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Abstract

Empirical risk minimization (ERM) is a crucial framework that offers a general
approach to handling a broad range of machine learning tasks. In this paper,
we propose a novel algorithm, called ReHLine, for minimizing a set of regular-
ized ERMs with convex piecewise linear-quadratic loss functions and optional
linear constraints. The proposed algorithm can effectively handle diverse combi-
nations of loss functions, regularization, and constraints, making it particularly
well-suited for complex domain-specific problems. Examples of such problems
include FairSVM, elastic net regularized quantile regression, Huber minimization,
etc. In addition, ReHLine enjoys a provable linear convergence rate and exhibits a
per-iteration computational complexity that scales linearly with the sample size.
The algorithm is implemented with both Python and R interfaces, and its perfor-
mance is benchmarked on various tasks and datasets. Our experimental results
demonstrate that ReHLine significantly surpasses generic optimization solvers
in terms of computational efficiency on large-scale datasets. Moreover, it also
outperforms specialized solvers such as LIBLINEAR in SVMs, HQREG in Huber
minimization and LIGHTNING (SAGA, SAG, SDCA, SVRG) in smoothed SVMs,
exhibiting exceptional flexibility and efficiency. The source code, project page,
accompanying software, and the Python/R interface can be accessed through the
link: https://github.com/softmin/ReHLine.

1 Introduction

Empirical risk minimization (ERM) with different losses is a fundamental framework in statistical
machine learning [43], which has demonstrated a significant impact on many application areas, such as
artificial intelligence, computational biology, computer vision, natural language processing, electronic
engineering, and finance. In fact, many common practical ERMs are associated with a piecewise
linear-quadratic (PLQ; [34]) loss function, including support vector machines (SVMs; [7]), the least
absolute deviation regression, quantile regression [26], Huber regression [22], borrowing cost function
in portfolio selection [28], and pricing/planning problems in electricity and operational research
[16, 1], among many others. In addition, ERMs are frequently blended with linear constraints, for
instance, the fairness constraints in fair classification [48], monotonicity constraints in classification
or regression, etc. More linear constraints according to the prior domain knowledge, such as the
sum-to-one constraints in the portfolio variance minimization problem [24], negative or positive
constraints in non-performing loan [36], are considered in various real applications. Therefore, it has
become of utmost importance to develop fast and scalable numerical algorithms to solve ERMs with
PLQ losses based on large-scale datasets and flexible linear constraints.

∗Co-first authorship, and the order is determined by coin toss. †Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/softmin/ReHLine


In this paper, we consider a general regularized ERM based on a convex PLQ loss with linear
constraints:

min
β∈Rd

n∑
i=1

Li(x
⊺
i β) +

1

2
∥β∥22, s.t. Aβ + b ≥ 0, (1)

where xi ∈ Rd is the feature vector for the i-th observation, β ∈ Rd is an unknown coefficient vector,
A ∈ RK×d and b ∈ RK are defined as linear inequality constraints for β, and Li(·) ≥ 0 is a convex
PLQ loss function. The PLQ function class greatly generalizes existing popular loss functions, and
the convexity of Li(·) guarantees the global convergence of optimization. Here, we focus on working
with a large-scale dataset, where the dimension of the coefficient vector and the total number of
constraints are comparatively much smaller than the sample size, that is, d≪ n and K ≪ n.

Although (1) is a strongly convex problem with affine constraints, thus admitting a unique global
optimum, directly solving (1) by a generic solver may encounter various challenges. For example,
Li(·) is in general non-smooth, so gradient-based methods may fail, and hence slow-convergent
subgradient methods need to be used. In addition, the constraint set is a polyhedron, whose projection
operator is non-trivial to compute, making various projection-based methods difficult to apply.

Of course, for some specific forms of Li(·), highly efficient solvers for (1) indeed exist. One
remarkable example is the LIBLINEAR solver [12], which has gained great success in solving large-
scale SVMs. However, LIBLINEAR highly relies on the hinge loss function, so its success does not
directly transfer to more general loss functions.

Outline. To this end, in this article we develop a novel algorithm to solve (1) with the greatest
generality. The proposed algorithm, named ReHLine, has three key ingredients. First, we show that
any convex PLQ loss function can be decomposed as the sum of a finite number of rectified linear
units (ReLU, [15]) and rectified Huber units (ReHU, defined in Section 2). Second, based on this
decomposition, the dual problem of (1) is shown to be a box-constrained quadratic programming
(box-QP) problem. Finally, a special paired primal-dual coordinate descent algorithm is developed to
simultaneously solve the primal and dual problems, with a computational cost linear in n.

We emphasize that for the second point, the dual box-QP problem is highly structured. Therefore, a
general-purpose solver may not fully exploit the structure, thus leading to slower convergence rates
or higher computational costs. As a direct comparison between the proposed ReHLine solver and
existing algorithms, including the projected (sub-)gradient descent (P-GD; [6]), the coordinate descent
(CD; [45]), the interior-point methods (IPMs; [13, 14, 18]), the stochastic dual coordinate ascent
(SDCA; [39, 40]) related methods, and the alternating direction method of multipliers (ADMM; [5]),
Table 1 summarizes the required number of iterations and per-iteration cost of each method. More
details and discussions for this comparison are given in Section 4.

Table 1: Overview of existing algorithms for solving (1). Column COMPLEXITY (PER ITERATION)
shows the computational complexity of the algorithm per iteration. Here, we focus only on the order
of n since d≪ n is assumed in our setting. Column #ITERATIONS shows the number of iterations
needed to achieve an accuracy of ε to the minimizer.

ALGORITHM COMPLEXITY
(PER ITERATION)

#ITERATIONS COMPLEXITY
(TOTAL)

P-GD O(n) O(ε−1) [6] O
(
nε−1

)
CD O(n2) O(log(ε−1)) [31] O

(
n2 log(ε−1)

)
IPM O(n2) O(log(ε−1)) [18] O

(
n2 log(ε−1)

)
ADMM O(n2) o(ε−1) [9, 20] o

(
n2ε−1

)
SDCA O(n) O(ε−1) [39] O

(
nε−1

)
ReHLine (ours) O(n) O(log(ε−1)) O(n log(ε−1))

Contribution. Compared with other specialized ERM solvers or general-purpose box-QP solvers,
the proposed ReHLine solver has four appealing “linear properties”:
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1. It applies to any convex piecewise linear-quadratic loss function (potential for non-smoothness
included), including the hinge loss, the check loss, the Huber loss, etc.

2. In addition, it supports linear equality and inequality constraints on the parameter vector.
3. The optimization algorithm has a provable linear convergence rate.
4. The per-iteration computational complexity is linear in the sample size.

Moreover, ReHLine is designed to be a computationally efficient and practically useful software
package for large-scale ERM problems. As an example, our experiments in Section 5 have shown that
ReHLine significantly surpasses generic solvers in terms of computational efficiency on large-scale
datasets, and provides reasonable improvements over specialized solvers and problems, such as
LIBLINEAR, HQREG and LIGHTNING, given that LIBLINEAR, HQREG and LIGHTNING are one of the
fastest and most widely-used solvers for SVM, Huber minimization, and smoothed SVM, respectively.
Finally, ReHLine is available as user-friendly software in both Python and R, which facilitates ease
of use for researchers, practitioners, and a wider audience.

2 The ReLU-ReHU decomposition

As is introduced in Section 1, we attempt to solve ERM with a general loss function, and one sensible
choice is the class of convex PLQ functions. A univariate loss function f : R → R≥0 is PLQ if
there exist a finite number of knots t1 < t2 < · · · < tK such that f is equal to a linear or quadratic
function on each of the intervals (−∞, t1], [t1, t2], . . . , [tK−1, tK ], [tK ,∞). In what follows we
merely consider nonnegative convex PLQ functions, which also imply the continuity of the loss
function. It is well known that PLQ functions are universal approximators of continuous functions
[38], but the canonical definition of PLQ is not convenient for optimization algorithms. Instead, in
this section we prove that convex PLQ functions can actually be decomposed into a series of simple
and basic units.
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Figure 1: The ReLU function and the ReHU
function with τ = 1, 2, 3,∞.

