
Lucid-XR: An Extended-Reality Data Engine for
Robotic Manipulation

Yajvan Ravan1,2*, Adam Rashid1*, Alan Yu1,2, Kai McClennen1,2, Gio Huh2,3, Kevin Yang2,4,
Zhutian Yang1, Qinxi Yu5, Xiaolong Wang5, Phillip Isola1†, Ge Yang1,2†*

1MIT CSAIL, 2FortyFive Labs, 3Caltech, 4Harvard University, 5UC San Diego
*
Equal contribution

†
Equal advising

On-Device Physics Simulation
& Pose-Retrageting in WebXR

Generate Diverse, Multi-view Image Data

virtual
demonstration

data

Figure 1: An Extended Reality Data Engine for Robotic Manipulation. Left: we deliver physics
simulation to run directly on the XR devices via the web browser, to enable internet-scale crowd-
sourcing of demonstration data collection. Right: Our GenAI-powered synthetic data engine creates
steerable, diverse, and realistic multi-view visual data to train real-world robots.

Abstract: We introduce Lucid-XR, a generative data engine for creating diverse
and realistic-looking multi-modal data to train real-world robotic systems. At the
core of Lucid-XR is vuer, a web-based physics simulation environment that runs
directly on the XR headset, enabling internet-scale access to immersive, latency-
free virtual interactions without requiring specialized equipment. The complete
system integrates on-device physics simulation with human-to-robot pose retar-
geting. Data collected is further amplified by a physics-guided video generation
pipeline steerable via natural language specifications. We demonstrate zero-shot
transfer of robot visual policies to unseen, cluttered, and badly lit evaluation envi-
ronments, after training entirely on Lucid-XR’s synthetic data. We include exam-
ples across dexterous manipulation tasks that involve soft materials, loosely bound
particles, and rigid body contact. Project website: https://lucidxr.github.io

Keywords: Extended-reality, world-model, synthetic data

1 Introduction: From Atoms to Bits

When viewed from afar, training a robot controller is not too different from making a movie, in
that both involve carefully curating content. Feature films over the years have transitioned steadily
from practical special effects in the physical world to digitally created virtual special effects, driven
primarily by creators’ demand for even greater freedom in storytelling [1, 2, 3, 4]. Hardening robotic

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://lucidxr.github.io

Vuer.aiVuer.ai

training evaluation

Vuer.ai
Running teather-free Physics
Simulation on-device, in WebXR
no need for simulation server

 Sca
le v

ia

 the
 int

erne
t

VuerScene/Assets

GenAI models Image Gen

...

Figure 2: System Schematic of the Lucid-XR Pipeline. The results in this paper require hand-
crafted, but basic 3D scenes. The data collection is done collectively by the authors. The resulting
simulated datasets are augmented by a generative pipeline powered by language and text-to-image
models.

systems for real-world deployment requires a similar level of control over the training environment
to cover rare but mission-critical events that, by definition, are scarce in real-world datasets. What
makes robotics more difficult is that digitally creating millions of realistic-looking virtual worlds at
the scale required for our robots to generalize to the real world is infeasibly expensive.

In this work, we introduce Lucid-XR, an extended-reality (XR) data engine for robot manipulation.
Lucid-XR uses a generative image pipeline to convert human demonstration data collected in low-
fidelity virtual environments into diverse and visually realistic data to train the robot. Key to our
vision is to enable internet scale deployment of real-time multi-physics simulations through the web
browser to enable the crowd-sourcing of unlimited human demonstration data. Furthermore, virtual
demonstrations in sparsely populated 3D environments alone are insufficient for training real-world
computer vision systems. We leverage language and text-to-image generative models to construct
a physics-guided video generation pipeline that amplifies a small number of simple designs into
millions of diverse and realistic-looking multi-view images for the robot.

One challenge that makes crowd-sourcing teleoperation difficult is that retargeting human poses to
robot form factors that are kinematically different involves writing custom computer code for each
robot and setting up a server. We solve this problem by leveraging an inverse kinematics solver,
built-in to MuJoCo, and allowing users to define bindings between motion capture (MoCap) sites
and robot parts in the markup schema.

Our contributions are three-fold: first, moving physics simulation onto the XR device, to deliver a
latency-free multi-physics simulation in an immersive environment via the open internet; second, a
way to retarget human pose data to virtual robots, without requiring a custom computer program;
and third, a demonstration of a policy trained on Lucid-XR’s synthetic data deployed on scanned
digital twins of real environments.

2 A Touch of Physics in Extended Reality (XR)

Modern internet browsers are de facto operating systems built according to a commonly agreed-
upon programming interface. The key limitation is the constraint on compute and memory, as the
device’s operating system needs to throttle the browser process to maintain a smooth user experi-
ence while handling a multitude of system and application tasks. In the past decade, however, the
competition between vendors has significantly improved browser performance; on newer extended-
reality devices, the browser receives first-class support in features sets, system resource limits, and
performance.

Lucid-XR builds on three web standards. First, to ensure simulations are fast, we compile Mu-
JoCo into WebAssembly, bypassing the single-threaded V8 engine and achieving near-native speed
directly on XR hardware. Second, we built upon the web-XR standard, a user-interaction program-
ming interface that is shared across device vendors. This enabled us to support hands, motion con-

trollers, and XR devices from as low as $300 to $4000. The third web standard is webGL. We wrote
a performant rendering, interaction, and programming interface from scratch using react-three/fiber,
a modern lightweight and performant 3D framework with strong community backing. This has en-

2

physics
engine3D Scene

hand pose

updated scene

 >17ms

 +12ms

Simulating Physics Off-Device

XR Device
wifi

vuer client

 <12ms

physics engine

WebXR Immersive Session

LucidXR: Simulating On-Device

Figure 3: Moving physics simulation on-device enables untethered access to immersive simula-
tions. The key benefits are twofold: first, it enables the simulation of deformable objects that involve
modifying a large amount of mesh data that are too slow to send over WiFi. Second, it eliminates

delays due to network latency, allowing the simulation to run at the device’s native frame rate.

