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Abstract

Transformer language models recently enabled molecular structure prediction di-
rectly from infrared (IR) spectra, yet have remained confined to pure compounds.
We show that the same architecture learns the correlations embedded in binary mix-
ture spectra and can retrieve the individual molecular components. Trained solely
on gas-phase data, our model attains a Top—10 accuracy of 61.4% on balanced syn-
thetic mixtures. When evaluated on 15 mixtures measured with Attenuated Total
Reflectance (ATR) IR spectrometer, whose response differs markedly from the
training domain, it still achieves 52.0% Top—10 accuracy, evidencing strong cross-
instrument transferability. The ability to identify signals of individual molecules
within complex spectra extends machine-learning-assisted spectroscopy from ide-
alised samples to realistic laboratory scenarios. All code and pretrained weights
are released to accelerate adoption and further development. This advance opens
the door to automated structure elucidation using IR data in fields ranging from
environmental monitoring to pharmaceutical quality control.

1 Introduction

Infrared (IR) spectroscopy is an essential analytical technique employed across diverse fields, includ-
ing chemistry, pharmaceuticals, materials science, and forensic science[[1-4]. While IR spectroscopy
excels at revealing the presence or absence of specific functional groups through characteristic ab-
sorption peaks at defined wavelengths, extracting more detailed structural information, such as the
molecular scaffold or the complete structure, directly from the spectra without relying on database
searches has long been considered an impossible task[5} |6].

The ability of artificial intelligence (AI) models to capture correlations among weak fingerprint signals
embedded in complex spectra has opened new avenues for molecular structure elucidation, offering
the potential to overcome traditional limitations by directly predicting structures from spectra without
the need for database searches. In particular, the work of the IBM team [7} 8] has the merit of showing
that Transformer-based language models can learn to translate IR spectra into detailed molecular
structures with unprecedented accuracy [/, [8]. More broadly, Al-driven techniques have proven
capable of predicting molecular structures directly from various individual spectroscopic modalities,
including IR, nuclear magnetic resonance (NMR), and tandem mass spectrometry (MS/MS) [9-14].
Complementing these single-modality advances, multimodal methods [15]|16]] that fuse data from
multiple spectroscopic sources have begun to unlock deeper structural understanding beyond the
reach of traditional approaches.

However, despite the advances in combining different spectroscopical modalities, nearly all existing
approaches have been limited to spectra of single, pure compounds. Applying Al to the spectra
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Figure 1: Modelling pipeline overview. Given the IR spectrum of a mixture, the concentration of one of the
components present in the mixture and its molecular formula, the model predicts the corresponding molecule.

of mixtures has remained largely unexplored due to several challenges, including the scarcity of
annotated spectral data for mixtures, the combinatorial complexity arising from overlapping signals,
and the fundamental uncertainty about whether a model can disentangle and correctly assign individual
molecular signatures that may interact non-linearly within a mixture. This challenge is further
compounded by overlapping bands and spectral interferences, which can mask or distort the peaks
of individual molecules, making reliable identification considerably more difficult. Traditional
approaches for analysing spectra of mixtures rely heavily on database searches, wherein experimental
spectra are compared against reference libraries to identify potential matches [17H20]. While effective
in many practical scenarios, this strategy has an inherent limitation: it depends entirely on the
coverage of the reference database. If a compound is absent from the database, it cannot be identified.

Here, for the first time, we demonstrate that it is possible to leverage the Transformer architecture to
directly identify the individual components of chemical mixtures from IR spectra. This approach
marks a substantial departure from traditional database-dependent methods, enabling comprehensive
mixture analysis without the limitations imposed by reference libraries. Our model successfully
predicts the correct components present in a mixture within the Top—10 candidates in up to 72.3% of
cases.

2 Results

2.1 Acquisition of IR Spectra for Mixtures

As with any Al-driven approach, the primary limitation is the availability of sufficient training data.
While large datasets of simulated IR spectra and smaller collections of experimental spectra exist,
to the best of our knowledge, no publicly available database provides IR spectra of mixtures under
acceptable licensing terms. To address this limitation, we designed a well-defined protocol for
creating synthetically generated mixture data.

Most database search methods for mixture analysis rely on the principle that the IR spectrum of a
mixture can be approximated as a linear combination of the spectra of its individual components [21].
These methods typically identify the reference spectrum with the greatest spectral overlap, subtract it
from the mixture spectrum, and iteratively detect additional components [22} 23].

Here, we adopt the same principle to generate synthetic mixture spectra by combining spectra of
pure compounds. This data generation strategy is illustrated in[Figure 2| A), and a formal definition is
provided in SI section 1.