Before proceeding, we introduce a generalized
quadratic version of ReLU, the so-called rectified
Huber unit, ReHU:

ReHUτ (z) =


0, z ≤ 0

z2/2, 0 < z ≤ τ
τ(z − τ/2), z > τ

,

(2)
where τ ∈ [0,∞] is a hyperparameter of ReHU
switching from quadratic to linear form, see ex-
amples in Figure 1. ReHU also incorporates the
rectified quadratic unit (ReQU) as a special case,
that is, ReHU∞(z) = ReQU(z)/2 = (z+)

2/2
when τ =∞, where z+ = max{z, 0}. Then we
give the characterization of a composite ReLU-
ReHU function.

Definition 1 (Composite ReLU-ReHU function). A function L(z) is composite ReLU-ReHU, if there
exist u,v ∈ RL and τ , s, t ∈ RH such that

L(z) =

L∑
l=1

ReLU(ulz + vl) +

H∑
h=1

ReHUτh(shz + th), (3)

where ReLU(z) = z+, and ReHUτh(z) is defined in (2).

Clearly, the composite ReLU-ReHU function class is closed under affine transformations, as is
indicated by Proposition 1.
Proposition 1 (Closure under affine transformation). If L(z) is a composite ReLU-ReHU function as
in (3), then for any c > 0, p ∈ R, and q ∈ R, cL(pz + q) is also composite ReLU-ReHU, that is,

cL(pz + q) =

L∑
l=1

ReLU(u′lz + v′l) +

H∑
h=1

ReHUτ ′
h
(s′hz + t′h),

where u′l = cpul, v′l = culq + cvl, τ ′h =
√
cτh, s′h =

√
cpsh, and t′h =

√
c(shq + th).
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More importantly, we show that the composite ReLU-ReHU function class is equivalent to the class
of convex PLQ functions.

Theorem 1. A loss function L : R→ R≥0 is convex PLQ if and only if it is composite ReLU-ReHU.

Based on the fact that the loss functions of various SVMs (the hinge loss, the squared hinge loss,
and the smoothed hinge loss), quantile regression (the check loss), and least absolute deviation (the
absolute loss) are all convex PLQs, Theorem 1 suggests that Definition 1 incorporates numerous
widely-used losses in statistics and machine learning applications. Table 2 provides a convenient
translation from some commonly-used loss functions to their ReLU-ReHU representation.

Table 2: Some widely-used composite ReLU-ReHU losses as in (3). Here SVM is weighted SVMs
based on the hinge loss [7], sSVM is smoothed SVMs based on the smoothed hinge loss [33], SVM2

is weighted squared SVMs based on the squared hinge loss [7], LAD is the least absolute deviation
regression, SVR is support vector regression with the ε-insensitive loss [44], and QR is quantile
regression with the check loss [26].

PROBLEM LOSS (Li(zi)) COMPOSITE RELU-REHU PARAMETERS

SVM ci(1− yizi)+ u1i = −ciyi, v1i = ci

sSVM ciReHU1(−(yizi − 1)) s1i = −
√
ciyi, t1i =

√
ci, τ =

√
ci

SVM2 ci((1− yizi)+)2 s1i = −
√
2ciyi, t1i =

√
2ci, τ =∞

LAD ci|yi − zi| u1i = ci, v1i = −ciyi, u2i = −ci, v2i = ciyi

SVR ci(|yi − zi| − ε)+ u1i = ci, v1i = −(yi + ε), u2i = −ci, v2i = yi − ε
QR ciρκ(yi − zi) (A.3) u1i = −ciκ, v1i = κciyi, u2i = ci(1− κ), v2i = −ci(1− κ)yi

Table 3: Some widely-used linear constraints of the form Aβ + b ≥ 0, where U-bidiag([−1, 1]) is
an upper bidiagonal matrix with main diagonal being -1 and upper diagonal being 1.

CONSTRAINT FORM REHLINE PARAMETERS

Nonnegative β ≥ 0 A = −I, b = 0

Box l ≤ β ≤ u A = [I;−I], b = [−l;u]
Monotonicity β1 ≤ · · · ≤ βd A = B1:d−1, B = U-bidiag([−1, 1]), b = 0d−1

Fairness (A.1) |Z⊺Xβ/n| ≤ ρ A = Z⊺X[I;−I]/n, b = [ρ;ρ]

Taken together, our algorithm is designed to address the empirical regularized ReLU-ReHU mini-
mization problem, named ReHLine optimization, of the following form:

min
β∈Rd

n∑
i=1

L∑
l=1

ReLU(ulix
⊺
i β + vli) +

n∑
i=1

H∑
h=1

ReHUτhi
(shix

⊺
i β + thi) +

1

2
∥β∥22,

s.t. Aβ + b ≥ 0, (4)

where U = (uli),V = (vli) ∈ RL×n and S = (shi),T = (thi),τ = (τhi) ∈ RH×n are the
ReLU-ReHU loss parameters, as illustrated in Table 2, and (A,b) are the constraint parameters, as
illustrated in Table 3. This formulation has a wide range of applications, including statistics, machine
learning, computational biology, and social studies. Some popular examples include SVMs with
fairness constraints (FairSVM), elastic net regularized quantile regression (ElasticQR), ridge Huber
minimization (RidgeHuber), and smoothed SVMs (sSVM). See Appendix A for details.

Despite appearing to impose limitations on the l2-regularization in (4), our ReHLine formulation can
actually be extended to more general regularization forms, including the elastic net penalty [49].

Proposition 2. If Li is a composite ReLU-ReHU loss function with parameters (uli, vli)
L
l=1 and

(shi, thi, τhi)
H
h=1, then its elastic net regularized minimization with λ1 ≥ 0 and λ2 > 0,

min
β∈Rd

n∑
i=1

Li(x
⊺
i β) + λ1∥β∥1 +

λ2
2
∥β∥22, s.t. Aβ + b ≥ 0,
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can be rewritten as the form of ReHLine optimization (4) with

U←

 1
λ2
U 0L×d

0⊺
n

λ1

λ2
1⊺
d

0⊺
n −λ1

λ2
1⊺
d

 , V←

 1
λ2
V 0L×d

0⊺
n+d

0⊺
n+d

 , X←
(

X
Id

)
,

S←
( √

1
λ2
S 0⊺

d

)
, T←

( √
1
λ2
T 0⊺

d

)
, τ←

( √
1
λ2
τ 0⊺

d

)
,

where← indicates assigning a value to a parameter.

3 Optimization algorithm

In this section, we present the ReHLine algorithm to tackle the optimization in (4). The proposed
algorithm is inspired by LIBLINEAR [12], which has gained great success in solving standard SVMs.
The key idea of ReHLine is to leverage the linear property of Karush–Kuhn–Tucker (KKT) conditions,
thus simplifying the iterative complexity of CD and achieving rapid convergence.

3.1 Primal and dual formulations

To proceed, we first demonstrate equivalent formulations for ReLU and ReHU, respectively, where
the equivalence means that the value on the left is equal to the minimum value of the right-hand side:

ReLU(z) ⇐⇒
min
π

π

s.t. π ≥ z,
π ≥ 0.

ReHU(z) ⇐⇒
min
θ,σ

1
2θ

2 + τσ

s.t. θ + σ ≥ z,
σ ≥ 0.

