
Evaluating LLMs’ capability on Satisfying Lexical Constraint

Anonymous ACL submission

Abstract

Lexical Constrained Generation (LCG) is a fun-001
damental task in text generation. Recent ad-002
vancement of large pretrained language models003
(LLMs) has enabled prompt-based controlling004
for LCG. Despite growing interest in assess-005
ing LLMs’ capabilities in various aspects, there006
remains a lack of thorough investigation. To007
address this gap, we systematically analyze the008
performance of LLMs on satisfying lexical con-009
straints with prompt-based controlling, as well010
as their efficacy in downstream applications011
(such as recipe generation, table-to-text, profile012
writing, etc). Through extensive experimen-013
tation, we identified several key observations014
that elucidate the limitations of LLMs in LCG,015
including (1) position bias, where LLMs tend016
to satisfy constraints that appear in specific po-017
sitions within the input; (2) insensitive decod-018
ing parameters, which minimally impact the019
performance of LLMs; and (3) the inherent020
complexity of certain constraints (i.e. com-021
pound word). We conclude that there is a com-022
plexity bottleneck: LLMs still face significant023
challenges in consistently satisfying lexical024
constraints. Additionally, we introduce the025
Divide and Conquer Generation strategy, effec-026
tive for both white-box and black-box LLMs,027
significantly enhancing their performance in028
LCG tasks. This strategy boosts LLMs’ suc-029
cess rate by 93% in the most challenging LCG030
task, which is 40% more than the baseline. Our031
analysis aims to provide valuable insights into032
the performance of LLMs in LCG, and our033
proposed strategy offers a pathway to more034
sophisticated and customized text generation035
applications.036

1 Introduction037

Lexical Constrained Generation (LCG) is a crucial038

task of text generation (Zhang et al., 2023a). By039

enforcing the inclusion of pre-specified words in040

the output, LCG facilitates the generation of more041

faithful and relevant texts. It is helpful for various042
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GPT-4 Response (1)

Ben Smith holds a Bachelor's degree, 
and he currently rents his housing

Ben Smith is a 29-year-old white male, currently single, residing in 
Chicago. He holds a Bachelor's degree and works as an engineer, a 
profession that demands high technical proficiency and strong problem-
solving skills. Ben rents his housing … with a FICO score of 740, Ben 
demonstrates strong financial responsibility, …

Name: Ben Smith;  Age: 29;  Gender: Male;   
Race: White;  Marriage: Single;  FICO:740
Education: Bachelor; Occupation: Engineer;   
Location: Chicago;   Housing: Rent 

Write a profiling paragraph 
contains all features of the 
client: <constraints>

Housing: Rent
Education: Bachelor

Ben Smith is a 29-year-old white male who is currently single and 
resides in Chicago. He works as an engineer … With a FICO score of 
740, Ben demonstrates a strong financial responsibility.
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Figure 1: Sub-figure (a) illustrates that modern LLMs
struggle to consistently meet complex lexical constraints
in real-world scenarios. As shown in sub-figure (b), the
Divide-and-Conquer Generation strategy divides the
constraints into two parts (satisfied and missed), then
generates response that with the missed constraints -
i.e. response (2) - and merge them with the satisfied
ones, enhancing the LLMs’ ability to meet all specified
constraints

real-world applications, such as dialogue genera- 043

tion (Knowles and Koehn, 2016), table-to-text gen- 044

eration (Chen et al., 2023), and recipe generation 045

(H. Lee et al., 2020). 046

To generating text that adheres to lexical con- 047

straint effectively, previous works either design 048

constrained decoding strategies, develop special- 049

ized models structure, or present refined mech- 050

anism (Sha, 2020; Lu et al., 2021; Qian et al., 051

2022; Meng et al., 2022). However, these ap- 052

proaches often come with significant drawbacks, 053
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such as high inference times, complex implemen-054