To validate our approach, we measured the IR spectra of four pure compounds and their corresponding
binary mixtures: 1) Cyclohexylamine, 2) N,N-Dimethylethylenediamine, 3) 4-Chloronitrobenzene,
and 4) 1,4-diazabicyclo[2.2.2]octane.
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Figure 2: Generating synthetic mixture spectra. A) Spectra are generated as linear combinations of the IR
spectra of the individual components. B) Example of the IR spectrum of a real mixture compared to a synthetic
linear combination of pure spectra. C) Absolute error between the real mixture spectrum and the synthetic one.

We then evaluated the effectiveness of our synthetic data generation strategy by comparing experimen-
tally measured mixture spectra with spectra obtained by linearly combining the corresponding pure
component spectra. We evaluated binary balanced mixtures as well as unbalanced binary mixtures.
The results, shown in [Figure 2| B) and C) as well as SI Figure 1, demonstrate that linear combinations
of individual component spectra provide an excellent approximation of the experimental mixture
spectra. The synthetic spectra exhibit a mean absolute error (MAE) of 0.066 relative to the experi-
mental spectra. To contextualise this error, we added Gaussian noise to the experimental mixture
spectra, resulting in MAE values of 0.040, 0.056, and 0.080 for noise levels oy = 0.05, 0.07, and
0.10, respectively. This indicates that the discrepancy between synthetic and experimental mixture
spectra is comparable to the magnitude of moderate experimental noise.

Based on these results, we synthetically generated mixture spectra by linearly combining individual
component spectra. However, the limited availability of experimental IR spectra remains a constraint.
To overcome this, we adopt a two-stage training strategy: we first pretrain our model on simulated
spectra and then fine-tune it on experimental data, an approach that has proven effective in numerous
previous studies [[7, |16].

For pretraining, we utilised the dataset published by Alberts et al. [24], which contains simulated IR
spectra for approximately 790,000 pure compounds. These spectra were generated using molecular
dynamics with the GAFF force field [25]. The scale of this dataset presents unique challenges:
although binary combinations of these compounds could theoretically yield over 102 synthetic
mixture spectra (assuming equal proportions), generating, storing, and efficiently shuffling data at this
scale during training would create substantial computational bottlenecks. We address these challenges
in detail in SI section 3.

For fine-tuning, we used the NIST gas-phase infrared database [26]], adopting the same subset as
Alberts et al. [[7]]. This subset comprises gas-phase IR spectra of 3,453 pure compounds with heavy
atom counts ranging from 6 to 13, providing a representative sample of small to medium-sized organic
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Figure 3: Transformer model with alignment mechanism. A reconstruction network aligns the encoder
representations by reconstructing the IR spectrum of the pure target compound. The reconstruction network is
trained jointly with the decoder, predicting the molecular structure.

molecules. To prevent data leakage, we partitioned the spectra of pure compounds into training,
validation, and test sets before generating mixture spectra for each partition. During fine-tuning
on experimental data, we employed five-fold cross-validation to ensure robust and representative
performance estimates.

2.2 A model optimised for mixtures

Having validated our synthetic data generation strategy, we next addressed the challenge of training a
model to identify mixture components. Drawing inspiration from prompt engineering, we formulated
the problem as follows: given an IR spectrum of a mixture, the fractional concentration of one
component, and its molecular formula, predict the corresponding molecule as an SMILES string [27].
In effect, we prompt the model with the molecular formula and ask it to predict the component present
in the mixture that matches this formula. Experimentally, the molecular formula and approximate
concentration can be determined using liquid chromatography—mass spectrometry (LC—-MS). Our
approach can thus be summarised as:

MOLECULAR FORMULAzarger | %rarcer | SPECTRUMyixture — SMILESTarGET

We extended the encoder—decoder architecture proposed by Alberts et al. [§] to predict the components
of mixtures. An overview of the modelling approach is shown in[Figure I} Following Wu ez al. [9]
and Alberts et al. 8], we embed IR spectra using a patch-based approach with a fixed patch size of
150 cm—!. Molecular formulae and concentrations are tokenised and embedded as text, and we adopt
the tokenisation scheme introduced by Schwaller et al. [28]] to encode SMILES strings.