(5)

It is worth noting that when τ = ∞, the optimal solution for σ is 0, and hence the last constraint
(σ ≥ 0) can be removed. Then according to the definition of the composite ReLU-ReHU loss function
and the equivalent forms in (5), the ReHLine optimization problem (4) can be rewritten as:

min
β,Π,Θ,Σ

n∑
i=1

L∑
l=1

πli +

n∑
i=1

H∑
h=1

1

2
θ2hi +

n∑
i=1

H∑
h=1

τhiσhi +
1

2
∥β∥22

s.t. Aβ + b ≥ 0, πli ≥ ulix⊺
i β + vli, θhi + σhi ≥ shix⊺

i β + thi,

πli ≥ 0, σhi ≥ 0, for all (i, l, h), (6)

where Π = (πli) ∈ RL×n, Θ = (θhi) ∈ RH×n and Σ = (σhi) ∈ RH×n are slack variables.
Theorem 2 shows the dual form of the primal formulation (6) by using the Lagrangian duality theory,
and the relation between primal and dual variables is also provided.
Theorem 2. The Lagrangian dual problem of (6) is:

(ξ̂, Λ̂, Γ̂) = argmin
ξ,Λ,Γ

L(ξ,Λ,Γ)

s.t. ξ ≥ 0, E ≥ Λ ≥ 0, τ ≥ Γ ≥ 0, (7)

L(ξ,Λ,Γ) = 1

2
ξ⊺AA⊺ξ +

1

2
vec(Λ)⊺Ū⊺

(3)Ū(3)vec(Λ) +
1

2
vec(Γ)⊺

(
S̄
⊺
(3)S̄(3) + I

)
vec(Γ)

− ξ⊺AŪ(3)vec(Λ)− ξ⊺AS̄(3)vec(Γ) + vec(Λ)⊺Ū⊺
(3)S̄(3)vec(Γ)

+ ξ⊺b− Tr(ΛV⊺)− Tr(ΓT⊺), (8)

where ξ ∈ RK , Λ = (λli) ∈ RL×n, and Γ = (γhi) ∈ RH×n are dual variables, Ū(3) ∈ Rd×nL and
S̄(3) ∈ Rd×nH are the mode-3 unfolding of the tensors Ū = (ulij) ∈ RL×n×d and S̄ = (shij) ∈
RH×n×d, respectively, ulij = ulixij , shij = shixij , I is the identity matrix, and all inequalities are
elementwise.

Moreover, the optimal point β̂ of (6) can be recovered as:

β̂ =

K∑
k=1

ξ̂kak −
n∑

i=1

xi

(
L∑

l=1

λ̂liuli +

H∑
h=1

γ̂hishi

)
= A⊺ξ̂ − Ū(3)vec(Λ̂)− S̄(3)vec(Γ̂). (9)
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3.2 ReHLine update rules

Indeed, (9) is a KKT condition of (6), and the main idea of the proposed ReHLine solver is to update
the dual variables (ξ,Λ,Γ) by CD on (7) with an analytic solution, and simultaneously update the
primal variable β by the KKT condition (9). Most importantly, the computational complexity of the
CD updates on (7) can be significantly reduced by using the information of β.

Canonical CD updates. As a first step, we consider the canonical CD update rule that directly
optimizes the dual problem (7) with respect to a single variable. For brevity, in this section we only
illustrate the result for λli variables, and the full details are given in Appendix B.

By excluding the terms unrelated to λli, we have λnewli = argmin0≤λ≤1 Lli(λ), where

Lli(λ) =
1

2
u2li(x

⊺
i xi)λ

2 +
∑

(l′,i′) ̸=(l,i)

λl′i′ul′i′uli(x
⊺
i′xi)λ−

K∑
k=1

ξkuli(a
⊺
kxi)λ

+
∑
h′,i′

uliγh′i′sh′i′x
⊺
i xi′λ− vliλ.

Therefore, by simple calculations we obtain

λnewli = P[0,1]

ulix⊺
i

(∑K
k=1 ξkak −

∑
(l′,i′) ̸=(l,i) λl′i′ul′i′xi′ −

∑
h′,i′ γh′i′sh′i′xi′

)
+ vli

u2li∥xi∥22

 ,

(10)
where P[a,b](x) = max(a,min(b, x)) means projecting a real number x to the interval [a, b].

Clearly, assuming the values x⊺
i ak and ∥xi∥22 are cached, updating one λli value requiresO(K+nd+

nL+ nH) of computation, and updating the whole Λ matrix requires O
(
nL(K + nd+ nL+ nH)

)
.

Adding all variables together, the canonical CD update rule for one full cycle has a computational
complexity of O

(
(K + nd+ nL+ nH)(K + nL+ nH)

)
.

ReHLine updates. The proposed ReHLine algorithm, on the other hand, significantly reduces the
computational complexity of canonical CD by updating β according to the KKT condition (9) after
each update of a dual variable. To see this, let µ := (ξ,Λ,Γ) denote all the dual variables, and define

β(µ) =

K∑
k=1

ξkak −
n∑

i=1

xi

(
L∑

l=1

λliuli +

H∑
h=1

γhishi

)
.

Then it can be proved that (∇λLli)(λli) = − (ulix
⊺
i β(µ) + vli). Therefore, when µ is fixed at

µold = (ξold,Λold,Γold) and let βold = β(µold), (10) can be rewritten as

λnewli = P[0,1]

(
λoldli −

(∇λli
L)(λold)

u2li∥xi∥22

)
= P[0,1]

(
λoldli +

ulix
⊺
i β

old + vli
u2li∥xi∥22

)
.

Accordingly, the primal variable β is updated as

βnew = βold − (λnewli − λoldli )ulixi,

which can then be used for the next dual variable update. Simple calculations show that this scheme
only costs O(d) of computation for one λli variable.

The update rules for other dual variables are similar, with the complete algorithm shown in Algorithm
1 and the full derivation details given in Appendix B. Overall, the ReHLine update rule has a
computational complexity of O

(
(K + nL+ nH)d

)
for one full cycle. Given that (K,L,H) are all

small numbers, the complexity is linear with respect to both the sample size n and the dimension d.

We emphasize that the linear relationship (9) between the primal and dual variables, as well as its
consequence of reducing the computational cost, is highly non-trivial. This technique has been
proposed for specialized problems such as SVMs via the LIBLINEAR solver [21], and here we show
that its success can be greatly generalized to any convex PLQ loss functions.
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Algorithm 1: The ReHLine algorithm that solves (4).

Input :X ∈ Rn×d, U,V ∈ RL×n, S,T,τ ∈ RH×n, A ∈ RK×d, b ∈ RK

1 Initialize ξ ≥ 0, E ≥ Λ ≥ 0, τ ≥ Γ ≥ 0;
2 Compute β = A⊺ξ −

∑n
i=1 xi

(∑L
l=1 λliuli +

∑H
h γhishi

)
;

3 Compute and store r = (ri) ∈ Rn, ri = ∥xi∥22, and p = (pk) ∈ RK , pk = ∥ak∥22;
4 while maximum iteration do
5 for k ∈ K = [K] do
6 ε∗ ← max

(
− ξk,−p−1

k (a⊺kβ + bk)
)
; ξk ← ξk + ε∗; β ← β + ε∗ak;

7 for (l, i) ∈ L = [L]
⊗

[n] do
8 ε∗ ← max

(
− λli,min

(
1− λli, u−2

li r
−1
i (vli + ulix

⊺
i β)

))
;

λli ← λli + ε∗; β ← β − ε∗ulixi;

9 for (h, i) ∈ H = [H]
⊗

[n] do
10 ε∗ ← max

(
− γhi,min

(
τhi − γhi, (s2hiri + 1)−1(thi + shix

⊺
i β − γhi)

))
;

γhi ← γhi + ε∗; β ← β − ε∗shixi;

Output :ξ, Λ, Γ, β

3.3 Global convergence rate

Finally, we show that the ReHLine algorithm has a fast global linear convergence rate.

Theorem 3. Let µ(q) := (ξ(q),Λ(q),Γ(q)) be a sequence of iterates generated by Algorithm 1, and
µ∗ be a minimizer of the dual objective (8). Then µ(q) is feasible, and the dual objective value
converges at least linearly to that of µ∗, that is, there exist 0 < η < 1 and q0 such that for all q ≥ q0,

L(µ(q+1))− L(µ∗) ≤ η
(
L(µ(q))− L(µ∗)

)
.

4 Related work

Table 1 summarizes the existing methods in solving the primal or dual problem of (1). Note that
Column #ITERATIONS is the best-fit theoretical results of convergence analysis for each algorithm
based on our literature search, which may be improved with further developments of convergence
analysis. These algorithms can be broadly divided into the following categories.