Figure 4: Multiple types of physics running natively inside the browser in real-time. From left
to right: flexible material interacting with a solid; Signed-distance function (SDF) based collision
solver for non-convex shapes; A deck of cards interacting with air/wind; Soft skin material interact-
ing with a solid. Rendering and simulation are both native in a web browser.

abled real-time visualization of complex scenes and deformable objects. The current technological
landscape is fast-evolving — in the near future, when webGPU becomes fully supported, we will be
able to parallelize the physics simulation using compute shaders with hardware acceleration. This
will enable more complex physics that involve a large quantity of interacting particles, deformable
vertices, or liquid.

2.1 Multi-Physics Simulation in Vuer

At the core of Lucid-XR is vuer, a simulator-agnostic XR framework running in the browser. We
use MuJoCo [5] compiled to WebAssembly with a custom react-three/fiber front-end, achieving
real-time simulation at 90 fps on Apple Vision Pro. Data is collected at 25 fps; each step takes under
12 ms to simulate, so latency is negligible unless overloaded. The MuJoCo decimation parameter
(5–20 steps per frame) controls simulation fidelity. Rendering runs natively on the XR device at
90 fps for user comfort. Like Blender, vuer is simulator-agnostic and benefits as physics engines
improve.

Flexible materials. Prior VR setups run physics on an external computer [6], which introduces
latency when simulating flexible or particle-rich scenes. Running physics on-device eliminates this
bottleneck and enables interactive deformable-object simulation (Fig. 4).

Fluid forces. MuJoCo’s integrated fluid model [7] supports wind and fluid interactions with rigid
and deformable objects. For example, Fig. 4c shows poker cards falling against a capsule under air
resistance.

Collision without convex decomposition. We inculde the signed-distance function (SDF) collision
solver in Mujoco by default, removing the need for convex decomposition during modeling. This
simplifies setup, at the cost of higher runtime compute and memory.

2.2 Precise Interactions at A Distance: Hitchhiking Controllers

The virtual world presents an opportunity to define new ways of interacting with robots beyond the
constraint of real-world physicality. When the robot is situated far from the user’s home location
in VR, naı̈vely controlling those grippers by “grasping” them from afar yields poor user experience

3

https://www.w3.org/TR/webgpu/

Wrist

Pinky-proximal

Index-tip

Wrist

Pinky-proximal

Index-tip

Figure 5: Controlling Hand Pose via Motion Caption Sites. We specify mocap sites by first
aligning the proximal joints, and scale the hand so that fingers are similar in size as the robot hand.
We then weld the SE(3) pose of the fingertip to similar sites on the robot hand and the wrist. We
adjust the torque scale to balance tracking of the position and the rotation portion of the pose.

Figure 6: Handling dynamic tasks and deformable objects. The on-device retargeting is accurate
enough to balance three blocks on one hand; is fast enough to handle dynamic tasks such as throwing
a basketball, and handle deformable objects for cloth folding.

because the hand tracking error gets amplified as the distance increases. We solve this problem
by applying SE(3) transformation to the target gripper in the local frame of the mocap site. This
design took inspiration from the hitchhiking hand [8], and let the activate MoCap sites at a distance
by looking at the object and clicking on it. Once activated, the user can engage with the site via a
natural grasping gesture, where they close the lower three fingers.

2.3 On-Device Retargetting for Dexterous Hand Control

The problem of retargeting kinematic poses between humans and robots across different body kine-
matics is a common problem shared between dexterous manipulation, locomotion and humanoid
whole-body control [9]. Existing solutions rely on running the kinematics solver separately on a
server [10], making it hard to scale. Our solution involves binding mocap sites to the tip of each
finger and utilizing the relative pose to the wrist joint, as well as the action space.

This hand control scheme is very general. We found that it worked well for all of the robot hands
that we experimented with. We designed a schema-based programming interface for users to specify
custom bindings between mocap sites or geometric bodies with landmarks and gestures of the hand
in python.

2.4 Porting Existing Environments

Take Robocasa as an example – you can extract the XML from MuJoCo by calling env.get xml,
and then iterate through the ‘file=‘ attributes to collect all of the assets. You can then load this
file bundle by simply dragging and dropping it into Vuer. We were able to extract scenes from
RoboHive, RoboCasa, RoboSuite, and MuJoCo Menagerie (see 7) .

3 Synthesizing Diverse Manipulation Data from Virtual Demonstrations

The third component of Lucid-XR is a generative engine that converts the virtual human demonstra-
tions collected in the sim into diverse and realistic-looking multiview image datasets for the robot.

4

Figure 7: (a) Spot robot from Menagerie (b - c) RobotCasa Scenes

3.1 Generating Realistic Images from Virtual Demonstrations.

Figure 8 shows our setup for generating realist-looking images. We follow the LucidSim [11] recipe
that starts with a collection of diverse text prompts collected from chatGPT, and use the semantic
mask labels from the physics simulation to control the image generation process. Prompts for gen-
eration are sourced en masse from ChatGPT via a meta-prompt (see appendix). Prompts for the
background tend to be more complex. In alignment with observations made by prior works [11], we
found it is key to generate these images from a diverse set of text prompts.

Object Masks

prompt: {
 “description”: “A rustic kitchen at
 dawn, in a myster...”,
 “object_1”: “yellow ceramic glaze, ...”,
 “object_2”: “a teal cup...
 “negative”: “watermark, bad qua
}

Robot Overlay

++ =Normalized Depth

Figure 8: Image generation pipeline. We apply semantic masking and depth conditioning to pre-
cisely control the scene.