tations, and unstable text quality. The recent ad-055

vancements in pretrained large language models056

(LLMs) have showcased their robust few-shot ca-057

pabilities (Brown et al., 2020; Ouyang et al., 2022;058

Achiam et al., 2023). Instruction tuning (Zhang059

et al., 2023b) has further enhanced LLMs’ ability060

to generate text that meets controllable constraints061

as desired by humans. These developments make062

prompt-based controlling an increasingly efficient063

and practical method on tackling LCG task(Yang064

et al., 2022). Notably, prompt-based controlling065

has shown markedly superior strength and robust-066

ness compared to earlier methods for LCG (Sun067

et al., 2023; Ashok and Poczos, 2024), which moti-068

vate us to ask : With prompt-based controlling, can069

LLMs consistently satisfy lexical constraints when070

generating text?071

Many recent works investigate in prompt-based072

controlling of LLMs (Sun et al., 2023; Zhang et al.,073

2023a; Ashok and Poczos, 2024). They conclude074

that LLMs shown effectiveness in satisfying lexical075

constraints. However, their experiments have typi-076

cally involved relatively simple tasks with a narrow077

scope. This leaves a significant gap in detailed078

understanding of their proficiency and limitations079

when it comes to satisfying lexical constraints, and080

effectiveness in real-world applications.081

To address this gap, we present a systematic082

analysis of the performance of LLMs in generating083

text under lexical constraints, and we also evalu-084

ate their utility in downstream applications where085

adhering to specific lexicons is crucial. Through086

extensive experiments, we conclude that LLMs087

struggle to adapt to increasingly complex lexical088

constraints. There is a complexity bottleneck: As089

the number of keywords increases, LLMs’ perfor-090

mance decreases dramatically. We also observed091

that:092

1. Position Bias: The position of each constraint093

within the prompt can substantially influence094

the model’s output.095

2. Insensitive Decoding Parameter: Decoding096

parameters are not highly sensitive for LLMs097

in LCG task, especially for temperature and098

top-k.099

3. Inherent Complexity of compound words as100

constraints: LLMs tends to break down com-101

pound words into sub words, which can lead102

to misinterpretations or alteration of the in- 103

tended meaning of the output significantly. 104

Additionally, we introduce an effective strat- 105

egy - Divide and Conquer Generation - to en- 106

hance the ability of models to meet lexical con- 107

straints, which significantly improves performance, 108

and helps LLMs achieve more satisfying results in 109

downstream applications. Notably, the Divide and 110

Conquer Generation strategy enables LLaMA-7b 111

to improve the success rate by 93% in the most 112

challenging LCG task, which is about 40% more 113

over the baseline strategy. Our strategy is well- 114

suited for both white-box and black-box models, 115

making it an invaluable tool for a broad scope of 116

application across diverse modeling environments. 117

Overall, our research conduct in-depth analysis 118

on LLMs in satisfying lexical constraints, identify 119

the current challenges faced by LLMs in satisfying 120

lexical constraints, and provides a viable solution 121

to these challenges, pave the way for more sophis- 122

ticated downstream applications. 123

2 Lexical-constrained Generation 124

2.1 Task Setup 125

Following previous works(Lin et al., 2019; Zhou 126

et al., 2023), we refer to constraints that require the 127

generated text to include certain keywords in the 128

output as lexical constraints. We consider an input 129

prompt composed of a series of tokens, containing 130

a set of constraints X = [x1, . . . , xm], where xi 131

represent a keyword that must be included. The tar- 132

get output is a coherent sentence Y = [y1, . . . , yN ], 133

with each yi is a token. The task is to map the 134

constraint set X into an appropriate sentence Y 135

that both adheres to the prompt’s requirements (e.g. 136

generate a recipe) and satisfied the defined con- 137

straints(e.g. generate sentence that contain all given 138

keywords) . 139

Evaluation Metrics We introduce two evalua- 140

tion metrics in this study: 141

1. Instance Success Rate (Rinstance): This met- 142

ric evaluates whether each generated instance 143

satisfies all specified constraints. It is defined 144

as: 145

Rinstance(X,Y ) =

{
1 if X ⊆ Y,

0 otherwise.
146

2. Keyword Coverage Rate (Skeyword): This 147

metric measures the proportion of input con- 148
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straints included in the generated texts. It is149