Generic QP solvers. For instance, a projected sub-gradient descent is readily applicable to the
primal form (1) by computing the sub-gradient of each loss and the projection under affine constraints,
although the projection operator itself is already difficult. As for the box-QP dual problem (7), CD
converges linearly to the optimal solution [27, 31, 35, 42]. Box-QP can also be efficiently solved
using IPM, which leverages second-order cone programming techniques [13, 14]. Moreover, ADMM
was employed to iteratively minimize the augmented Lagrangian of (1).

ERM solvers. There are multiple existing works developed to tackle ERM problems, such as SAG
[37], SVRG [25], SAGA [8], proximal SDCA [40] and SDCA [39]. However, SAG, SVRG, SAGA
and proximal SDCA can only handle smooth loss functions, with an optional non-smooth term that
has an easy proximal operator. SDCA applies to general loss functions, but it requires the convex
conjugate of loss functions, which is not necessarily simple to compute, also see discussion in Section
3.1 in [40]. Moreover, it only guarantees a sublinear convergence rate for non-smooth loss functions.
In contrast, ReHLine supports all convex PLQ loss functions with optional general linear constraints,
which could be non-smooth by construction, and they all enjoy a linear computational complexity
and provable linear convergence.

For non-smooth loss functions, another existing method to solve ERM is the smoothing technique
[40, 3, 30], which approximates the non-smooth terms by smooth functions, and then uses smooth-
based algorithms to solve the smooth problem. However, the choice of the smoothing function and
smoothing parameter typically requires additional knowledge, and the linear convergence rate is not
always guaranteed.

7



Despite the successful use of the existing algorithms in solving (1), these methods either suffer
from slow convergence (P-GD), or high computational costs (CD, IPM, and ADMM). This is partly
because these general methods do not fully exploit the inherent structure of the problem. In contrast,
ReHLine leverages the KKT condition in (9) to substantially improve numerical performance, thus
achieving a linear computational complexity per iteration with respect to the sample size, as well as a
linear convergence rate.

In addition to generic algorithms, specialized algorithms have been developed for specific types of
(1). For example, the dual coordinate descent of LIBLINEAR in solving SVMs [21], the semismooth
Newton coordinate descent algorithm of HQREG in solving the ridge regularized Huber minimization
[46], and SAGA, SAG, proximal SDCA, and SVRG of LIGHTNING in solving smooth ERMs [4],
such as smoothed SVMs. Our algorithm is also compared to these specialized methods in Section 5.

Software. Below are some commonly-used software for solving (1) based on the algorithms available.

• CVX/CVXPY [17, 10]: a modeling language for convex optimization problems and supports a
wide range of solvers such as ECOS, SCS, OSQP, and MOSEK.

• MOSEK [2]: a commercial convex optimization solver based on IPM.
• ECOS [11]: an open-source solver of second-order cone programming based on IPM.
• SCS [32]: an open-source convex quadratic cone solver based on ADMM.
• DCCP [41]: a disciplined convex-concave programming solver built on top of CVXPY, which has

been used to solve classification problems with fairness constraints [47].
• LIBLINEAR [21]: a library for large linear classification.
• HQREG [46]: an R package solving Lasso or elastic net penalized Huber loss regression and

quantile regression.
• LIGHTNING [4]: a Python library solving various ERMs based on primal SDCA, SGD, AdaGrad,

SAG, SAGA, SVRG.

5 Experiments and benchmarks

In this section we demonstrate the performance of ReHLine compared with the existing state-of-
the-art (SOTA) solvers on various machine learning tasks. The source code of ReHLine, along
with Python/R interface, is readily accessible on our GitHub repository (https://github.com/
softmin/ReHLine) and our project page (https://rehline.github.io/). Our experiments
involve five prominent machine learning tasks that draw from diverse sets of data. Specifically, we
focus on four classification datasets and five regression datasets sourced from OpenML (https:
//www.openml.org/), with various scales and dimensions. The experiment settings are summarized
in Table 4. To achieve a fair comparison, we use a well-organized toolset and framework, the
BENCHOPT library [29], to implement optimization benchmarks for all the SOTA solvers.

Due to representation limits, we only present the results using a variant of the ReHLine algo-
rithm that supports variable shrinkage (refer to Algorithm 2). Results utilizing ReHLine with or
without shrinkage are reported on our benchmark repository (https://github.com/softmin/
ReHLine-benchmark). Note that there is no substantial difference between these variations, and
they do not influence the conclusions drawn from our experiments. Simultaneously, in the benchmark
repository, we provide a more detailed “time versus objective” plot for each task/dataset and each
solver produced by BENCHOPT.

Table 4: The classification and regression datasets with different scales used in our experiments.

CLASSIFICATION DATASET (n× d) REGRESSION DATASET (n× d)
Steel-plates-fault (SPF): 1941× 34 Liver-disorders (LD): 345× 6
Philippine: 5832× 309 Kin8nm: : 8191× 9
Sylva-prior: 14395× 109 Topo-2-1: 8885× 267
Creditcard: 284807× 31 House-8L: 22784× 9

Buzzin-Twitter (BT): 583250× 78

For the FairSVM task, ReHLine is compared with the original solver [48] based on DCCP and other
generic solvers in CVXPY. In this case, both feasibility and optimality are examined, where the
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optimality is measured by the objective function, and the feasibility is measured by the violation
of constraints: max

(
n−1

∣∣∑n
i=1 ziβ

⊺xi

∣∣ − ρ, 10−6
)
. Moreover, we examine the performance of

ElasticQR by considering the model defined in (A.2) with λ1 = λ2 = 1, RidgeHuber of (A.4) with
λ1 = 0, λ2 = 1, and SVM of (A.1) and sSVM of (A.5) with C = 1. Table 5 presents the running
times in seconds of all solvers that converge based on a relative/absolute tolerance of 10−5.

Table 5: The averaged running times (± standard deviation) of SOTA solvers on machine learning
tasks. “✗” indicates cases where the solver produced an invalid solution or exceeded the allotted time
limit. Speed-up refers to the speed-up in the averaged running time (on the largest dataset) achieved
by ReHLine, where “∞” indicates that the solver fails to solve the problem.

TASK DATASET ECOS MOSEK SCS DCCP REHLINE

FairSVM SPF (×1e-4) ✗ ✗ ✗ ✗ 4.25 (±0.5)
Philippine (×1e-2) 1550 (±0.6) 87.4 (±0.2) 130 (±42) 1137 (±9.2) 1.03 (±0.2)
Sylva-prior (×1e-2) ✗ ✗ ✗ ✗ 0.47 (±0.1)
Creditcard (×1e-1) 175 (±0.2) 64.2 (±0.1) 161 (±405) ✗ 0.64 (±0.2)

Fail/Succeed 2/2 2/2 2/2 3/1 0/4
Speed-up (on Creditcard) 273x 100x 252x ∞ –

TASK DATASET ECOS MOSEK SCS REHLINE

ElasticQR LD (×1e-4) ✗ 106 (±7) 34.9 (±25.0) 2.60 (±0.30)
Kin8nm (×1e-3) ✗ 92.0 (±1.0) 63.1 (±58.5) 4.12 (±0.95)
House-8L (×1e-3) 887 (±161) 277 (±34) ✗ 7.21 (±1.99)
Topo-2-1 (×1e-2) 4752 (±2015) ✗ ✗ 3.04 (±0.49)
BT (×1e-0) 7079 (±2517) ✗ ✗ 2.49 (±0.56)

Fail/Succeed 3/2 2/3 3/2 0/5
Speed-up (on BT) 2843x ∞ ∞ –

TASK DATASET ECOS MOSEK SCS HQREG REHLINE

RidgeHuber LD (×1e-4) ✗ ✗ ✗ 4.90 (±0.00) 1.40 (±0.20)
Kin8nm (×1e-3) ✗ ✗ ✗ 1.58 (±0.21) 2.04 (±0.30)
House-8L (×1e-3) ✗ 925 (±2) ✗ 2.42 (±0.34) 0.80 (±0.21)
Topo-2-1 (×1e-2) 2620 (±1040) 267 (±1) 213 (±2) 3.53 (±0.67) 1.78 (±0.32)
BT (×1e-1) ✗ 2384 (±433) ✗ 12.5 (±1.8) 5.28 (±1.31)