A key difference between the task of decoding mixture components and previous work on pure
compounds is that the encoder representations do not contain spectral information exclusive to
the target component. Instead, the mixture spectrum includes overlapping signals from multiple
compounds that must be disentangled. To address this challenge, we incorporated an additional
inductive bias through a spectral alignment network: a reconstruction module learns to predict the
IR spectrum of the pure target compound from the encoder outputs, as illustrated in[Figure 3] This
architecture encourages the encoder to learn representations that are specific to the target component
of interest. With this modification, our total loss function becomes:

L= ESQS + /\Lreconslruction



Table 1: Ablation study comparing reconstruction network architectures, loss functions, and optimal weighting
parameters A on the binary balanced dataset. Best results are highlighted in bold with the models evaluated on
the Top—1, 5 and 10 accuracies as well as the Tanimoto similarity of the predicted molecules to the ground truth.

RECONSTRUCTION  RECONSTRUCTION A\ Top-1 Top-5 Topr-10 TANIMOTO 1
NETWORK Loss Acc. [%] 1 Acc. [%]T Acc. [%] T
None N/A. N/A. 16.0 29.0 32.9 0.543
CNN MSE 5 17.7 31.7 36.3 0.566
CNN MAE 50 19.7 344 39.2 0.596
MLP MSE 1 17.2 30.9 35.0 0.561
MLP MAE 1 18.9 33.7 38.2 0.579

Table 2: Performance comparison between baseline and aligned models on binary balanced mixtures evaluated
based on the Top—1, 5 and 10 accuracy as well as tanimoto similarity. The aligned model uses convolutional
reconstruction network, MAE loss, and A = 50.

Top-1 Top-5 Top-10
Acc. [%]1 Acc.[%]1 Acc.[%]1

Baseline (fine-tuned) 170 £ 1.0 465+1.0 59.8 £2.2 0.553 £ 0.004
Aligned (fine-tuned) 199£15 48.6£20 614+1.4 0.576 £ 0.008

Model Configuration TANIMOTO 1

where Lgog is the sequence-to-sequence loss and Ly econstruction 18 the spectrum reconstruction loss,
while ) is used as a hyperparameter tuning the impact of the reconstruction loss.

We systematically explored different alignment configurations to optimise the spectrum reconstruction.
A Multi-Layer Perceptron (MLP) and a Convolutional Neural Network (CNN) were evaluated
in combination with either Mean Absolute Error (MAE) or Mean Squared Error (MSE) as the
reconstruction loss function. For each configuration, the weighting parameter for the alignment loss,
A, was tuned. All models, including a baseline without an alignment loss, were evaluated on binary
balanced mixtures (50% of each component) generated by linearly combining simulated spectra.
Performance was assessed using Top-1, Top-5, and Top-10 accuracies, defined as the percentage of
correctly predicted molecules within the top n predictions as well as the mean tanimoto similarity
between the Top—1 prediction and the ground truth. A tanimoto similarity above 0.5 indicates a high
similarity between two molecules. The results are summarised in

The results reveal clear preferences for both architecture and loss function. CNN-based reconstruction
networks consistently outperform MLP architectures across all evaluation metrics, with the CNN-
MAE combination achieving the best performance. Notably, the optimal A values differ substantially
between configurations, with CNN-MAE requiring A = 50 compared to A = 1 for MLP variants.
This suggests that convolutional architectures benefit from stronger weighting of the reconstruction
signal.

The superior performance of the CNN architectures likely arises from their ability to capture local
spectral patterns and spatial relationships, while the MAE loss better preserves sparse spectral features
compared to MSE. Complete ablation results, including additional A values and architectural variants,
are provided in SI Table 2.

We further validated our approach by fine-tuning the models on the NIST database using five-
fold cross-validation. Both the baseline model and the optimal alignment configuration (CNN
reconstruction network with MAE loss, A = 50) were fine-tuned, with the results presented in
The aligned model shows a clear performance improvement over the baseline, demonstrating the
effectiveness of incorporating spectrum reconstruction into the encoder representations.

The alignment mechanism yields substantial improvements across all evaluation metrics. On simu-
lated data, the aligned model achieves a 3.7% increase in Top-1 accuracy (from 16.0% to 19.7%) and
consistent gains of 5-6 percentage points for Top-5 and Top-10 accuracies. Although fine-tuning
reduces the performance gap between the baseline and aligned models, the aligned model still outper-
forms the baseline, particularly for Top-1 predictions. These results demonstrate that incorporating



Table 3: Performance of the multi-task model trained simultaneously on multiple imbalance ratios.

Topr-1 Topr-5 Topr-10

PERCENTAGE  , %]+ Acc. [%]1 AcC. [%] 1 TANIMOTO 1

10% 87+12  265+22 378422 047240014

20% 1.6£08  313+£20 435422  0.509+ 0018

. 30% 13.6+£1.6 348+£28 472426  0.534+0017
x:énnfii‘i 40% 149421 373431  503+26 0549 £0.019
50% 196+ 1.6 455424 575421 0573 +0.009

60% 253+ 14  536+23 639423  0.606+ 0.007

70% 284409 572+23  669+21  0.628+0.006

80% 305413 60.0+£23  69.4+21  0.644 +0.008

90% 32417 621+24  TL6£19  0.658+0.011

an inductive bias through the reconstruction loss enhances the model’s ability to predict molecular
structures directly from the spectra of mixtures.