3.2 Demonstration Augmentation

We designed an interface to generate MuJoCo XMLs procedurally in Python, allowing for a user to
quickly compose scenes in LucidXR and multiply data. This allows robust control of the distribution
of initial scene configurations during data collection.

Repositioning cameras post-demonstrations Camera poses can be modified very quickly in the
Python script without needing data to be recollected. Collected trajectories can simply be played
back and rendered from the new camera. This allows for easy visualization and quick iteration of
image views for training. The simulator also allows for rendering the ground truth depth, which
we use to warp images post-rendering. Given the exact camera extrinsics, intrinsics, and depth we
can compute the optical flow for nearby poses. This is a crucial part of the sim-to-real pipeline to
prevent sensitivity to the camera pose.

Trajectory warping for repositioning objects and robots Similar to MimicGen [12] we select
keypoints in the trajectories, and move them around within a specified distribution. With linear
interpolation for pose + spherical interpolation for rotation, this creates an entirely new demonstra-
tion. This allows us to reposition objects, robots, and change the distribution of initial scene setup
post-demonstration. We use this augmentation to make trained policies more robust to variations in
object position.

4 Results

We created contact-rich environments to evaluate various types of on-device physics simulation in
Lucid-XR. Each environment tests a distinct type of physical interaction (see Fig. 9). For each task
the initial state is randomized within a small area.

5

(a) Pouring cup. (b) Tying a knot. (c) Tight insertion (d) Mug tree (e) Ball sorting toy

Figure 9: Lucid-XR can simulate contact-rich manipulation of diverse physics. (a) granular
materials to simulate pouring liquid, (b) deformable materials when tying a knot, (c) tight tolerances
between objects in contact, in a shape insertion task. (d) placing a mug onto a drying rack (e) a ball
sorting toy.

• Block Stacking: This task requires creating a three block stack with a dextrous hand.
• Pour Liquid: This task requires picking up a cup with a dextrous hand, handing it off to another

hand, and pouring into a sink – involves a large scene, and granular particles flow.
• Ball Sorting: This task requires sorting three balls by color into a toy – Involves mixed

rigid–particle collision in a toy sorter.
• Knot Tying: This task requires tying a knot on a suspended rope with a single two-fingered

gripper – Involves deformation of a flexible string into a knot with self-contact
• Kitchen-Sink: This task requires picking up a cup, placing it onto a bowl, and then placing both

into the kitchen sink – Involves a much larger scene, using SDFs, and is longer-horizon.
• Mug Tree: This task requires picking up a mug with a single two-fingered gripper and placing it

on a tree rack – Involves modeling collisions with concave shapes using the SDF plugin,

4.1 Data Collection and Learning Setup

Figure 10: Amount of data collected for
LucidXR vs Real-World Teleop.

We record observations and actions as SE(3) mocap
poses at 25 Hz; rotations use the 6D representation
of [13]. Demonstrations are embodiment-agnostic,
so behavior-cloned policies can deploy on any two-
finger gripper. Policies take proprioception as well
as either a wrist RGB view or three fixed RGB views
of the workspace and output chunked absolute end-
effector poses; we train with batch size 64.

ACT. We use standard ACT [14]: 15k updates,
chunk size 25, learning rate 10→4, and a DETR-style
VAE backbone [15] (4 encoders, 1 decoder, head
dim 128, FFN 256). Images are color-jittered. At
evaluation we apply temporal aggregation [14].

Diffusion. We also train a score-based action de-
noiser [16, 17] with a 1D U-Net [18] conditioned on image features via FiLM [19]. Optimization
uses AdamW with an exponential LR schedule 10→3 → 10→5. Inference performs 1000 denoising
steps and executes actions by chunks.

4.2 Comparing Data Collection Speed in Virtual and the Real-world

Resetting the scene in the real world involve manually replacing the object, moving the gripper, and
safety checks. In vuer the entire physics simulation and reset logic runs on-device, so the user can
reset the environment by pressing a button. This provides an uninterrupted data capture for the full
thirty minutes. We collected 30 minutes of demonstrations for each of three tasks in both settings.
As shown in 10, participants collected roughly 2↑ more demonstrations in Lucid-XR than with real-
world teleoperation. When we further applied the augmentation pipeline, the effective dataset size
increased to about 5↑ that of the real-world baseline.

6

(a) Real-to-sim evaluation. We made 3D Gaussian scans of real-world
kitchen environments to stage the evaluation environments, as a rough
estimate of the generalization capability of the trained policy.

(b) Success rate for each manip-
ulation task, as measured in our
extended-reality data engine.

Figure 11: Evaluation results from real-to-sim transfer (left) and per-task performance in simulation
(right).

Kitchen Clearing Base Env. Low Clutter High Clutter + Noise

ACT Policy 100% 0% 0%
ACT + LucidSim 100% 90% 25%

Table 1: Evaluation scores for the kitchen clearing task with unseen real-life meshes overlaid on the
original environment. We score the Kitchen Clearing task based on two pick-and-places, allowing
for 4 points per run.

4.3 Real-to-Sim Evaluation

We made a small number of 3D Gaussian models of kitchens with real-life clutter, and use them
as staging environments for our simulated eval. Although the Lucid-XR policy has never seen data
from these environments, it out-performed the same policy trained on simulated data (see Fig.11).

4.4 Sim-To-Real Evaluation

We trained three policies to accomplish pick and place using datasets collected over 10, 20, and 30
minutes. For each duration, one dataset was collected in LucidXR and rendered with generative
imagery and another via real robot teleoperation where an Oculus headset was used to control the
end-effector position. We further augmented the LucidXR dataset with methods from 3.1. We then
evaluated all policies on a real robot in the same environment that the real dataset was collected on.
Results showed that policies trained on purely synthetic data performed comparably to those trained
on real data (see Fig. 12).

