Avocado" and “Chair") is also compromised. We hypothesize
that this occurs due to the model’s treatment of novel concepts as compositions of atomic
concepts. For example, the concept "Avocado chair" is interpreted by the model as “Avocado"
plus “Chair." Consequently, when a novel concept is unlearned, the associated atomic
concepts are inadvertently affected as well. This highlights a challenge in the model’s
approach to handling the interoperability of novel and atomic concepts.

Artistic styles and object. In the experiment of evaluating SLUG performance on Unlearn-
Canvas benchmark discussed in Section. 4.3, we use 400 images that are associated with
each style, as the forget set for unlearning style, and 1200 images that are associated with
each object concept as the forget set for unlearning object, all images are from the benchmark
dataset. We use a single shard of LAION-400M dataset as the retain set.

For qualitative evaluation of this experiment, we provide visual examples of unlearn-
ing artistic styles: {Pop Art, Crayon, Sketch, Van Gogh} and object: dog that are
sampled from UnlearnCanvas, in Figure 18, 19 and 20. These results further show the
effectiveness of SLUG in unlearning a broad spectrum of concepts ranging from concrete
(e.g., celebrity name, intellectual property figure, and object) to abstract (e.g., novel concept
and artistic style).

APPENDIX I MORE EVALUATIONS ON VLM

In addition to results presented in the main text Figure 5, we also present additional
qualitative results on unlearning a different name “Taylor Swift” from VLM in Figure 17. We
demonstrate that our method can anonymize celebrity names from the pretrained Vision-
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Figure 15: Qualitative evaluation on unlearning copyright characters “Iron man” and “Mickey Mouse”
from SD, in first and second groups of figures respectively. First row shows the generated images from
the original pretrained model, the second and third rows show the output of unlearned model using
prompts captioned at the top of each column. Our method precisely unlearned copyright protected
concepts from SD, while the image generation quality on other concepts is highly preserved.

Table 4: Quantitative evaluation on unlearning LLaVA-1.5.

VLM Benchmark Score (↑)
Model FA (↓) MME

Cognition
MME

Perception GQA MMBench
(en)

Original
LLaVA-1.5 99.50 323.57 1481.21 61.28 62.97

Unlearned
“Elon Musk” 3.0 298.57 1354.61 60.70 61.34

Unlearned
“Taylor Swift” 2.0 334.64 1336.09 60.72 60.14

Average 2.5 316.61 1345.35 60.71 60.74

language models, and simultaneously preserve the model’s ability on image understanding,
reasoning and distribution shift robustness on art work, cartoon style images.

We perform additional experiments for quantitative evaluations of the VLM model (LLaVA-
v1.5-7B) that we qualitatively analyzed in Figure 5 and 17. Specifically, we evaluate two
instances of LLaVa-v1.5 unlearned for two targeted identities (Elon Musk and Taylor Swift)
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Figure 16: Qualitative evaluation on unlearning a novel concept “Avocado chair” from the SD.
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“What's the content of the image?” “What is unusual about this image?”

“The image is a cartoon depiction 
of a baseball game, featuring 

various characters and elements 
from the sport."

“The image is a cartoon or comic 
strip featuring a baseball game, 

with various characters and 
animals participating in the game."

“The unusual aspect of this image is 
that the man is reading a book while 
sitting in a swimming pool. It is not 
common to see someone engaging 

in such an activity, as people 
typically read books in more 

comfortable and dry environments"

“The unusual aspect of this image is 
that a man is reading a book while 

sitting underwater. It is not common 
to see someone reading in such an 

environment, as it is typically 
associated with swimming or other 

water-related activities"

Input Image

“The person 
in this image 

is Queen 
Elizabeth II."

“The person 
in this image 

is Queen 
Elizabeth II."

“The person 
in this image 

is Marilyn 
Monroe."

Figure 17: Qualitative evaluation on unlearning name “Taylor Swift” from LLaVA 1.5. While “Taylor
Swift” is mapped to “woman” after the unlearning, the other female celebrity identification remain
unaffected. Besides, model’s robustness against style distribution shift is also preserved.

on three established VLM benchmarks: MME (Fu et al., 2023) GQA (Hudson & Manning,
2019), and MMBench (Liu et al., 2025). Higher benchmark scores indicate better performance
of a VLM.

The results in Table 4 highlight that SLUG achieves effective unlearning while maintaining
utility, validating its effectiveness in the VLM context. For forget accuracy, we tested each
targeted celebrity using 100 images associated with that identity. The forget accuracy
evaluation involves the question, "What is the name of the person in the image?" with the
corresponding celebrity name as the correct answer. The benchmark scores represent the
utility of the model for vision-language tasks, which contains a broad set of coarse-to-fine-
grained questions on visual recognition and visual reasoning.
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Overall, our results demonstrate that unlearned models accuracy on the targeted identity
drops significantly, while benchmark scores remain high and close to those of the original
model, preserving its overall utility.

APPENDIX J EXPERIMENT DETAILS ON UNLEARNCANVAS

Models. UnlearnCanvas targets unlearning styles and objects from an SDv1.5 model
fine-tuned to generate 20 different objects in 60 distinct styles. The benchmark provides pre-
trained SDv1.5 models for evaluation in Diffusers and CompVis implementations. In our
experiment, correspondly, we focus on the CLIP text encoder used in SDv1.5 Diffusers
implementation: openai/clip-vit-large-patch14 from HuggingFace.

Computational time, memory, and storage. The gradient computational time and memory
usage of SLUG depends on several factors: computing resource, batch size, and size of the
forget set. Note that while the details of the evaluation of efficiency metrics are not well
defined in the original UnlearnCanvas, in Table. 2 we are reporting the best performance
of SLUG can achieve on our computing resource NVIDIA A100 40GB. Specifically, the
batch size is set to 1 for recording the memory usage of SLUG, and to 16 for recording its
computational time. This batch size of 16, is consistent with the sizes used in our other
experiments.

For SLUG storage consumption, as our method only requires storing the gradient values of
a few layers on the Pareto front, the actual storage consumption is 43 MB (0.043 GB), which
by approximation is 0.0 GB in the original benchmark scale.
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‘A [object] in 
Crayon style

‘A [object] in 
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‘A [object] in 
Van Gogh style

‘A [object] in 
Pop Art  style[object] = horse, dog, cat
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Unlearned 
Pop Art style by 

SLUG

Figure 18: Visual examples of SLUG performance on UnlearnCanvas. Row 1− 3: outputs from
original UnlearnCanvas Stable Diffusion (SD) using column captions as prompts. Row 4− 6: outputs
from UnlearnCanvas SD unlearned Pop Art style. Outputs corresponding to the unlearned style are
highlighted by the red bounding box .
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Figure 19: Visual examples of SLUG performance on UnlearnCanvas. Row 1− 3: outputs from
UnlearnCanvas SD unlearned Crayon style. Row 4− 6: outputs from UnlearnCanvas SD unlearned
Sketch style. Outputs corresponding to the unlearned style are highlighted by the red bounding box .
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Figure 20: Visual examples of SLUG performance on UnlearnCanvas. Row 1− 3: outputs from
UnlearnCanvas SD unlearned Van Gogh style. Row 4− 6: outputs from UnlearnCanvas SD un-
learned dog object. Outputs corresponding to the unlearned style/object are highlighted by the
red bounding box .
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