2.3 Multitask learning enables the processing of imbalanced mixtures

Our optimised model demonstrates strong performance on binary balanced mixtures; however, real-
world applications rarely involve exact 50:50 component ratios. In practice, imbalanced mixtures are
far more common. To assess the robustness of our approach under realistic conditions, we conducted
experiments on imbalanced mixtures. A fundamental challenge in mixture analysis is that component
concentrations derived from LC-MS data are often imprecise, and varying absorption intensities
can cause the spectral contribution of each component to deviate from its actual concentration.
Consequently, the model must be capable of predicting components across a wide range of mixture
compositions.

To address this challenge, we adopted a multitask learning approach and trained a single model to
predict the components of imbalanced mixtures. This unified multitask model was trained simultane-
ously on binary mixtures with the following composition ratios: BINARY 50%-50%, BINARY 40%-60%
BINARY309%-70%, BINARY20%-80%, and BINARY 9¢.90%. We employed the best configuration found in
section 3.2, incorporating spectral alignment with a convolutional neural network, MAE loss, and
A = 50, pretrained on simulated spectra and finetuned on synthetic mixture spectra derived from
the NIST database[26]. Additionally, we performed an ablation study comparing single-task models
trained on individual mixture ratios, with detailed results provided in SI section 5.

The results presented in reveal a clear correlation between model performance and the
prevalence of the target compound. Performance declines when the target compound constitutes only
10% of the mixture, highlighting the inherent challenge of detecting low-concentration components in
spectroscopic data. This trend reflects a fundamental limitation: weaker spectral signals from minority
components become increasingly difficult to distinguish from background noise and dominant spectral
features of the majority component.

Despite these challenges, the multi-task model maintains reasonable performance across all tested
ratios, demonstrating robustness and versatility for diverse analytical scenarios. The gradual perfor-
mance degradation, rather than abrupt failure, suggests that the model successfully learns to extract
relevant spectral features even under challenging conditions.

2.3.1 Extension to Ternary Mixtures

To demonstrate the scalability of our approach, we evaluated the performance of our architecture on
ternary balanced mixtures, representing a more complex spectral deconvolution challenge with three
components. Adopting the same modelling approach as in section 3.3 and evaluating on spectra from
the NIST database[26].

The ternary mixture results shown in [Table 4] highlight the increased complexity of multi-component
spectral analysis. While the Top-1 accuracy remains modest, the substantial improvements in the



Table 4: Model performance on ternary balanced mixtures. The increased complexity of three-component
systems presents additional challenges, with fine-tuning providing substantial improvements in Top-5 and Top-10
accuracy.

Topr-1 Top-5 Top-10 TANIMOTO 1
Acc. [%] 1T Acc. [%]T AccC. [%] 7T
Simulated 9.5 19.2 22.7 0.472

Fine-tuned  10.1 £0.5 319+ 1.4 448 £ 1.6 0.479 £+ 0.002

Table 5: Accuracy of our multitask model predicting 30 compounds by using 15 real mixtures spectra.

REJECTION SAMPLING Top-1 Tor-5 Tor-10 TANIMOTO 1
Acc. [%]1  Acc. [%]+ Acc. [%]
Multi-task 60+57 247445 400+63 0239+ 0.056
Fine-tuned
Multi-task v 60+57 340439  520+40 0247 +0.055
Fine-tuned

Top-5 and Top-10 metrics indicate that the model effectively narrows the candidate space. This is
valuable for practical applications in which human experts can make final identifications from a
reduced set of plausible candidates.

2.4 Validation on real spectra

All previous evaluations were conducted on synthetically generated mixture spectra created by
linearly combining individual compound spectra. While this approach was validated experimentally,
as described in section 3.1, the synthetic spectra still represent high-quality approximations rather
than true mixture spectra. To further validate our method, we evaluated the performance of our model
on experimentally measured mixture spectra. Although our fine-tuning dataset comprises gas-phase
IR spectra, our experimental measurements were limited to ATR-IR spectroscopy. We measured
15 binary mixtures using ATR-IR and tested the multitask model on these spectra. The results are

presented in

Despite the domain shift between gas-phase and ATR-IR spectra, our model demonstrated robust
performance, achieving a Top-10 accuracy of 40.0% on experimentally measured mixture spectra.
This result confirms the transferability of models trained on synthetic mixture data to real measure-
ments, with even higher performance expected for models fine-tuned directly on ATR-IR spectra. To
further improve performance, we implemented a rejection sampling strategy that discards predictions
yielding invalid SMILES strings or molecular structures inconsistent with the provided molecular
formula. This approach resulted in an approximate 12% increase in both Top-5 and Top-10 accuracies.