Fail/Succeed 4/1 2/3 4/1 0/5 0/5
Speed-up (on BT) ∞ 452x ∞ 2.37x –

TASK DATASET ECOS MOSEK SCS LIBLINEAR REHLINE

SVM SPF (×1e-4) ✗ 372 (±1) 237 (±27) 12.7 (±0.1) 3.90 (±0.10)
Philippine (×1e-2) 1653 (±41) 86.5 (±0.2) 153 (±146) 1.80 (±0.02) 0.82 (±0.02)
Sylva-prior (×1e-3) ✗ 731 (±2) 843 (±1006) 16.0 (±0.6) 4.08 (±0.84)
Creditcard (×1e-2) 2111 (±804) ✗ 1731 (±4510) 23.1 (±2.5) 5.08 (±1.45)

Fail/Succeed 2/2 1/3 0/4 0/4 0/4
Speed-up (on Creditcard) 415x ∞ 340x 4.5x –

TASK DATASET SAGA SAG SDCA SVRG REHLINE

sSVM SPF (×1e-4) 39.9 (±4.6) 28.3 (±5.0) 15.0 (±2.4) 41.4 (±3.9) 4.80 (±1.20)
Philippine (×1e-2) 24.3 (±27.8) 5.53 (±9.8) 1.47 (±0.19) 15.8 (±6.8) 0.89 (±0.10)
Sylva-prior (×1e-2) 3.37 (±9.81) 3.00 (±0.56) 1.57 (±0.23) 3.40 (±0.84) 0.86 (±0.14)
Creditcard (×1e-2) 10.4 (±1.4) 15.0 (±2.0) 14.0 (±1.9) 11.2 (±1.4) 6.36 (±1.92)

Fail/Succeed 0/4 0/4 0/4 0/4 0/4
Speed-up (on Creditcard) 1.6x 2.3x 2.2x 1.7x –

The results in Table 5 indicate that the proposed ReHLine algorithm/software achieves visible
improvements over existing solvers. The major empirical findings are as follows. First, the amount
of improvement achieved by ReHLine in terms of running time is substantial over generic solvers,
including ECOS, SCS, and MOSEK based on CVX, with the largest improvement 100x-1000x speed-up
on the largest-scale dataset. The improvement continues to expand even further as the scale of the
problem grows. Second, ReHLine also yields considerable improvements for specialized algorithms,
including LIBLINEAR in SVM, HQREG in Huber minimization, and LIGHTNING in sSVM. Third,
given that the generic solvers fail or time out in multiple tasks and datasets, ReHLine has shown
remarkable flexibility when it comes to solving various domain-specific problems.
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6 Conclusion

In this paper, we present a new algorithm ReHLine designed to efficiently solve general regularized
ERM with the convex PLQ loss function and optional linear constraints. Through the transformation
of a PLQ loss into a composite ReLU-ReHU function, we have developed a novel CD algorithm that
updates primal and dual variables simultaneously. This approach has proven to be highly effective in
reducing the computational complexity while at the same time achieving a fast linear convergence
rate. Based on our experiments, ReHLine demonstrates remarkable flexibility and computational
efficiency, outperforming existing generic and specialized methods in a range of problems.

Limitation. Although our approach has exhibited substantial versatility in addressing a diverse
range of problems, it is important to acknowledge that it may not be universally applicable to all
convex optimization problems. The main limit of our approach stems from the restriction imposed by
the formulation (1). For instance, (1) requires a convex PLQ loss function and a strict l2-regularization.
We recognize this limitation and intend to address it in future research pursuits. Moreover, we are
interested in exploiting additional loss function properties, such as symmetry.
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A Example Models

SVMs with fairness constraints (FairSVM). The formulation for FairSVM [48] is:

min
β∈Rd

C

n

n∑
i=1

(1− yiβ⊺xi)+ +
1

2
∥β∥22,

s.t.
1

n

n∑
i=1

ziβ
⊺xi ≤ ρ,

1

n

n∑
i=1

ziβ
⊺xi ≥ −ρ, (A.1)

where xi ∈ Rd is a feature vector, and yi ∈ {−1, 1} is a binary label, zi ∈ Rd0 is a collection of
centered sensitive features (

∑n
i=1 zi = 0), such as gender and/or race. The constraints in (A.1)

constrain the correlation between the sensitive features zi and the decision function β⊺xi, and the
constants ρ ∈ Rd0

+ trade off predictive accuracy and fairness. Note that the FairSVM (A.1) can be
rewritten as a ReHLine optimization of (4) with

U← −Cy⊺/n, V← C1⊺
n/n, A←

(
Z⊺X/n
−Z⊺X/n

)
, b←

(
ρ
ρ

)
,

where 1n = (1, · · · , 1)⊺ is the length-n one vector, X ∈ Rn×d is the feature matrix, and y =
(y1, · · · , yn)⊺ is the response vector.

Elastic net regularized quantile regression (ElasticQR). The formulation for the elastic net
penalized quantile regression [19] is:

min
β∈Rd+1

1

n

n∑
i=1

ρκ(yi − x⊺
i β1:d − βd+1) + λ1∥β∥1 +

λ2
2
∥β∥22, (A.2)

where
ρκ(u) = u(κ− 1(u < 0)) (A.3)

is the check loss, κ ∈ (0, 1) is a prespecified sample quantile, xi ∈ Rd is a feature vector, yi ∈ R is a
response, and λ1, λ2 ≥ 0 are weights of lasso and ridge penalties. Then, the ElasticQR (A.2) can be
rewritten as a ReHLine optimization of (4) with

U←


− κ

nλ2
1⊺
n 0⊺

d+1
1−κ
nλ2

1⊺
n 0⊺

d+1

0⊺
n

λ1

λ2
1⊺
d+1

0⊺
n −λ1

λ2
1⊺
d+1

 , V←


κ

nλ2
y⊺ 0⊺

d+1

− 1−κ
nλ2

y⊺ 0⊺
d+1

0⊺
n 0⊺

d+1
0⊺
n 0⊺

d+1

 , X←
(
X 1n
Id+1

)
,

where Id+1 is the identity matrix.

Elastic net regularized Huber minimization. The formulation for the elastic net penalized Huber
minimization [23] is:

min
β

1

n

n∑
i=1

Hκ(yi − x⊺
i β) + λ1∥β∥1 +

λ2
2
∥β∥22, (A.4)

where Hκ(·) is the Huber loss with a given parameter κ:

Hκ(z) =

{
z2/2, 0 < |z| ≤ κ,
κ(|z| − κ/2), |z| > κ.

In this case, (A.4) can be rewritten as a ReHLine optimization with

S←

−√ 1
nλ2

1⊺
n 0⊺

d√
1

nλ2
1⊺
n 0⊺

d

 , T←

 √
1

nλ2
y⊺ 0⊺

d

−
√

1
nλ2

y⊺ 0⊺
d

 , τ←

κ
√

1
nλ2

1⊺
n 0⊺

d

κ
√

1
nλ2

1⊺
n 0⊺

d

 ,

U←

0⊺
n

λ1

λ2
1⊺
d

0⊺
n −λ1

λ2
1⊺
d

 , V← 0, X←
(
X
Id

)
.
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Smoothed SVM (sSVM). The formulation for the smoothed SVMs [33] is:

min
β

1

n

n∑
i=1

V (yiβ
⊺xi) +

1

2
∥β∥22, (A.5)

where xi ∈ Rd is a feature vector, and yi ∈ {−1, 1} is a binary label, and Vκ(·) is the modified
Huber loss or the smoothed hinge loss:

V (z) =


0, z ≥ 1,

(1− z)2/2, 0 < z ≤ 1,

(1/2− z), z < 0.

In this case, (A.5) can be rewritten as a ReHLine optimization with

S← −
√
C/ny⊺, T←

√
C/n1⊺

n, τ←
√
C/n1⊺

n.