calculated as:150

Rkeyword =
Number of Satisfied constraints

Total number of constraints
151

Evaluate with LLMs We have conducted152

tests using various language models, including153

LLaMA2-7b-chat, LLaMA2-13b-chat, LLaMA3-154

8b-chat, GPT-3.5, and GPT-4. In these experiments,155

we tasked the models with generating outputs based156

on specific constraints. Unless stated otherwise, all157

experiments in this section utilized a greedy decod-158

ing strategy for generating responses. Prompt used159

in evaluation is attached to Appendix A.160

2.2 Simple Constraints161

We initiate our investigation with simple con-162

straints, employing the CommonGen benchmark163

(Lin et al., 2019) to assess how well LLMs generate164

coherent sentences from a given set of concepts.165

Experiment Setting. CommonGen (Lin et al.,166

2019) is a constrained commonsense generation167

task with lexical constraints. In this experiment,168

we treat each concept list in CommonGen as input169

constraints for LLMs to generate a proper sentence.170

We employ the instance success rate as the evalua-171

tion metric.172

Evaluation Result. Figure 2 presents the results of173

experiments.GPT-3.5 and GPT-4 demonstrate im-174

pressive performance, achieving average instance175

success rates of 91% and 95% respectively across176

three distinct groups of instances. Conversely,177

LLaMA3-8b shows a less satisfactory average with178

a 63% coverage rate, while LLaMA2-13b achieves179

only a 55% rate. LLaMA2-7b records the low-180

est instance coverage among the evaluated models.181

This result suggests that the model’s size signifi-182

cantly influences its ability to generate text that ad-183

heres to specified lexical constraints. Interestingly,184

LLaMA3-8b outperforms LLaMA2-13b, indicat-185

ing that factors other than sheer model size may186

contribute to differences in model effectiveness.187

2.3 Challenging Constraints188

To increase the complexity of the constraints, we189

expanded the number of concepts that need to be190

incorporated into the generated text.191

Experiment Setting. In this experiment, we ran-192

domly select concepts from the entire set of con-193

cepts within the CommonGen dataset to create a194

new, more challenging dataset. Then we repeat195

Figure 2: Experiment results on instance success rate
by number of concepts.

previous experiment setting to explore how well do 196

LLMs adapt to increasingly complex constraints. 197

Evaluation Result. As shown in Figure 3, there is 198

a clear trend across all models, where the instance 199

success rate declines as the complexity of con- 200

straints (i.e. number of concepts) increases. GPT-4 201

demonstrates slightly better resilience against ris- 202

ing complexity, maintaining a relative higher cov- 203

erage rate across various groups of instances than 204

other models. In contrast, as the number of con- 205

cepts reaches 15, the performance of other models 206

drops significantly. Notably, GPT-3.5 shows a sig- 207

nificant decline in coverage rates; it drops from 208

98% to 13% as the number of concepts increases 209

from 3 to 15. This sharp decrease eventually brings 210

its performance in line with that of smaller models, 211

such as LLaMA2-7b-chat and LLaMA2-13b-chat. 212

Figure 3: Experiment results on instance success rate
by number of keywords.
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Figure 4: Experiment result on the position sensitive
of LLaMA3-8b, presenting in terms of the keyword
coverage rate (y-axis) for constraints placed at different
positions (x-axis)