These findings demonstrate that models trained exclusively on synthetic mixture spectra can generalise
effectively to real-world spectra. The consistent performance across different instrumental techniques
(gas-phase versus ATR-IR spectroscopy) indicates that our approach captures fundamental spectral
relationships that are robust to experimental variations.

2.5 Application Domains Demanding Immediate Mixture Analysis

Rapid, database-independent deconvolution of IR spectra has immediate relevance in several applied
domains. In environmental monitoring, regulatory bodies increasingly employ field-deployable IR
instruments to screen water or air samples for complex contaminant mixtures (e.g., phthalates, per-
and polyfluoroalkyl substances, VOCs)[29-31]. Automated identification of minor components
at trace levels enables near-real-time decisions during spill response or industrial emission audits,
where waiting for laboratory GC-MS confirmation can delay mitigation. In pharmaceutical manufac-
turing, inline IR probes are used in process chemistry to verify content uniformity, detect residual
solvents, and track degradation products in solid-dose and biopharmaceutical formulations[32}33]]. A
model that can disentangle overlapping excipient and active-ingredient bands directly on the produc-



tion line would shorten batch-release times and improve quality control robustness. In untargeted
metabolomics, high-throughput IR microarrays analyse biofluids whose spectral fingerprints reflect
hundreds of metabolites with wide concentration ranges; rapid component prediction could prioritise
candidates for follow-up LC-MS/MS, accelerating biomarker discovery in toxicology and clinical
studies[34} 35]]. Across these scenarios, the framework presented in this paper provides the speed and
breadth needed to complement or, in time-critical settings, temporarily replace more labour-intensive
chromatographic methods.

3 Conclusion

In this study, we developed a language model-driven approach for predicting individual molecular
components directly from IR spectra of mixtures. We demonstrated that synthetic mixture spectra,
generated by linearly combining pure compound spectra, can be effectively leveraged to train models
capable of analysing real-world data. In addition, we introduced a spectral alignment strategy
that reconstructs the pure spectrum of the target compound, resulting in substantial performance
gains. This alignment mechanism addresses the fundamental challenge that mixture spectra do not
contain isolated information for each component by ensuring that encoder representations retain
component specific spectral features. Our optimised model achieves up to 61.4% Top-10 accuracy
on synthetic binary balanced mixtures. Using multitask learning, we extended this approach to
imbalanced mixtures, maintaining performance even when the target compound accounts for only
10% of the mixture. Most importantly, validation on 15 experimentally measured mixtures confirms
the real-world applicability of our method: despite a significant domain shift from gas-phase training
data to ATR-IR measurements, our model achieves Top-10 accuracies of up to 52.0%. The ability
to train on synthetic mixture spectra and transfer effectively to real experimental conditions opens
new possibilities for Al-assisted analysis of complex mixtures. The same principles can be extended
to other spectroscopic techniques, such as NMR spectroscopy, or to multimodal approaches that
integrate multiple types of spectra. We envision these models as integral parts of a collaborative
human-AI workflow that combines the strengths of automated prediction with expert interpretation.
Al models can provide rapid initial molecular candidates from spectroscopic data, while chemists
apply their expertise to verify predictions, refine structural assignments using additional analytical
evidence, and interpret results within the broader chemical context. By providing focused starting
points, such models could significantly accelerate the structure elucidation process, transforming a
traditional bottleneck into a more efficient and streamlined workflow.

4 Methods

4.1 Data

Simulated Data: The simulated data used in this study is sourced from our earlier paper introducing
a multimodal spectroscopic dataset[24]]. We use all molecules available in the dataset, filtering out
only those that also appear in any of the experimental datasets. The IR spectra in this dataset were
simulated using molecular dynamics with the GAFF force field. We further filter the dataset by
excluding molecules with a heavy atom count (all atoms except hydrogen) outside the range of 5 to
35, as well as molecules containing elements other than carbon, hydrogen, oxygen, nitrogen, sulfur,
phosphorus, or the halogens.

Experimental IR spectra: IR spectra were sourced from the NIST EPA Gas-Phase database[26]. All
entries in the datasets were filtered to remove molecules either consisting of more than 13 or fewer

than 6 heavy atoms or with elements not contained in the simulated dataset matching earlier work[/7,
gl.