B Update Rules for (7)

B.1 Canonical CD updates

Update ξk given others. For k = 1, · · · ,K,

ξnewk = argmin
ξk≥0

1

2
a⊺kakξ

2
k +

∑
k′ ̸=k

ξk′a⊺k′akξk −
∑
l,i

λliuliξka
⊺
kxi −

∑
h,i

γhishiξka
⊺
kxi + bkξk

= max

(
0,−

a⊺k
(∑

k′ ̸=k ξk′ak′ −
∑

l,i λliulixi −
∑

h,i γhishixi

)
+ bk

∥ak∥22

)
. (B.6)

Update λli given others. For l = 1, · · · , L and i = 1, · · · , n,

λnewli = argmin
1≥λli≥0

1

2
u2liλ

2
lix

⊺
i xi +

∑
(l′,i′ )̸=(l,i)

λl′i′ul′i′ulix
⊺
i′xiλli

−
K∑

k=1

ξkulia
⊺
kxiλli +

∑
h′,i′

uliγh′i′sh′i′x
⊺
i xi′λli − vliλli

= P[0,1]

ulix⊺
i

(∑K
k=1 ξkak −

∑
(l′,i′) ̸=(l,i) λl′i′ul′i′xi′ −

∑
h′,i′ γh′i′sh′i′xi′

)
+ vli

u2li∥xi∥22

 .

(B.7)

Update γhi given others. For h = 1, · · · , H and i = 1, · · · , n,

γnewhi = argmin
τhi≥γhi≥0

1

2
(s2hix

⊺
i xi + 1)γ2hi +

∑
(h′,i′ )̸=(h,i)

γh′i′sh′i′shix
⊺
i′xiγhi

−
K∑

k=1

ξkshia
⊺
kxiγhi +

∑
l′,i′

shiλl′i′ul′i′x
⊺
i xi′γhi − thiγhi

= P[0,τhi]

(
shix

⊺
i

(∑K
k=1 ξkak −

∑
(h′,i′ )̸=(h,i) γh′i′sh′i′xi′ −

∑
l′,i′ λl′i′ul′i′xi′

)
+ thi

s2hi∥xi∥22 + 1

)
.

(B.8)

The canonical CD updates in (B.6) - (B.8) for one full iteration require computation complexity of
O
(
(K + nd+ nL+ nH)(K + nL+ nH)

)
.
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B.2 ReHLine updates

Consider the Lagrangian function L in (7). Clearly,

∇ξkL = a⊺kakξk +
∑
k′ ̸=k

ξk′a⊺k′ak −
∑
l,i

λliulia
⊺
kxi −

∑
h,i

γhishia
⊺
kxi + bk

=
∑
k′

ξk′a⊺k′ak −
∑
l,i

λliulia
⊺
kxi −

∑
h,i

γhishia
⊺
kxi + bk

= a⊺kβ(µ) + bk.

Similarly, we can derive that

∇λli
L = −

(
ulix

⊺
i β(µ) + vli

)
, ∇γhi

L = γhi −
(
shix

⊺
i β(µ) + thi

)
.

Then the CD updates in (B.6) can be simplified as:

ξnewk = P[0,+∞)

(
ξoldk − ∇ξkL(ξold)

∥ak∥22

)
= max

(
0, ξoldk −

a⊺kβ
old + bk
∥ak∥22

)
,

βnew = βold + (ξnewk − ξoldk )ak. (B.9)

The CD updates in (B.7) are simplified as:

λnewli = P[0,1]

(
λoldli −

∇λli
L(λold)

u2li∥xi∥22

)
= max

(
0,min

(
1, λoldli +

ulix
⊺
i β

old + vli
u2li∥xi∥22

))
,

βnew = βold − (λnewli − λoldli )ulixi. (B.10)

The CD updates in (B.8) are simplified as:

γnewhi = P[0,τhi]

(
γoldhi −

∇γhi
L(γold)

s2hi∥xi∥22 + 1

)
= max

(
0,min

(
τhi, γ

old
hi +

shix
⊺
i β

old + thi − γoldhi

s2hi∥xi∥22 + 1

))
,

βnew = βold − (γnewhi − γoldhi )shixi. (B.11)

The computational complexity of the new ReHLine iterations is O
(
(K + nL+ nH)d

)
, as shown in

(B.9) through (B.11). Notably, this complexity is linear with respect to both the sample size n and
the dimensionality d, making ReHLine a highly efficient algorithm.

C Screening rules for ReHLine

We extend the shrinking strategy in Algorithm 3 of [12] to the ReHLine solver. To begin with, the
following theorem advocates utilizing “sparse” updates to optimize the performance of ReHLine.

Theorem 4. Let {ξ∗,Λ∗,Γ∗,β∗} be the convergent point of {ξ(q),Λ(q),Γ(q),β(q)} based on (B.9)-
(B.11), then

(A) For ξ updates, let g∗k = a⊺kβ
∗ + bk,

– if g∗k > 0, then ∃q0 such that ∀q ≥ q0, ξ(q)k = ξ∗k = 0.

(B) For Λ updates, g∗li = ulix
⊺
i β

∗ + vli,

– if g∗li < 0, then ∃q0 such that ∀q ≥ q0, λ(q)li = λ∗li = 0;

– if g∗li > 0, then ∃q0 such that ∀q ≥ q0, λ(q)li = λ∗li = 1.

(C) For Γ updates, denote g∗hi = shix
⊺
i β

∗ + thi,

– if γ∗hi = 0 and g∗hi < 0, then ∃q0 such that ∀q ≥ q0, γ(q)hi = 0;

– if γ∗hi = τhi and g∗hi > τhi, then ∃q0 such that ∀q ≥ q0, γ(q)hi = τhi.

Building upon the insights from Theorem 4, we have formulated Algorithm 2 that involves shrinking
certain “boundary” variables during the implementation of ReHLine.
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Algorithm 2: ReHLine solver minimizing (1) with shrinking.

Input :X ∈ Rn×d, U,V ∈ RL×n; S,T,τ ∈ RH×n, A ∈ RK×d, b ∈ RK , tol ε > 0
1 Initialize ξ ≥ 0, E ≥ Λ ≥ 0, τ ≥ Γ ≥ 0;

2 Compute β =
∑K

k=1 ξkak −
∑n

i=1 xi

(∑L
l=1 λliuli +

∑H
h=1 γhishi

)
;

3 Compute and store r = (ri) ∈ Rn, ri = ∥xi∥22, and p = (pk) ∈ RK , pk = ∥ak∥22;
4 Initialize M̄s =∞, m̄s = −∞, s = {ξ, λ, γ}, K = [K], L = [L]

⊗
[n],H = [H]

⊗
[n];

5 while maximum iteration do
6 Initialize Ms =∞,ms = −∞, s = {ξ, λ, γ};

// CD updates for ξ
7 for k ∈ PERM(K) do
8 gk = a⊺kβ + bk;
9 (is_shrink, ḡk)← PG_feasible(ξk, gk, M̄ξ) ;

10 if is_shrink then
11 K ← K \ {k}; continue;
12 Mξ ← max{Mξ, ḡk}; mξ ← min{mξ, ḡk};
13 ε∗ = max(−ξk,−p−1

k gk); ξk ← ξk + ε∗; β ← β + ε∗ak;
// CD updates for Λ

14 for (l, i) ∈ PERM(L) do
15 gli = −(ulix⊺

i β + vli);
16 (is_shrink, ḡli)← PG_ReLU(λli, gli, M̄λ, m̄λ);
17 if is_shrink then
18 L ← L \ {l, i}; continue;
19 Mλ ← max{Mλ, ḡli}; mλ ← min{mλ, ḡli};
20 ε∗ = max(−λli,min(1− λli, u−2

li r
−1
i gli)); λli ← λli + ε∗; β ← β − ε∗ulixi;

// CD updates for Γ
21 for (h, i) ∈ PERM(H) do
22 ghi = γhi − (shix

⊺
i β + thi);

23 (is_shrink, ḡhi)← PG_ReHU(γhi, ghi, M̄γ , m̄γ);
24 if is_shrink then
25 H ← H \ {h, i}; continue;
26 Mγ ← max{Mγ , ḡhi}; mγ ← min{mγ , ḡhi};
27 ε∗ = max(−γhi,min(τhi − γhi, (s2hiri + 1)−1(ghi − γhi)));
28 γhi ← γhi + ε∗; β ← β − ε∗shixi;
29 if Ms −ms ≤ ε and |Ms| ≤ ε and |ms| ≤ ε, s = {ξ, λ, γ} then
30 if |K|+ |L|+ |H| = K + n(L+H) then
31 break;
32 else
33 Take all shrunken variables back,
34 i.e., K = [K], L = [L]

⊗
[n],H = [H]

⊗
[n];

35 M̄s ←∞, m̄s ← −∞, s = {ξ, λ, γ}

36 if Ms ≤ 0 then M̄s ←∞ else M̄s ←Ms, s = {ξ, λ, γ};
37 if ms ≥ 0 then m̄s ←∞ else m̄s ← ms, s = {ξ, λ, γ};

Output :ξ, Λ, Γ, β
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Algorithm 3: Projected gradients in ReHLine.