3 Sensitive Analysis213

To better understand the factors causing LLMs to214

struggle with satisfying lexical constraints, we con-215

ducted a sensitivity analysis to investigate from216

various perspectives.217

3.1 Position Bias218

The constraints are placed at varying positions219

within the prompt. For example, consider the220

prompt:221

Generate a sentence with the following222

keywords: mountain, cat, play, jump.223

Here, mountain, cat, play, jump serve as constraints.224

The word "mountain" is positioned earliest in the225

sequence, while the word "jump" appears at the226

end. Previous work finds (Wang and etc., 2023) in227

natural language understanding tasks, wherein it228

tends to select labels placed at earlier positions as229

the answer. We aim to investigate the position bias230

of LLMs in LCG task.231

Experiments Setting We conduct experi-232

ments for 6 setting (number of keywords =233

[3,5,7,10,15,20]). For each setting with different234

specified number of keywords, we randomly235

select 100 sets of keywords, shuffle their positions,236

and conduct the experiment 20 times to ensure237

robustness. We evaluate the average keyword238

coverage rate for constraint in each position.239

Experiment Result Our findings confirm that 240

all LLMs exhibit a position bias, where keywords 241

placed at different positions in the sequence lead 242

to varying coverage rates. This bias is primarily 243

attributed to either the primacy or recency effect, 244

depending on the model. Some models, such as 245

GPT-3.5, GPT-4, and LLaMA2-13b, are more in- 246

fluenced by the primacy effect, where keywords in 247

earlier positions are more likely to be covered. Con- 248

versely, models like LLaMA2-7b and LLaMA3-8b 249

demonstrate a stronger recency effect, prioritizing 250

the most recently presented items. For instance, as 251

illustrated in Figure 4, the keyword coverage rate 252

decreases as the position increases from the first 253

to the last. Keywords placed earlier in the input 254

sequence (i.e., the prompt) are more likely to be 255

covered than those in later positions. 256

This result highlights the position of each con- 257

straint within the prompt can substantially in- 258

fluence the model’s output. There’s the need for 259

careful consideration of keyword placement when 260

designing prompt for LLMs. For example, plac- 261

ing critical constraints in positions that are more 262

likely to be covered can significantly enhance the 263

effectiveness of the model in downstream tasks. 264

3.2 Inherent Complexity of Compound Word 265

In previous experiments on position bias, we ran- 266

domly shuffled keywords to mitigate the impact 267

of specific words on final performance. In this 268

experiment, we isolate the position bias and inves- 269

tigate the effect of different keywords on the final 270

performance. 271

Experiments Setting From our observations in 272

previous experiments, compound words often pose 273

challenges in lexical processing. A compound 274

word is formed from two or more words that col- 275

lectively function as a single entity, such as "jel- 276

lyfish" (a combination of "jelly" and "fish") and 277

"anymore" (a combination of "any" and "more"). 278

To evaluate the inherent complexity of compound 279

words, we mixed 200 compound words with 200 280

random words, and conducted 5-keywords setting 281

(i.e. generate a sentence with given five keywords) 282

using LLaMA-13b-chat and GPT-4. 283

Experiment Result Our results show that 284

LLaMA-13b-chat incorrectly split 65% of com- 285

pound words and GPT4 split 42%, resulting 286

in lower keyword coverage rates for compound 287

words—35% for LLaMA-13b-chat and 58% for 288

GPT4. In contrast, coverage for non-compound 289
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(a) LLaMA2-7b-chat (b) LLaMA2-13b-chat (c) GPT-4