4.2 Tokenisation and Preprocessing

The chemical formula and molecules represented as SMILES were provided to the model as text with
the tokenisation procedures outlined below. IR spectra were embedded via patches.

Molecular Formula: All chemical formulae were tokenised using the following regular expression:

([A-Z]1{1}[a-z]7[0-9]1%)



Concentration: Similarly, the concentration of our compound in the mixture is treated as text and
tokenised using the following regular expression: \d*\ .\d+

IR spectra: IR spectra were segmented into patches, with each patch projected into the embedding
space via a multilayer perceptron (MLP). For all experiments, we used a patch size of 75.

Molecules: All molecules were canonicalised using RDKit[36] and tokenised using the same regular
expression as employed by Schwaller et al. [2§].

4.3 Model

The model employed in this work follows the encoder-decoder transformer architecture. Building
upon the original implementation by Vaswani et al. [37]] we leverage post layer normalisation[38]],
learned positional embeddings[39] and gated linear units[40]. The following hyperparameters were
used to construct the model:

Layers: 6

Heads: 8

Embedding Dimension: 512
Feedforward Dimension: 2048

Alignment: To align the encoder representations, a neural network was used to convert the repre-
sentations to the target molecule signal. The configuration for the CNN architecture used in the
experiments is the following:

hidden_dimension: 256
conv_channels: 512
kernel_size: 5
output_dimension: 1800
loss_lambda: 50
loss_function: mae

Train-test splitting: For pretraining the data, a 70/20/10 train, test and validation split was used to
further combine the spectra online as introduced in SI section 3. With the mixture combination, our
training data consists of up to 3.2 * 10% spectra, while test and validation consist of 10,000 spectra.
All fine-tuning experiments were carried out with five-fold cross-validation using the same seed to
ensure reproducibility, also with a 70/20/10 train, test and validation split.

Training settings: Training of the models was carried out on eight Nvidia A100 GPUs with an
average pretraining time of ~ 20h. When evaluating models, the best validation checkpoint was used.
For each training run, the following training parameters were used. No distinction was made between
pretraining and finetuning experiments:

Optimiser: AdamW
Learning Rate: 0.001
Dropout: 0.1

Warmup steps: 8000
Batch size: 128

4.4 Experimental Data Collection

Chemicals: Cyclohexylamine, N,N-Dimethylethylenediamine, 4-Chloronitrobenzene, 1,4-
diazabicyclo-[2.2.2]-octane, Trans-1-Phenyl-1,3-butadiene, Diethylene glycol butyl ether, Cyclo-
hexanecarboxylic acid and 2,6-Lutidine were purchased from SigmaAldrich; Cyclobutylamine was
purchased from Alfa Aesar; Methyl-3-Bromopyruvate was purchased from Honeywell Fluka; N-
Methylmorpholine was purchased from Apollo Scientific; Methyl-Glycolate was purchased from
Tokyo Chemical Industry, and Propylene carbonate was purchased from Carl Roth GmbH.

IR spectra: IR spectra were acquired using a PerkinElmer Spectrum Two FTIR spectrometer with a
diamond anvil ATR attachment (450-4000 cm ', 16 scans, 2 cm ! resolution).
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A Formal definition for the generation of spectra of mixtures

Given a set of component spectra {s;}7_,, where each spectrum s; € R™ consists of m datapoints,
and a vector of mixture proportions & € R™ where «; represents the concentration of the i-th
compound in the mixture, we compute the mixture spectrum Spy;ixure € R™ as

n
Smixture — Z Q;S; (1

B Measured vs Synthetic Mixture Infrared Spectra

To justify the abstraction of mixture IR spectra as explained above, we measured four different
compound’s IR spectra and their combination. The compound we measured in lab are the following:

e Samplel: Cyclohexylamine.

» Sample2: N,N-Dimethylethylenediamine.
¢ Sample3: 4-Chloronitrobenzene.

* Sample4: 1,4-diazabicyclo[2.2.2]octane.

[Figure 4/demonstrates that by linearly combining the spectra of individual components, we can obtain
an approximation of the spectrum of a mixture.
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Figure 4: Measured mixture spectra vs linear combinations of mixture’s components spectra.

We then extended this analysis to mixtures of alcohols and acids, a system with likely interactions
influencing the IR spectrum. For this, we measured spectra both for binary balanced and binary
unbalanced mixtures. Cyclohexanecarboxylic acid and diethylene glycol monobutyl ether were used,
referred to as "Acid" and "Alcohol". Results are shown in[Figure 3]
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Figure 5: Synthetic mixture spectra compared to real measured mixtures.