To further test robustness, we repeated the evaluation under modified visual conditions. Specifi-
cally, we varied the lighting, color, and replaced the original wooden tabletop with either a textured
tablecloth or a black tablecloth. Under these changes, the policy trained only on real-world demon-
strations failed to generalize, while the LucidXR-trained policies maintained high success rates and
outperformed the real-world baseline.(see Fig. 12).

5 Related Works

Extended reality for robot teleoperation and data collection.

XR environments have been used to scale robot learning via teleoperation, yet each faces band-
width or realism limits. [8] introduced “hitchhiking hands” for remote interaction, letting users
control virtual avatars by gaze in VR. Our hitchhiking controller builds on this idea, enabling distant
robot gripper control through XR hands. Hand-overlay methods [20, 21, 22, 23] and mobile-AR
approaches [24, 25] overlay virtual robots on physical objects, but lack rich contact. Other AR/VR
frameworks [10, 26, 27, 28] enable seamless teleoperation of physical robots, but throughput and
environment diversity remain limited. Most closely related to our work are [29, 30], toolkits for
VR demo collection. A key difference is that LucidXR runs simulations on-device, avoiding cloud

7

(a) Success rates for sim-to-real and real-to-
real policies

(b) Success rates for sim-to-real and real-to-
real policies on Augmented environment

Figure 12

latency that hinders dexterous, dynamic control in systems like DART and IRIS. We envision Lu-
cidXR as a platform for scaling imitation learning with generative models. Works such as [14]
provide foundations for architectures like the Action Chunking Transformer.

Generative AI for Synthetic Data Augmentation . Recent works use generative AI across text,
vision, and 3D assets to expand robot training data. Our image-generation pipeline builds on Lucid-
Sim [11], which showed that locomotion policies trained entirely from generated images can deploy
zero-shot in the real world. LucidSim uses text prompts and diffusion models to produce diverse
scenes; we extend this with more semantic classes and randomized object geometry sampled from
3D assets. Other works [31, 32, 33, 34] generate diverse tasks but still lack realistic textures. These
can be integrated into our pipeline to further expand data realism. In parallel, [35, 36, 37, 38] apply
text-to-image generation to hallucinate new scenarios directly on real data, maintaining semantic
consistency with robot objectives.

Large-scale imitation learning and data aggregation. Multi-institution efforts aggregate demon-
strations but remain embodiment-specific. Open X-Embodiment collects 50k+ demos for RT-X
policies [39]; RH20T [40] and DROID [41] add 100k+ crowdsourced trajectories. Despite scale,
diversity across robots, environments, and tasks remains limited, falling short of what is needed for
truly generalist policies analogous to vision or NLP foundation models.

6 Conclusion

In this work, we present Lucid-XR, a generative-AI-powered learning pipeline for producing gen-
eralizable visual policies for manipulation. We demonstrate the potential for virtual demonstrations
in a simulated world to produce real-world robot policies that generalize across object instances,
appearance, and lighting conditions. We also present new designs for interacting with virtual robots
through VR controllers and hand gestures. We believe virtual demonstration data has the potential
to scale across the internet and close the data gap for training a generally capable robot foundation
model.

Deploying Across Embodiments. Our observation is that as long as the data is collected on the full
embodiment, the learned controller will work, and in many cases data collected with embodiment-
free (a floating gripper) transfer readily. We note that cross-embodiment transfer in Lucid-XR is
limited only by inverse-kinematics and mobility. This is an avenue that future work can explore.

Acknowledgments

This work was supported by Amazon.com Services LLC, Award #2D-06310236. We would like to
thank the reviewers for their constructive criticism and for helping make this paper more compre-
hensive.

8

7 Limitations

This work leaves a few rocks untouched. For instance, we rely on the controlling power of the same
text prompt to generate consistent views. A key benefit of generating visual data is that it comes
with paired text labels. Future iterations can benefit from the additional supervision that this pairing
provides.

References
[1] J.-H. Ryu. Reality & effect: A cultural history of visual effects. Communication Dissertations,

2007.

[2] J. Turnock. Before Industrial Light and Magic: the independent Hollywood special effects
business, 1968–75: Research Article. New Rev. Film Telev. Stud., 7(2):133–156, June 2009.

[3] S. Das. The evolution of visual effects in cinema: A journey from practical effects to CGI.
Journal of Emerging Technologies and Innovative Research, 10(11):303–309, 2023.

[4] B. Murodillayev. The impact of visual effects on the cinema experience: A comprehensive
analysis. Art Des. Rev., 2024.

[5] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012. doi:10.1109/IROS.2012.6386109.

[6] Y. Park, J. S. Bhatia, L. L. Ankile, and P. Agrawal. Dexhub and dart: Towards internet scale
robot data collection. ArXiv, abs/2411.02214, 2024. URL https://api.semanticscholar.
org/CorpusID:273821640.

[7] MuJoCo Documentation. Fluid forces. https://mujoco.readthedocs.io/en/latest/
computation/fluid.html, 2025. Accessed: 2025-August-29.

[8] R. Ban, K. Matsumoto, and T. Narumi. Hitchhiking hands: Remote interaction by switching
multiple hand avatars with gaze. In SIGGRAPH Asia 2023 Emerging Technologies, pages 1–2.
2023.

[9] X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang. Expressive whole-body control for
humanoid robots, 2024. URL https://arxiv.org/abs/2402.16796.

[10] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang. Open-television: Teleoperation with immer-
sive active visual feedback. arXiv preprint arXiv:2407.01512, 2024.

[11] A. Yu, G. Yang, R. Choi, Y. Ravan, J. Leonard, and P. Isola. Learning visual parkour from
generated images. In 8th Annual Conference on Robot Learning, 2024.

[12] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox.
Mimicgen: A data generation system for scalable robot learning using human demonstrations,
2023. URL https://arxiv.org/abs/2310.17596.