Figure 5: Comparison of decoding parameters across different models

words was significantly higher, at 74% for LLaMA-290

13b-chat and 92% for GPT4.We can conclude that291

compound words have high inherent complexity292

in LCG tasks, and it’s more difficult to be cov-293

ered by LLMs than non-compound words. This294

issue could be attributed to the subword tokeniza-295

tion methods used by these models, which may not296

effectively recognize and preserve the integrity of297

compound words.298

The separation of compound words could not299

only result in unsatisfied constraints, but also lead300

to misinterpretations or significant alterations in301

the intended meaning of the output. For instance,302

when given the task of generating a sentence using303

the keywords: courthouse, build, and attract, the ex-304

pected outcome is a sentence related to the criminal305

justice system. However, LLM split ’courthouse’306

into ’court’ and ’house’. This leads to unintended307

interpretations, such as generating a sentence like,308

"The basketball player hosted a tournament at the309

court built beside his house, attracting local talent310

to showcase their skills." Such a sentence com-311

pletely deviates from the intended context of crimi-312

nal justice.313

3.3 Decoding Parameters314

We notice that LLMs are usually evaluated for315

LCG tasks using only default decoding parame-316

ters(Zhang et al., 2023a), or limited fixed decoding317

parameters (Sun et al., 2023; Ashok and Poczos,318

2024). We systematically varied decoding param-319

eters to investigate the sensitivity of decoding pa-320

rameters on lexical constraint generation. We aim321

to determine the impact of different decoding pa-322

rameter settings on the performance of LLMs in323

LCG. 324

Experiment Setting Follow the prior practice 325

(Huang et al., 2023), we experiment with the fol- 326

lowing three variants for decoding strategy: 327

• Temperature τ controls the sharpness of the 328

next-token distribution. We vary it from 0.05 329

to 1 with step size 0.05. 330

• Top-K sampling filters the K most likely next 331

words, and then the next predicted word will 332

be sampled among these K words only. We 333

vary K in {1, 2, 5, 10, 20, 50, 100, 200, 500}. 334

• Top-p sampling (Holtzman et al., 2019) 335

chooses from the smallest possible set of 336

words whose cumulative probability exceeds 337

the probability p. We vary p from 0.05 to 1 338

with step size 0.05. 339

We evaluated all models under different decoding 340

parameters in 10-keywords LCG task (i.e. generate 341

sentence with given 10 keywords). Specifically, 342

we only vary temperature and top-p parameters for 343

GPT-3.5 and GPT-4, as we did not have control 344

over the top-k settings. 345

Experiment Results Figure 5 presents the aver- 346

age keyword coverage rate for 150 instances, each 347

containing 10 keywords (see Appendix B for more 348

detail). For LLaMA2-7b-chat and LLaMA2-13b- 349

chat, there appears to be no significant effect from 350

variations in temperature and top-k settings, and 351

the differences observed with various top-p settings 352

are within a narrow 4% range, suggesting a low 353

sensitivity to the top-p parameter. While GPT-4 354
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Model Recipe Generation Table to Text Profile Writing

n = 5 n = 10 n = 15 n = 5 n = 10 n = 15 n = 5 n = 10

LLaMA2-7b-chat 90% 21% 5% 87% 21% 21% 69% 28%

LLaMA2-13b-chat 89% 27% 17% 84% 45% 39% 73% 42%

GPT-3.5 90% 42% 54% 97% 80% 77% 90% 72%

GPT-4 100% 80% 45% 100% 87% 91% 97% 96%

LLaMA2-7b-chat (DnC-5) 98% 99% 98% 100% 100% 99% 100% 99%

LLaMA2-13b-chat (DnC-5) 100% 96% 94% 100% 100% 100% 100% 97%

GPT-3.5 (DnC-5) 100% 100% 100% 100% 100% 100% 100% 100%

Table 1: Results for LLMs’ performance in real-word LCG task. The best results are highlighted in boldface, and
the second-best results are underlined

demonstrates more variability under different set-355

tings, the difference between the highest and lowest356

scores remains confined to 4%.357

This minimal variance suggests that the de-358

coding parameters are not highly sensitive for359

LLMs in LCG task, especially for temperature360

and top-k.361

4 Real-world applications362

We have also evaluated the performance of LLMs363

in real-world applications to understand their prac-364

tical effectiveness. In this section, we demonstrate365

three use cases: Recipe generation, table-to-text,366

and profile writing. We use the best decoding pa-367

rameter configuration (Top-p = 0.9) identified in368

previous section for all following experiments. Ex-369

ample prompt and response for each application370

are attached to Appendix A.371

4.1 Recipe Generation372

The task is to generate a complete recipe given373

ingredients. LLMs need to create a coherent and374

structured set of cooking instructions that makes375

practical and culinary sense, and cover all provided376

keywords.377

Experiment Setting. We randomly selected 100378

food ingredients from the USDA National Nutrient379

Database (US Department of Agriculture, Agricul-380

tural Research Service, 2016) and grouped them381

into sets with varying numbers of ingredients (n =382

[5, 10,15]). Each group comprises ingredients ver-383

satile enough to be applicable to multiple recipes,384

guaranteeing the existence of at least one valid385

recipe for the given combination of ingredients.386

LLMs is then prompted in 3-shot fashion to gen-387

erate recipe with given set of ingredients, where388

ingredients are keywords that are expected to be389

contained in the generated recipe. Each generated390

recipe is evaluate based on the instance success 391

rate. 392

Evaluation Result. Table 1 presents the results of 393

the experiment. When tasked with recipe genera- 394

tion, we observed that LLMs typically outline their 395

plan in the initial sentence, such as "Lemon Garlic 396

Pasta is quick to prepare, making it perfect for a 397

weeknight dinner yet elegant enough for entertain- 398

ing guests.", and "To create Chicken and Mushroom 399

Risotto, follow these steps". These introductory 400

statements act as a double-edged sword. 401

On the positive side, these introductory state- 402

ments establish the scope for subsequent content 403

generation, facilitating the model’s ability to in- 404

corporate relevant keywords effectively. In the 5- 405

keyword setting, the instance success rate for the 406

LLaMA2 models increases by approximately 30% 407

compared to Experiment 2.3, where LLMs were 408

tasked solely with text generation under keyword 409

constraints. 410

On the negative side, these introductory state- 411

ments can detract from the final generation out- 412

come if they are not accurate. If there are a large 413

number of keywords, LLMs tend to include only 414

a few in the first sentence, leading to the omission 415

of the remaining keywords. As the number of key- 416

words increases, there is a noticeable decline in 417

performance across all models. For example, the 418

instance success rate for LLaMA2-13b decreases 419

from 89% to 17% as the number of constraints 420

increases from 5 to 100. 421

4.2 Table to Text 422

Following previous work (Chen et al., 2023), table- 423

to-text task takes a table as input, and formulate 424

a table as a sequence of records. We evaluate the 425

effectiveness of LLMs in presenting the essential 426

information from the structured data in a narrative 427

form. 428
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Experiment Setting. WIKIBIO (Lebret et al.,429