C Mixture Dataset Generation

To generate the dataset for the mixtures we combine (or permute, when we consider imbalanced
mixture) spectra. Let us consider the case of binary mixtures. The train split consists of 625, 433
spectra and when generating the mixtures we theoretically get:

« #combinations — (2°;"*%) = 195, 582, 906, 028

* #permutations — rge 55 gy = 391, 165,812,056

Since the number of combinations (or permutations) are infeasible to be generated in a shuffled way,
to avoid bias on over-represented training samples, we sampled using a random generator.

By sampling at random we do not guarantee that any combination (or permutation) is repeated, hence
we have performed the following theoretical analysis.

Let s be the number of samples we draw from a set of NV elements. The expected value of resamples
R can be defined as
E[R] = s — E[U]

1 if ¢ is sampled at least once

where U is the number of unique values sampled. Let X; = .
0 otherwise
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In the case of combinations (or permutations) N is #combinations (#permutations). We acknowledge
that for increasing s we have an exponential number of conflicts, but in our case when the samples
are #nsamples, the effect is almost negligible. Note that, when training in epochs usually samples
are repeated #epochs times, so our concern is not merely on the number of repeated samples but
on the bias towards over-represented population. shows the empirical results for E[C] for
permutations as presented in the proof above. The same result holds for combinations.

SAMPLES EXPECTED RESAMPLES NON-UNIQUE
RESAMPLES RESAMPLES
20M 511.28 487 0
40M 2,045.09 2061 0
SOM 8,180.12 8125 1
160M 32,718.24 32979 6
320M 130,855.10 130559 40

Table 6: Permutations expected number of resamples, the actual number of resamples in our experiments and
the number of elements resamples more the one time. This shows that even though for increasingly amount of
data there is an exponential resampling, the effect is negligible since most of the resamples are present at most
once.

D Ablation Study on the Encoder Alignment

shows the result of or ablation study on the encoder alignment. We systematically explored
various alignment configurations to optimise the spectrum reconstruction approach. The combination
of two architectures for the reconstruction network, Convolutional Neural Network (CNN) and
Multilayer Perceptron (MLP), two reconstruction losses, Mean Absolute Error (MAE) and Mean
Squared Error (MSE), and in addition A € [1, 5, 50].

E Single Task Models for Imbalanced Mixture

Real-world spectroscopic applications often involve imbalanced mixtures where the target compound
represents only a small fraction of the total samples. To evaluate our approach’s robustness under
such conditions, we conducted comprehensive experiments on imbalanced mixtures and developed a
unified multi-task model.

E.1 Performance on Imbalanced Binary Mixtures

We trained both vanilla and alignment-enhanced models on three imbalanced binary datasets:
BINARY 409%-60%,» BINARY30%.70%, and BINARY 19.90%. TLhese datasets simulate realistic scenar-
ios where target compounds appear with varying concentrations in spectroscopic measurements.

Results are shown in[Table 8] Performance degrades when the target compound represents only 10%
of the mixture, highlighting the challenge of detecting minority components in spectroscopic data.
Fine-tuning consistently improves performance across all imbalance ratios, with the most substantial
gains observed in the Top-5 and Top-10 metrics.
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RECONSTRUCTION  RECONSTRUCTION By Top-11 Top-51 Top-10 1

NETWORK Loss
CNN MSE 50 15.8 29.2 33.5
CNN MSE 5 17.7 31.7 36.3
CNN MSE 1 17.6 31.1 35.7
CNN MAE 50 19.7 34.4 39.2
CNN MAE 5 15.7 29.2 33.8
CNN MAE 1 19.1 33.8 384
MLP MSE 50 15.6 29.1 33.6
MLP MSE 5 16.6 30.6 35.0
MLP MSE 1 17.2 30.9 35.0
MLP MAE 50 18.0 32.1 36.5
MLP MAE 5 13.4 254 29.9
MLP MAE 1 18.9 33.7 38.2

Table 7: Ablation study on RECONSTRUCTION NETWORK, RECONSTRUCTION LOSS and A. The model were
trained on the BINARY 504509 datasets.

DATASET PERCENTAGE Tor-17 Topr-571 Tor-10 T
BINARY40%-60% 40% 14.5 27.0 31.1
60% 18.8 32.5 37.7
. BINARY30%-70% 30% 13.2 24.9 28.8
Simulated
70% 20.9 37.3 41.0
BINARY 10%-90% 10% 6.3 14.3 17.7
90% 25.6 43.6 48.6
BINARY 40%-60% 40% 148+ 13 4274+24 558+22
60% 21.1+04 5254+13 640+£19
. BINARY30%-70% 30% 13.14+12 395+30 532+3.0
Fine-tuned
70% 240+12 562427 679+29
BINARY 10%-90% 10% 82+1.1 274423 402+28
90% 291+14 621+26 723+23

Table 8: Performance comparison of vanilla and fine-tuned models on imbalanced binary datasets. Each test set
contains 5000 samples for each percentage class. Results demonstrate the models’ sensitivity to class imbalance,
with performance declining as target prevalence decreases.