[13] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation representations in
neural networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, June 2019.

[14] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[15] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
object detection with transformers, 2020. URL https://arxiv.org/abs/2005.12872.

9

http://dx.doi.org/10.1109/IROS.2012.6386109
https://api.semanticscholar.org/CorpusID:273821640
https://api.semanticscholar.org/CorpusID:273821640
https://mujoco.readthedocs.io/en/latest/computation/fluid.html
https://mujoco.readthedocs.io/en/latest/computation/fluid.html
https://arxiv.org/abs/2402.16796
https://arxiv.org/abs/2310.17596
https://arxiv.org/abs/2005.12872

[16] T. Garipov, S. D. Peuter, G. Yang, V. Garg, S. Kaski, and T. Jaakkola. Compositional sculpting
of iterative generative processes, 2023. URL https://arxiv.org/abs/2309.16115.

[17] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics

Research, 2024.

[18] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis, 2022. URL https://arxiv.org/abs/2205.09991.

[19] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer, 2017. URL https://arxiv.org/abs/1709.07871.

[20] S. Chen, C. Wang, K. Nguyen, L. Fei-Fei, and C. K. Liu. Arcap: Collecting high-quality
human demonstrations for robot learning with augmented reality feedback. arXiv preprint

arXiv:2410.08464, 2024.

[21] N. Nechyporenko, R. Hoque, C. Webb, M. Sivapurapu, and J. Zhang. Armada: Augmented
reality for robot manipulation and robot-free data acquisition, 2024. URL https://arxiv.
org/abs/2412.10631.

[22] X. Jiang, P. Mattes, X. Jia, N. Schreiber, G. Neumann, and R. Lioutikov. A comprehensive
user study on augmented reality-based data collection interfaces for robot learning. In 2024

19th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 333–342,
2024.

[23] Y. Yang, B. Ikeda, G. Bertasius, and D. Szafir. Arcade: Scalable demonstration collection and
generation via augmented reality for imitation learning, 2024. URL https://arxiv.org/
abs/2410.15994.

[24] J. Duan, Y. R. Wang, M. Shridhar, D. Fox, and R. Krishna. Ar2-d2: Training a robot without a
robot. 2023.

[25] J. Wang, C.-C. Chang, J. Duan, D. Fox, and R. Krishna. Eve: Enabling anyone to train robots
using augmented reality, 2024. URL https://arxiv.org/abs/2404.06089.

[26] J. van Haastregt, M. C. Welle, Y. Zhang, and D. Kragic. Puppeteer your robot: Augmented
reality leader-follower teleoperation, 2024. URL https://arxiv.org/abs/2407.11741.

[27] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation, 2024. URL https://arxiv.org/abs/2403.
07870.

[28] A. Naceri, D. Mazzanti, J. Bimbo, Y. T. Tefera, D. Prattichizzo, D. G. Caldwell, L. S. Mat-
tos, and N. Deshpande. The vicarios virtual reality interface for remote robotic teleopera-
tion: Teleporting for intuitive tele-manipulation. J. Intell. Robotics Syst., 101(4), Apr. 2021.
ISSN 0921-0296. doi:10.1007/s10846-021-01311-7. URL https://doi.org/10.1007/
s10846-021-01311-7.

[29] X. Jiang, Q. Yuan, E. U. Dincer, H. Zhou, G. Li, X. Li, J. Haag, N. Schreiber, K. Li,
G. Neumann, and R. Lioutikov. Iris: An immersive robot interaction system, 2025. URL
https://arxiv.org/abs/2502.03297.

[30] Y. Park, J. S. Bhatia, L. Ankile, and P. Agrawal. Dexhub and dart: Towards internet scale robot
data collection, 2024. URL https://arxiv.org/abs/2411.02214.

[31] P. Katara, Z. Xian, and K. Fragkiadaki. Gen2sim: Scaling up robot learning in simulation with
generative models, 2023. URL https://arxiv.org/abs/2310.18308.

10

https://arxiv.org/abs/2309.16115
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/1709.07871
https://arxiv.org/abs/2412.10631
https://arxiv.org/abs/2412.10631
https://arxiv.org/abs/2410.15994
https://arxiv.org/abs/2410.15994
https://arxiv.org/abs/2404.06089
https://arxiv.org/abs/2407.11741
https://arxiv.org/abs/2403.07870
https://arxiv.org/abs/2403.07870
http://dx.doi.org/10.1007/s10846-021-01311-7
https://doi.org/10.1007/s10846-021-01311-7
https://doi.org/10.1007/s10846-021-01311-7
https://arxiv.org/abs/2502.03297
https://arxiv.org/abs/2411.02214
https://arxiv.org/abs/2310.18308

[32] Y. Wang, Z. Xian, F. Chen, T.-H. Wang, Y. Wang, K. Fragkiadaki, Z. Erickson, D. Held, and
C. Gan. Robogen: Towards unleashing infinite data for automated robot learning via generative
simulation, 2024. URL https://arxiv.org/abs/2311.01455.

[33] Y. J. Ma, W. Liang, H.-J. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani, and D. Jayaraman.
Dreureka: Language model guided sim-to-real transfer, 2024. URL https://arxiv.org/
abs/2406.01967.

[34] Z. Chen, A. Walsman, M. Memmel, K. Mo, A. Fang, K. Vemuri, A. Wu, D. Fox, and A. Gupta.
Urdformer: A pipeline for constructing articulated simulation environments from real-world
images. arXiv preprint arXiv:2405.11656, 2024.

[35] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, D. M, J. Per-
alta, B. Ichter, K. Hausman, and F. Xia. Scaling robot learning with semantically imagined
experience, 2023. URL https://arxiv.org/abs/2302.11550.

[36] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and V. Kumar. Cacti:
A framework for scalable multi-task multi-scene visual imitation learning. arXiv preprint

arXiv:2212.05711, 2022.