2016) is a dataset contain of 728,321 tables data430

from English Wikipedia. We processed the WIK-431

IBIO dataset by extracting keywords from each432

table’s column headers as ground truth, and catego-433

rizing the tables into groups based on the number434

of keywords identified. For each group, 150 sam-435

ples are randomly selected. Next, we construct436

instances from each group based on number of key-437

words needed. LLMs is then prompted in 3-shot438

fashion to summarize the content of these tables in439

a short paragraph, and each generated summary is440

evaluated based on the instance success rate.441

Evaluation Result. As shown in table 1,GPT-4442

demonstrates the strongest performance, achieving443

100% accuracy with 5 keywords setting, and main-444

taining high instance success rate with larger num-445

ber of keywords (87% for n = 10 and 91% for n =446

15). However, other models, such as LLaMA2-7b-447

chat and LLaMA2-13b-chat, show notable declines448

in accuracy as the sample size increases, with sig-449

nificant drops from 87% to 21% and from 84% to450

39%. This result indicates that LLMs struggle in451

satisfying more nuanced and complex constraints.452

4.3 Profile Writing453

Profile writing provides a quick overview of the454

client’s basic information, significantly impacting455

decision-making and enhancing operational effec-456

tiveness. For instance, in healthcare, profiles sum-457

marize patient histories to guide treatment plans; in458

finance, they help assess client risk and customize459

financial services; and in the legal field, detailed460

client profiles are crucial for informed case man-461

agement. This process can be viewed as a lexical462

constraint generation task, where the client’s in-463

formation acts as the constraint, and the resulting464

profile paragraph serves as the output.465

Experiment Setting. This task is aimed to gener-466

ate a profile contain all specific features of a client.467

We obtained data consists of various attributes of468

clients to assessing risk score, such as age, employ-469

ment details, education, housing level, etc. In our470

experiment, we extract individual client informa-471

tion from this dataset, and prompt LLMs to gener-472

ate a detailed profile graph contain all information.473

Evaluation Result. Table 1 presents the results of474

the experiment. Similar to previous experiments,475

GPT-4 demonstrates the highest consistency and476

robustness among the models, scoring 97% with n477

= 5 and 96% with n = 10, showing only a slight de-478

crease in performance with an increase in number479

Algorithm 1 Divide and Conquer Generation
1: X ← set of all keywords
2: K ← max number of iterations
3: output← empty sequence
4: count← 0
5: while X is not empty do
6: sentence← generate sentence with X
7: Y ← words in sentence
8: output←merge (output, sentence)
9: X ← X \ Y

10: if count ≥ K then
11: return output
12: end if
13: end while
14: return output

of constraints. Other models show more signifi- 480

cant drops in performance, denoting the need of 481

improvement strategy. 482

5 Divide and Conquer Generation 483

As demonstrated in previous experiments, LLMs 484

face significant challenges in satisfying increas- 485

ingly complex constraints. To address these dif- 486

ficulties, we propose a simple and effective strat- 487

egy—Divide and Conquer Generation (DnC) —to 488

improve LLMs’ performance in Language Con- 489

straint Generation (LCG), which suitble for both 490

white-box and black-box models. 491

5.1 Method 492

From our observation, we found LLMs struggle 493

with complex tasks that encompass a large amount 494

of keywords. In contrast, they exhibit a high suc- 495

cess rate when dealing with simpler tasks involving 496

a smaller number of keywords, which motivate us 497

to break down the complex task to several simple 498

tasks in divide and conquer fashion. 499

Algorithm 1 illustrates DnC strategy. Recall that 500

the task is to generate a natural sentence containing 501

the token sequence Y = [y1, y2, . . . , yN ] using a 502

specified set of N keywords X = [x1, x2, . . . , xN ], 503

such that X ⊆ Y . Our strategy iteratively gener- 504

ates sentences while addressing the missing key- 505

words X \ Y = {x ∈ X | x /∈ Y } from each 506

generation iteration, then merge these sentences 507

into a cohesive final output. Figure 1 contains de- 508

tailed example of the process of our strategy. We 509

repeat this process until all constraints are satisfied, 510

or exceed the max allowed number of iteration K. 511
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5.2 Evaluation512