E.2 TImpact of Alignment on Imbalanced Data

We next evaluated whether our alignment strategy could mitigate the performance degradation
observed with imbalanced data. Using a convolutional neural network as the reconstruction network
with MAE loss and A = 50, we applied the alignment technique to all imbalanced datasets.

demonstrates that alignment consistently improves performance across most imbalance
scenarios. The enhancement is particularly pronounced for minority class detection, where the
alignment mechanism helps the model focus on relevant spectral features despite class imbalance.
While improvements are modest for the 90% case (majority class), the alignment strategy maintains
performance without degradation.
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DATASET PERCENTAGE  Top-11 Topr-5 1 Top-10 1
BINARY 40%-60% 40% 17.7 32.6 37.8
60% 20.8 37.2 433
. BINARY30%-70% 30% 16.1 29.8 34.7
Alignment
70% 24.0 40.2 45.6
BINARY 10%-90% 10% 8.3 18.6 22.9
90% 26.7 44.1 49.5
BINARY 40%-60% 40% 16.5+0.1 424+13 562+14
) 60% 23.0+05 51.8+1.1 647+ 1.3
I S — 30% I51+13 406+25 538+23
Alig;emm 70% 252406 545+04 673407
BINARY 10%-90% 10% 97+07 295+28 43.1+28
90% 295+15 611+17 73.0+15

Table 9: Performance of alignment-enhanced models on imbalanced binary datasets. The alignment strategy
provides consistent improvements across most imbalance ratios, with the most significant gains for lower

concentrations.
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Figure 6: Bar plot comparing the performance of the Baseline and Aligned models both pretrained on Simulated
spectra and fine-tuned on real spectra. The plot summarizes and[0] Aligning the encoder representations
consistently improves performance for both pretraining and fine-tuning. Furthermore, the model performance—
unsurprisingly—positively correlate with the concentration of the target compound present in the mixture.

F Multitask Model

To develop a model capable of predicting components from spectra of mixtures with widely varying
concentrations, we trained a multitask model using data spanning all concentration levels, as described
in The pretraining performance of this model, which was not included in the main

paper, is reported in [Table 10
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PERCENTAGE Top-11 Tor-51 Topr-101

10% 34 9.4 11.7
20% 53 11.6 14.9
30% 72 14.6 17.4
Multi-task 40% 7.3 16.6 20.2
50% 8.0 17.7 20.9
60% 9.9 18.9 233
70% 12.3 233 28.6
80% 14.1 26.6 31.9
90% 16.4 29.9 339

Table 10: Performance of the multi-task model trained simultaneously on multiple imbalance ratios. The test
set contains 2500 samples at 50% and 1250 samples for each other concentrations. Multi-task learning enables
the model to generalize across different imbalance scenarios while maintaining robust performance.

G Experimental IR spectra

G.1 Spectra of pure compounds
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1,4-diazabicyclo[2.2.2]octane
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Diethylene glycol monobutyl ether
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G.2 Spectra of mixtures used for validation
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Cyclohexylamine + 4-Chloronitrobenzene
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N,N-Dimethylethylenediamine + 4-Chloronitrobenzene
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4-Chloronitrobenzene + 1,4-diazabicyclo[2.2.2]octane

100 -
90 1
80 1

704

Transmittance [%]

60 -

50 1

40

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber cm™~1

1/3 Cyclohexancarboxylic acid + 2/3 Diethylene glycol monobutyl ether
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1/2 Cyclohexancarboxylic acid + 1/2 Diethylene glycol monobutyl ether
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2/3 Cyclohexancarboxylic acid + 1/3 Diethylene glycol monobutyl ether
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G.3 Spectra of mixtures used for evaluation
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Cyclobutylamine + N-Methylmorpholine
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Methyl-3-Bromopyruvate + 2,6-Lutidine
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Trans-1-Phenyl-1,3-butadiene + 2,6-Lutidine
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Trans-1-Phenyl-1,3-butadiene + Propylene-carbonate
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2,6-Lutidine + Methyl-glycolate
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N-Methylmorpholine + Methyl-glycolate
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Methyl-glycolate + Propylene-carbonate
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