1 Function PG_feasible(ξk, gk, M̄):
2 ḡk ← gk; is_shrink← False;
3 if ξk = 0 and gk > M̄ then
4 is_shrink← True
5 if ξk = 0 and gk ≥ 0 then
6 ḡk = 0

Output :is_shrink, ḡk

7 Function PG_ReLU(λli, gli, M̄ , m̄):
8 ḡli ← gli; is_shrink← False;
9 if (λli = 0 and gli > M̄) or (λli = 1 and gli < m̄) then

10 is_shrink← True
11 if (λli = 0 and gli ≥ 0) or (λli = 1 and gli ≤ 0) then
12 ḡli = 0

Output :is_shrink, ḡli

13 Function PG_ReHU(γhi, ghi, τhi, M̄ , m̄):
14 ḡhi ← ghi; is_shrink← False;
15 if (γhi = 0 and ghi > M̄) or (γhi = τhi and ghi < m̄) then
16 is_shrink← True
17 if (γhi = 0 and ghi ≥ 0) or (γhi = τhi and ghi ≤ 0) then
18 ḡhi = 0

Output :is_shrink, ḡhi

D Technical proofs

Lemma 1. Suppose f(z) is a nonnegative convex PLQ with knots and extreme points (tk)Kk=1. Then,
there exists k0 ∈ {1, · · · ,K}, such that f(z) ≥ f(tk0

) for any z ∈ R.

Proof. We prove it by contradiction. Suppose that for there exists z0 such that f(z0) < f(tk) for all
k ∈ {1, · · · ,K}, then the minimum can only be obtained outside [t1, tK ], that is

∃z0 < t1, f(z0) < f(tk), or ∃z0 > tK , f(z0) < f(tk) for any k ∈ {1, · · · ,K}.

For example, suppose that z0 ∈ (tK ,∞), f(z0) < f(tk) for any k ∈ {1, · · · ,K}. Note that the
quadratic function in (zK ,∞) can be written as f(z) = 1

2f
′′

+(tK)(z−tK)2+f ′+(tK)(z−tK)+f(tK).
Based on the fact that f(z0) < f(tK) and the convexity of f(z), we have f ′+(tK) < 0. Then,
since (tk)

K
k=1 is the set of all knots and extreme points, we have f ′(z) < 0 for all z > tK ,

and limz→∞ f ′(z) = limz→∞(f
′′

+(tK)(z − tK) + f ′+(tK)) ≤ 0. This yields that f
′′

+(tK) = 0,
alternatively, f(z) is a linear function in (tK ,∞) as f(z) = f ′+(tK)(z− tK) + f(tK). Hence, when
z →∞, f(z)→ −∞, which contradicts with the fact that f(z) is a nonnegative function. The same
argument goes for the case when z0 ∈ (−∞, t1). This completes the proof.

Proof of Proposition 1

Proof. Note that cReLU(z) = cmax(z, 0) = max(cz, 0), and

cReHUτ (z) =


0,

√
cz ≤ 0

(
√
cz)2/2, 0 <

√
cz ≤

√
cτ√

cτ(
√
cz −

√
cτ/2),

√
cz >

√
cτ

= ReHU√
cτ (
√
cz),
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for c > 0. Then,

cL(pz + q) =

L∑
l=1

cReLU(ul(pz + q) + vl) +

H∑
h=1

cReHUτh(sh(pz + q) + th)

=

L∑
l=1

ReLU(cul(pz + q) + cvl) +

H∑
h=1

ReHU√
cτh(
√
csh(pz + q) +

√
cth)

=

L∑
l=1

ReLU(u′lz + v′l) +

H∑
h=1

ReHUτ ′
h
(s′hz + t′h).

This completes the proof.

Proof of Theorem 1

Proof. The sufficiency (⇐=) directly follows from the definitions of ReLU and ReHU. Next, the
necessity (=⇒) of the theorem is established using induction. Without loss of generality, for a
nonnegative convex PLQ function f(z), we assume that (A1) f ′+(tk)f

′
−(tk+1) ≥ 0, otherwise we

can add the extreme point between (tk, tk+1] into the set of knots; (A2) mink=1,··· ,K f(tk) = 0,
otherwise we can add ReLU

(
mink=1,··· ,K f(tk)

)
to the final decomposition (Lemma 1 shows that

the minimum of f(z) can only be obtained within the knots). Next, we conduct the mathematical
induction.

K = 1. Note that f(z) can be rewritten as:

f(z) =

{
q−1 (z) =

f ′′
−(t1)

2 (z − t1)2 + f ′−(t1)(z − t1), z ≤ t1,
q+1 (z) =

f ′′
+(t1)

2 (z − t1)2 + f ′+(t1)(z − t1), z > t1,

where q−1 (z) and q+1 (z) are left and right parts of f(z) separated at z = t1. According to Lemma 1
and Assumption A2, we have f(t1) = 0 is the minimum of f(z). Combined with Assumption A1,
we have f ′−(t) ≤ 0 for t < t1, and f ′+(t) ≥ 0 for t > t1. Then, f(z) can be decomposed as:

f(z) =

{
q−1 (z) = ReHU∞(−

√
f ′′−(t1)(z − t1)) + ReLU(f ′−(t1)(z − t1)), z ≤ t1,

q+1 (z) = ReHU∞(
√
f ′′+(t1)(z − t1)) + ReLU(f ′+(t1)(z − t1)), z > t1.

Hence, f(z) = ReHU∞(−
√
f ′′−(t1)(z − t1)) + ReLU(f ′−(t1)(z − t1)) + ReHU∞(

√
f ′′+(t1)(z −

t1)) + ReLU(f ′+(t1)(z − t1)). The necessity of the theorem for K = 1 then follows.

K = K0 + 1. Assume that a convex PLQ f ≥ 0 with K(K ≤ K0) knots is ReLU-ReHU composite,
now we turn to prove the statement still holds for f(z) with K0 + 1.

• CASE 1. Suppose the minimum f(t∗) = 0 is obtained at {t2, · · · tK0
} (not in the boundary). In

this case, we can decompose f(z) as f(z) = fl(z) + fr(z) where fl(z) and fr(z) are defined
as:

fl(z) =

{
f(z), z ≤ t∗,
0, z > t∗.

fr(z) =

{
0, z ≤ t∗,
f(z), z > t∗.

Both fl(z) and fr(z) are nonnegative convex PLQs withK ≤ K0 knots, thus can be represented
as ReHUs and ReLUs.

• CASE 2. Suppose the minimum f(t∗) = 0 is obtained when t∗ = t1 or t∗ = tK0+1. For
example, when t∗ = t1, we conduct the same decomposition f(z) = fl(z) + fr(z) at z = t1,
where fl(z) is a nonnegative convex PLQ with one knot, which is ReHU-ReLU composite. For
fr(z), we further decompose it as:

fr(z) = ReLU(f ′+(t1)(z − t1)) + ReHUτ

(√
f ′′+(t1)(z − t1)

)
+R(z),

where τ =
√
f ′′+(t1)(t2 − t1), and R(z) (with at most K0 knots) is defined as:

R(z) =

{
0, z ≤ t2,
f(z)− f ′+(t1)(z − t1)− f ′′+(t1)(t2 − t1)(z − (t1 + t2)/2), z > t2.
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Now, we show that R(z) is nonnegative convex. Note that f(z) is convex, then for z ≥ t2,

f(z) ≥ f(t2) + f ′−(t2)(z − t2) = f(t2) + (f ′′+(t1)(t2 − t1) + f ′+(t1))(z − t2)
= f ′+(t1)(z − t1) + f ′′+(t1)(t2 − t1)(z − (t1 + t2)/2)

= ReLU(f ′+(t1)(z − t1)) + ReHUτ

(√
f ′′+(t1)(z − t1)

)
,

where the first equality follows from the fact that f(z) is a quadratic function in [t1, t2], and thus

f ′−(t2) = f ′+(t1)(t2 − t1), and the second equality follows from f(t2) =
f ′′
−(t1)

2 (t2 − t1)2 +
f ′−(t1)(t2 − t1).
Thus, R(z) is a nonnegative convex PLQ with K0 knots {t2, · · · , tK0+1}, which can be decom-
posed as ReHUs and ReLUs. The same argument goes for the case when t∗ = tK0+1.