Rejection Sampling (RJ) is a Monte Carlo algo-513

rithm to sample data from a sophisticated distribu-514

tion with the help of a proxy distribution (Robert515

and Casella, 2004). This method can assist with516

black-box models, where texts that do not meet517

certain criteria are discarded, and the sampling pro-518

cess is iteratively repeated. We choose rejection519

sampling as the baseline method, and evaluate the520

DnC strategy.521

We repeat the 15-keyword generation experi-522

ment with LLaMA2-7b-chat and GPT-3.5, using523

both RJ and DnC strategy under varying maximum524

number of iterations K allowed. Figure 6 demon-525

strate the result, where y-axis is the error rate in526

satisfying all lexical constraints (i.e. 1 minus the527

instance success rate). At K = 0, the models gener-528

ate in a vanilla setting, without employing any spe-529

cific strategies. From the result, we can observe that530

while the RJ strategy manages to reduce the error531

rate, it does not lead to significant improvements.532

In the contrast, DnC help both model achieve a533

near-perfect performance (error rate close to 0%)534

with K = 4. With the help of DnC, LLaMA2-7b-535

chat model decrease error rate from approximately536

96% to 3%, demonstrating the effectiveness of the537

DnC approach.538

Furthermore, we revisited application tasks intro-539

duced in 4. Table 1 compares the instance success540

rates for each approach. From the result, with the541

implementation of the DnC strategy, all models542

achieve near-perfect performance (instance cov-543

erage rates approaching 100%). Specifically, the544

LLaMA2-7b-chat model records an average im-545

provement of 61% across all tasks with the help of546

DnC strategy. Notably, GPT-3.5 (DNC-5) achieves547

a 100% instance success rate for all tasks.548

6 Related Work549

LLMs Evaluation With recent advancements in550

Large Language Models (LLMs), there is increas-551

ing interest in evaluating controllable text genera-552

tion tasks. Sun et al. conducted evaluations of these553

tasks and discovered that LLMs often struggle to554

meet fine-grained constraints. However, their anal-555

ysis of lexical constraint generation was limited to556

relatively simple constraints in a narrow context.557

Our work expands on this by conducting a more558

comprehensive and in-depth analysis of lexical con-559

straint generation, providing deeper insights into560

the capabilities and limitations of LLMs in this561

Figure 6: Comparison experiment of Rejection sampling
(RJ) and Divide-and-Conquer Generation (DnC). x-axis
is the max number of iteration allowed, and y-axis is
the error rate of each approach in satisfying all lexical
constraints.

area. Additionally, they have not propose solution 562

but we did. 563

Lexical Constrained Generation There are 564

many works trying to improve lexical constrained 565

generation. We roughly categorize these studies: 566

(1) proposing decoding strategy: Grid Beam Search 567

tweaked the beam search algorithm to meet lexical 568

constraints by increasing the weights for the con- 569

straint lexicons during the beam search (Hokamp 570

and Liu, 2017). (2) specialized model structure: In- 571

sNET is an expressive insertion-based text genera- 572

tor with efficient training and flexible decoding (Lu 573

et al., 2022). However, they are not suitable for 574

recent pre-trained LLMs due to the black-box na- 575

ture. There are only a few studies focus on the 576

prompt-based approach (Iso, 2022), and they failed 577

to show effectiveness in real-world applications 578

with modern LLMs. 579

7 Conclusion 580

We conduct in-depth systematically analysis on 581

LLMs in satisfying lexical constraints, and identify 582

the current challenges faced by LLMs in satisfy- 583

ing lexical constraints, including (1) position bias, 584

where LLMs tend to satisfy constraints that appear 585

in specific positions within the input; (2) the inher- 586

ent complexity of compound words; and (3) insensi- 587

tive decoding parameters, which minimally impact 588

the performance of LLMs in LCG. Additionally, 589

we provide a effective solution to these challenges, 590

namely DnC generation, paving the way for more 591

sophisticated downstream applications. 592
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Limitation593