[37] J. Jang, S. Ye, Z. Lin, J. Xiang, J. Bjorck, Y. Fang, F. Hu, S. Huang, K. Kundalia, Y.-C. Lin,
L. Magne, A. Mandlekar, A. Narayan, Y. L. Tan, G. Wang, J. Wang, Q. Wang, Y. Xu, X. Zeng,
K. Zheng, R. Zheng, M.-Y. Liu, L. Zettlemoyer, D. Fox, J. Kautz, S. Reed, Y. Zhu, and L. Fan.
Dreamgen: Unlocking generalization in robot learning through video world models, 2025.
URL https://arxiv.org/abs/2505.12705.

[38] Z. Chen, S. Kiami, A. Gupta, and V. Kumar. Genaug: Retargeting behaviors to unseen situa-
tions via generative augmentation. arXiv preprint arXiv:2302.06671, 2023.

[39] O. X.-E. Collaboration, A. O’Neill, A. Rehman, A. Gupta, A. Maddukuri, A. Gupta,
A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Her-
zog, A. Irpan, A. Khazatsky, A. Rai, A. Gupta, A. Wang, A. Kolobov, A. Singh, A. Garg,
A. Kembhavi, A. Xie, A. Brohan, A. Raffin, A. Sharma, A. Yavary, A. Jain, A. Balakr-
ishna, A. Wahid, B. Burgess-Limerick, B. Kim, B. Schölkopf, B. Wulfe, B. Ichter, C. Lu,
C. Xu, C. Le, C. Finn, C. Wang, C. Xu, C. Chi, C. Huang, C. Chan, C. Agia, C. Pan, C. Fu,
C. Devin, D. Xu, D. Morton, D. Driess, D. Chen, D. Pathak, D. Shah, D. Büchler, D. Ja-
yaraman, D. Kalashnikov, D. Sadigh, E. Johns, E. Foster, F. Liu, F. Ceola, F. Xia, F. Zhao,
F. V. Frujeri, F. Stulp, G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Feng, G. Schiavi,
G. Berseth, G. Kahn, G. Yang, G. Wang, H. Su, H.-S. Fang, H. Shi, H. Bao, H. B. Amor,
H. I. Christensen, H. Furuta, H. Bharadhwaj, H. Walke, H. Fang, H. Ha, I. Mordatch, I. Ra-
dosavovic, I. Leal, J. Liang, J. Abou-Chakra, J. Kim, J. Drake, J. Peters, J. Schneider, J. Hsu,
J. Vakil, J. Bohg, J. Bingham, J. Wu, J. Gao, J. Hu, J. Wu, J. Wu, J. Sun, J. Luo, J. Gu,
J. Tan, J. Oh, J. Wu, J. Lu, J. Yang, J. Malik, J. Silvério, J. Hejna, J. Booher, J. Tompson,
J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao, K. Pertsch, K. Hausman, K. Go,
K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund, K. Kawaharazuka, K. Black, K. Lin,
K. Zhang, K. Ehsani, K. Lekkala, K. Ellis, K. Rana, K. Srinivasan, K. Fang, K. P. Singh, K.-H.
Zeng, K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto, L. Fei-Fei, L. Tan, L. J. Fan, L. Ott,
L. Lee, L. Weihs, M. Chen, M. Lepert, M. Memmel, M. Tomizuka, M. Itkina, M. G. Castro,
M. Spero, M. Du, M. Ahn, M. C. Yip, M. Zhang, M. Ding, M. Heo, M. K. Srirama, M. Sharma,
M. J. Kim, M. Z. Irshad, N. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N. Suenderhauf,
N. Liu, N. D. Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer, O. Bastani, P. R. Sanketi, P. T.
Miller, P. Yin, P. Wohlhart, P. Xu, P. D. Fagan, P. Mitrano, P. Sermanet, P. Abbeel, P. Sun-
daresan, Q. Chen, Q. Vuong, R. Rafailov, R. Tian, R. Doshi, R. Mart’in-Mart’in, R. Baijal,
R. Scalise, R. Hendrix, R. Lin, R. Qian, R. Zhang, R. Mendonca, R. Shah, R. Hoque, R. Ju-
lian, S. Bustamante, S. Kirmani, S. Levine, S. Lin, S. Moore, S. Bahl, S. Dass, S. Sonawani,
S. Tulsiani, S. Song, S. Xu, S. Haldar, S. Karamcheti, S. Adebola, S. Guist, S. Nasiriany,

11

https://arxiv.org/abs/2311.01455
https://arxiv.org/abs/2406.01967
https://arxiv.org/abs/2406.01967
https://arxiv.org/abs/2302.11550
https://arxiv.org/abs/2505.12705

S. Schaal, S. Welker, S. Tian, S. Ramamoorthy, S. Dasari, S. Belkhale, S. Park, S. Nair, S. Mir-
chandani, T. Osa, T. Gupta, T. Harada, T. Matsushima, T. Xiao, T. Kollar, T. Yu, T. Ding,
T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell, T. Chung, V. Jain, V. Kumar, V. Vanhoucke,
V. Guizilini, W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Chen, X. Wang, X. Zhu, X. Geng,
X. Liu, X. Liangwei, X. Li, Y. Pang, Y. Lu, Y. J. Ma, Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu,
Y. Wu, Y. Xu, Y. Wang, Y. Bisk, Y. Dou, Y. Cho, Y. Lee, Y. Cui, Y. Cao, Y.-H. Wu, Y. Tang,
Y. Zhu, Y. Zhang, Y. Jiang, Y. Li, Y. Li, Y. Iwasawa, Y. Matsuo, Z. Ma, Z. Xu, Z. J. Cui,
Z. Zhang, Z. Fu, and Z. Lin. Open X-Embodiment: Robotic learning datasets and RT-X mod-
els. https://arxiv.org/abs/2310.08864, 2023.