This completes the proof, and the desirable results follow from the induction.

Proof of Proposition 2

Proof. The lemma follows from the fact that:

∥β∥1 =

d∑
j=1

|βj | =
d∑

j=1

(
ReLU(e⊺jβ) + ReLU(−e⊺jβ)

)
,

where ej = (0, · · · , 0, 1, 0 · · · ) is the d-tuple with all components equal to 0, except the jth.

Proof of Theorem 2

Proof. Note that the augmented Lagrangian of the primal problem (6) is:

LP =

n∑
i=1

L∑
l=1

πli +

n∑
i=1

H∑
h=1

1

2
θ2hi +

n∑
i=1

H∑
h=1

τhiσhi +
1

2
∥β∥22 −

K∑
k=1

ξk(a
⊺
kβ + bk)

−
n∑

i=1

L∑
l=1

λli(πli − ulix⊺
i β − vli)−

n∑
i=1

H∑
h=1

γhi(θhi + σhi − shix⊺
i β − thi)

−
n∑

i=1

L∑
l=1

δliπli −
n∑

i=1

H∑
h=1

ψhiσhi

= e⊺Πe+
1

2
∥Θ∥2F +Tr(τΣ⊺) +

1

2
∥β∥22 − ξ⊺(Aβ + b)

− Tr
(
Λ(Π−Udiag(Xβ)−V)⊺

)
− Tr

(
Γ(Θ+Σ− Sdiag(Xβ)−T)⊺

)
− Tr(∆Π⊺)− Tr(ΨΣ⊺), (D.12)

where ξ = (ξk) ∈ RK , Λ = (λli) ∈ RL×n, Γ = (γhi) ∈ RH×n, ∆ = (δli) ∈ RL×n and
Ψ = (ψhi) ∈ RH×n are dual variables. The KKT conditions for the augmented Lagrangian are:

∂LP

∂β
= β −

K∑
k=1

ξkak +

n∑
i=1

xi

( L∑
l=1

λliuli +

H∑
h=1

γhishi
)
= 0,

∂LP

∂πli
= 1− λli − δli = 0,

∂LP

∂θhi
= θhi − γhi = 0,

∂LP

∂σhi
= τhi − γhi − ψhi = 0,

19



for all (i, l, h). Then, by substituting the KKT conditions into the primal Lagrangian, the (negative)
dual objective function is derived as:

LD =
1

2

( K∑
k=1

K∑
k′=1

ξkξk′a⊺kak′ +
∑
l,i

∑
l′,i′

λliλl′i′uliul′i′x
⊺
i xi′ +

∑
h,i

∑
h′,i′

γhiγh′i′shish′i′x
⊺
i xi′

)

−
K∑

k=1

∑
l,i

ξkλliulia
⊺
kxi −

K∑
k=1

∑
h,i

ξkγhishia
⊺
kxi +

∑
l,i

∑
h′,i′

λliuliγh′i′sh′i′x
⊺
i xi′

+
1

2

∑
h,i

γ2hi +

K∑
k=1

ξkbk −
∑
l,i

λlivli −
∑
h,i

γhithi

=
1

2
ξ⊺AA⊺ξ +

1

2
vec(Λ)⊺Ū⊺

(3)Ū(3)vec(Λ) +
1

2
vec(Γ)⊺

(
S̄
⊺
(3)S̄(3) + I

)
vec(Γ)

− ξ⊺AŪ(3)vec(Λ)− ξ⊺AS̄(3)vec(Γ) + vec(Λ)⊺Ū⊺
(3)S̄(3)vec(Γ)

+ ξ⊺b− Tr(ΛV⊺)− Tr(ΓT⊺),

where Ū(3) and S̄(3) are the mode-3 unfolding of the tensors Ū ∈ RL×n×d and S̄ ∈ RH×n×d, and I
is an identity matrix.

Proof of Theorem 3

Proof. The treatment for the proof is based on a result of coordinate descent on boxed constrained
convex optimization [27]. To proceed, denote µ = (ξ⊺, vec(Λ)⊺, vec(Γ)⊺)⊺ as the collection of all
dual variables, then the dual objective can be rewritten as:

LD(µ) = g(Eµ) + c⊺µ,

where g(z) = 1
2∥z∥

2
2, and E and c are defined as:

E =

[
A⊺ −Ū(3) −S̄(3)
0 0 IH×n

]
∈ R(d+Hn)×(K+Ln+Hn),

c =
(
b⊺,−vec(V)⊺, vec(T)⊺

)⊺ ∈ RK+Ln+Hn.

Now, we tend to verify assumptions of Theorem 2.1 in [27]. Specifically, (a) the dual problem is a
convex box-constrained QP, thus the set of optimal solutions is nonempty; (b) g(z) = 1

2∥z∥
2
2 is a

strictly convex twice continuously differentiable function; (c)∇2g(z) = Id+Hn is always positive
definite; (d) E has no zero column based on its definition. The desirable result then follows from
Theorem 2.1 of [27].

Proof of Theorem 4

Proof. Note that the primal problem (6) is strictly convex, thus it has the unique minimizer β∗.
Therefore, the sequence {β(q)}∞q=1 provided by the proposed Algorithm 1 converges to the unique
minimizer β∗. Next, we check the gradients of each coordinate.

• For ξ-coordinates, with ξk ≥ 0,

goldk := ∇ξkLD(µold) = a⊺kakξ
old
k +

∑
k′ ̸=k

ξoldk′ a⊺k′ak −
∑
l,i

λoldli ulia
⊺
kxi −

∑
h,i

γoldhi shia
⊺
kxi + bk

= a⊺k
( K∑
k=1

ξoldk ak −
n∑

i=1

xi(

L∑
l=1

λoldli uli +

H∑
h=1

γoldhi shi)
)
+ bk = a⊺kβ

old + bk.

Suppose g(q)k is the gradient of ξk based on µ(q), then limq→∞ g
(q)
k = a⊺kβ

∗ + bk =: g∗k.
Therefore, if g∗k > 0, then there exists q0, for all q ≥ q0, we have g(q)k > 0, which implies that
ξ
(q+1)
k = 0.
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• In the same manner, for Λ-coordinates, with 1 ≥ λli ≥ 0,

goldli := ∇λli
LD(µold) = −ulix⊺

i β
old − vli.

Then, limq→∞ g
(q)
li = −ulix⊺

i β
∗ − vli =: g∗li,

– if g∗li < 0, then ∃q0 such that ∀q ≥ q0, λ(q+1)
li = λ∗li = 0;

– if g∗li > 0, then ∃q0 such that ∀q ≥ q0, λ(q+1)
li = λ∗li = 1.

• For Γ-coordinates, with τhi ≥ γhi ≥ 0, thus

goldhi := ∇γhi
LD(µold) = γoldhi − shix

⊺
i β

old − thi.

Then, limq→∞ g
(q)
hi = γ∗hi − ulix

⊺
i β

∗ − vli =: g∗hi, which implies that

– if γ∗hi = 0 and g∗hi > 0, then ∃q0 such that ∀q ≥ q0, γ(q)hi = 0;

– if γ∗hi = τhi and g∗hi < 0, then ∃q0 such that ∀q ≥ q0, γ(q)hi = τhi.
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