Our work is not without limitations. First, our ex-594

periments are prompt-based, requiring extensive595

prompt engineering effort. While we selected the596

best-performing prompts available, there remains597

the possibility that more effective prompts could598

further enhance the reported result. Second, au-599

tomatic evaluations have inherent imperfections.600

Third, the proposed Divide and Conquer (DnC)601

strategy increases the number of API calls, result-602

ing in higher costs. Additionally, due to the nature603

of the DnC approach, the coherence of the merged604

results may be compromised. We leave the evalua-605

tion and further refinement of this to future work.606
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A Appendix: Prompts731

Prompt and example response for lexical con-732

strained generation, and downstream applications.733

A.1 Example of Lexical Constrained734

generation735

Prompt Generate a sentence using the following736

keywords: cat, leaves, sunny, leaps, energy737

Response Generate a sentence using the follow-738

ing keywords: cat, leaves, sunny, leaps, energy739

A.2 Example of Recipe Generation740

Prompt Generate a recipe using the following741

ingredients: milk, beef, rice.742

Response The recipe for Creamy Beef and Rice 743

Casserole: Begin by cooking 1 cup of rice accord- 744

ing to package instructions and set aside to cool. 745

Add 1 pound of ground beef to the skillet, break- 746

ing it apart with a spatula. Cook until the beef is 747

thoroughly browned and no pink remains. Drain 748

any excess fat and set aside.In a large casserole 749

dish, combine the cooked rice, browned beef, and 750

2 cups of milk, mixing well. Stir in 1 cup of shred- 751

ded cheddar cheese, season with salt and freshly 752

ground black pepper to taste, and add a dash of pa- 753

prika for a smoky flavor, if desired. Dot the top of 754

the mixture with small pieces of butter to enrich the 755

flavor.Preheat your oven to 350°F (175°C). Cover 756

the casserole dish with aluminum foil and bake for 757

25 minutes. Remove the foil and continue baking 758

for an additional 5-10 minutes, or until the top is 759

bubbly and golden brown. Remove from the oven 760

and let it sit for a few minutes to settle 761

A.3 Example of Table-to-text 762

Prompt Generate a short paragraph to summa- 763

rize the table content: 764

765
Nationality German
Birth Date 1954
Name Walter Extra
Article
Title

Aviation Legend:
Walter Extra

Occupation Aircraft Designer
and Manufacturer

766

767

Response Walter extra is a german award- 768

winning aerobatic pilot, chief aircraft designer and 769

founder of extra flugzeugbau (extra aircraft con- 770

struction )), a manufacturer of aerobatic aircraft . 771

extra was trained as a mechanical engineer. Walter 772

extra has designed a series of performance aircraft 773

which include unlimited aerobatic aircraft and tur- 774

boprop transports. 775

A.4 Example of Profile Writting 776

Prompt Write a profiling paragraph contains all 777

features of the client: Name: Ben Smith; Age: 29; 778

Gender: Male; Race: White; Marriage: Single; 779

FICO:740; Education: Bachelor; Occupation: En- 780

gineer; Location: Chicago; Housing: Rent. 781

Response Ben Smith is a 29-year-old white male, 782

currently single, residing in Chicago. He holds 783

a Bachelor’s degree and works as an engineer, a 784

profession that demands high technical proficiency 785
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and strong problem-solving skills. Ben rents his786

housing, which could suggest flexibility in his liv-787

ing arrangements or a preference for less perma-788

nent commitments in terms of residency. With a789

FICO score of 740, Ben demonstrates strong finan-790

cial responsibility, indicating good management of791

credit and other financial obligations. This profile792

suggests that Ben is both stable in his career and793

adaptable in his personal life.794

B Appendix: Decoding Hyperparameters795

We visualize the instance success rate for each in-796

stance under different decoding hyperparameters.797

Heatmaps are attached as following.798
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Figure 7: Heatmap of keyword coverage rate per instance for LLaMA2-7b model.
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Figure 8: Heatmap of keyword coverage rate per instance for LLaMA2-13b model.
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Figure 9: Heatmap of keyword coverage rate per instance for GPT model.
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Figure 10: Heatmap of keyword coverage rate per instance for GPT-4 model.
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