[40] H.-S. Fang, H. Fang, Z. Tang, J. Liu, J. Wang, H. Zhu, and C. Lu. Rh20t: A robotic dataset for
learning diverse skills in one-shot. In RSS 2023 Workshop on Learning for Task and Motion

Planning, 2023.

[41] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,
M. K. Srirama, L. Y. Chen, K. Ellis, P. D. Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma,
P. T. Miller, J. Wu, S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel, S. Park,
I. Radosavovic, K. Wang, A. Zhan, K. Black, C. Chi, K. B. Hatch, S. Lin, J. Lu, J. Mer-
cat, A. Rehman, P. R. Sanketi, A. Sharma, C. Simpson, Q. Vuong, H. R. Walke, B. Wulfe,
T. Xiao, J. H. Yang, A. Yavary, T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro, D. Chen, Q. Chen,
T. Chung, J. Drake, E. P. Foster, J. Gao, D. A. Herrera, M. Heo, K. Hsu, J. Hu, D. Jackson,
C. Le, Y. Li, K. Lin, R. Lin, Z. Ma, A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen,
A. O’Neill, R. Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu, A. Xie, J. Yang,
P. Yin, Y. Zhang, O. Bastani, G. Berseth, J. Bohg, K. Goldberg, A. Gupta, A. Gupta, D. Ja-
yaraman, J. J. Lim, J. Malik, R. Martı́n-Martı́n, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu,
M. C. Yip, Y. Zhu, T. Kollar, S. Levine, and C. Finn. Droid: A large-scale in-the-wild robot
manipulation dataset. 2024.

12

https://arxiv.org/abs/2310.08864

Appendix

We include additional simulated environments; details on how we engineer the physics involved; in
addition to details on the generative workflow in this appendix. We also include examples of the
virtual demonstrations that we collected, and examples of the synthetic images used for training. A
live version of the presentation is included in The accompanying video.

7.1 Examples of Dexterous Virtual Demonstrations

Figure 13: Loading a Dishwasher. Showing dexterous manipulation of a dishwasher with articu-
lated doors a plate, and its interaction with the racks inside the dishwasher.

7.2 Examples of Policy Unroll in Simulation

Figure 14: Cleaning The Kitchen. The robot learns to pick up a cup and stack it on top of the bowl,
followed by placing both objects into the kitchen sink.

13

7.3 Examples of Learned Re-try Behavior

We noticed robust, re-try behavior from the learned policy. We present the image sequence in
Figure. 15.

Figure 15: Re-try Behavior in the Mug Tree Environment. The policy came into contact twice:
First during the picking up of the mug; the second time is when trying to hang the mug onto the arm
of the mug tree drying rack.

14

7.4 Additional Examples of Synthetic Data

We include additional examples of synthetic images generated by the LucidXR pipeline in Fig-
ure. 16.

Figure 16: Additional Examples of Generated Images from Lucid-XR. Notice the control over
lighting, geometry, and content diversity.

7.5 The Vuer Scene Description Language

Usage of the MuJoCo engine API in Python tends to follow an imperative pattern, where objects,
material texture, and lighting are changed by mutating MuJoCo’s physics and modeling buffers. To
improve the readability and reusability of the MuJoCo simulation, we developed a declarative scene
description language that treats the scene as a nested set of scene components that form a tree. This
module, vuer-mujoco, enables the user to sketch out a scene via the following:

1 from vuer_mujoco import Box , DefaultScene , SimpleTable
2 from your_code import make_camera_rig
3

4 camera_rig = make_camera_rig ()
5 lighting_rig = make_lighting_rig ()
6

7 table = SimpleTable(pos=[0.0 , 0.0, 0.0])
8

9 # a 10cm cube , initialized slightly above a table.
10 cube = Box(size =[0.01 , 0.01, 0.01], pos=[0., 0.1, 0.02] + table.

surface_origin)
11

12 scene = DefaultScene(
13 *camera_rig.get_all_cameras (),
14 lighting_rig.key , lighting_rig.fill , lighting_rig.back ,
15 table , cube , robot , robot.mocap_points ,
16)

15

(a) Real-world photo of the toy. (b) Details of simulated learning environment.

Figure 17: The real-world fishing toy set (left), versus the simulated learning environment used to
collect data (right). The fishing rod has a magnetic hook attached to the end of the line that interacts
with a ferromagnetic nail head embedded in the fish. We simulate this by defining adhesion actuators
on a small sphere body attached to the fish geometry.

7.6 Tips on Engineering Synthetic Environments

Adhesion. Adhesive interactions are involved in many physical processes, including surface ten-
sion, magnetic interaction with ferro- and para-magnetic materials, interaction with sticky surfaces,
such as an object against the silicone rubber material in a gripper.

We provide a fishing toy environment that simulates a toy fishing pole with a magnetic hook that
the robot can use to pick up a wooden fish. This simultaneously involves interaction with flexible
material – a rope. We set the weight of the fish pieces so that the adhesion is strong enough to lift
them off the table, but still weak enough to detach with a slight shake of the fishing rod.

Generating 3D Assets. All of the 3D assets shown above are generated either from a text descrip-
tion of the object or stock images of the physical item found on Amazon.com. We use a free version
of the meshy.ai service. The resulting 3D meshes usually contain a large number of faces, with
physical dimensions that are off by two orders of magnitude. We post-process these 3D assets by
first simplifying them in MeshLab, and then centering and rescaling using a custom script.

1 from vuer_mujoco import MuJoCoRope
2

3 rope = MuJoCoRope(
4 postamble="""
5 <actuator >
6 <adhesion body="f1-magnet" ctrlrange ="0.15 0.16" gain ="1"/>
7 <adhesion body="f2-magnet" .../>
8 <adhesion body="f3-magnet" .../>
9 </actuator >

10 """,
11)

7.7 Real-to-sim Evaluation Setup

We include two realistic testing environments: a) Clean Kitchen and b) Messy Kitchen. These
environments serve as a more controllable proxy of the real-world experiments, to enable faster
iteration on the data and learning pipeline.

We align the 3D mesh from PolyCam to the MuJoCo environment (see Figure. 19) manually, shown
in Figure 18.

16

(a) Collision Geometry (b) Render

Figure 18: Clean Kitchen. Contain no clutter. We place 3D object assets programmatically.

(a) Aligning the 3D mesh with the MuJoCo scene. (b) The scene after alignment.

Figure 19: Aligning scan with the physics environment.
7.8 Image Generation Workflow

We provide the complete image generation workflow in JSON form in the supplementary material.
This workflow can be loaded into ComfyUI as-is. A screenshot fo this workflow can be found in
Figure. 20.

Figure 20: Image Generation Workflow. Using two object masks plus a normalized inverse depth
image, we are able to control the geometry, lighting, and the composition of the generated images.

17

7.9 Training Details

We use the Action-Chunking transformer architecture from [14]. Our policy uses multiple back-
bones (for each input camera feed). The hyperparameters we used are in Table. 2.

Table 2: Training Hyperparameters.
learning rate 5e→5
batch size 32
number of encoder layers 4
number of decoder layers 7
feedforward dimension 3200
hidden dimension 512
number of heads 8
chunk size 10
KL-weight 10
dropout 0.1

7.10 Example Image Prompts

We produce a small number of randomly selected text prompts below.

Prompts for the kitchen cup/bowl Scene:

1 bowl = "A rich green patinated copper bowl , its surface embellished
with intricate embossing echoing the craftsmanship of generations
past , each detail wrought with precision."

2

3 cup = "A minimalist acrylic cup , hard -edged and visually weightless ,
mimicking the ethos of contemporary transparency."

4

5 background = "A chaotic ensemble of baking supplies lie scattered
around , flour dusts the edges of a marble countertop , while
reflective surfaces from an overhead light palette interact
sporadically creating patterns on the brushed steel faucet."

Listing 1: The Crossroad of Time. Illustrating the intersection of aesthetic past and present through
culinary objects. (Minimalist cup, antique bowl)

1 bowl = "A ceramic bowl with swirling patterns of cobalt blue ,
sunflower yellow , and rose pink glazes , with a high -gloss finish."

2

3 cup = "A teacup marked by abstract patches of emerald green and
crimson red , seemingly creating a kaleidoscopic effect."

4

5 background = "A backdrop filled with chaotic elements \u2014 a
countertop cluttered with spatulas , over -ripe fruit , and colorful
cracked ceramic tiles leaning against the wall."

Listing 2: Mosaic Glaze Fantasy. A close-up of vibrant ceramics with a dazzling faucet. (Colorful
ceramics, shining faucet)
Prompts for the mug tree environment:

1 mug = "An oversized mug with a faded \u2018World ’s Best Bartender\
u2019 logo , filled with room -temperature coffee and a tiny
lipstick mark on its rim."

2 mug_tree = "A sleek , modern steel drying rack holding a neat row of
eclectic mugs , each hanging at a slightly different angle."

3 background = "The counter is scattered with an array of bar staples ,
including an upturned shaker , a jar of maraschino cherries left
open with sticky syrup pooled at the base , tiny , colorful drink
umbrellas laying flat , and cocktail recipe cards partially
obscured by a dishcloth. The dim overhead lighting casts a cozy

18

yet neglected ambiance , reflecting off of glass surfaces ,
highlighting water stains and the subtle sheen of unpolished wood.
Seasonal drink posters curl at the corners on the walls behind ,

and the muted hum of conversation drifts from unseen patrons."

Listing 3: Afternoon Clutter. An up-close view of a neglected bar counter amidst a busy afternoon,
capturing the hustle and bustle pausing for just a moment. (bar counter)

1 mug = "A tall novelty mug with light visible scuffs , its personality
yet vibrant , with a traveler ’s emblem boldly emblazoned.",

2 mug_tree = "Innovatively designed transparent drying rack , its
architecture raising daily -use mugs to a dignified height",

3 background = "The bar counter ’s imperfections speak of immediate use \
u2013 glistening droplets from pint glasses left haphazardly ,
several salt grains shining under muted sunlight , and a stray beer
tab nestled amongst dried orange zest. A sharp , storied scratch

veers perilously close to a vase of gaudy red carnations.
Decorative but decisively aged beer mats pattern the visible
stained wood , while a distant chorus of cheerful banter tingles
the air.",

Listing 4: Unexpected Afternoon Clutter. A surprisingly busy scene of a bar counter overtaken
by mid-day merriment. (bar counter)

19

	Introduction: From Atoms to Bits
	A Touch of Physics in Extended Reality (XR)
	Multi-Physics Simulation in Vuer
	Precise Interactions at A Distance: Hitchhiking Controllers
	On-Device Retargetting for Dexterous Hand Control
	Porting Existing Environments

	Synthesizing Diverse Manipulation Data from Virtual Demonstrations
	Generating Realistic Images from Virtual Demonstrations.
	Demonstration Augmentation

	Results
	Data Collection and Learning Setup
	Comparing Data Collection Speed in Virtual and the Real-world
	Real-to-Sim Evaluation
	Sim-To-Real Evaluation

	Related Works
	Conclusion
	Limitations
	Examples of Dexterous Virtual Demonstrations
	Examples of Policy Unroll in Simulation
	Examples of Learned Re-try Behavior
	Additional Examples of Synthetic Data
	The Vuer Scene Description Language
	Tips on Engineering Synthetic Environments
	Real-to-sim Evaluation Setup
	Image Generation Workflow
	Training Details
	Example Image Prompts

